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Abstract

A large number of experiments have asked to what degree human reaching movements can be understood as being close
to optimal in a statistical sense. However, little is known about whether these principles are relevant for other classes of
movements. Here we analyzed movement in a task that is similar to surfing or snowboarding. Human subjects stand on a
force plate that measures their center of pressure. This center of pressure affects the acceleration of a cursor that is
displayed in a noisy fashion (as a cloud of dots) on a projection screen while the subject is incentivized to keep the cursor
close to a fixed position. We find that salient aspects of observed behavior are well-described by optimal control models
where a Bayesian estimation model (Kalman filter) is combined with an optimal controller (either a Linear-Quadratic-
Regulator or Bang-bang controller). We find evidence that subjects integrate information over time taking into account
uncertainty. However, behavior in this continuous steering task appears to be a highly non-linear function of the visual
feedback. While the nervous system appears to implement Bayes-like mechanisms for a full-body, dynamic task, it may
additionally take into account the specific costs and constraints of the task.
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Introduction

Recent studies have shown that, for many motor tasks, human

subjects take uncertainty in their sensory feedback into account.

They often use knowledge of uncertainty in a way that is close to

optimal in a statistical sense both in their perception of the world

[c.f. 1,2,3] and for several types of movement [4–7]. Subjects’

behavior is accurately predicted by normative models that describe

what we ‘‘should’’ do given uncertainty arising from noisy sensory

information and constraints on action [8]. The focus of the

majority of these normative models is Bayesian statistics, which

describes how different pieces of uncertain information should be

combined. For instance, given cues from two noisy sensors

Bayesian statistics predicts that an ideal observer would combine

information from the two sensors weighted by the precision of

each sensor [1,9]. There is growing evidence that the nervous

system may implement these types of Bayesian computations

[10–18]. However, most of this evidence is based on studies of

pure perceptual judgment or relatively simple behaviors such as

hand-reaching. They generally do not address dynamical aspects

of movement control or the unconstrained movements that we use

in daily life. The control of these movements requires the nervous

system to extract relevant information from a rapidly changing,

noisy environment and to coordinate multiple effectors. A central

question for our understanding of the computations the brain

performs is whether uncertainty still plays a role during

coordinated, full-body sensorimotor tasks.

In studies of Bayesian behavior, the problem of how the brain

uses sensory estimates to control movement has often been

formulated as an optimization problem. That is, given the

constraints and costs of the movement as well as sensory

information, the nervous system computes how to move to

minimize the cost. A range of human movement studies have been

conducted confirming that humans often move in a way that is

close to statistically optimal, in this sense [19–26]. Subjects appear

to estimate the state of the world conforming to Bayesian

mechanisms - combining information across sensors and time in

a way that takes uncertainty into account, and subjects appear to

move to minimize cost functions that quantify their performance

error and control effort. For instance, errors between hand

position and a target or between current posture and standing

upright seem to be penalized with the square of the error [20,24].

These studies based on optimal control have advanced our

understanding of basic human behavior, but it is not yet clear how

accurate these descriptions will be for more complex behaviors.

Here we attempt to generalize these theories to a continuous, full-

body task.

We introduce a new goal-directed, visuomotor task where

whole-body movements are required to interact with the

environment. In this task subjects steer a noisy, dynamic visual
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cursor by forward-backward shifts of body weight similar to surfing

or snowboarding. Our purposes are two-fold. First, we aim to test

whether Bayesian predictions of the behavioral responses to visual

feedback still hold when the task dynamics are more complex.

Second, we aim to test whether, as in studies of reaching and quiet

standing, subjects appear to use a linear feedback control rule with

a quadratic cost function. We find that many aspects of behavior

are well captured by optimal control models incorporating

Bayesian estimation of feedback uncertainty. However, behavior

during this task differs in an important way from previous work on

simple movements such as hand reaching and quiet standing. In

this steering task human subjects appear to combine two well-

known control strategies: bang-bang control and linear-quadratic

regulation. Importantly, our results suggest that humans still take

uncertainty into account during a full-body, dynamical control

task.

Materials and Methods

Ethics statement
All experimental protocols were approved by IRB and in

accordance with Northwestern University’s policy statement on

the use of humans in experiments. Informed consent was obtained

from all participants.

Experimental details
Here we use a novel approach to analyze the influence of

uncertainty on the dynamical control of subject’s movement (see

Fig. 1A and B). In this experiment a force plate measures the

movement of subject’s center of pressure (COP). This COP

dynamically steers the movements of a cursor on the screen and

visual feedback about the cursor position is corrupted by noise. To

analyze the effect of feedback uncertainty we vary the quality of

feedback between low, medium or high uncertainty from trial to

trial. Due to process noise in the dynamics of the cursor, human

subjects have the task of stabilizing the cursor near the center of

the screen in the presence of ongoing fluctuations. Subjects receive

monetary rewards for successful stabilization.

The goal of this experiment is to examine how subjects control a

noisy dynamical system during a goal-directed, full-body steering

task. 10 healthy volunteers participated in the experiment. (4

female, 6 male; age 30.7 6 5.0 years; weight 67.6 6 8.3 kg).

Subjects were instructed to stand perpendicular to a rear-

projection screen (1.41 m 60.79 m), ,0.6m away, on a 4-sensor

force-plate (Nintendo Wii Balance Board, recorded at 500 Hz) (see

Fig. 1). By moving their body, subjects could control the

acceleration of the cursor through their center of pressure (COP)

along the anterior-posterior axis with the dynamics of the cursor

following:

at~eCOPt{axt{1{bvt{1zg

vt~vt{1zat{1dt

xt~xt{1zvt{1dt

where at represents the acceleration, vt the velocity, and xt the

position of the cursor at time t. Subjects influence the cursor

through COPt (the subject’s A-P center of pressure in cm), and g

represents process noise which follows g*N 0,s~0:8s{2
� �

.

Finally, e parameterizes the influence the subject has on the

cursor, and a and b are parameters preventing the cursor from

going too far off-screen. Normalizing by the screen-size, we chose

e~0:01s2
�

cm, a~0:08s{2 and b~0:04s{1. With these dynam-

ics, controlling the cursor is quite difficult, and large errors in

cursor position are relatively frequent. The observed standard

deviation of the cursor position is ,0.18 scr, where scr denotes

screen units which range from [20.5,0.5]. Depending on their

preference, 8 subjects faced the screen with their left foot forward

(called regular in the surfing community) and 2 subjects with their

right foot (goofy).

The experiment was divided into 180 trials with each trial

lasting for a random duration evenly distributed between 11.5 and

15 seconds. Every 20 ms a new dot with low contrast was shown

on the screen with a position drawn from a radially isotropic

Gaussian distribution centered on the true position of the cursor,

while the previously shown dot disappeared. Due to persistence of

vision, subjects perceive a rapidly fluctuating cloud of ,5–10 dots.

The width of this Gaussian cloud changed randomly from trial to

trial with three categories: small, medium, or large variance

(ss = 3.5 cm, sm = 7 cm and sl = 14 cm).

At the end of each trial the true cursor position was revealed.

Subjects were subsequently given a score based on the squared

distance between the cursor and the mid-line of the display. The

random trial duration incentivizes subjects to minimize the error

over the entire trial, not simply the final error. The monetary

rewards were arranged such that the minimum reward obtainable

over the course of the experiment was $$ 10 and the maximal

reward obtainable was $$ 20.

To account for the possibility that the cursor dynamics in this

task cause subjects to approach biomechanical limits and behave

atypically, we ran a similar experiment (N = 5, 1 female, 4 male,

separate from the original group) in which the control gain was

increased by a factor of four (e~0:04s2
�

cm). This high-gain

condition makes the task substantially easier. In this case subjects

make much smaller errors (standard deviation of the cursor

position ,0.16 scr), and the task requires a much smaller COP

range (standard deviation of 2.96 cm compared to 5.07 cm in the

original experiment).

The cursor dynamics in this task are based on a stochastic linear

dynamical system, where the state of the world evolves linearly

with some process noise and subjects receive noisy feedback.

Uncertainty arises from both the state evolution, through the

process noise g, and the feedback, through the observation noise

ss, sm, or sl . In the sections that follow, we briefly present the

ideal observer model (the Kalman filter) that allows optimal state

estimation for this system and the optimal control models that

Author Summary

There is a growing body of work demonstrating that
humans are close to statistically optimal in both their
perception of the world and their actions on it. That is, we
seem to combine information from our sensors with the
constraints and costs of moving to minimize our errors and
effort. Most of the evidence for this type of behavior
comes from tasks such as reaching in a small workspace or
standing on a force plate passively viewing a stimulus.
Although humans appear to be near-optimal for these
tasks, it is not clear whether the theory holds for other
tasks. Here we introduce a full-body, goal-directed task
similar to surfing or snowboarding where subjects steer a
cursor with their center of pressure. We find that subjects
respond to sensory uncertainty near-optimally in this task,
but their behavior is highly non-linear. This suggests that
the computations performed by the nervous system may
take into account a more complicated set of costs and
constraints than previously supposed.

Bayesian Integration and Non-linear Control
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describe what action an ideal observer should take given their state

estimates and the costs of specific actions.

Control models
We compare four different models of behavior for this task. Our

objective is to predict subject’s center of pressure ut based on their

observations, i.e. the noisy position yt of the dots on the screen.

The first model, a proportional-integral-derivative controller

(PID), simply uses these observations directly. The second two

models assume an ideal observer (Kalman Filter) and estimate the

control under different cost assumptions: quadratic costs (linear-

quadratic regulator - LQR) and negligible costs in a small, fixed

range of control (bang-bang controller). Finally, we consider a

non-linear extension of the LQR controller. For all models we fit

the parameters by minimizing the squared distance between

measured and predicted COP trajectories: jju{ûjj2.

In model 1, the proportional-integral-derivative controller

(PID), we assume that the observer ignores the dynamics of the

cursor and simply estimates the best policy based on the noisy

observations yt:

ût~kpytzki

Xt

t~0
ytzkd

yt{yt{1

2

kp, ki, and kd parameterize the contributions of the proportional,

integral, and derivative terms respectively. PID controllers have

previously been used to explain human postural control [26,27],

and while this model does not explicitly estimate the underlying

position of the cursor, the integral term allows fluctuations in the

feedback noise to be averaged over time.

In models 2 and 3 we use a standard Kalman filter to

compute the estimated state of the cursor from the observations

[28]. The Kalman filter assumes that the state Xt~ xt vt½ �T of

the cursor at time t evolves from the state at time t-1 according

to linear dynamics and control: Xt~AXt{1zButzWt. Here ut

is the control signal used by the system and Wt is process noise

drawn from a Gaussian distribution. We assume an ideal

observer that has full knowledge of the dynamics A, the effect of

control B, and the distribution of Wt used during the

experiment. In this case, A and B follow immediately from the

set of difference equations used to control the cursor (see

Experimental details) and Wt reflects the fluctuations in

acceleration or process noise g.

An important feature of the Kalman filter as it relates to this

experiment is how estimation changes as function of feedback

uncertainty. The best estimate of the state at time t combines the a

priori state estimate (from t-1) with the current observation.

Increasing the observation noise (feedback uncertainty) while

Figure 1. The task and data. A) The experimental setup. Subjects steer a cursor by shifts in center of pressure (COP) along the anterior-posterior
axis. Noisy feedback of the cursor position (small, medium or large variance) is given while subjects are incentivized to steer the cursor to be close to
the midline of the screen (target). B) Subject’s movements affect the center of pressure, which is measured by a force plate. The resulting sensor
readings then steer the on-screen cursor. Subjects receive noisy visual feedback about the cursor position and react to reduce errors. C) COP, cursor
velocity and cursor position are shown as a function of time during one trial for a typical subject (red). The observed feedback (noisy dots) is shown in
blue. D) The phase portrait of cursor position and velocity is shown for 10 successive trials. Data from (C) are highlighted in red.
doi:10.1371/journal.pcbi.1000629.g001

Bayesian Integration and Non-linear Control
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keeping the dynamics and process noise the same causes the

observation to have a smaller effect on how the current state

estimate is updated (the Kalman update). That is, as feedback

uncertainty increases the observations have a weaker effect and are

integrated more slowly over time.

The following models use the Kalman filter state estimates.

However, to be optimal we must define an underlying cost

function, which will determine the control policy. In model 2

we consider a linear-quadratic regulator [20]. Following the

actual rewards during the task, this control policy minimizes

the squared end-point error as well as the control itself with the

cost function J~
P?

t~0 cx2
t zu2

t

� �
. In this particular case, x2

t

penalizes how far the cursor is from the target and u2
t penalizes

deviations from upright posture (COPt=0). Here c balances

how lazy subjects are in comparison to how badly they want to

perform well. The solution K to the matrix Riccati equation

minimizes the above cost function, and yields a simple rule

which corresponds to the linear feedback control

ûut~KX̂Xt

To fit the free parameters, we optimize over c and the feedback

uncertainty for each of the three feedback conditions (ss, sm, and

sl ) to fit human behavior. The model thus has 4 free parameters.

Note that, in the experiment, monetary rewards are given

proportional to the squared error at the end of each trial rather

than continuously. However, minimizing the error term in the cost

function J over all time will maximize the monetary reward

function as well, since the real rewards are presented at pseudo-

random times.

Model 3 again uses an ideal observer; however, here we assume

that subjects use another type of control policy: a bang-bang

controller. This model assumes two-state control with a threshold

determined by a combination of the estimated position and

velocity:

ûut~l1sign cosh sinh½ �X̂X t

� �
zl0

Here h parameterizes the decision rule for a given position and

velocity, and l1 and l0 parameterize the magnitude of the two

states of the bang-bang controller. If control costs are negligible in

comparison to the rewards but the control signal is limited - either

because subjects do not want to fall of the board or due to

biomechanical constraints - then this control scheme is actually

optimal.

Finally, in model 4, we consider a non-linear extension of

the linear-quadratic regulator. This model estimates the

optimal control for a standard linear-quadratic regulator.

Then, to approximate the constraints of human behavior

during this task (not wanting to fall over or biomechanical

limits on posture), we pass the control predicted by the linear-

quadratic regulator through a static non-linearity (a logistic

function). Although this control scheme is sub-optimal for the

two classes of cost-functions we consider in models 2 and 3, the

static non-linearity serves to interpolate between bang-bang

control and LQR. Bang-bang control is limited in the sense

that it must explain a continuous signal using only two states,

and LQR is limited in that it does not appropriately model the

constraints and costs of the task, such as not wanting to fall off

the board.

Results

The effects of feedback uncertainty
We find that human subjects readily learn our task. While the

noise introduced into the cursor dynamics constantly perturbs the

movement of the cursor, subjects are able to change their COP

and stabilize the cursor position (see Fig. 1C). The dynamics of the

cursor induce weak oscillations in the cursor position and humans

readily dampen this behavior (see Fig. 1D). Subjects show quick

improvement over the first couple of trials but continue to improve

slowly over the course of 180 trials (Fig. 2A). Several subjects

reported that controlling the cursor was difficult, and subjects

make large deviations from upright posture throughout the

experiment.

In trials where the feedback is better human subjects have lower

mean squared errors (MSEs) on average (Fig. 2B). This is

Figure 2. Task errors across time and across feedback
conditions. A) Average errors across subjects over the course of the
experiment binned in blocks of 10 trials. B) The influence of feedback
type on task errors. All comparisons between feedback uncertainty
levels were significant (one-sided t-test). In both plots errorbars denote
SEM across 10 subjects. * denotes p,0.05. *** denotes p,0.001.
doi:10.1371/journal.pcbi.1000629.g002

Bayesian Integration and Non-linear Control
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consistent with a number of previous experiments and can be

explained by estimation errors alone. However, we can also

examine the specific strategies human subjects use to deal with the

continuous nature of the task.

One direct way of analyzing the behavior in this task is to

observe subjects’ responses to fluctuations in the time domain.

Taking the cross-correlation between the fluctuations in cursor

dynamics (process noise, g) and the center of pressure we find that

responses to fluctuations in cursor position are consistent with ideal

observer models. That is, we find that subjects respond more

slowly and with lower amplitudes when the feedback is more

uncertain (Fig. 3A). Peak response amplitude to small uncertainty

feedback was significantly higher than in the other two feedback

conditions (p,0.001 for both comparisons, one-sided paired t-

test). In addition, the peak response time was significantly different

across all feedback conditions (p,0.05 for all comparisons, one-

sided paired t-test, Fig. 3B), with higher feedback uncertainty

corresponding to slower responses. Feedback uncertainty is

significant as a main effect for both peak time and peak amplitude

(single factor, repeated measures ANOVA, p = 0.000035 and

p = 0.00095 respectively). While there is a large variability across

subjects, the ordering of peak time and amplitude within subjects is

highly stereotyped with larger feedback uncertainty being

associated with slower, weaker responses.

These results are qualitatively predicted by the Kalman filter

models, since the Kalman update decreases with increasing

feedback uncertainty. Small Kalman updates then lead to longer

integration times and smaller excursions. For reference we include

results from a simulation showing the cross-correlation between

fluctuations and the Kalman update for three levels of feedback

uncertainty (Fig. 3A inset). In these simulations the control ut was

fixed at zero. Since the Kalman filter performs estimation alone,

changes in the Kalman update occur immediately after fluctua-

tions and the cross-correlation decays approximately as an

exponential. The observed cross-correlations, on the other hand,

are based on subject’s actions and are only an indirect reflection of

subject’s state estimates. The shape of the observed cross-

correlations is consistent with simulation results that have been

phase lagged and low-pass filtered. For comparison we have low-

pass filtered the simulation results (Gaussian smoothing,

s = 250 ms).

The focus of the high-gain experiment is whether the range

of center of pressure required for the task affects subject’s

control strategies. We do not expect any qualitative differences

in how subjects estimate the cursor position. Indeed, we find

similar trends for the case where the control gain is much

larger. For the 5 subjects in the high-gain condition, the mean-

squared target errors are 0.02260.007 scr2, 0.02760.007 scr2,

and 0.05460.016 scr2 for sm, sm, and sl respectively. We

again see that subjects show quick improvement over the first

couple of trials and continue to improve slowly over the course

of the experiment. Mean cross-correlation amplitudes are

0.04860.006, 0.04760.005, and 0.03860.006 for ss, sm, and

sl respectively, and mean cross-correlation peak times are

2.2260.14 s, 2.4360.09 s, and 2.8360.31 s for ss, sm, and sl .

As before, these results are consistent with an ideal observer

model integrating information more slowly as feedback

uncertainty increases.

It is important to note that the predictions of the ideal observer

model (Kalman filter) describe perception alone. Since we measure

postural responses, the above analyses serve as indirect evidence

for near-optimal Bayesian integration. However, the ordering of

peak time and peak amplitude responses clearly indicates that

subjects take feedback uncertainty into account. Moreover, this

ordering is consistent with an ideal observer using a monotonic

feedback control rule,

Estimating control policies and model comparison
Although subjects respond differently to different types of

feedback, we can also look in detail at the strategies subjects used

during the task – their control policies. To do this we compute the

average center of pressure (the response) given the true cursor

position and cursor velocity (the state) for each of feedback

condition (Fig. 4B). Given the state of the cursor, the policies

illustrate the control issued by subjects. In stark contrast to

previous reaching experiments, we find that subjects’ control

policies appear qualitatively more similar to bang-bang controllers

than to linear-quadratic-regulators (Fig. 4B, top row). Instead of a

plane in the space of positions and velocities, center of pressure

appears to saturate at large velocities and positions. The

distribution of center of pressure averaged across subjects

(Fig. 4A, top right) also suggests a type of approximate two-state

control. Subjects tend to lean fully forward or fully backward

despite the fact that errors in cursor position are unimodally

distributed.

This non-linear control strategy may be due to the wide range of

center of pressures required for the task. In the high-gain

Figure 3. Cross-correlations between process noise and COP. A)
Cross-correlation between the fluctuations in cursor acceleration
(process noise, g) and the center of pressure with time lag for each
feedback uncertainty level. The inset shows the cross-correlation
between fluctuations in the cursor acceleration and the Kalman update
in a simulation. The results have been smoothed to mimic postural
responses (Gaussian smoothing, s = 250 ms) B) Peak amplitude for each
feedback uncertainty level. C) Peak time for each feedback uncertainty
level. Confidence intervals denote SEM (N = 10). * denotes p,0.05;
*** denotes p,0.001 (one-sided paired t-test).
doi:10.1371/journal.pcbi.1000629.g003

Bayesian Integration and Non-linear Control
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condition, where center of pressure excursions can be much

smaller for a given error level, subject’s behavior appears much

more linear. The COP distribution appears more unimodal

(Fig. 4A, bottom right), and subject’s control policies are

qualitatively much more similar to a plane than a saturating

non-linearity. Nonlinear control still occurs, however, for cases

where large center of pressure excursions are helpful for

performing the task and may be a result of postural biomechanics

far away from upright standing.

We also examined how subject’s controlled their center of

pressure as a function of the cursor position alone (Fig. 5). These

analyses highlight the non-linearity of the control policies and the

differences between the low-gain and high-gain tasks. Both

individual subjects (Fig. 5A) and the across subject average

(Fig. 5B) show highly non-linear behavior in the low-gain

condition and much more linear behavior in the high-gain

condition.

The bang-bang controller appears qualitatively very similar to

human behavior (Fig. 4A–B). To quantify this similarity we fit

each of the four models above (see Materials and Methods) to the

behavior of individual subjects. Model 1, the PID controller,

provides a first approximation of human behavior during this task.

It is not particularly surprising that this model does not fit well,

since the observed behavior appears very non-linear and the

model does not take into account the cursor dynamics. The three

ideal observer models (models 2–4) all explain significantly more

variance than the PID model (Fig. 6B).

Model 2, the bang-bang controller captures the bimodal

strategy observed in human behavior but is limited by the fact

that it attempts to model a continuous signal using only two

discrete states (Fig. 5C, Fig. 6A). Model 3, the standard LQR fails

to capture the bimodal control strategy used by subjects: the

predicted COP follows a unimodal distribution that reflects the

distribution of errors and does not follow the non-linearity in

subject’s policies (Fig. 5C). Although the standard LQR model

uses a PD controller (linear control based on position and velocity),

the addition of a state estimation model (Kalman filter) confers

some advantage over the controllers based on the observations

alone, such as the PID controller (Fig. 6B). Not including dynamic

state estimation reduces the fraction of variance explained by

,8% (9.1% for LQR, 7.7% for the Bang-bang controller). Using

state estimation but without including the cursor dynamics reduces

the fraction of variance explained by ,4% (4.5% for LQR, 4.3%

for Bang-bang).

Figure 4. Control policies. A) Distributions of the cursor position (left), cursor velocity (center) and center of pressure normalized by the standard
deviation (right), averaged across subjects for the low-gain (top row) and high-gain (bottom row) conditions. In the low-gain condition, note the
bimodal distribution of the center of pressure, despite the unimodal distribution of errors. This may indicate a bang-bang-like strategy. B) Policy-maps
of the center of pressure averaged across subjects as a function of the true cursor position and velocity for two different levels of feedback
uncertainty and across all conditions. Note that in the low-gain condition subject’s responses saturate at large cursor velocities and positions. In the
high-gain condition responses are much more linear.
doi:10.1371/journal.pcbi.1000629.g004

Bayesian Integration and Non-linear Control
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Finally, by combining aspects of the bang-bang and standard

LQR controllers, a non-linear LQR model (model 4) out-performs

all other models. This model captures the continuous character of

the signal, and also allows for saturation-like effects where the nature

of the task constrains behavior (Fig. 5C). All models were fit after

throwing out the first 20 trials to remove initial learning effects.

Figure 5. Policies as a function of position. A) Center of pressure as a function of cursor position for typical subjects in the low and high-gain
conditions. Black lines denote median responses for a given range of cursor positions. Red and blue points denote samples along the COP trajectory.
B) Average responses across subjects with thin lines denoting the responses of individual subjects. C) The predicted responses from the LQR, Bang-
bang, and Non-linear LQR models. Error bars denote SEM across subjects (in B and C) and sample points (in A).
doi:10.1371/journal.pcbi.1000629.g005

Figure 6. Model fitting. A) Observed center of pressure for a typical subject and trial along with the center of pressure predicted by each of the
three ideal observer models. Note that the linear-quadratic-regulator and the bang-bang controllers produce qualitatively very different estimates.
Note also that the non-linear LQR model has some ability to interpolate between the two. B) Cross-validated fraction of variance explained for each
model for both the low and high-gain experiments (two-fold cross validation). In the low-gain condition the ideal optimal observer models explain a
significantly larger fraction of variance than the PID controller (p,0.05, one-sided paired t-test), and the non-linear LQR explains a significantly larger
fraction of variance than all others (p,0.001, one-sided paired t-test). Error bars denote SEM across subjects.
doi:10.1371/journal.pcbi.1000629.g006

Bayesian Integration and Non-linear Control
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It should be noted that Figure 6 shows the cross-validated

fraction of variance explained. The models were fit on one half

of the data (odd trials), while prediction error was estimated

from the second half of data (even trials). Since the four models

have different numbers of free parameters (PID: 3, Bang-bang:

6, LQR: 4, NLQR: 7), differences in the prediction error on

training data may be due to over-fitting. However, in the

results presented cross-validation controls for these differences

in model complexity.

Discussion

Here we have shown that ideal observer and optimal control

models can describe many aspects of human behavior in a surfing-

like task where movements of the body steer the movements of a

cursor. We have found that there is a clear influence of uncertainty

on motor behavior. As predicted by Bayesian statistics (Kalman

filter model), subjects respond more slowly and with lower

amplitude to higher uncertainty feedback suggesting that they

are integrating information over longer periods of time. Unlike

previous (predominantly reaching) experiments examining the

effects of uncertainty on behavior, we find that under certain

conditions subjects use highly non-linear strategies similar to bang-

bang control. These results suggest that human subjects take the

uncertainty of sensory information into account and use this

information during motor control, even during full-body behavior

when the task is continuous and constrained by biomechanical

factors.

Several studies have examined behavior during tasks involving

control of the center of pressure including skiing on a simulator

[29,30], snowboarding in a virtual reality setting [31], and rocking

the body on a force plate [32]. However, these studies mostly

address motor learning questions without addressing control or

uncertainty. In the task presented here we varied uncertainty

parametrically and subjects performed an explicitly goal-driven

task. While many reaching tasks also examine these effects, here

we use a continuous task with constrained control signals, limited

by the support surface.

The present study provides strong evidence that feedback

uncertainty affects online control of continuous movements. When

feedback is more uncertain the behavioral responses are

significantly slower, indicating the nervous system needs to

integrate information over a longer period of time. Similar results

have been reported for reaching tasks where reaction time

increases with increasing uncertainty about the target [33]. When

a target is perturbed visually, adaptation to the perturbation is also

slower when there is more visual uncertainty associated with the

target representation [33,34]. All these findings are in accordance

with Bayesian models of sensory estimation. Our study highlights

the effect uncertain information has on online, continuous control

in complex motor tasks other than the well studied point-to-point

reaching task.

Previous studies of optimal control in reaching have found that

human behavior is accurately modeled by linear-quadratic

regulation [35]. Muscle activations in response to support surface

perturbations also appear to be well-described by near-optimal

linear feedback rules [36]. Here we find that, for certain tasks,

human behavior appears to be highly non-linear. This deviation

from previous models may be due to the particular properties of

our task, where control signals are limited in size by costs (subjects

cannot afford to fall of the force plate) or biomechanical factors. At

the same time, when posture is close to upright, the task is

characterized by relatively low control costs. In the high-gain

condition, where the distribution of center of pressures required

for the task is much smaller, we find that behavior is much more

linear. Only when body postures get toward extreme values do

biomechanics and a risk of falling off induce constraints on

behavior.

The models presented here aim to describe the factors that

drive motor control in dynamical situations. However, unlike in

reaching tasks where two-link systems provide fairly accurate

biomechanical models, the experiment here needed to be

simplified dramatically to allow for productive modeling.

Specifically, we ignore the biomechanical factors that link the

motor commands driving body stabilization with actual

movements of the center of pressure. This simplifying assump-

tion makes modeling much more tractable but could potentially

be extended with more realistic biomechanics. We should note,

however, that the dynamics of the body should have a small

effect on the results presented here. Although the natural

frequency of quiet standing is on the order of one second [37],

reaction time (from a sensory stimulus to a change in the center

of pressure) is on the order of 100 s of milliseconds [38].

Changes to the cursor position and in subjects’ posture thus

occur on a slower timescale than the timescale of possible

posture responses.

Despite this difference in timescales, the cursor dynamics in

the low-gain condition apparently do cause subjects to use the

full range of their center of pressure, allowing us to observe

control strategies near the biomechanical limits of posture. The

high-gain experiment was designed to make the task much

easier and requires subjects to use a much smaller range of

postures. In this case, subjects use much more linear control

strategies. Importantly, both these regimes, near equilibrium

and near biomechanical limits, exist in normal human behavior,

and appear to be well-described by control models that use

optimal state estimation. We should also note that, for the

results presented here, the problem of how subjects estimate the

cursor position is inter-twined with the problem of how subjects

control the cursor. The timescales of estimation alone are likely

to be faster than those shown.

In addition to computational implications, the results

presented above may also have implications for neurophysio-

logical studies. In the past decade several studies have made

progress investigating the neural correlates of uncertainty and

Bayesian computations [10,12,13,39–42]. Several lines of

research suggest that feedback uncertainty is represented in

both pre-motor and medial temporal cortex during sensorimo-

tor tasks [15–18], and that movement errors are represented in

cerebellum [43,44]. The results presented here suggest that the

nervous system represents feedback uncertainty continuously

and dynamically and is able to integrate feedback uncertainty

over time. The control policies we observe suggest that the

output of the nervous system may be nonlinear; however, this

nonlinearity may be due to biomechanical factors. As such, this

experiment does not rule out the possibility that cerebellar error

computations may be linear.

Here we have combined aspects of typical experiments that ask

if the nervous system employs Bayesian strategies with aspects of

typical experiments that analyze the dynamical control of

movements. We have found that salient aspects of optimal

control and optimal Bayesian estimation can be observed for a

complex task where whole-body movements are controlled

continuously. This may indicate that these principles describe

general properties of the human movement system and that

people can rapidly learn to control a system in a near-optimal

way – even if a non-linear control scheme such as bang-bang-like

control is necessary.
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