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1 Rud–er Bošković Institute, Division of Electronics, Zagreb, Croatia, 2 ETH Zurich, Computer Science, Zurich, Switzerland, 3 Swiss Institute of Bioinformatics, Zurich,

Switzerland, 4 EMBL-European Bioinformatics Institute, Hinxton, Cambridge, United Kingdom

Abstract

Gene Ontology (GO) has established itself as the undisputed standard for protein function annotation. Most annotations are
inferred electronically, i.e. without individual curator supervision, but they are widely considered unreliable. At the same
time, we crucially depend on those automated annotations, as most newly sequenced genomes are non-model organisms.
Here, we introduce a methodology to systematically and quantitatively evaluate electronic annotations. By exploiting
changes in successive releases of the UniProt Gene Ontology Annotation database, we assessed the quality of electronic
annotations in terms of specificity, reliability, and coverage. Overall, we not only found that electronic annotations have
significantly improved in recent years, but also that their reliability now rivals that of annotations inferred by curators when
they use evidence other than experiments from primary literature. This work provides the means to identify the subset of
electronic annotations that can be relied upon—an important outcome given that .98% of all annotations are inferred
without direct curation.
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Introduction

Gene Ontology (GO) annotations are a powerful way of

capturing the functional information assigned to gene products

[1]. The organization of the GO in a Directed Acyclic Graph

allows for various levels of assignment specificity, while the three

ontologies—Biological Process, Molecular Function, and Cellular

Component—capture three aspects of the gene product annota-

tion.

Some GO annotations are assigned by expert curators, either

from experimental evidence in the primary literature (experimental

annotations), or from other evidence such as sequence similarity,

review papers and database entries (curated annotations). However,

the vast majority (.98%) of available GO annotations are

assigned using computational methods, without curator oversight

[2] (Fig. 1).

Uncurated—electronic—annotations are generally considered to

be least reliable. Many users of GO annotations err on the safe

side by assigning a lower rank/weight to electronic annotations or

leave them completely out of their analyses [e.g., 3–7]. However,

there have been very few evaluations of the quality of electronic

annotations. To our knowledge, the most relevant study to date

assessed the annotation quality of only 286 human proteins [8].

Here, we provide the first comprehensive evaluation of

electronic GO annotation quality. Based on successive releases

of the UniProt Gene Ontology Annotation database (UniProt-

GOA), the largest contributor of electronic annotations [9], we

used experimental annotations added in newer releases to confirm

or reject electronic annotations from older releases. We defined 3

measures of annotation quality for a GO term: 1) reliability

measures the proportion of electronic annotations later confirmed

by new experimental annotations, 2) coverage measures the power of

electronic annotations to predict experimental annotations, and 3)

specificity measures how informative the predicted GO terms are.

After describing our new methodology in detail, we first

consider changes in quality in UniProt-GOA over time. We then

characterize the relationship between GO term reliability and

specificity. Next, we consider possible differences in quality among

the three ontologies, among computational methods used to infer

the electronic annotations, and among the 12 best-annotated

model organisms. Finally, we contrast electronic annotations with

curated annotations that use evidence other than experiments

from primary literature.

Results

To evaluate the quality of electronic annotations, we tracked

changes in UniProt Gene Ontology Annotation (UniProt-GOA)

database releases in overlapping three-year intervals. As a

surrogate for the intuitive notion of correctness, we define the

reliability as the ratio of confirmed electronic annotations to

confirmed and rejected/removed ones. One electronic annotation

is deemed confirmed or rejected, depending on whether a new,

corresponding experimental annotation supports or contradicts it.

Furthermore, if an electronic annotation is removed, the

annotation is deemed implicitly rejected and thus contributes

negatively to the reliability measure (Fig. 2 A). As a surrogate for

the intuitive notion of sensitivity, we define coverage as the

PLoS Computational Biology | www.ploscompbiol.org 1 May 2012 | Volume 8 | Issue 5 | e1002533



proportion of newly added experimental annotations that had

been correctly predicted by an electronic annotation in a previous

release (Fig. 2 B).

The addition of new experimental annotations—high-quality

annotations assigned by a curator—allows us to evaluate the

existing electronic annotations. Unfortunately, the set of available

experimental annotations is small, since obtaining them requires

valuable curator time. Moreover, resource constraints require that

curators focus their efforts on a selected set of model organisms

[10]. Consequently, most of the available experimental annota-

tions are distributed among the model organisms (Fig. S1 in Text

S1); it is this set of genomes that we analyze.

Electronic annotations in subsequent UniProt-GOA
releases are increasing in quality

We first sought to evaluate general trends in the overall quality

of UniProt-GOA. Four summary statistics—first and third

quartile, median, and mean—allow us to describe the change in

quality—specificity, reliability, and coverage—of successive Uni-

Prot-GOA releases (Fig. 3). Subsequent UniProt-GOA releases are

improving with the addition of slightly more specific annotations

on average (Fig. 3 A). At the same time, new UniProt-GOA

releases show steady and significant improvement in reliability, as

Figure 1. A list of the Gene Ontology (GO) evidence and reference codes we analyzed. We group the GO evidence codes in three groups:
experimental, non-experimental curated, and electronic. Gray text denotes the evidence codes that were not included in the analysis: they are either
used to indicate curation status/progress (ND), are obsolete (NR), or there is not enough data to make a reliable estimate of their quality (ISO, ISA, ISM,
IGC, IBA, IBD, IKR, IRD). The subdivision of the evidence codes (green rectangles) reflects the subdivision available in the GO documentation: http://
www.geneontology.org/GO.evidence.shtml.
doi:10.1371/journal.pcbi.1002533.g001

Author Summary

In the UniProt Gene Ontology Annotation database, the
largest repository of functional annotations, over 98% of all
function annotations are inferred in silico, without curator
oversight. Yet these ‘‘electronic GO annotations’’ are
generally perceived as unreliable; they are disregarded in
many studies. In this article, we introduce novel method-
ology to systematically evaluate the quality of electronic
annotations. We then provide the first comprehensive
assessment of the reliability of electronic GO annotations.
Overall, we found that electronic annotations are more
reliable than generally believed, to an extent that they are
competitive with annotations inferred by curators when
they use evidence other than experiments from primary
literature. But we also report significant variations among
inference methods, types of annotations, and organisms.
This work provides guidance for Gene Ontology users and
lays the foundations for improving computational ap-
proaches to GO function inference.

Quality of Electronic Gene Ontology Annotations
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Figure 2. Outline of the strategy to evaluate electronic Gene Ontology annotations. (A) Reliability measures the proportion of electronic
annotations confirmed by future experimental annotations: an electronic annotation in an older database release is either 1) confirmed by a new
experimental annotation in the later release, 2) falsified by a new, contradictory experimental annotation (corresponding GO term, but with ‘NOT’
qualifier, which amounts to an explicit rejection), 3) removed from the new UniProt-GOA release (implicit rejection), or 4) unchanged, which is
uninformative and does not affect the reliability measure. (B) Coverage measures the extent to which electronic annotations can predict future
experimental annotations: an experimental annotation in the newer release is either 1) correctly predicted by an electronic annotation in the older
release, or 2) not correctly predicted (‘‘missed’’). Note that the strategy is outlined for electronic annotations, but any subset of annotations can be
analyzed this way, e.g. annotations assigned using a selection of evidence or reference codes.
doi:10.1371/journal.pcbi.1002533.g002

Figure 3. Summary statistics of GO terms: (A) specificity, (B) reliability, and (C) coverage. Each boxplot summarizes the measure of quality
indicated on the y-axis for the evaluation period indicated on the x-axis. Lower, mid, and upper horizontal lines denote the first quartile, median and
the third quartile, respectively, while the black dots denote the mean values. Outliers (further than 1.5 interquartile range from the respective
quartile) are denoted by black points. An asterisk (*) below the boxplot denotes a significant difference of the median with respect to the previous
interval, at a confidence level of 0.05 (Mann-Whitney U test, two-tailed).
doi:10.1371/journal.pcbi.1002533.g003

Quality of Electronic Gene Ontology Annotations
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indicated by the increase of all four summary statistics (Fig. 3 B).

By contrast, the coverage of annotations has decreased somewhat

(Fig. 3 C). Taken together, these indicators suggest a general

improvement in the quality of recent UniProt-GOA releases.

GO term’s specificity is only partially indicative of the
reliability of electronic annotations

Next, we investigated the association between a GO term’s

specificity and reliability (Fig. 4). Previous works based on smaller

datasets have observed a negative relation between the predictive

power of computational annotation and the specificity of the

assigned GO term [e.g., 11–13]. Our results are consistent with

these results to the extent that almost all general terms are stable

(Fig. 4). Specific terms, however, span the whole range of

reliability. We also observe that on average, reliability of electronic

annotations hardly depends on their specificity: the variance of

reliability increases with an increase in specificity, but the median

stays largely constant.

The three ontologies have similar reliability, but different
coverage

To assess the differences in annotation quality among the three

ontologies, we analyzed the ontologies separately in terms of

reliability, coverage, and specificity. On average, annotations

associated with the three ontologies were similarly stable, but vary

considerably in coverage (Fig. 5). Specifically, Biological Process

(BP) terms had the lowest coverage, Molecular Function (MF)

terms had the highest coverage, and Cellular Component (CC)

terms were in-between. This is consistent with the notion that MF

terms are easiest to assign, and BP terms hardest to assign [14].

Nevertheless, this difference in difficulty translates into variable

coverage but very similar reliability, suggesting that the false-

positive rate of electronic annotations is controlled effectively.

Different sources provide annotations of different quality
To investigate differences in quality among the various sources

of electronic annotations in UniProt-GOA, we repeated our

analysis for each of them. The six sources can be classified in two

main categories: mapping of keywords from other databases

(UniProtKB keywords, UniProt Subcellular Location terms,

InterPro, and Enzyme Commission) and the use of comparative

genomics in functional annotation (Ensembl Compara for

eukaryotes and HAMAP2GO for microbial genomes) (Fig. 6).

Two sources of electronic annotations are restricted to single

ontologies: the Enzyme Commission (EC) numbers map to MF

GO terms, and subcellular location terms of the UniProt database

map to CC GO terms (Fig. 6 A/B). Both annotation sources are

applied to a comparatively small number of terms, but their

reliability is remarkably high: on this restricted set of GO terms,

they outperform other sources of electronic annotation (Fig. 6, Fig.

S2 in Text S1, and Fig. S3 in Text S1).

The bulk of electronic annotations are inferred from the

UniProt and InterPro databases (Fig. S4 in Text S1). With

UniProtKB keywords, GO annotations are inferred using a

correspondence table between Swiss-Prot keywords associated

with UniProt entries and GO terms. Note that UniProt entries

consist of a small minority of manually annotated entries (‘‘Swiss-

Prot entries’’) and a large body of entries (‘‘TrEMBL entries’’)

automatically annotated by a rule-based system (‘‘UniRules’’).

With InterPro, GO annotations are inferred from a correspon-

dence table between InterPro sequence and structure signatures

and GO terms. Despite similarities in the two approaches,

UniProt-based annotations show considerably higher average

reliability than their InterPro-based counterparts (Fig. 6 C/F,

horizontal lines). In terms of average coverage, the two approaches

show similar performance (Fig. 6 C/F, vertical lines).

Substantial manual curation is involved in obtaining electronic

annotations from the two sources that rely on comparative

Figure 4. Reliability of electronic annotations in the 16-01-2008 UniProt-GOA release compared to the specificity of the assigned
GO term—Information Content in the 16-01-2008 UniProt-GOA release. Each point represents one GO term, and its color corresponds to
the ontology in the legend. Each boxplot summarizes the reliability of a selection of GO terms: those with specificity in the range denoted by the
width of the boxplot. Lower, mid, and upper horizontal lines denote the first quartile, median and the third quartile, respectively. Vertical lines reach
the 1.5 interquartile ranges from the respective quartiles or reach the extreme value, whichever is closer. To be visualized in these plots, a GO term
needs to have assigned at least 10 electronic annotations in the 16-01-2008 UniProt-GOA release and at least 10 experimental annotations in the 11-
01-2011 UniProt-GOA release.
doi:10.1371/journal.pcbi.1002533.g004

Quality of Electronic Gene Ontology Annotations
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genomics: Ensembl Compara electronic annotations transfer

experimental annotations among inferred one-to-one orthologs

in a subset of model organisms, and HAMAP2GO electronic

annotations rely on manually created rules to propagate experi-

mental annotations within a family of microbial proteins. Despite

the intricacies involved in the annotation pipeline, these two

sources have the lowest mean coverage and reliability among the

six analyzed sources (Fig. 6 D/E). However, note that the

HAMAP rules have taxonomic restrictions on propagation that

are not included in the HAMAP2G0 pipeline. Hence, some

aspects of HAMAP are not captured in UniProt-GOA, and

therefore are not analyzed here.

This overall low reliability—a consequence of many rejected

annotations—indicates that GOA strategies based on comparative

genomics are currently less reliable than approaches based on

sequence features (UniProtKB keywords and InterPro).

Quality of electronic annotations and the number of
assigned GO terms are different among the model
organisms

To investigate the difference in electronic annotation quality

among the model organisms, we repeated our analysis for each

model organism separately. Overall, repeating the analysis

confirmed our general findings above. However, we observed

variations among organisms, both in the number of available

annotations and their quality (Fig. 7, Fig. S5 in Text S1, Fig. S6 in

Text S1, and Fig. S7 in Text S1).

Organisms with the largest number of changes—confirmations

and rejections—tend to have the highest quality of annotation: the

three unicellular organisms and the three mammals (Fig. 6, top

and bottom rows, Fig. S7 in Text S1). Experimenting, describing

and interpreting results on unicellular organisms is arguably more

straightforward than on multicellular organisms; it might explain

the relatively high quality of electronic annotations for the three

unicellular model organisms (Fig. 7, bottom row). The average

quality measures for the three mammals—Homo sapiens, Mus

musculus, and Rattus norvegicus—are comparably high (Fig. 7, top

row), but many specific low-quality annotations somewhat reduce

the means of reliability and coverage.

Our observation that general GO terms tend to have higher

reliability holds for each model organism. Nevertheless, assigning

mainly general GO terms guarantees neither high reliability nor

high coverage. We observe the worst electronic annotation quality

on Gallus gallus, Danio rerio and Dictiostelium discoideum gene products,

despite a mean specificity of 1.79, versus 4.47 for mammals.

The reliability of electronic annotations rivals that of non-
experimental curated annotations

To put the quality of electronic annotations in perspective, we

contrasted them to curated annotations (evidence codes RCA, ISS,

TAS, NAS, and IC), i.e. annotations inferred by curators without

direct experimental evidence (Fig. 8). Curated annotations contain

annotations assigned using evidence codes perceived as of

particularly high quality: for instance, del Pozo et al. [5] consider

the TAS evidence code to ‘‘offer the highest confidence [along

with the IDA evidence code]’’. Buza et al. [6] rank TAS and IC

Figure 5. The quality of the 16-01-2008 UniProt-GOA release,
evaluated by the 11-01-2011 UniProt-GOA release. A scatterplot
of coverage compared to the reliability for the GO terms of the three
ontologies: Biological Process, Cellular Component, and Molecular
Function. The area of the disc reflects the frequency of the GO term in
the 16-01-2008 UniProt-GOA release. The colored lines correspond to

the mean values for the respective axes. To be visualized in this plot, a
GO term needs to have assigned at least 10 electronic annotations in
the 16-01-2008 UniProt-GOA release and at least 10 experimental
annotations in the 11-01-2011 UniProt-GOA release. An interactive plot
is available at http://people.inf.ethz.ch/skuncan/Supplementary
Visualization1.html.
doi:10.1371/journal.pcbi.1002533.g005

Quality of Electronic Gene Ontology Annotations
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evidence code second only to the group of annotation codes that

rely on direct experimental evidence. In Benabderrahmane et al.

[7], TAS is the only evidence code to receive the weight of 1.0.

Compared to electronic annotations, it is not surprising that

curated annotations have a considerably lower average coverage

(Fig. 8, vertical lines). Indeed, the main appeal of electronic

annotations is precisely that they scale efficiently to large quantities

of data. But in terms of reliability, and contrary to current beliefs,

curated annotations that use evidence other than experiments

from primary literature do not fare better than electronic

annotations (Fig. 8, horizontal lines, Fig. S9 in Text S1). In fact,

we observed a higher reliability for electronic annotations than for

curated annotations (0.52 vs. 0.33).

A more detailed analysis revealed that the lower mean reliability

of curated annotations in the 16-01-2008 UniProt-GOA release is

mainly due to removed annotations with evidence code Reviewed

Computational Analysis (RCA) (Fig. S10 in Text S1). The low

reliability of RCA annotations is caused by the removal of many

RCA annotations assigned to the M. musculus gene products (Fig.

S7 in Text S1, yellow bar in the panel denoted Mus musculus); these

were removed as there were concerns about the veracity of results

from some papers that had been annotated (Emily Dimmer,

personal correspondence).

When we exclude annotations assigned using the RCA evidence

code, the reliability of non-experimental curated annotations rises

to 0.58. But even then, the reliability of electronic annotations

(0.52) remains competitive with that of curated annotations (Fig.

S11 in Text S1).

Discussion

Electronic annotations constitute the bulk of GO annotations,

yet their correctness has not been systematically assessed until

Figure 6. The quality of the 16-01-2008 UniProt-GOA release, evaluated by the 11-01-2011 UniProt-GOA release. Each reference code
is evaluated separately: (A) Inferred from Enzyme Commission, (B) Inferred from UniProt Subcellular Location terms, (C) Inferred from UniProtKB
keywords, (D) Inferred from Ensembl Compara, (E) Inferred from HAMAP2GO, and (F) Inferred from InterPro. The 12 model organisms included in the
analysis are Homo sapiens, Mus musculus, Rattus norvegicus, Caenorhabditis elegans, Drosophila melanogaster, Arabidopsis thaliana, Gallus gallus, Danio
rerio, Dictyostelium discoideum, Saccharomyces cerevisiae, Schizosaccharomyces pombe, and Escherichia coli K-12. The ontology is denoted by the color
of the disc, while the area of the disc reflects the frequency of the GO term in the 16-01-2008 UniProt-GOA release. The colored lines correspond to
the mean values for the respective axes. To be visualized in this plot, a GO term needs to have assigned at least 10 electronic annotations in the 16-
01-2008 UniProt-GOA release and at least 10 experimental annotations in the 11-01-2011 UniProt-GOA release.
doi:10.1371/journal.pcbi.1002533.g006

Quality of Electronic Gene Ontology Annotations
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Figure 7. Quality of the 16-01-2008 UniProt-GOA release, evaluated by the 11-01-2011 UniProt-GOA release; each model organism
is evaluated separately. Common background shading denotes a depiction of the same set of GO terms (full data is presented in Fig. S8 in Text
S1). The ontology is denoted by the color of the disc, while the area of the disc reflects the frequency of the GO term in the 16-01-2008 UniProt-GOA

Quality of Electronic Gene Ontology Annotations
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now. Direct, experimental verification by means of new experi-

ments would be prohibitively expensive even for a small subset of

the annotations. Instead, we sought to exploit existing, but newly

available experimental data to evaluate electronic annotations.

Specifically, we defined and used a measure we call reliability as an

indicator of correctness: a GO term has high reliability if, in a

subsequent release, many associated electronic annotations are

confirmed experimentally while few associated annotations are

removed or explicitly negated. This approach at verifying

electronic annotations is both efficient (as it reuses existing

experiments) and powerful (as it potentially applies to any term).

At the same time, the measure is only as accurate and

representative as the newly recorded experimental annotations.

For instance, there are far more ‘‘positive’’ function annotations

than ‘‘negative’’ ones (annotations with a ‘‘NOT’’ qualifier, which

indicates lack of function), which could result in inflated reliability

estimates. On the other hand, we attempt to compensate for this

bias by considering all removed electronic annotations as negative

ones. While it might be argued that the removal of an electronic

annotation does not necessarily imply that it is wrong, from a user

standpoint, the removal of an annotation hardly suggests that it

can be relied upon.

Despite analyzing 193,027 gene products, our approach leaves

out a number of uninformative electronic annotations, which are

neither confirmed nor rejected in a given time interval. Due to the

incomplete nature of GO (sometimes referred to as the ‘‘open-

world’’ assumption), absence of an annotation does not imply

absence of the corresponding function. This is reflected by the fact

that most gene products in GOA have been updated at least

once—with the period between updates lasting as long as 12 years

(Fig. S12 in Text S1).

Electronic annotations have often been perceived as unreliable,

but our study provides a more differentiated picture. First, we

observed that the reliability and, to a lesser extent, the specificity of

electronic GO annotation has steadily improved in recent years.

This is a remarkable achievement, given that the number of

electronic annotations has been growing exponentially during the

same time period [2].

Second, despite these overall encouraging results, there are

significant variations in performance among the different types of

electronic annotations. The two most reliable sources also happen

to be the most specialized ones: annotations derived from UniProt

Subcellular Location terms and EC numbers. This suggests that

specialization can be advantageous.

release. To be visualized in this plot, a GO term needs to have assigned at least 10 electronic annotations in the 16-01-2008 UniProt-GOA release and
at least 10 experimental annotations in the 11-01-2011 UniProt-GOA release for each model organism. The colored lines correspond to the mean
values for the respective axes.
doi:10.1371/journal.pcbi.1002533.g007

Figure 8. Quality of electronic and curated annotations on a common set of GO terms. Quality of the 16-01-2008 UniProt-GOA release is
evaluated by the 11-01-2011 UniProt-GOA release; coverage is on the x-axis and reliability is on the y-axis. The ontology is denoted by the color of the
disc, while the area of the disc reflects the frequency of the GO term in the 16-01-2008 UniProt-GOA release. The colored lines correspond to the
mean values for the respective axes. To be visualized in the plot, a GO term needs to have assigned at least 10 electronic/curated annotations in the
16-01-2008 UniProt-GOA release, and at least 10 experimental annotations in the 11-01-2011 UniProt-GOA release.
doi:10.1371/journal.pcbi.1002533.g008

Quality of Electronic Gene Ontology Annotations
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Also highly reliable are annotations obtained from mapping

Swiss-Prot keywords associated with UniProtKB entries to GO

terms. In particular, the high mean reliability of predictions of

Biological Process GO terms stands out, on what is arguably the

most difficult ontology to assign [14]. There are nevertheless a

handful of general UniProtKB keywords derived GO terms that

have low reliability (Fig. 6); in particular, Molecular Function

terms related to metal ion binding have proven to be unreliable

throughout all three analyzed UniProt-GOA releases due to a

number of removed annotations (GO terms denoted in Fig. 6 C,

Dataset S1; an interactive plot is available at http://people.inf.

ethz.ch/skuncan/SupplementaryVisualization2.html). In addition,

a few annotations related to ion transport were explicitly rejected

with the ‘NOT’ qualifier, e.g. UniProtID Q6R3K9 now has a

‘NOT’ annotation for ‘‘iron ion transport’’, UniProtID Q3YL57

now has a ‘NOT’ annotation for ‘‘sodium ion transport’’, and

UniProtID Q9UN42 now has a ‘NOT’ annotation for ‘‘monova-

lent inorganic cation transport’’.

Since the UniProt database includes manually annotated entries

(‘‘Swiss-Prot entries’’) in addition to electronically annotated

(‘‘TrEMBL entries’’), this could introduce some circularity in our

analysis. However, the proportion of manually annotated entries

in UniProt is very small (3.06% in the September 2011 UniProt

release), so any bias so incurred cannot affect our conclusions. The

importance of the automated component of the UniProt pipeline is

also reflected in the large number of electronic annotations derived

from it—almost a quarter of all electronic annotations (Fig. S4 in

Text S1).

Besides UniProtKB keywords, InterPro sequence and structure

signatures constitute the other large source of electronic annota-

tions (42%; Fig. S4 in Text S1). Their average reliability is

however not as good as UniProtKB keywords-derived terms.

Consider for instance the Cellular Component term ‘‘integral to

membrane’’ and its parent term ‘‘intrinsic to membrane’’ (Fig. 6F).

The reliability of annotations associated with these terms was low

across several releases (http://people.inf.ethz.ch/skuncan/

SupplementaryVisualization3.html). These observations are con-

sistent with a recent article reporting ‘‘promiscuous hits limited to

solely [signal peptide or transmembrane helix] part among clearly

unrelated proteins’’ [15]. Moreover, we observed more InterPro

annotations rejected with the ‘NOT’ qualifier than UniProtKB-

based annotations (Dataset S1). For example, UniProtIDs

Q8IZE3, Q96RU7, and Q8BKG3 now have a ‘NOT’ annotation

for ‘‘kinase activity’’; UniProtID Q2L385 now has a ‘NOT’

annotation for ‘‘channel activity’’; UniProtIDs Q9LQ10,

Q8GYY0, and Q06429 now have a ‘NOT’ annotation for ‘‘1-

aminocyclopropane-1-carboxylate synthase activity.’’

As for strategies based on comparative genomics, namely

HAMAP2GO and Ensembl Compara, they yielded the least

reliable annotations of those we analyzed. But because they have

been introduced in the UniProt-GOA releases relatively recently,

we could only assess their performance on one or two overlapping

time intervals (Fig. S13 in Text S1). If transient, the low reliability

of an annotation source could be the result of a large change in the

annotation pipeline that ultimately results in more reliable

resource. For instance, when looking for the cause of low

reliability for the annotations Inferred from HAMAP2GO (Fig. 6

E), we found the HAMAP2GO file—mapping HAMAP annota-

tions to GO terms—is currently being substantially revised (Alan

Bridge and Emily Dimmer, personal correspondence). A recent

change in policy towards more conservative predictions resulted in

the large number of removed annotations we observed. Because of

the lagging nature of our quality measures, we will only be able to

assess the new pipeline in a few releases’ time.

Despite these considerable variations among sources of anno-

tations, all electronic annotations are currently labeled with the

same evidence code (‘‘IEA’’)—with the source information

relegated to the more obscure ‘‘which/from’’ attribute. As many

users and tools tend to ignore the latter database column, we

recommend making these differences more explicit by introducing

multiple evidence codes for electronic annotations; the new

evidence codes might take into account the subdivisions available

in the ECO ontology (http://obofoundry.org/cgi-bin/detail.

cgi?id = evidence_code).

The third and arguably most unexpected finding of this study is

that the reliability of electronic annotations rivals that of

annotations assigned by an expert curator using sources other

than direct experimental evidence (Fig. 8, horizontal lines). At the

same time, the coverage of electronic annotations—which

measures the ability to predict future experimental annota-

tions—is far superior (Fig. 8, vertical lines). For example, the

mean reliability of the BP ontology is slightly lower when inferred

from electronic annotations than when the annotations are based

on sequence similarity and approved by the curator (evidence code

ISS). Still, the mean reliabilities for the CC and MF ontologies are

slightly higher for electronic annotations, and the mean coverage

of electronic annotations for all three ontologies is visibly higher

(Fig. S14 in Text S1).

This challenges the widespread notion that annotations inferred

by algorithms are less reliable than annotations inferred by

curators using evidence other than direct experimental evidence

found in primary literature—a notion that might have had validity

when automated annotations consisted of relatively crude

approaches, such as global sequence similarity with ready-made

thresholds. Although occasionally still in use, such annotation

strategies have been largely superseded by the approaches

highlighted here and described elsewhere in more detail [9,16,17].

Conclusion
To narrow the gap between the number of sequenced gene

products and those with functional annotation, computational

methods are indispensable [18,19], even more so for the non-

model organisms (Fig. S4 in Text S1). We introduced three

measures to evaluate the quality of electronic annotations: one

accounts for the specificity of the assigned GO term, and two—

reliability and coverage—assess the performance of electronic

annotation sources by tracking changes in subsequent releases of

annotation files.

Although the performance of electronic annotations varies

among inference methods (‘‘sources’’), the overall quality of

electronic annotations rivals the quality of curated non-experi-

mental annotations.

This is not to say that the curators have made themselves

redundant. On the contrary, as we highlight above, most

electronic annotations heavily rely on manually curated Uni-

ProtKB keywords and InterPro entries. Moreover, given the

essential role of curators in embedding experimental results into

ontologies, so does the present study.

Materials and Methods

Data
We used the January 2011 release of the OBO-XML file to

obtain the GO terms, definitions and the ontology structure

needed in the analysis. The file was downloaded from the GO

FTP site http://archive.geneontology.org/latest-full/.

The annotations (mappings of gene products to GO terms) were

downloaded from the European Institute for Bioinformatics (EBI)
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FTP site ftp://ftp.ebi.ac.uk/pub/databases/GO/goa/UNIP

ROT/. Each file, created as part of the UniProt Gene Ontology

Annotation (UniProt-GOA) project [9], is a many-to-many

mapping of UniProtKB IDs to GO terms. All dates mentioned

in this study refer to the release date of these annotation files, not

the date attribute of individual annotations.

We analyzed 193,027 UniProtKB IDs; GO terms can be

assigned to these sequences using any of the evidence or reference

codes. The distribution of annotations among the 12 Gene

Ontology Reference genomes [10] is shown in Fig. S6 in Text S1.

This set of model organisms has by far the largest number of high-

quality experimental annotations, allowing us to make the most

reliable estimate of the annotation quality (Fig. S1 in Text S1).

The structure of the GO vocabulary is changing as a response to

consistency checks, new biological insights, and intricacies

involved in annotating various model organisms [20–22]. To

account for these changes, for each pair of GO releases analyzed

we only consider terms that are present in both releases.

Gene Ontology meta-information
The source of an annotation is recorded in the evidence code

(http://www.geneontology.org/GO.evidence.shtml). We group

GO evidence codes into 3 broad categories: 1) codes reflecting

annotations assigned by curators using direct experimental

evidence from the literature (experimental evidence codes EXP,

IMP, IGI, IPI, IEP, IDA), 2) codes reflecting annotations inferred

by curators using other types of evidence (curated evidence codes

ISS, RCA, IC, NAS, TAS) and 3) electronic evidence code (IEA),

denoting annotations which are inferred computationally (Fig. 1).

Several evidence codes were not included in the analysis: they are

either used to indicate curation status/progress (ND), are obsolete

(NR), or there is not enough data to make a reliable estimate of

their quality (ISO, ISA, ISM, IGC, IBA, IBD, IKR, IRD).

A reference code captures the source of an electronic

annotation. We analyze six reference codes available in UniProt-

GOA: three are based on cross-referencing keywords from other

databases: UniProtKB keywords, UniProt Subcellular Location

terms, and Enzyme Commission [23,24]; two are based on the

propagation of annotations within a family of proteins: InterPro

and HAMAP2GO [25,26]; one reference code uses comparative

genomics in projecting experimental annotations to unannotated

inferred one-to-one orthologs—Ensembl Compara [27].

When a ‘NOT’ qualifier accompanies an annotation, it

explicitly states that the gene product is not associated with the

respective GO term. A subtle use of the ‘NOT’ qualifier comes

into play because the isoform distinctions are not reflected in the

annotation files at this time; a gene product can be mapped to the

GO term in a given spatial/temporal context, but the mapping is

not valid in another context (Judith Blake and Pascale Gaudet,

personal correspondence). Such gene products will be mapped to

one GO term twice—one accompanied by a ‘NOT’ qualifier and

one without it. For consistency, we ignore all such occurrences.

The 11-01-2011 UniProt-GOA release contains 493 gene

products with such annotations.

Qualitative evaluation of Gene Ontology annotations
using successive releases of the UniProt-GOA file

All analyses are performed on overlapping 3-year periods

between 2006 and 2011. Unless stated otherwise, we show the

results associated with the most recent period (2008–2011).

The three measures of quality we introduced are specificity,

reliability, and coverage. For clarity, the definitions are given and

described for electronic annotations. Nevertheless, any subset of

annotations can be analyzed this way, e.g. annotations assigned

using one or a subset of evidence or reference codes.

We measure the specificity (opposite of generality) of a GO term

GOi with respect to its information content [10,28,29]:

Specificity GOið Þ~{log2 freq GOið Þð Þ,

where freq(GOi) is the frequency of GOi among all annotations

considered.

To calculate the reliability for a GO term, we count all the

confirmed and rejected electronic annotations associated with this

term (Fig. 2 A). An electronic annotation is confirmed if it is

corroborated by a new (added during the time interval)

experimental annotation. An electronic annotation is rejected if

it is falsified by a new experimental annotation that comes with a

‘NOT’ qualifier, or if this electronic annotation has been removed

in the later UniProt-GOA release. More formally,

Reliability GOið Þ~
CGOi

�
�

�
�

CGOi

�
�

�
�z RGOi

�
�

�
�
,

where CGOi

�
�

�
� is the set of confirmed annotations associated with

term GOi andRGOi
is the set of rejected and removed annotations

associated with term GOi.

To calculate the coverage for a GO term in a UniProt-GOA

release, we count all the new experimental annotations in the later

UniProt-GOA release correctly predicted by an electronic annota-

tion in the earlier release, and those not correctly predicted

(missed) by electronic annotations in the earlier release (Fig. 2 B).

More formally,

Coverage GOið Þ~
PGOi

�
�

�
�

PGOi

�
�

�
�zMGOi

�
�

�
�
,

where PGOi
is the set of correctly predicted new experimental

annotations associated with term GOi and MGOi
is the set of

‘‘missed’’ new experimental annotations associated with term GOi.

To calculate any of the measures of quality, we take into

account the GO Direct Acyclic Graph (DAG) structure. To

calculate the frequency of a GO term, we account for all

annotations derived by inheritance. Consequently, the specificity

of any child term is necessarily greater than or equal to the

specificity of its parents. When calculating reliability, an annota-

tion that is replaced by a more specific annotation (a descendent) is

not considered rejected, as the descendent still implies it. Similarly,

an annotation is confirmed by the arrival of an experimentally

ascertained descendent, as the more specific term implies the more

general term. Conversely, if an annotation is followed by the

arrival of a less specific experimental annotation, only the subset of

its ancestral terms implied by the less specific experimental

annotation is deemed as confirmed; the rest is uninformative

(neither confirmed, rejected, or removed).

All the results of the described analysis are available as Dataset

S2.

Visualization
The analysis was done using a combination of in-house Java

classes, SQL queries to the custom database, and R scripts.

Summaries were done using the plyr package of the R language

[30]; all plots were created using the ggplot2 package of the R

language [31], and the interactive plots were created using the

googleVis package of the R language; the respective R packages
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are available from the CRAN repository. REVIGO web server

[32] was used to summarize the lists of GO terms and select those

highlighted in the Results section.

Supporting Information

Text S1 Supplementary figures.

(PDF)

Dataset S1 A zip archive containing a list of removed and

rejected annotations; each table contains the data for one evidence

or reference code.

(ZIP)

Dataset S2 A list of GO terms and their corresponding

Reliability, Coverage, and Generality for each model organisms

and for each analyzed reference or evidence code in the three

analyzed intervals.

(ZIP)
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