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Abstract

Photon diffraction limits the resolution of conventional light microscopy at the lateral focal plane to 0.61l/NA
(l= wavelength of light, NA = numerical aperture of the objective) and at the axial plane to 1.4nl/NA2 (n = refractive index
of the imaging medium, 1.51 for oil immersion), which with visible wavelengths and a 1.4NA oil immersion objective is
,220 nm and ,600 nm in the lateral plane and axial plane respectively. This volumetric resolution is too large for the
proper localization of protein clustering in subcellular structures. Here we combine the newly developed proteomic imaging
technique, Array Tomography (AT), with its native 50–100 nm axial resolution achieved by physical sectioning of resin
embedded tissue, and a 2D maximum likelihood deconvolution method, based on Bayes’ rule, which significantly improves
the resolution of protein puncta in the lateral plane to allow accurate and fast computational segmentation and analysis of
labeled proteins. The physical sectioning of AT allows tissue specimens to be imaged at the physical optimum of modern
high NA plan-apochormatic objectives. This translates to images that have little out of focus light, minimal aberrations and
wave-front distortions. Thus, AT is able to provide images with truly invariant point spread functions (PSF), a property critical
for accurate deconvolution. We show that AT with deconvolution increases the volumetric analytical fidelity of protein
localization by significantly improving the modulation of high spatial frequencies up to and potentially beyond the spatial
frequency cut-off of the objective. Moreover, we are able to achieve this improvement with no noticeable introduction of
noise or artifacts and arrive at object segmentation and localization accuracies on par with image volumes captured using
commercial implementations of super-resolution microscopes.
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Introduction

The spatial resolution and definition of the cellular protein matrix

is fundamental to the characterization and analysis of cellular

function. The accurate resolution of sub-organelle protein localiza-

tion, in tissue, on a proteomic scale is immensely useful. It is with this

in mind that we developed Array Tomography (AT), a proteomic

imaging technique. AT uses ribbon arrays of ultrathin (50–100 nm)

physical sections of resin-embedded, fixed tissue for multiple rounds

of immunohistological detection, which produces a rich, high-

dimensional matrix of protein information in an ex-vivo context

[1,2]. AT allows the collection of 30+ channels of protein

information in a cubic millimeter volume of brain tissue [1,2]. This

information is only useful if we can, with spatial accuracy, localize

spatially aggregated protein units within cellular structures and in

relation to all other imaged protein channels. This places a premium

on the computational segmentation of objects in the image volume,

and is highly dependent on resolution and contrast.

The axial resolution of AT image volumes is limited only by the

physical sectioning, which is 50–100 nm and is far smaller than

the diffraction limited axial resolution of most microsocopes

(,385 nm). However, the lateral resolution of AT image volumes

is still limited by the Abbe diffraction limit (,200 nm for visible

wavelengths) [3,4]. At that lateral resolution, the segmentation of

densely packed proteins, such as Synapsin (a highly abundant

presynaptic protein in the brain), is unreliable and difficult.

Recently, AT was combined with direct stochastical optical

reconstruction microscopy (dSTORM) to achieve lateral resolu-

tion of ,40 nm [5]. However, dSTORM imaging is time

consuming and requires specialized microscopes. Thus, we

investigated deconvolution as a simple and efficient method to

improve our resolution in AT. The reason for considering

deconvolution is that the physical sectioning of AT provides full

removal of out of focus light, and the ideal correction of refractive

index, astigmatism, coma, spherical aberration and curvature of

field [1]. Moreover, the thinness of the tissue coupled with the

direct placement of the sample onto glass also means that the

heterogeneity of refractive indexes in normal biological samples is

not present, which further eliminates sources of aberration and

wave-front distortions. These properties, which are not present in
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most imaging techniques, allow AT to produces image volumes

where the point spread function (PSF) is truly spatially invariant

throughout, which makes these images an ideal substrate for

deconvolution.

Deconvolution is a method by which the diffracted light is

computationally returned back into its actual source using either

an idealized or empirically measured PSF [6,3,4]. The PSF

describes the diffraction of light from a point source. Specimens in

the image are blurred by the PSF at a point by point basis. This

blurring can be considered a convolution operation on the image

[7,8,3], if it is linear (each point source in the image sums their

intensity linearly) and shift invariant (the PSF is the same for the

entire field of view). Wide-field is such an imaging systems [8],

although in actual biological tissue the heterogeneity and depth of

the tissue volume does introduce aberrations, wave-front distor-

tions and out of focus light contributions that can cause significant

deviations in the PSF across the image volume, which adversely

affect the quality of deconvolution. This is not the case for AT thin

sections where the PSFs are truly spatially invariant. Moreover, it

might be easier to appreciate the advantages of thin physical

sections by thinking about the analogy to conventional optical

sectioning microscopes such as confocals. Confocals achieve

optical sectioning by using a pinhole to reject out of focus light.

This improves image quality by increasing the collection of high

spatial frequency information in the image, but this comes at a cost

of reduced signal to noise, due to the rejection of in focus light by

the pinhole. AT physically removes all out of focus light sources,

which means that AT does not need to use a pinhole for optical

sectioning thus allowing it to provide both high signal to noise

(which, in normal confocal microscopy, would be maximized by a

large-diameter pinhole) and measurement of high-frequency

spatial information (which would be maximized by a small-

diameter pinhole) [9,3].

The content of high-frequency information in the image is

reflected in the bandwidth of the Optical Transfer Function

(OTF), which is the Fourier Transform (FT) of the PSF. In

confocal the OTF bandwidth varies inversely with pinhole

diameter [9,3]. The OTF determines the actual spatial frequencies

transferred to the recorded image. Thus, if the OTF were small at

high spatial frequencies (as is the case for an expanded confocal

pinhole or a conventional wide-field setup), the high-frequency

components of the specimen would be greatly attenuated, causing

blurring and decreased resolution. Interestingly, the OTF of a

theoretical infinitely-small pinhole would have twice the band-

width of a standard wide-field OTF [10,9]. In AT, we

approximate this ideal pinhole with physical sectioning, and

combined with the spatially invariant PSF, allow us to perform

deconvolution at its mathematical optimum, which should, with

the correct algorithm, allow us to greatly increase the magnitude of

recovery for high spatial frequency information in the OTF up to

the physical bandwidth limit, which is defined by diffraction.

Richardson-Lucy deconvolution (RL) is a Bayesian based

expectation maximizing deconvolution method originally devel-

oped for the restoration of images in astronomy [11–14]. RL has

several advantages for AT images. It assumes the non-negativity of

the observations and that the statistic of the associated noise

follows a Poisson distribution, which is appropriate for fluorescent

images [15,13,16]. RL is globally and locally intensity-conserving

at each iteration [11,12], thus ensuring that intensity data remain

quantifiable after deconvolution [13,15]. RL is computationally

efficient, and the restored images are robust against small errors in

the image and the point-spread function (PSF) [12,11,17,15],

which makes its real world implementation realistic. Finally, in our

tests on AT images, RL significantly out performs other non-

Bayesian based deconvolution methods, and has demonstrated a

greater than 8 fold increase in the magnitude of spatial frequency

recovery up to the diffraction limit, without any measurable

introduction of artifact or noise into the images. Moreover, RL in

our application demonstrated mathematically a potential for the

recovery of spatial frequencies beyond the diffraction limit, which

likely contributes to the analytical improvements seen in the

analysis of the deconvolved tissue volumes.

Thus, the confluence, in AT, of an essentially two-dimensional

sample imaged at the optical optimum of the imaging system (e.g.,

minimal spherical aberration, optimal refractive index correction,

ideal flatness of field, high signal to noise and a spatially invariant

PSF) [1,2] allows AT in combination with RL to achieve

volumetric resolution significantly better than the diffraction limit.

Using this technique, we demonstrate accurate and clean

computational separation of objects in densely labeled tissue

volumes.

Results

Array Tomography with Deconvolution (ATD)
Two-dimensional RL deconvolution is used to improve the

resolution of protein structures. Initial deconvolution trials using

ultra-thin sections seeded with 110 nm beads using RL with a

high-quality, low-noise empirical PSF (Figure 1) or blind

deconvolution using a hypothetical Gaussian as an initial PSF

(Figure 2A) demonstrated that RL performed significantly better,

returning most of the diffracted light back into the central pixel (1

pixel = ,100 nm, 1.4NA Oil objective). Further tests using RL on

volumes of YFP labeled dendrites of Layer 5 pyramidal neurons,

imaged in traditional wide-field AT (ATW), demonstrated

significant improvements in contrast and the visible recovery of

high spatial frequency information in the image, which lead to a

dramatic qualitative improvement in image quality (Figure 2B).

This qualitative increase in image quality accompanies a

quantitative increase in object separation that can be further

demonstrated through a simulation of improved point source

discrimination by deconvolution of two adjoining points of light

(Figure 3A–D). Within a fluorescent image measured intensity

Author Summary

Biological function at its fundamental level involves
molecular interactions on a nanometer scale, and it is this
reason that biological imaging has pushed for increasingly
better resolution. Light microscopy is highly prevalent in
biology due to its combination of large field of view,
simple sample preparation, cost effective usage and
relatively high tolerance by biological samples. The
problem with light microscopy is that diffraction of light
limits the resolution of achievable images to hundreds of
nanometers in volumetric space, which is much too low for
the accurate localization of proteins in subcellular organ-
elle or structures, such as the synapse of a neuron. Super-
resolution light microscopy is now available, but its
implementation usually requires technically complex and
expensive imaging systems. In this paper, we demonstrate
a method that combines physical thin sectioning of tissue
with Bayesian based deconvolution of conventional,
fluorescent microscopy to achieve volumetric resolution
well below the diffraction limit, and that using this method
we are able to greatly improve the computational
segmentation and localization of labeled proteins in a
reconstructed volume of brain tissue.

Bayesian Restoration Improve Protein Localization
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from point sources of light sum linearly [3,8]. In figure 3 and

Figure S1, two point sources are progressively moved further

apart, and it is clear in both the image and the cross-sectional plot

that after deconvolution the two point sources start to become

visibly separate with only a single pixel between them (Figure 3B,

S1B), while in the original image the two points only become

noticeably separate with 3 pixels between them (Figure 3D, S1D).

This demonstrates a theoretical improvement in resolution that

pushes the resolvability of point sources in the image to 1pixel

separation or 100 nm in our setup.

Although the simulations approximate real imaged objects in a

noise free environment, a real world demonstration of improved

resolvability is critical. Thus, we imaged in AT a volume of

microtubules, and after deconvolution (Figure 4A–C) we demon-

strated that indeed the resolvability of nearby microtubules,

including those that are separated by a single pixel (Figure 4C) is

improved. Furthermore, the most important aspect of this work is

that, because array tomography generates large and information-

rich datasets, we need methods of image processing and

segmentation that are simple, fast and computationally efficient.

Two-dimensional Bayesian based deconvolution significantly

improves the performance and accuracy of finding the weighted

centers of Synapsin puncta, an abundant presynaptic protein [2],

by a simple 26 neighborhood connected component analysis, in

3D volumes of cortical tissue. (Figure 4D).

Comparison of ATD to Other Super Resolution
Techniques

The apparent improvement of object separation in ATD images

requires us to verify this result with imaging of AT ribbons using

previously described and commercially available forms of super

resolution microscopy. We first compared ATD with Structured

Illumination Microscopy (SIM). SIM images the specimen using

gratings of several orientations, which creates moiré fringes along

Figure 1. Empirically measure point spread functions (PSF).
110 nm Tetraspeck beads (Invitrogen) are suspended in ethanol. The
solution is then applied to ultra-thin (70 nm) tissue arrays and let dry.
The arrays are then mounted in mounting medium and imaged. Special
care is made to ensure that no more than a single pixel per bead is
saturated. Beads from multiple images across the entire field is
registered and averaged to produce a single PSF. (A) PSF at 488 nm.
Average of 268 beads. (B) PSF at 594 nm. Average of 282 beads. (C) PSF
at 647 nm. Average of 335 beads. (d) Cross-sectional plot of each PSF.
Note that the width of the PSF increases slightly with increased
wavelength.
doi:10.1371/journal.pcbi.1002671.g001

Figure 2. Two-dimensional Richardson-Lucy deconvolution of array tomographic images. (A) Comparison of RL deconvolution with
empirical PSF versus blind deconvolution using an initial Gaussian PSF on a single sub-diffraction bead. Both methods are intensity conserving, while
RL using an empirical PSF does a much better job of returning the light back to the central pixel. The graph is a plot of the sum of intensities across
each column of pixels in the images. Note the conservation of intensity and the dramatic increase in central intensity in the RL plot. (B) Single section
and Max projection of AT reconstructed YFP dendrite before and after two-dimensional deconvolution. Spines are clearly resolved in the
deconvolved image. Scale bar = 1 um.
doi:10.1371/journal.pcbi.1002671.g002

Bayesian Restoration Improve Protein Localization
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the boundaries of the gratings. These moiré fringes provide extra

spatial frequency information that can be extracted in Fourier

space and used to reconstruct a new image with 100 nm resolution

[18,19]. We imaged AT ribbon arrays stained and labeled for

tubulin, first using a commercial SIM, then using our wide-field AT

setup. The result is a direct comparison of SIM, ATW, and ATD

images of the exact same tissue volume with the exact same labeling

(Figure 5). Qualitatively, the ATD images and the SIM images are

virtually identical, whereas the wide-field AT image appears to have

significantly lower contrast and definition (Figure 5A). Furthermore,

looking at the intensity profiles of two microtubules running side by

side it is clear that SIM and ATD provide similar quantitative

separation of the two intensity profiles as well as matching intensity

peaks and valleys, which suggest similar localization accuracy

(Figure 5B–C). Finally, it is informative to look at the FT of the

image volumes in the three modalities, which show that in the ATD

and SIM case there is a significant increase in high spatial frequency

information as demonstrated by the expansion of the magnitudes in

the frequency domain (Figure S2).

Next we compared ATD to Continuous Wave Stimulated

Emission Depletion microscopy (CWSTED) [20], which uses an

excitation beam that is perfectly aligned with an annular depletion

beam that limits the fluorescent release of photons to only a small

nanometer size spot in the imaged specimen [21,22,20]. For this

experiment, we were able to achieve 90 nm resolution with

CWSTED. We imaged ribbon arrays in CWSTED and AT in a

setup similar to the SIM experiments with the exception that

instead of tubulin we stained the brain tissue for Synapsin. Again,

the CWSTED and ATD images are extremely similar by visual

comparison (Figure 6A, B). More importantly, the locations of the

calculated centers of mass using CWSTED and ATD are similar,

even with the expected jitter caused by the alignment and scaling

of images due to the differences in the two imaging setups (1006
objective with 50 nm pixels for CWSTED and 636objective with

100 nm pixels for AT) (Figure 6C–E). A histogram of point to

point distances between the modalities shows that the majority of

points are within 1.5 pixels of each other (Figure 6F). The most

striking difference between ATW and ATD in comparison to

CWSTED is the number of objects computationally segmented in

the image volume using 3D connected component analysis, with

ATW lagging CWSTED and ATD due to the poor 3D object

separation in the image volume (Figure 6G).

Finally, it is of interest to look at the empirical OTFs of the

above modalities. More specifically, we are interested in the

modulus of the OTF or the Modulation Transfer Function (MTF),

which describes the amount of signal power present at each spatial

frequency, or more practically, the amount of contrast that can be

generated for each spatial frequency and relates directly to the

resolvability of that spatial frequency in the actual image. The

measured MTF was generated by applying FT to PSFs generated

with 100 nm beads imaged at 488 nm wavelength for AT images

and single sub-diffraction primary with secondary fluorescent

antibodies at 488 nm in CWSTED. The MTF of ATW falls off

dramatically as we approach the theoretical cut-off frequency of a

1.4NA objective (Figure 7). The cut-off frequency is described by

the equation 2NA/l (l= wavelength, NA = numerical aperture).

This clearly demonstrates the bandwidth-limited nature of the

MTF in AT imaging. Two dimensional blind deconvolution of the

ATW images increases the amount of signal at the higher spatial

frequencies, but it only serves to bring the MTF edge closer to the

theoretical cut-off (Figure 7). CWSTED’s major gain in the MTF

is at the higher spatial frequencies and as expected for a super

resolution technique it surpasses the cut off value (Figure 7). The

most significant aspect of the ATD MTF is the dramatic increase

in modulation at all frequencies within the frequency cut-off. This

massive improvement in modulation is the most likely cause of the

image improvement seen in ATD, however intriguingly the ATD

MTF, like CWSTED was able to extend beyond the frequency

Figure 3. Deconvolution improves the resolvability of adjacent
point sources. Here we plot the central cross-sectional profiles of an
empirically measured point source, duplicated to simulate two
adjoining point sources. Through the linear addition of intensity
profiles after the two point sources were shifted in space, we
demonstrate the improved resolution of the point sources after
deconvolution. Note: 0 along the x axis denotes the center of the
two point sources. (A) The centers are shifted by 1 pixel (100 nm) apart,
and predictability one cannot resolve the two points in either case,
because the centers occupy adjacent pixels. (B) The centers are shifted
by 2 pixels (200 nm) apart, and now clearly the deconvolved point
sources are resolvable. (C) The centers are shifted by 3 pixels (300 nm)
apart. The situation is not different from the 2pixel shift. (D) The centers
are shifted by 4 pixels (400 nm), and finally, the non-deconvolved point
sources are resolvable. Thus, deconvolution decreases the threshold of
resolvability for 4 pixel shift to 2 pixel shift.
doi:10.1371/journal.pcbi.1002671.g003

Bayesian Restoration Improve Protein Localization
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Figure 4. Deconvolution improves computational resolution of fine cellular structures. (A–C) Comparison of microtubules before and
after deconvolution. Images are max projection of AT volumes composed of twenty 70 nm sections. (A–B) It is clear that there is more contrast and
higher frequency information is more visible in the deconvolved image. Scale Bar 10 um. Blow-up: Scale Bar 2 um. (B–C) We quantify two parallel
microtubules separated by one pixel distance at the cross sections marked in the blow-up images in (B). Scale Bar = 1 um. Intensity cross sections (C)
along the length of the microtubules show that the peaks of the microtubules are clearly resolved in the deconvolved case, as compared to the
original image, where the peaks are barely separated. (D) Deconvolution of Synapsin puncta, a presynaptic protein, makes individual puncti more
readily resolvable. Images are max projection of 15 AT sections. More importantly, computationally calculated 3D centers of mass are more accurate
and better represent the number of puncta visible after deconvolution. Scale Bar = 1 um.
doi:10.1371/journal.pcbi.1002671.g004

Bayesian Restoration Improve Protein Localization
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cut-off of the objective. The MTF of the actual AT images are

bandwidth limited by diffraction, but it appears that in ATD, our

deconvolution algorithm has mathematically extended the high

spatial frequency information, which does eventually hit a hard

limit, that is set by the image pixel size (100 nm), whereas

CWSTED does not (pixel = 50 nm) (Figure 7). Further testing of

ATD with 50 nm pixels using a 1.66 optivar and the 636
objective revealed that the higher spatial frequency component

can be further pushed out approaching CWSTED levels (Figure 7).

While this is a curious result and has interesting implications to the

interpretation of our result, this phenomenon has been demon-

strated in astronomical imaging. RL, but not blind deconvolution,

applied to images with high signal to noise and band-limited OTFs

can recover, through analytic continuation in the Fourier domain,

frequency information beyond that of the measured object, thus

allowing the extension of the MTF beyond the diffraction limit

[23–25,15]. Analytic continuation is a method in complex analysis

that allows the extension of the domain over which a function is

defined [26,23,25,27]. Analytic continuation requires an original

function to be analytic within its domain of definition, and not

Figure 5. Comparison of microtubules imaged using SIM versus deconvolution. (A) Max projection of identical tissue volumes (ten 70 nm
sections) imaged in SIM, ATW and ATD. Scale Bar = 10 um. (B–C) We quantify two parallel microtubules at the cross sections marked in the blow-up
images in (B). Intensity cross sections (C) along the length of the microtubules show that the peaks of the microtubules are clearly resolved in the
deconvolved and SIM scenario, whereas the peaks in the wide-field images are barely separated. The intensity of deconvolved image is higher,
because it represents the computationally returned light at that pixel from the more blurred original image. For a more quantitative measurement of
the similarity between SIM, ATD and ATW images, the Pearson’s correlation coefficient is calculated using the images, which is: SIM to ATW = 0.8394.
SIM to ATD = 0.8862, and ATW to ATD = 0.8982. The numbers confirm that in reference to the SIM, ATD is a closer match than ATW.
doi:10.1371/journal.pcbi.1002671.g005

Bayesian Restoration Improve Protein Localization
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Figure 6. Comparison of Synapsin puncta imaged using CWSTED versus deconvolution. (A) Image of a single thin section imaged in
CWSTED, ATW and ATD image. (B) Overlay of CWSTED (red) to ATW (green), CWSTED (red) to ATD (green) and ATW (red) to ATD (green). Note the
high correspondence between the images, especially that of the CWSTED and ATD. The arrows in B point to apparent points in the ATD image
(green) that is not in the CWSTED image (red). These few discrepancies are most likely due to the loss of primary antibody in a viscous mounting
media overnight, because the CWSTED images were taken the day after the AT images, mostly because of the tendency of the CWSTED to bleach the
sample during imaging. R value is the calculated Pearson’s correlation coefficient between the two images. (C–E) Max projection of identical tissue
volumes (ten 70 nm sections) imaged in CWSTED, ATW and ATD. Note that the CWSTED images were acquired using a 1006objective with 50 nm
pixels whereas the AT images were acquired using a 636objective with 100 nm pixels, thus the images were scaled and aligned to maintain the
correct aspect ratios. Scale Bar = 5 um. (F) A distance histogram of centers of mass calculated from the CWSTED volume as compared to the ATW
volume or the ATD volume. (G) A bar graph representing the total number of object centers found in the CWSTED volume, the ATW volume and the
ATD volume.
doi:10.1371/journal.pcbi.1002671.g006

Bayesian Restoration Improve Protein Localization

PLOS Computational Biology | www.ploscompbiol.org 7 August 2012 | Volume 8 | Issue 8 | e1002671



every complex function is analytic. In essence analytic continua-

tion states that knowing the value of a complex function in some

finite complex domain uniquely determines the value of the

function at every other point. In image restoration, if a 2D object is

compact in the space domain, i.e., confined within a finite region,

its FT is analytic [28,29]. In wide-field fluorescence images with

diffraction limited OTFs, the image is an analytic function

restricted to the pass-band, which analytic continuation maybe

be applied to extrapolate it beyond the pass-band [23,25,30]. In

practice, analytic continuation is highly sensitive to noise

[26,23,31,32] (Figure 8), and applied without constraints on real

images results in little resolution improvement [33]. However, if

we apply the reasonable constraint that all observations in our

images are non-negative, which is an intrinsic assumption in RL,

significant improvements in resolution can be obtained even with a

moderate signal to noise ratio [23,16,25].

Finally we thought it might be of interest to test whether

deconvolution of confocal images from our thin sections would

improve our results further, because the confocal PSF is the

multiplication of the excitation PSF and the emission PSF, which

sharpens the lateral PSF and improves lateral resolution.

Empirically we show, as we stated earlier, confocal have better

native lateral resolution and spatial frequency capture, as can be

seen in its MTFs as compared to ATW (Figure 9 A, B, E, F).

Moreover, as one expects, by decreasing the pinhole size the MTF

does see an appreciable increase in all spatial frequencies (Figure 9

A, B, E, F). RL deconvolution of confocal images, much like ATD,

allowed the extension of spatial frequencies beyond the cut-off

limit of the objective, especially when 50 nm pixels were used, and

in some cases (when the pinhole is 1 airy unit (au) or smaller), RL

plus confocal actually out performs ATD (Figure 9 D, H). This

suggests that for array tomography, confocal imaging is a viable

alternative to wide-field, although the gain in spatial frequency

capture and recovery might not outweigh the increased image

acqusition time, equipment cost and illumination intensity

(especially, for small pinhole sizes (, = 1au) where confocal

deconvolution beats ATD).

Discussion

It must be noted that although our comparison of ATD with

commercial SIM and CWSTED appear to suggest that ATD

images in certain instances can approach the resolution of those

techniques, we must caution that ATD is purely a mathematical

process based on reasonable, but not perfect assumptions. It does

not record extra spatial frequencies as SIM and CWSTED does

through the use of deterministic light patterns. Moreover, the

proper implementation of RL requires that the algorithm to

converge through the iterations [34], and although in practice

applying RL to AT images has always converged, one must be

aware that this is a mathematical process that can fail, and the

results of any deconvolution must be carefully interpreted. That

said, the ideal optical characteristics of ultra-thin (50–100 nm)

sectioning (minimal non-linear aberrations, optimal refractive

Figure 7. Comparison of measured MTFs. (A) Top row: the PSFs of ATW, AT with blind deconvolution, STED and ATD. Bottom row: the calculated
MTF of the above modalities, which we accomplished by performing a FT on the PSF and graphing the modulus or the real component of the FT as a
2D intensity plot. (B) A plot of the rotationally averaged MTFs of ATW, AT with blind deconvolution, ATD and CWSTED. Yellow lines denote the
theoretical cut-off frequency for a 1.4NA objective is calculated using 2NA/l (l= wavelength-488 nm, NA = numerical aperture-1.4). The grey region
represents the frequency domain that is between the diffraction limit and the pixel limit of AT images. The frequencies in this region are not present
in the actual recorded image, and ATD’s MTF extension into this region must be accounted for purely through analytical continuation by RL. In
contrast, blind deconvolution does not apply analytical continuation and remains bandwidth limited by the cut-off frequency. CWSTED on the other
hand clearly surpasses the diffraction limit and has 50 nm pixels. Further tests using ATD with 50 nm pixels (636objective with 1.66optivar) reveal
that the MTF extension can be further pushed by allowing analytical continuation to continue further using a smaller pixel size.
doi:10.1371/journal.pcbi.1002671.g007

Bayesian Restoration Improve Protein Localization
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index correction, ideal flatness of field, high signal to noise and a

spatially invariant PSF) creates optimal circumstances for two-

dimensional Bayesian based deconvolution (RL) to dramatically

improve the MTF of AT images and perhaps even mathematically

extend it, thus improving the resolution and computational

segmentation of imaged protein structures. Our application of

deconvolution, in the AT framework, truly allows RL to shine,

because of the ideal data characteristics, which in many ways

mimic the astronomical images that RL was originally designed

for. Interestingly this does suggest that optical methods, such as

evanescent field microscopy, that have extremely fine optical

sectioning, could also benefit greatly from RL deconvolution.

The combination of deconvolution and AT creates volumetric

images of intact tissue with a combination of speed, resolution,

coverage and cost that cannot be matched by any other imaging

modality. This coupled with the highly multiplexed imaging of

proteins that is native to the AT procedure opens the door for the

detection of biologically relevant protein localization in intact

tissue samples at a scale and detail that will be crucial for

understanding the function and dysfunction of biological systems.

This spatial proteomic approach, where protein localization is

maintained with sub-organelle precision from the in-vivo context

can provide an essential piece of information that is missing in

traditional proteomic approaches. It has become increasingly clear

that the analysis of total expression level of proteins lacks the

nuance that will be required to understand function at a complex

cellular and systems level. The localization of a protein within a

cell in relation to other proteins within its interaction repertoire is

as important to the function of that protein as its modification state

or its intrinsic structural and catalytic capabilities. The collection

and analysis of this data is the information space that is uniquely

occupied by ATD. It is this convergence of proteomic breadth

with sub-organelle localization accuracy that will allow a much

deeper analysis of biological function that can contribute

significantly to our understanding of biological processes.

Methods

Preparation of AT Ribbon Arrays
Tissue preparation, array creation and immunohistochemistry

are described in detail in previous publications [1,2]. In short, a

small piece of tissue (,2 mm high by 1 mm wide by 1 mm deep),

in our case cortical tissue from the somatosensory cortex of the

mouse brain, is microwave fixed in 4% Paraformaldehyde. The

fixed tissue is then dehydrated in graded steps of ethanol, and then

embedded in LR White resin overnight at 50uC. The embedded

tissue is section on an ultramicrotome at a thickness of 70 nm and

placed as a ribbon array directly on gelatin or carbon coated glass

coverslips.

Immunohistochemistry is then carried out on the arrays using

primary antibodies targeting antigens of choice (alpha-Tubulin,

Abcam ab18251 and Synapsin, Cell Signaling Technology 5297S). The

primary antibodies are visualized via fluorescently labeled

secondary antibodies (Alexa 594, Invitrogen A11037, Alexa 488,

Invitrogen A11034, and Alexa 647, Invitrogen A21245), and mounted

in SlowFade Gold antifade with DAPI (Invitrogen).

Microscopy
Wide-field imaging of ribbons were accomplished on a Zeiss

Axio Imager.Z1 Upright Fluorescence Microscope with motorized

stage and Axiocam HR Digital Camera as previously described

[1,2]. A position list was generated for each ribbon array of

ultrathin sections using custom software modules written for

Axiovision. Single fields of view were imaged for each position in

the position list using a Zeiss 636/1.4 NA Plan Apochromat

objective.

SIM imaging of ribbons were performed on a Zeiss ELYRA

PS.1 super resolution scope using an Andor iXon 885 EMCCD

camera. Positions on the ribbons were manually acquired across

each section of the ribbon, and each fluorescent channel was

imaged with five pattern rotations with 5 translational shifts, using

a Zeiss 636/1.46 NA Plan Apochromat objective. The final SIM

image was created using modules build into the Zen software suite

that accompanies the imaging setup.

CWSTED imaging was performed on a Leica TCS SP5 II using

Lecia HyD hybrid PMT detectors. Positions on the ribbons were

manually acquired across each section of the ribbon, and

CWSTED images were acquired with a calibrated 90 nm

resolution using a Lecia HCX PL APO 1006 1.40NA objective.

Confocal imaging was performed on a Zeiss LSM-510 using a

Zeiss 636/1.46 NA Plan Apochromat objective. Images of 100 nm

beads, seeded on AT thin sections, were acquired using manually

Figure 8. The effect of noise on the spatial frequency recovery of RL deconvolution. (A) This graph clearly illustrates the effect of Poisson
noise on the fidelity of RL deconvolution. Poisson noise was artificially generated and added to the same image stack, and the RL was performed on
those images, then the MTF of the images were calculated to demonstrate that even with a 5% injection of noise the spatial frequency recovery was
significantly degraded, and for a 10% noise increase for most frequencies of the MTF the ATD is not better than ATW. Pixel size of the images were
100 nm.
doi:10.1371/journal.pcbi.1002671.g008
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set pin-hole sizes ranging from 0.5 airy unit to 8 airy unit using

either 100 nm pixels or 50 nm pixels.

Image Registration and Processing
Image stacks from ATW, SIM and STED were imported into

FIJI and aligned using both rigid and affine transformations with

the Register Virtual Stacks plugin. The aligned image stacks were

further registered across image sessions using MultiStackReg.

The aligned and registered image stacks were imported into

Matlab (Mathworks) and deconvolved using the native implemen-

tation of Richardson-Lucy deconvolution with empirical or

theoretical PSFs with 10 iterations [15]. Custom functions were

written to automate and facility this work flow. Blind deconvolu-

tion is also natively implemented in Matlab.

Matlab native function (regionprops) was used to calculate the

centers of mass of punctas in the image volumes using 26

neighborhood 3D connected component analyses with an assumed

background threshold that is 0.1 of the total dynamic range, which is

6553.5 for a 16bit image, and is in line with previous background

thresholds used for AT analysis [2]. Custom functions were

implemented to facility the handling and processing of the data.

Supporting Information

Figure S1 Deconvolution improves the resolvability of adjacent

non-similar point sources. Here we plot the central cross-sectional

profiles of two empirically measured point source to simulate

adjoining point sources one that is half the intensity of the other.

Through the linear addition of intensity profiles after the two point

sources were shifted in space, we demonstrate the improved

resolution of the point sources after deconvolution. Note: 0 along

the x axis denotes the center of the two point sources. (A) The

centers are shifted by 1 pixel (100 nm) apart, and predictability

one cannot resolve the two points in either case, because the

centers occupy adjacent pixels. (B) The centers are shifted by 2

pixels (200 nm) apart, and now clearly the deconvolved point

sources are resolvable. (C) The centers are shifted by 3 pixels

(300 nm) apart. The situation is not different from the 2pixel shift.

Figure 9. RL deconvolution of confocal images. (A, C, E, G) Images of Confocal (CF) PSFs at different pinhole sizes for different pixels sizes and
after deconvolution. Each PSF is an average of ,200 individual images from 110 nm fluorescent beads. (B) MTF plot of CF with 100 nm pixels at
different pinhole sizes, compared to ATW with 100 nm pixels. Note the increase in MTF magnitude for all CF cases as compared to ATW. (D) MTF of RL
deconvolved confocal images (CFD) at 100 nm pixels as compared to ATD with 100 nm pixels. The magnitude of the MTF is comparable at the high
spatial frequencies with CFD performing better at lower spatial frequencies. (F) MTF plot of CF with 50 nm pixels, which is very similar to (B), with a
slight increase in MTF frequency. (H) MTF plot of CFD at 50 nm pixels, as compared to ATD at 100 nm and 50 nm pixels. It is clear that CFD at 50 nm
completely out performs ATD at 100 nm. ATD at 50 nm perform closely with CFD in the high spatial frequencies, with the exception of CFD at 0.5 airy
unit (au). At lower spatial frequencies, as seen in (D) as well, CFD out performs ATD.
doi:10.1371/journal.pcbi.1002671.g009
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(D) The centers are shifted by 4 pixels (400 nm), and finally, the

non-deconvolved point sources are resolvable. Thus, deconvolu-

tion decreases the threshold of resolvability for 4 pixel shift to 2

pixel shift.

(TIF)

Figure S2 Fourier Transforms of ATW, ATD and SIM Image

Volumes. (A–C) Representative max projection images of ATW,

ATD and SIM image volumes (ten 70 nm sections: above)

presented with the Fourier Transforms (FT) of the Image Volumes

as performed in FIJI (below). The false colored FT images

represent the spatial frequency information present in the image,

and the magnitude of the frequency component in the image is

represented by intensity in the image. The center of the image is

the mean frequency component of the image, and as we move

further from the center of the image the intensities represent the

magnitude of higher and higher spatial frequencies present in the

image. Note the large increase in high spatial frequency

information in the SIM and ATD images as compared to the

ATW images. Scale Bar = 5 um.

(TIF)
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