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Abstract

Protein–protein interaction and gene regulatory networks are likely to be locked in a state corresponding to a disease by
the behavior of one or more bistable circuits exhibiting switch-like behavior. Sets of genes could be over-expressed or
repressed when anomalies due to disease appear, and the circuits responsible for this over- or under-expression might
persist for as long as the disease state continues. This paper shows how a large-scale analysis of network bistability for
various human cancers can identify genes that can potentially serve as drug targets or diagnosis biomarkers.

Citation: Shiraishi T, Matsuyama S, Kitano H (2010) Large-Scale Analysis of Network Bistability for Human Cancers. PLoS Comput Biol 6(7): e1000851. doi:10.1371/
journal.pcbi.1000851

Editor: Nathan D. Price, University of Illinois at Urbana-Champaign, United States of America

Received May 14, 2009; Accepted June 3, 2010; Published July 8, 2010

Copyright: � 2010 Shiraishi et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: The authors received no specific funding for this work.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: Tetsuya.Shiraishi@jp.sony.com

Introduction

Understanding diseases within the context of biological

networks is one of the major challenges in systems biology.

Diseases often persist and resist therapeutic intervention. The

persistence of a disease in a system must be reflected in the ability

of the system’s networks to maintain the state underlying the

disease. In other words, networks are ‘‘locked-in’’ to disease states

and maintain their stability. Thus, it is important to understand

how such multi-stable states are achieved within the context of

network topology and to understand the dynamics of these states.

A network robust against a range of perturbations can maintain a

healthy state but can also, when affected by a disease, transition to

a new steady state that is often also robust against perturbations,

making the disease state persistent. A series of disease progressions

may be the result of a sequence of state transitions in the network

dynamics (Fig. 1A). Bistable circuits may drive such transitions and

are thus critical in enabling the initiation and progression of

diseases to be understood (Fig. 1 B).

Complex networks exhibiting such multi-stability must have a

set of bi-stable or multi-stable circuits consisting of proteins and

genes. The identification of circuits that exhibit bi- or multi-

stability within large protein-interaction and gene-regulation

networks would provide information useful for understanding

the mechanism(s) of network bistability. Furthermore, circuits

exhibiting bistability can be potential drug targets or biomarkers

for classifying disease states.

Network dynamics are regulated by the structure of the network

and the flow of information through feedforward and feedback

loops. Mutual activation or mutual inhibition configurations can

maintain the flow of biological information between two molecules

and act as network memories or switches. Furthermore, an

activation-inhibition configuration, in which one molecule stimu-

lates the other while the latter inhibits the former, generates

dynamics with periodicity like that seen in circadian rhythms and

cell cycles [1]. The stability and characteristics of Boolean

networks comprising these configurations were studied in detail

by Kauffman et al. [2]. In the study reported here, we focused on

mutual inhibition, which is thought to be involved in the stable

deviations of a system observed during the progression of tissue

from a normal to a diseased state.

There are several important network motifs for system

configurations [3–6] in protein-protein networks. One of them, a

toggle switch that converts a continuous input signal into a

discontinuous ON or OFF response, plays a fundamental role in

information processing and decision making. Among the naturally

occurring toggle switches that have been reported are the lambda

phage lysis–lysogeny switch [7–9], switches in the lactose operon

repressor system [10–12], the mitogen-activated protein kinase

(MAPK) cascade [13–20], the Sonic hedgehog network in stem-

cell differentiation [21], cell-cycle regulatory circuits [22–24], and

the rapid lateral propagation of receptor tyrosine kinase activation

[25]. Genetically engineered toggle switches have been construct-

ed experimentally in Escherichia coli [26,27] and in mammalian

cells [28].

A robust toggle switch behaves as a signal memory unit by using

a hysteresis mechanism [29]. Once in the ON state, a toggle switch

remains in the ON state even if the stimulus concentration falls

below the threshold level [11,13,23,24,30,31]. A molecular

network’s persistence in a disease state might be due to the

hysteresis of toggle switches.

To identify circuits exhibiting bi- and multi-stability, we

topologically analyzed activation and inhibition in proteins on a

large scale by using various databases containing expression array

data for various diseases. We compared the progression stages of

these diseases with those of control samples by using data for

healthy individuals taken from available databases, and we

identified sets of switch circuits possibly responsible for maintain-

ing the persistent disease states by using network topologies to

analyze that data.
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Results

Extraction of bistable toggle switches
There are theoretically many system configurations that can

lead to bistability [18,32–35]. We focused on bistable toggle

switches (BTSs) with double-negative feedback. Such switches can

be constructed from any two genes that mutually repress their

expression. We considered three types of network motifs that can

exhibit bistable behavior (Fig. 2).

1. Type-1 BTS: A type-1 BTS uses a basic motif that has been

identified in E. coli [26] and has mutually inhibitory interaction

and positive autoregulators. In a circuit with a double-negative

feedback loop, proteins A and protein B inhibit or repress each

other. Positive autoregulation is a type of feedback in which

proteins directly activate the transcription of their own genes.

Under the right circumstances, there could be a stable steady

state in which A is ‘‘ON’’ and B is ‘‘OFF’’ or B is ‘‘ON’’ and A

is ‘‘OFF.’’ This bistability is maintained through positive

autoregulation.

2. Type-2 BTS: Only a small number of transcription factors with

a positive autoregulation ability have been reported. From the

viewpoint of dynamic properties, positive autoregulation has

the same functional meaning that a positive feedback loop

(double-positive feedback or double-negative feedback) does

[36]. We thus defined two mutually inhibitory nodes with a

positive feedback loop between them as a type-2 BTS.

3. Type-3 BTS: A theoretical study of modeling genetic switches

with positive feedback loops [37] revealed that mutual

inhibition is maintained even if a molecule that signals

information intervenes between the molecules constituting a

switch. We defined two nodes that inhibit each other through

other genes (mediators) as a type-3 BTS. Although it is

theoretically possible that a positive feedback loop can be

formed even if the intervening molecules are identical, in the

present study we excluded this possibility.

It is possible that double-negative feedback can be a bistable

toggle switch when both nodes have positive feedback loops. Two

BTSs can share their mutual inhibition configurations as positive

feedback loops and can form network configurations.

Next, bistable toggle switches defined above was extracted from

large-scale databases (ResNet 3.0, Ariadne Genomics Inc.)

containing data for interaction networks. We detected 6585 pairs

of bistable toggle switches, and these switch nodes formed a large

network. Four-hundred and forty-two genes are involved in these

BTS pairs, and the hubs of switch nodes in the network are clearly

visible because of their high degree of connectivity (Fig. 3). A

complete list of the BTS pairs is provided in Protocol S1, and a

Cytoscape session file is provided in Protocol S2. It should be

noted that this network was constructed using text mining and that

the molecular details of each interaction were not verified. It is

nevertheless a reasonable starting point, and whether or not a

listed BTS actually exhibits bistability can be further examined

using microarray data.

Tests using mRNA microarray data
ArrayExpress microarray data were used to further examine the

states of the BTS pairs. It is obvious that a BTS has four possible

states: ‘‘ON/ON,’’ ‘‘ON/OFF,’’ ‘‘OFF/ON,’’ and ‘‘OFF/OFF.’’

Mathematical analysis of bistability for the chosen parameter

condition demonstrated that the probability of ‘‘ON/OFF’’ and

‘‘OFF/ON’’ states is high, that of ‘‘ON/ON’’ is low, and that of

‘‘OFF/OFF’’ is extremely low [38]. This is the reason we focused

on the BTSs that demonstrated ‘‘ON/OFF’’ or ‘‘OFF/ON’’

states.

The ArrayExpress experimental categories and the mean

number of corresponding BTS pairs with a significant ON/OFF

change are shown in Fig. 4. In the set of 6585 candidate BTSs the

number of pairs with a significant ON/OFF change ranged from 0

to 1927 (mean = 298.6), while in a set of 6585 randomly selected

gene pairs the number of pairs with a significant ON/OFF change

ranged from 0 to 273 (mean = 72.1).

The switching of a molecule’s function to the ON state generally

means the molecule’s intrinsic function related to intracellular

molecular systems has become stronger, whereas switching to the

OFF state means it has become weaker. The ON state of a

molecule is produced not only by an increase in the absolute

amount of that molecule but also by actions such as activation due

to phosphorylation-induced transformation of the molecule’s

three-dimensional structure or to translocation of the molecule

to an location where it can carry out its function properly.

In these studies using mRNA expression data from microarrays,

the toggling of a BTS pair was defined as an instance in which a

sample’s mRNA level for one of that pair’s molecules increased

(relative to a control) and the mRNA level for the other of that

pair’s molecule decreased (relative to the same control).

Normal Disease states

Progression Progression

A

B

Figure 1. State transitions in network dynamics and disease
progression. A: A network in a healthy state is robust against a range
of perturbations, so it can continue to maintain a healthy state. With the
onset of a disease, however, the network transitions to a new steady
state that is also often robust against perturbations, making the disease
state persistent. B: These state transitions might be driven by bistable
switch networks. The nodes represent genes and the edges between
them represent the pairing of bistable toggle switches. Red and blue
nodes correspond to ON (upregulated) and OFF (downregulated)
states.
doi:10.1371/journal.pcbi.1000851.g001

Author Summary

Since most disease states exhibit a certain level of
resilience against therapeutic interventions, each disease
state can be considered to be homeostatic to some extent.
There must be one or more mechanisms that cause the
gene-regulatory network to maintain a certain state, and
one such mechanism is a bistable switch. In this work,
bistable switch networks were constructed and their
ON(upregulated)/OFF(downregulated) states were com-
pared between human cancers and healthy control
samples. Changes in the ON/OFF state with the progres-
sion of cancer were demonstrated. A series of genes that
might serve as a drug target or diagnosis biomarker was
identified. The approach presented here should provide
useful insights into the states of biological networks, which
may lead to the discovery of novel drug targets and
therapeutic interventions.

Network Bistability for Cancers

PLoS Computational Biology | www.ploscompbiol.org 2 July 2010 | Volume 6 | Issue 7 | e1000851



A notable finding is that when mRNA levels were compared

between induced pluripotent stem (iPS) cells and donor controls,

more than 1000 BTS pairs demonstrated significant changes in the

ON/OFF states. The high frequency of these changes in iPS cells

is reasonable in that an iPS cell is in an undifferentiated state

committed to differentiation to a particular lineage, in which many

BTSs might be involved [39]. iPS cells have been generated from

mouse and human somatic cells by using retroviruses or

lentiviruses to introduce Oct3/4 and Sox2 with either Klf4 and

c-Myc or Nanog and Lin28 [40]. These factors have been reported

to result in bistability when they combine with other factors and

form mutual-activation and mutual-inhibition motifs [41–43].

Lung cancer
Lung cancer is the leading cause of cancer-related deaths [44],

and tobacco smoking is the strongest etiological factor associated

with lung cancer. Prior studies have demonstrated that smoking

creates a field of molecular injury throughout the airway

epithelium exposed to cigarette smoke [45].

Figure 5A depicts the toggling of BTS ON/OFF states inferred

from time-dependent data (ArrayExpress ID: E-GEOD-10700 and E-

GEOD-10718) for the mRNA expression in normal human bronchial

epithelial cells exposed to cigarette smoke for 24 hours. Toggling

began at 2 hours (Fig. 5B) and was observed most frequently at

4 hours (Fig. 5C). SOCS3 (suppressor of cytokine signaling 3) was

observed early, while BTSs related to HMOX1 (heme oxygenase 1),

CSF2 (colony stimulating factor 2), and SPP1 (secreted phosphopro-

tein 1) were observed throughout the 24-h period.

SOCS3 inhibits cytokine signaling via the JAK(Janus kinase)/

STAT(signal transducers and activators of transcription) pathway.

Recent research has demonstrated that the activation of SOCS3 in the

lung occurs during the acute inflammatory response [46]. Frequent

hypermethylation in the CpG islands of the functional SOCS3

promoter has been found in lung-cancer tissue samples to correlate

with its transcription silencing [47]. The OFF states of EGF (epidermal

growth factor) and MAPK8 (mitogen-activated protein kinase 8) were

linked to the ON states of CSF2 and HMOX1, which became the

main players at four or more hours of exposure. CSF2 and HMOX1

were connected through several genes in the OFF state, including IL13

(interleukin 13), IFNG (interferon gamma), and FN1 (fibronectin 1),

which are related to inflammatory responses and wound healing.

Figure 6 illustrates the state of BTS toggling for a comparison of

mRNA expression (ArrayExpress ID: E-GEOD-10072) in non-

small cell lung carcinoma (NSCLC) patients with a history of

smoking (Fig. 6A) along with those currently smoking (Fig. 6B)

with mRNA expression seen in normal lung tissue. The bold black

frames surround molecules that are also in the BTS molecules

whose toggling is shown in Fig. 5A.

ON/OFF patterns of FN1-SPP1 (Fig. 6A) and IGF1-SPP1

(Fig. 6B) were observed in the data gathered in experiments

exposing normal human bronchial epithelial cells to cigarette

smoke. SPP1 is a secreted integrin-binding glycoprotein that is

overexpressed in various tumors and has been reported to be

involved in tumorigenesis and metastasis. High expression of SPP1

is a significantly unfavorable prognostic factor for the survival of

patients with NSCLC [48].

In addition, although some EDN1(endothelin-1)-related BTS

pairs and SHC1(Src homology 2 domain containing transforming

protein)-related BTS pairs are shared in lung cancer tissue in

current and former smokers, a considerable number of differing

Type Schema Mutual 
inhibition Autoregulation

1 Direct
interaction

Positive 
autoregulation

2 Direct
interaction

Positive feedback 
loop

3 Indirect 
interaction

Positive 
autoregulation

or
positive feedback 
loop

Figure 2. Motifs of bistable toggle switches. A type-1 bistable toggle switch (BTS) contains two genes with positive autoregulation. Each gene
mutually inhibits the other’s expression. The two genes in the type-2 BTS also suppress each other’s expression. Each gene has double positive or
negative feedback with the other gene, so the same function as a type-1 BTS may be exhibited. A type-3 BTS was constructed on the basis of a
theoretical study on the modeling of genetic switches with positive feedback loops. The blue, green, and orange nodes respectively correspond to
switch genes, mediators, and genes constituting a feedback loop. Positive (upregulated) interactions are indicated by green lines and negative
(downregulated) interactions are indicated by red lines.
doi:10.1371/journal.pcbi.1000851.g002
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patterns are evident. This suggests that the mechanisms for

carcinogenesis differ depending on the lengths of time that current

and former smokers have smoked. EDN1, which is a hypoxia-

inducible angiogenic growth factor for surrounding epithelial and

endothelial cells, plays an important role in cancer-stromal

interactions and tumor progression, and its expression is related

to poor prognosis in NSCLC [49].

Small molecules that can put these BTS pairs into normal ON/

OFF states might be useful in preventing the progression of lung

cancer in both current and former smokers.

Hepatocellular carcinoma
Hepatocellular carcinoma (HCC) is a primary cancer that

originates in hepatocytes and typically follows cirrhosis or chronic-

hepatitis virus infections [50], and the most significant risk factors

for HCC are chronic infections with either hepatitis B virus or

hepatitis C virus (HCV).

Figure 7 is a BTS toggling graph in which mRNA expression

data (ArrayExpress ID: E-GEOD-6764, [51]) for tissues from

patients with HCV-induced dysplasia and HCC are compared

with mRNA expression data for normal liver tissue. The

molecules surrounded by bold lines are BTSs for which toggling

was observed when comparing dysplastic liver tissue (cirrhotic

tissue and dysplastic nodules), a precursor of liver cancer, with

normal liver tissue. The two tissue types share many BTSs

associated with PTGS2 (prostaglandin-endoperoxide synthase 2;

COX-2) and IL1B (interleukin 1, beta). It has been demonstrated

that the expression pattern of PTGS2, a key enzyme of the
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Figure 3. Cytoscape visualization of network composed of bistable toggle switch pairs. Four-hundred and forty-two genes are involved in
6585 bistable toggle switch pairs. Nodes are shown in sizes proportional to their connectivity, making the hubs of switch nodes clearly visible. The
Cytoscape session file for this network is available in Protocol S2.
doi:10.1371/journal.pcbi.1000851.g003
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prostaglandin metabolism, is closely correlated with the differen-

tiation grade of HCC [52]. Nonsteroidal anti-inflammatory drugs

targeting PTGS2 have been shown to inhibit the proliferation of

cultured hepatocellular cancer cells by inducing cell-cycle arrest

[53].

When HCC tissue was compared with healthy liver tissue,

toggling was most evident for CCNA2(cyclin A2)–related BTSs

(Fig. 7) We therefore analyzed how the toggling of CCNA2-related

BTSs rippled out to other BTS pairs during the malignant

transition of HCC (Fig. 8).

CCNA2 activates CDC2 or CDK2 kinases and regulates the

cell cycle positively by promoting G1/S and G2/M transitions in

both the G1 and G2 phases of the cell cycle [54], while EGR1

(early growth response gene 1) has suppresses transformation [55].

The upregulation of CCNA2 and downregulation of EGR1 might

thus play a key role in the dysregulation of normal growth in HCC

carcinogenesis [56]. The downregulation of IL6 (interleukin 6) is

involved in dysregulation of the immune response in early

carcinogenesis.

After the toggling of CCNA2-related BTSs but still in the early

stage of carcinogenesis, the OFF state of IL6 is related to the ON

states of PTK2 and SMAD3 (SMAD family member 3). PTK2

and SMAD3 play important roles in cell growth and the activation

of intracellular signal transduction pathways, suggesting that cell

proliferation might accelerate during this stage.

Toggling of PTK2(ON)-BCL2(OFF) was observed in advanced

and very advanced stages. BCL2 (B-cell CLL/lymphoma 2)

suppresses apoptosis, and the downregulation of BCL2 might be

involved in the acceleration of apoptosis in cancer cells.

Notably, the ON/OFF state of the TP53-IGF1 BTS was

changed from ‘‘OFF-OFF’’ to ‘‘ON(TP53)–OFF(IGF1)’’ in

advanced HCC. And in very advanced HCC, almost all IGF1-

related BTS pairs demonstrated ‘‘ON(other)–OFF(IGF1)’’

patterns.

In the very advanced stage, many IGF1(insulin-like growth

factor-1)-related BTS pairs demonstrated significant ON/OFF

changes. The liver is the main source of IGF1, and the

development of HCC is accompanied by significantly reduced

serum IGF1 levels [57]. The downregulation of IGF1 and

upregulation of a set of another pair of genes might affect a wide

variety of cellular functions.

Discussion

We constructed bistable switch networks, compared their ON/

OFF states with those of control (healthy) samples, and found that

their states changed with disease progression and differed between

patient subtypes. Since most disease states exhibit a certain level of

resilience against therapeutic intervention, each can be considered

to be homeostatic to some extent. This homeostasis implies the

robust status of a dynamical network and could not be maintained

without mechanisms that drive a network to maintain a certain

state. One such mechanism is a bistable switch, so we should look

for sets of bistable switch circuits in large-scale protein interaction

networks.

Our analysis revealed that BTS states change with disease

progression, and the implications of this are far reaching. For

example, it might be possible to prevent or delay disease

Figure 4. ArrayExpress experimental categories for microarray datasets and mean number of BTS pairs with significant ON/OFF
change. There were few BTS pairs with significant changes for ‘‘lifestyle’’ and many with significant changes for ‘‘cancer.’’ Note the higher number of
BTS pairs for iPS cells than for donor cells.
doi:10.1371/journal.pcbi.1000851.g004
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progression by perturbing one or more such switches. Such

switches may be novel drug-target candidates for controlling

disease progression. Analysis of the ON/OFF states of genes

constituting bistable circuits revealed similarities between disease

subtypes.

While our analysis has provided insightful information, it has

shortcomings. First, the network topologies were based on

commercial databases created using a text-mining system. This

means that the details of the molecular interactions were not

verified. The development of a more accurate interaction database

would enable more precise and accurate analysis of bistable

network behaviors and of the contributions of switch circuits to

those behaviors. Second, the analysis was based solely on network

topologies—no parametric features were considered. Although

topological analysis enabled us to identify circuits exhibiting

bistable behavior, whether circuits exhibiting bistable behavior

apparently exhibit bistable behavior depends on the kinetic

parameters associated with each interaction [58].

Using microarray data, we determined that the pairs of genes in

the circuits we identified are polarized into ON and OFF states.

Two mutually inhibitory nodes polarized into ON and OFF states

do not function as a bistable switch if both genes are ON or OFF.

This is why we focused on BTSs, which demonstrated ‘‘ON/

OFF’’ or ‘‘OFF/ON’’ states. We should, however, note that the

‘‘ON/ON’’ states of some BTSs play important roles in

mammalian embryogenesis [59], T-cell differentiation [60], and

visual-system specification [61].

Cluster analysis of transcriptome data in microarrays is useful

for classifying disease characteristics according to differences in

expression patterns. Although several disease types that are

difficult to classify morphologically have been classified using this

approach, the rules underlying the cluster structure of the data are

unclear, and the importance of each of the molecules in a cluster

cannot be determined with a reasonable degree of certainty. The

analysis of changes in gene-expression levels can also be used to

create a list of molecules whose levels increase or decrease

significantly over time or whose levels differ significantly between

healthy and diseased tissues. Although examinations of gene

interrelations using gene-ontology classification and analysis of the

classification results using network diagrams have led to a greater

degree of understanding of the changes in molecular networks, it is

difficult to infer the meanings of biological interactions between

molecules.

Our proposed method (i.e., focusing on BTS ON/OFF

changes) takes as the starting point the interactions between

molecules. This makes it easy to infer biological meaning and

makes it possible to analyze time-dependent data for time periods

corresponding to that of disease progression (from hours to years).

In addition, while conventional methods sometimes neglect

molecules that are downregulated, our method places equal

importance on both increases and decreases in expression.

DNA microarray technology makes it possible to study the

expression of thousands of genes at the same time, but much of the

microarray data consists of low signal intensities that can produce

erroneous gene expression ratios between control and experimen-

tal samples [62]. The distribution of the ratio of two random

variables approaches a Cauchy, or Lorentzian, distribution, which

has longer tails than Gaussian distributions [63,64]. In our results,

far more BTS pairs had significant toggling scores than did

random gene pairs, but a considerable number of random gene

pairs did show significant ON/OFF changes. We should therefore

consider the possibility of random error in the analysis of BTS

pairs.

We used the transcriptome of normal tissue as the control in our

analyses. This means that the identification of the molecular ON/

OFF states inherent to normal tissue was unclear. Even if the ON/

OFF state of a molecular pair for a certain switch is important for

a particular tissue, if this state is retained in the diseased tissue, we

would be unable to detect it in the present study because the ON

and OFF states are not mutually exclusive. Therefore, molecules

exhibiting even the slightest change are emphasized while those

showing no change are ignored. We aim to overcome this

drawback by identifying what types of ON/OFF changes occur in

switches when embryonic stem (ES) cells or iPS cells undergo

differentiation.

Since proteins are responsible for cell function, the ON/OFF

state of a molecule must be determined at the protein level when

searching for molecular-network structures mediating cell func-

tions. Because there are more than 20 control steps along the way

from mRNA to functional proteins [65], the reported expression

levels of mRNA do not always agree with those of proteins—their

translated products [66]. And even if there were a quantitative

correlation between the levels of mRNA and functional protein,

the efficiency of the translation process would be greatly affected

by factors such as structural change and protein localization.

Proteomics data for proteins in different cellular contexts is useful

but is available for only some proteins. Transcriptome data

analysis is the only method currently available for examining

molecular networks on a large scale, but when testing the quality

of BTS pairs in the future we will use all the relevant available data

for the target proteins. Furthermore, to ensure bistability, the

hysteresis phenomena must be confirmed when a perturbation has

vanished. By conducting time-scale experiments in both directions

when applying and removing perturbations, we should be able to

further test the quality of BTS pairs.

Despite its shortcomings, the approach presented here provides

useful insights into the states of biological networks, insights that

may lead to discovery of novel drug targets and therapeutic

interventions.

Materials and Methods

Preparation of basic interaction datasets
The lists of molecular interactions were constructed using the

Ariadne Genomics ResNet human protein interaction database

(ver. 3.0) compiled, using MedScan [67] natural language

processing technology, from more than 13,000,000 PubMed

abstracts and 43 publicly available full-text journals. The database

contains data on over 200,000 objects (proteins and small

molecules) and over 100,000 interactions.

The interactions can be divided into two major classes: direct

physical interactions (binding, protein modifications, and promot-

er binding) and indirect regulatory interactions (regulation,

Figure 5. Changes in ON/OFF states of BTSs for time series data for human normal bronchial epithelial cells exposed to smoke. A:
Toggling inferred from time-dependent data (ArrayExpress ID: E-GEOD-10700 and E-GEOD-10718) for the mRNA expression of normal human
bronchial epithelial cells exposed to cigarette smoke for 24 hours. B: 2 hrs after exposure start, C: 4 hrs after exposure start, D: 8 hrs after exposure
start, E: 24 hrs after exposure start. The nodes represent genes and the edges between them represent the pairing of bistable toggle switches. The
colors of nodes were automatically assigned as a continuous color gradient from red for ON (upregulated) to blue for OFF (downregulated) according
to relative gene-expression levels of the nodes. In Figs. 4B–E, the BTS pairs framed by thick lines are pairs with significant toggling scores at that time.
doi:10.1371/journal.pcbi.1000851.g005
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Figure 6. Changes in ON/OFF states of BTSs for lung cancer. The state of BTS toggling determined by comparing mRNA expression data
(ArrayExpress ID: E-GEOD-10072) for normal lung tissue with that for lung-cancer patients with a history of smoking (former smokers) (Fig. 6A) and
that for lung-cancer patients still smoking (current smokers) (Fig. 6B). The nodes and genes surrounded by bold black frames are those also shown in
Fig. 5A. The nodes and edges surrounded by bold green frames are found in the former smokers as well as the current smokers. The nodes represent
genes and the edges between them represent the pairing of bistable toggle switches. The colors of nodes were automatically assigned as a
continuous color gradient from red for ON (upregulated) to blue for OFF (downregulated) according to relative gene-expression levels of the nodes.
doi:10.1371/journal.pcbi.1000851.g006
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Figure 7. Changes in ON/OFF states of BTSs in dysplastic liver tissue and hepatocellular carcinoma. BTS toggling graph comparing the
mRNA expression data (ArrayExpress ID: E-GEOD-6764) of normal liver tissue with that of precancerous and cancerous liver tissue. The nodes and
edges surrounded by the bold lines are BTSs for which toggling was observed when comparing dysplastic liver tissue, a precursor of liver cancer, with
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were automatically assigned as a continuous color gradient from red for ON (upregulated) to blue for OFF (downregulated) according to relative
gene-expression levels of the nodes.
doi:10.1371/journal.pcbi.1000851.g007
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doi:10.1371/journal.pcbi.1000851.g008

Network Bistability for Cancers

PLoS Computational Biology | www.ploscompbiol.org 10 July 2010 | Volume 6 | Issue 7 | e1000851



expression regulation, direct regulation, molecular transport

regulation, and molecular synthesis regulation). MedScan also

extracted information on the relation direction and the effect on

the target molecule. The ‘‘Effect’’ attribute has three possible

values: ‘‘positive,’’ ‘‘negative,’’ and ‘‘unknown.’’ The BTS pairs

were extracted from the database on the basis of five rules.

(1) Nodes are limited to genes and proteins only.

(2) Edges are limited to ‘‘Regulation,’’ ‘‘Expression,’’ and

‘‘DirectRegulation.’’

(3) ‘‘Unknown’’ edges in the ‘‘Effect’’ attribute are omitted.

(4) Edges extracted from fewer than three references are omitted.

(5) If there is a positive and negative attribute in the same

direction, the edge is extracted from additional references.

We extracted 19,178 relationships involving 3,682 genes (basic

interaction datasets).

Extraction of candidate bistable toggle switches
Using basic interaction datasets, we extracted possible network

motifs for toggle switches. We defined these motifs as follows.

The type-1 BTS contains two genes that have positive

autoregulation and inhibit each other’s expression. The type-2

BTS also contains two genes that suppress each other’s expression,

but each gene also has a positive or negative loop with the other

gene. One of the four subtypes of type-2 BTSs (corresponding to

the four possible combinations of double positive and/or negative

feedback) shows the same function as the type-1 BTS. The type-3

BTS was based on a theoretical study of the modeling of genetic

switches with positive feedback loops [37]. The BTS motifs are

illustrated in Fig. 2, and we extracted 6585 BTSs (see supporting

Table 1).

Analysis of toggling
We used mRNA microarray data to examine the changes in the

ON/OFF states of BTS candidates. CEL format files or tab-

limited text files were downloaded via ArrayExpress (http://www.

ebi.ac.uk/arrayexpress/), which is a public repository provided by

the European Bioinformatics Institute [68]. We only used

microarray data obtained from experiments with humans and

with platforms of Affymetrix HG-U133A&B (631 sets) and HG-

U133Plus2.0 (404 sets). These data were normalized and

summarized using the robust multichip analysis method [69]

implemented in the Affymetrix Expression Console software.

The toggling of a BTS pair was defined as instances in which

the mRNA levels of a sample increased for one molecule of the

pair and decreased for the other. To remove background noise, we

calculated the toggling score using

toggling score~ SW1 sample value=SW1 control valueð Þ

= SW2 sample value=SW2 control valueð Þ,

where SW1 and SW2 are the two molecules in alphabetical order.

Changes in the ON/OFF states were considered significant when

the toggling score was more than two standard deviations greater

than the mean of all the toggling scores.

Network visualization
For pathway visualization, we used Cytoscape (Version 2.6.3),

which is widely used open-source software for visualization and

analysis of networks [70]. The nodes in the visualized BTS

network represent genes, the edges between nodes represent the

pairing of bistable toggle switches, and the color of nodes were

automatically assigned as a continuous color gradient from red for

ON (upregulated) to blue for OFF (downregulated) according to

relative gene-expression levels of the nodes.

Supporting Information

Protocol S1 List of BTS pairs SW1 and SW2 are the two

molecules comprising a BTS pair in alphabetical order.

Found at: doi:10.1371/journal.pcbi.1000851.s001 (0.16 MB XLS)

Protocol S2 Cytoscape session file for Figure 3.

Found at: doi:10.1371/journal.pcbi.1000851.s002 (0.09 MB ZIP)
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