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Changing Cellular Location of CheZ
Predicted by Molecular Simulations

Karen Lipkow

Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom

In the chemotaxis pathway of the bacterium Escherichia coli, signals are carried from a cluster of receptors to the
flagellar motors by the diffusion of the protein CheY-phosphate (CheYp) through the cytoplasm. A second protein,
CheZ, which promotes dephosphorylation of CheYp, partially colocalizes with receptors in the plasma membrane. CheZ
is normally dimeric in solution but has been suggested to associate into highly active oligomers in the presence of
CheYp. A model is presented here and supported by Brownian dynamics simulations, which accounts for these and
other experimental data: A minority component of the receptor cluster (dimers of CheA,,) nucleates CheZ
oligomerization and CheZ molecules move from the cytoplasm to a bound state at the receptor cluster depending on
the current level of cellular stimulation. The corresponding simulations suggest that dynamic CheZ localization will
sharpen cellular responses to chemoeffectors, increase the range of detectable ligand concentrations, and make
adaptation more precise and robust. The localization and activation of CheZ constitute a negative feedback loop that
provides a second tier of adaptation to the system. Subtle adjustments of this kind are likely to be found in many other

signaling pathways.
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Introduction

Experimental results of the past several years reveal that the
bacterial cytoplasm is more complex and sophisticated than
previously thought. To cite a recent review on the prokaryotic
cell cycle: “Many signal transduction proteins are dynamically
localized to specific subcellular addresses ... and proper
localization is essential for their function” [1]. The well-
studied bacterial chemotaxis pathway is now known to depend
on two kinds of large multiprotein complexes: inputs are
detected by a cluster of receptors and associated proteins at
one end of the cell, while flagellar motors elsewhere in the cell
generate the system’s output [2,3]. A small protein, CheY,
achieves communication between these two complexes by
diffusing freely through the cytoplasm. This protein receives
its phosphate from the histidine kinase CheA, associated with
the inner face of the receptor cluster, at a rate that depends on
chemotactic stimulation. From there, phosphorylated CheY
(CheYp) diffuses to the four-or-so motors, where it causes a
change in rotational switching frequency (i.e., duration of
swimming or tumbling behavior) according to its local
concentration. The signal is initiated and terminated through
the level of the kinase activity. It adapts to constant stimulus
levels and returns to its steady-state value through changes in
receptor methylation by the enzymes CheR and CheB. The
signal is also stopped directly through dephosphorylation of
CheYp, which is promoted by the protein CheZ.

The present report adds to this picture by proposing that
CheZ is a second molecule of the pathway, which changes its
location during the signal transduction process. According to
this model, the relocalization coincides with changes in
dephosphorylation activity and leads to a second tier of
adaptation, by regulating the termination of the signal.
Reminiscent of the migration of proteins of the Min system
that ensures the correct positioning of the bacterial cell
division plane [4], the changing location of CheZ should serve
to sharpen responses of the cell to attractants and repellents
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and make adaptation more precise. The presented proposal is
based on published data, supported by quantitative computer
simulations, and makes specific predictions that can be tested
by experiment.

Results
Hypothesis and Biological Background

A translational variant of the CheA kinase, CheAg,op, 1S
known to be required for polar localization of CheZ [5]. A
crucial element of our model is that homodimers of CheAg, o1
nucleate CheZ oligomers. We predict that CheZ molecules
move from freely diffusing in the cytoplasm to the receptor
cluster according to the current level of stimulation of the
cell, with repellents favoring the bound form and attractants
favoring the soluble, cytoplasmic form (Figure 1). The balance
between these two states is proposed to depend on the
current rate of formation of CheYp at the receptor cluster.
Because nucleation is entirely dependent on dimers of
CheAg, in this model oligomers will form only on the
receptor cluster and not in the cytoplasm.

Three known features of the pathway form a basis for our
hypothesis. (1) CheAg,ore (As) is a truncated variant of CheA

Editor: Diana Murray, Cornell University, United States of America
Received October 2, 2005; Accepted March 15, 2006; Published April 28, 2006

A previous version of this article appeared as an Early Online Release on March 15,
2006 (DOI: 10.1371/journal.pcbi.0020039.eor).

DOI: 10.1371/journal.pcbi.0020039

Copyright: © 2006 Karen Lipkow. This is an open-access article distributed under
the terms of the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original author
and source are credited.

Abbreviations: A_, CheAong; As, CheAgpo; CheYp (Yp), phosphorylated CheY; Z5,
CheZ dimer

E-mail: KL280@cam.ac.uk

April 2006 | Volume 2 | Issue 4 | e39



generated by translation from an in-frame start site of the
cheA locus [6]. Ag can form dimers either with itself or with
CheAjong (Ar) [7]. Both forms have the same dimerization
domain, so it seems reasonable to assume that they form
dimers with equal probability. Since Ag lacks the histidine
phosphorylation site, homodimers are enzymatically inactive.
(2) In solution, Ag stimulates the activity of CheZ, the enzyme
that promotes dephosphorylation of CheYp [8,9]. (3) CheZ
exists in solution as a dimer (Zg) [10,11] but has been
proposed to self-associate into an oligomer containing
approximately ten molecules of CheZ (Z;y) in the presence
of CheYp [10]. The oligomeric form has elevated activity and
dephosphorylates CheYp an order of magnitude faster than
Zo [12]; this means that CheYp production leads to the very
change that causes its breakdown by hydrolysis. Indirect
support for the presence and importance of this feedback
loop was recently provided by a combined experimental/
theoretical study, which showed that CheYp-mediated acti-
vation of CheZ increases the robustness of the pathway and
thus chemotactic efficiency and shows better agreement with
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Figure 1. Schematic of the Dynamic CheZ Hypothesis
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experimentally measured noise levels [13]. Our model also
provides a basis for methylation-independent adaptation, as
discussed later.

Biochemical and cytological assays have shown that CheZ
binds selectively to Ag and at best weakly to Ay [5,8,14]. We
propose that this interaction is specific for the homodimer
made of two molecules of CheAg,ore (AsAs) and that the
heterodimer A;Ag does not bind, or binds only weakly, to
CheZ. We arrived at this conclusion from the published
biochemical data showing that immunoprecipitation with
antibodies to CheZ yields only Ag. If heterodimers were
bound, this experiment should yield both Ag and Ay
monomers [8]. The significance of our proposal lies in the
stoichiometry of the chemotaxis proteins. Based on recent
estimates of the numbers of proteins in the chemotaxis
pathway, we calculate that a typical Escherichia coli cell
contains about 1,500 A; A, 1,500 A; Ag, and 360 AgAg dimers
(numbers based on strain RP437 in rich medium and an
assumed equal binding) [15]. Of these, the first two (A A}, and
A;As) have catalytic activity and are able to generate
phosphoryl groups [7,16-18]. The third species, AgAsg,
comprising approximately 10% of the total, will be inactive
and thus unable to participate directly in the generation of
signals. According to our hypothesis, however, these 360
inactive molecules of AgAg could act as nuclei to attach up to
360 molecules of Z, to the receptor cluster. We propose that a
proportion of the cellular total of 1,600 CheZ dimers [15] will
be recruited to the receptor cluster as highly active oligomers
(Figure 1).

Structurally, the oligomerization could be achieved if
CheYp molecules bind to the catalytic domain of one CheZ
dimer and the C-terminal binding domain of another,
connected by the unstructured tether which links both CheZ
domains [11]. Each CheZ dimer can be attached to four
CheYp monomers, and each CheYp to two CheZ dimers
(Figure 2). We envisage a network of CheZ molecules on the
inner face of the cluster with the remaining CheZ molecules
diffusing freely as relatively inactive dimers.

What will be the distribution of CheZ molecules at any
instant of time, and how will this be affected by the
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(A) A layer of CheA dimers is positioned at the cytoplasmic face of the polar chemoreceptor cluster. Interspersed with the catalytically active CheA
dimers are CheAyno« homodimers, which act as anchoring points for CheZ dimers. In the absence of CheYp, a condition produced by saturating
concentration of attractants, the remaining CheZ dimers diffuse freely in the cytoplasm.

(B) Upon increased phosphorylation of CheY, which occurs after exposure to repellent, CheZ dimers bind CheYp and oligomerize by assembly at the
CheAgnor-CheZ nuclei. These clustered oligomers have a greatly increased CheYp dephosphorylation activity, providing negative feedback to the

system.
DOI: 10.1371/journal.pcbi.0020039.g001
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Figure 2. Proposed Structure of the CheZ,Yp-Oligomeric Clusters

(A) In the (CheY-BeF;-Mg>"),CheZ, co-crystal structure (PDB entry
1KM1, [11]), CheZ (green and gray) exists as a stable dimer. On each side
of its four-helix bundle is an active site with loose affinity for a CheYp
monomer (orange). The main binding affinity for CheYp is in a short C-
terminal helix, which is connected to the main body of CheZ by a flexible
peptide tether (dashed lines). Instead of bending back on itself, the
unstructured domain, which is invisible to the crystallographer, could
connect a CheYp molecule bound to the C-terminus of one CheZ dimer
to the catalytic site of a neighboring one. This allows for the formation of
extended oligomers. Anchorage to the polar cluster could occur via the
CheZ-apical helices to CheAs homodimers (salmon-colored ovals), as
suggested by mutagenesis [5].

(B) In oligomeric networks, each CheZ dimer can be connected to a
maximum of four neighboring CheZ dimers, via flexible tethers and
CheYp. A looser network will exist if not all CheYp binding sites are
occupied. View from below, as compared to (A). Created with MacPyMOL
(DeLano Scientific LLC, San Carlos, California, United States).

DOI: 10.1371/journal.pcbi.0020039.9002
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chemotactic signals entering the cell? To address these
questions, we employed a recently developed computer
program, Smoldyn, which allows the movement and inter-
action of a large number of individual molecules in a
structured environment to be simulated [19]. In a recent
study, we used Smoldyn to construct a three-dimensional
model of an E. coli cell and examined the diffusion of CheYp
from the cluster of receptors to the flagellar motors, under
control conditions and in response to attractant and
repellent stimuli. The high spatial resolution available to us
with the Smoldyn program allowed us to calculate the locus of
individual CheYp molecules in a cell and the distribution of
their lifetimes under different cellular conditions [20]. In this
way, we have already found that the position of CheZ can
affect chemotaxis. When this protein is distributed through-
out the cytoplasm, it generates a shallow gradient of CheYp
concentration that is highest next to the receptor cluster, as
has also been observed in parallel FRET experiments and
analytical studies [20-22]. When CheZ molecules are posi-
tioned at the receptor cluster, they change the lifetime
profile and reduce the cytoplasmic gradient of CheYp,
ensuring equal occupancy of flagellar motors throughout
the length of the cell [20].

Model Specifications

Smoldyn was created to stochastically simulate chemical and
biochemical reaction networks in a spatially detailed environ-
ment [19]. This is achieved by modeling each individual
molecule and its exact position in a series of short time
intervals. Diffusing molecules assume a new, random direc-
tion at every time step, similar to Brownian motion. They will
react when finding themselves in close proximity to a
reaction partner or, for unimolecular reactions, at a certain
probability. Firmly based on physical chemistry, the diffusive
distances, reaction radii, and probabilities are calculated
from the user-defined rate constants and the time-step length
(see also Materials and Methods).

Here, we have used the Smoldyn program to explore
possible changes to the location and state of oligomerization
of CheZ within an E. coli cell. To do this, we generated a model
of a bacterium with an array of A;, and Ag dimers at one pole,
flagellar motors on the lateral sides, and diffusible molecules
within the cell volume (Figure 3A). We set up a series of
binding and catalytic equations (Table 1); these are based on
known interactions between CheZ, CheYp, and CheAg but
include many binding and rate constants that are not
presently known (see also Discussion). In these reactions,
CheZ dimers in solution (Zy) bind to CheYp (Yp) to form the
complex Z,Yp, which we consider the building block from
which oligomers are built. Units of ZoYp (or free Zs) then
associate with AgAg dimers and thereby nucleate assembly at
the receptor cluster. In our model, additional ZsYp units add
in a linear fashion up to a maximum of five, with the largest
complex consequently having the composition AgAg(ZoYPp)s.
Note that this mechanism ensures that Yp promotes oligomer
formation, as shown experimentally (most convincingly
through protein crosslinking [23]). The stoichiometry of the
complexes, with one Yp per Zs dimer and up to five Zs dimers
per oligomer (and per AgAg), is consistent with published
data [8,10,15]. Although we envisage a network in which
almost all CheZ molecules could be linked together (Figure
2B), at saturation there will be on average five CheZ dimers
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Figure 3. Graphical Output of the Smoldyn Simulations, Showing Differential Localization of CheZ and Its Oligomeric Forms

(A) In the absence of CheA,ng kinase activity and phosphorylated CheY, all CheZ dimers are unbound and freely diffusing in the cytoplasm.
(B, ©) Upon sudden increase of kinase activity, the level of CheYp rises initially in the anterior part (B), and then, (C), in the entire cell.
(D) After 1T min at constant kinase activity, the increase of CheYp has led to the formation of oligomeric CheZ,Yp clusters at the inner face of the polar

receptor cluster.
Snapshots of animations in OpenGL. Reactions 1, 3, 8, 9 (Table 1).
DOI: 10.1371/journal.pcbi.0020039.g003

per CheAg dimer in the cluster. One AgAg-anchored Z,Yp
molecule can be directly attached to four other Z,Yp
molecules—a ZsYp pentamer is therefore likely to be quite
stable.

In the absence of more concrete information, we tested a
variety of reaction schemes. We found, for example, that the
inclusion of reactions in which oligomers simultaneously
hydrolyze Yp and dissociate did not make any substantial
difference (unpublished data). For simplicity, we therefore
assumed that the hydrolysis of CheYp promoted by CheZ is
separable from the oligomerization. This can occur if only
one CheYp monomer per CheZ dimer is sufficient to stabilize
an oligomer, as in Figure 2. In this case, vacant sites on a ZsYp
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unit will fill and empty in an iterated cycle without causing
disruption of the oligomer. Note that hydrolysis of CheYp
that is separable from oligomerization is required for the
presence of negative feedback. This way, unlimited numbers
of CheYp can be hydrolyzed by each clustered (and highly
active) CheZo. If, on the other hand, each hydrolysis resulted
in the break up of oligomers, only one Yp would be
hydrolyzed per clustered CheZ dimer, which would be no
advance over doing it in solution.

Rates of hydrolysis increase in the oligomers in accordance
with published observations [23] and are proportional to the
number of free active sites (Table 1). We chose rate constants
so as to generate the experimentally estimated level of CheYp
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Table 1. Reactions

Number  Description Equation Rate (Forward) Rate (Reverse) Reference
1 Kinase activity with explicit autophosphorylation A, — Ay* Immediate equilibration
Asp — Ay*p Immediate equilibration
A* — Ay'p 345" — [53,54]
Y + Ay¥*p — Yp + A* 1.0 X108 M s — [55]
Y + Ap — Yp + A, 1.0 X108 M s — [55]
2 Kinase activity with implicit autophosphorylation A, — Ap Immediate equilibration [55]
Y +Ap— Yp+ A, 1.0 X 108 M s —
3 Y autophosphorylation and motor binding Y2 Yp 7.7 X10 > s 0.085 s ' [56,57]
M + Yp 2 MYp 5.0 X 10° M~ 's~ 205" [57,58]
4 Clustered CheZ: Yp hydrolysis Yp+2Z, =Y+ Z; 1.6 X 10° M 's™! — [15,57]
5 Free CheZ: Yp hydrolysis Yp+2Z,-Y+Z, 1.6 X 10°M~'s7! — [15,57]
6 Oligomerizing cytoplasmic CheZ: oligomer formation ~ Yp + Z, & Z,Yp 25 X 10° M~ 's™ 055" [10,59]
Z,Yp + Z,Yp 2 (Z,Yp), 80 X 10*° M 's™! 055"
Z,Yp + (Z,Yp), 2 (Z,Yp)s 16 X 10° M~ 's7! 055"
Z,Yp + (Z,Yp)s = (Z,Yp)a 24X 10°M 's! 055"
Z,Yp + (ZYp)a 2 (Z,Yp)s 32X 10° M 's7! 055"
7 Oligomerizing cytoplasmic CheZ: Yp hydrolysis Yp + Z,Yp — Y + Z,Yp 24x10°M s — [8,59]
Yp + (Z,Yp); — Y + (Z,Yp)> 24 % 10" M 's7! — [12]
Yp + (ZYp)s — Y + (Z>Yp)s 36 X 100 M 's! =
Yp + (ZYp)a — Y + (Z2Yp)s 48X 10'M7'st —
Yp + (Z,Yp)s — Y + (ZoYp)s 6.0 X 10’ M~ 's™! —
8 Dynamic CheZ: oligomer formation Yp + Z, 2 Z,Yp 25X 10° M 's™! 055" [10,59]
Z, + As; 2 AsyZ, 80 X 10° M 's~ 255"
Z,Yp + Asy 2 As,Z,Yp 16 X 10° M~ 's7! 255"
Yp + AsyZ, = As,Z,Yp 5.0 X 10* M~ 's™ 055"
Z,Yp + As;Z,Yp 2 Asy(Z,Yp), 80 X 10° M 's™! 015"
Z,Yp + Asy(Z;Yp), 2 Asy(Z,Yp)s 16 X 10° M~ 's™ 015"
Z,Yp + Asy(Z,Yp)s 2 Asy(Z,Yp)y 24X 10°M s 015"
Z,Yp + Asy(Z,Yp)y 2 Asy(Z,Yp)s 32X 10° M 's™ 015"
9 Dynamic CheZ: Yp hydrolysis Yp + Z,Yp — Y + Z,Yp 24 X10°M s — [8,59]
Yp + As,Z,Yp — Y + As,Z,Yp 12 X 10° M~ 's™! — [12]

S
Yp + Asy(Z,Yp), — Y + Asy(Z,Yp), 24X 10" M s
Yp + Asy(Z,Yp); — Y + Asy(Z,Yp)s 36 X 10’ M s’ —
Yp + Asy(ZYp)s — Y + Asy(ZoYp)s 48 X 107 M~ s
Yp + Asy(Z,Yp)s — Y + Asy(Z,Yp)s 6.0 X 107 M s

Only a subset of reactions was used for each simulation run; see figure legends. Numbers and descriptions also refer to subsequent lines without text. Reactions labeled with “Immediate
equilibration™ are the system’s input: every 10 ms throughout the simulation, the ratio of the two indicated molecular species was adjusted stochastically.

Boldface symbols in column 3, such as As,(Z,Yp), are used to indicate protein complexes that are attached to the membrane and therefore nondiffusing. For others, the following
diffusion rates were employed: Y, Yp, 10 um?s~' [60,61]; Z,, 5.4 um?s™"; Z,Yp, 4.8 um?s™'; (Z,Yp)a, 3.4 um?s™'; (Z,Yp)s, 2.8 pm?s™; (Z,Yp)a, 2.4 pm®s™'; (Z,Yp)s, 2.1 pm?s ™! (extrapolated
from molecular weights: DM~/ [62]). In columns 4 and 5, boldface numbers indicate values that were directly taken from (black) or derived from (blue) experimental measurements
(references given).

Y, CheY; Yp, CheYp; A,, CheA dimer, inactive; A,*, CheA dimer, active; A,p, phospho-CheA dimer, inactive; A,*p, phospho-CheA dimer, active; As,, CheAg,on dimer; Z,, CheZ dimer; Z,Yp,
complex of CheZ and CheYp; M, FliM (motor subunit).

DOI: 10.1371/journal.pcbi.0020039.t001

in unstimulated cells [24,25] and to fit the activity profile of
AcheR cheB cells [26]. (These mutants serve to distinguish the
effects of CheZ oligomerization from other adaptive mech-
anisms, see below). Recent FRAP measurements of the CheZ
diffusion coefficient are consistent with a low molecular
weight species in the cytoplasm (M. A. DePristo, L. Chang, K.
Lipkow, R. D. Vale, and S. Khan, unpublished data).
Consequently, in the simulations presented here, the for-
mation of CheZ oligomers takes place exclusively at the
receptor cluster, unless stated otherwise. Simulations in
which oligomerization occurs independently of CheAg in
the cytoplasm or not at all were done as controls.

Dynamics of the Model

Responses of our simulated bacterial cell to repeated
addition and removal of attractant are shown in Figure 4A-
4C. Changes in stimulus produce corresponding changes in
the level of activation of CheA and hence changes in the level
of CheYp, as seen in experiments and reproduced in previous
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computer models [20,27-29]. The traces show considerable
noise due to the relatively small numbers of molecules under
examination (there are 8,200 CheY molecules per cell,
including both phosphorylated and unphosphorylated spe-
cies) [15]. Because of the spatial detail included in the Smoldyn
simulations, both the formation and most of the hydrolysis of
CheYp are localized to the immediate vicinity of the receptor
cluster. In response to stimulation by repellent (or removal of
attractant) the concentration of CheYp rises, initially in the
vicinity of the receptor cluster and then in the cytoplasm
(Figure 3B and 3C). However, this same increase also
promotes CheZ oligomerization leading to the recruitment
of more ZyYp units from the cytoplasm. Over a period of
time, these added units increase CheYp hydrolysis. The
concentration of CheYp in a cell exposed to repellent thus
rises rapidly to a peak about 1 s after the stimulus and then
falls to a lower level in the ensuing 1 to 2 min (Figure 3D).
Exposure of the cell to attractant produces changes in the
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opposite sense: now the rate of CheYp production falls and
there is a net release of CheZ which moves from an
oligomeric state bound to the receptors to a freely diffusing
state in the cytoplasm (Figure 4A-4C). With the parameters
used here, the shifts in location are only partial, with
approximately one third of the bound CheZ being released
by a strong attractant stimulus.

Temporal changes in CheYp level in response to stimulation
were examined in greater detail in a series of simulations
employing the maximum possible change in CheA activation
(corresponding to a receptor occupancy change from 100% to
0% and back to 100%) (Figure 5). The traces were averaged
over 25 simulation runs in order to reduce noise. Here it is
clear that the rapid rise and subsequent fall in CheYp level
correlate with the formation of oligomeric CheZ clusters
(Figure 5D). Note that these slower changes in the level of
CheY phosphorylation constitute an adaptation of the signal
that is independent of receptor methylation, since both the
methylating enzyme CheR and the demethylating enzyme
CheB are not present in these simulations. This feedback of
free CheYp concentration in the cell is observed whether
oligomers are formed in the cytoplasm or at the receptor
cluster (Figure 5C and 5D). For comparison, traces for the
traditional scheme, with fixed CheZ position and constant
CheZ activity, are presented (Figure bA and 5B). Here the
CheYp profile adopts the shape expected of a saturation curve.

It is interesting to note that the overshoot in CheYp
concentration seen in Figures 4B and 5D corresponds closely
to in vivo data published 20 years ago [26,30] (Figure 4D). In
these studies, cheR cheB mutant bacteria exhibited a partial
adaptation of flagellar rotation within 1 to 2 min of chemo-
effector addition or removal, explaining findings that these
mutants retain some chemotactic capability [31-33]. Our
model of dynamic CheZ relocalization and activity can
completely account for these experimental results. Both
methylation-defective bacteria and our simulations are unable
to compensate for a complete shutdown of kinase activity but
adapt perfectly to smaller attractant stimuli (not shown).

Implications for Signaling Properties

Because our simulations follow all of the CheYp molecules
in the cell, we are able to monitor the changes in binding of
CheYp to the flagellar motors. Detailed changes in the
occupancy of motors at two different locations in the cell—
one near the polar cluster (0.2 pm) and the other at the
opposite end of the cell—are shown in Figure 5E-5L. These
records indicate that the dynamic trafficking of CheZ
produces an improved temporal response: a rise in the
production of CheYp is relayed most effectively to flagellar
motors if the CheZ is localized to the receptor cluster, since
otherwise the phosphatase in the cytoplasm attenuates the
level of the production of CheYp before it can diffuse to
distant motors (Figure 5E and 5F). Conversely, a sudden fall in
CheYp is best relayed to the flagellar motors if CheZ is
diffusing freely in the cytoplasm since this ensures a rapid fall
in local CheYp concentration (Figure 51 and 5]). In the scheme
with a dynamically assigned CheZ, the occupancy-level
changes give the best of both worlds (Figure 5H and 5L), i.e.,
it allows the cell to react to both repellent and attractant
stimuli with maximum speed. This scheme also prevents the
formation of intracellular CheYp gradients, which result in
differences in the occupancy and bias of anterior and
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Figure 4. Molecular Movements: Results of a Typical Simulation

(A) The input to the simulations is the proportion of active CheA kinase
dimers (orange; A,* in Table 1), which undergoes three cycles of halving
and doubling. It does not include any methylation-dependent adapta-
tion and is thus equivalent to a AcheR cheB strain. CheAp (yellow) is
generated by autophosphorylation of active CheA. (Shown is the sum of
species Ay*p and A,p.) Black arrows indicate the addition and removal of
attractant in an equivalent experimental system.

(B) Fraction of CheYp (red), generated by phosphotransfer from CheAp
and autophosphorylation. Only unbound CheYp monomers are shown
(CheYp free).

(C) CheZ dimers bound in oligomers of increasing size (light to dark
green) and total CheZ in these polar oligomers (black).

(D) CheYp concentration, calculated from experimental measurements of
CCW bias of AcheR cheB strain ST447, stimulated with 1 pM L-serine
(modified from [26]). Curves were calculated with two different degrees
of motor cooperativity (H=5 [51,52] (magenta) or H=10.3 [25] (purple),
see Materials and Methods). Open circles are values where the real CCW
bias was estimated to be 1% instead of the published 0%; this accounts
for inaccuracies of the Hill equation at low numbers.

Reactions 1, 3, 8, 9 (Table 1).

DOI: 10.1371/journal.pcbi.0020039.9004

posterior motors when CheZ is restricted to the cytoplasm—
as either dimers or oligomers (Figure 5F-5H and 5]J-5L).
Analysis of the dose-response of our simulated cell revealed
another consequence of CheZ redistribution. The perform-
ance of a cell in which CheZ was dynamically relocated in the
manner described above was compared to a cell with either
all fixed or all diffusing CheZ molecules (Figure 6). In all

April 2006 | Volume 2 | Issue 4 | e39



Changing Cellular Location of CheZ

ratio CheA, CheY, CheZ motor occupancy: repellent motor occupancy: attractant
1
A E |
\‘CheAp 3
0.8 motor #1 i 8
motor #1 g %
06 motor #2 E _:
free CheYp T o
, N T
0.4 motor #2 £ lon
Oa
0.2 =
qIB F J
\CheAp
0.8 tor #1 B
motn ) motor #1 £ g
0.6 r E B
free CheYp motor #2 =2
N
04 motor #2 £ %
o_
02 ®
0 s
(1] 1 2 3 4 5 65 0 05 1 15 2 0 0.5 1 15 2
t (seconds) t (seconds) t (seconds)
1
c G K i
b “Chenp S o
e ==
motor #1 motor #1 g ‘g
L motor #2 g §
/free CheYp 5 2
0.4 motor #2 3T
N =
@
0:2 oligomeric 5 ®
CheZ
q D H L
i “cheap £5
’ motor #1 s
SR
06 = E
| _—free CheYp E o
0.4 2e
clustered motor #2 o E
CheZ N &
0.2 5%
0 . "
0 05 1 1.5 2 25 - 05 1 1.5 2 0 0.5 1 15 2
t (minutes) t (seconds) t (seconds)

Figure 5. CheYp Levels, CheZ Clustering Dynamics, and Motor Occupancy in Response to an Extreme Activity Profile

Simulations were carried out in cells of the architectures in Figure 3 but with four copies of each motor #1 (0.2 um from the anterior end) and motor #2
(1.8 um from the anterior end), one on each lateral face. As input, the phosphorylation state of CheA kinase was changed sharply from 0% to 100% and
back (yellow line); this activity profile, shown in full in column 1 (A-D) was repeated 25 times. Red (free CheYp/total CheY), mean of 25 runs; black (CheZ
localized in oligomers/total CheZ), mean of 25 runs. Columns 2 and 3 (E-L) are expanded sections of these simulations. Blue, occupancy (FliMYp/total
FliM) of motor #1, mean of (25 runs X 4 motors =) 100 traces; cyan, occupancy of motor #2, mean of 100 traces; thin gray, corresponding curves from
the top two panels in the same column. Note the differences in time scales.

Row 1 (A, E, I) All CheZ dimers are in an immobile lattice 40 nm from the anterior end. Reactions 2, 3, 4 (Table 1).

Row 2 (B, F, J), All CheZ are dimers freely diffusing in the entire cell volume. Reactions 2, 3, 5 (Table 1).

Row 3 (C, G, K), Formation of freely diffusing CheZ oligomers in the entire cell volume. Reactions 2, 3, 6, 7 (Table 1).

Row 4 (D, H, L), Dynamic CheZ localization with oligomerization at CheAy,,+ according to our hypothesis. Reactions 2, 3, 8, 9 (Table 1).

DOI: 10.1371/journal.pcbi.0020039.9005

schemes, the level of CheYp rises initially with rising CheA
activity—due, for example, to increased exposure to repellent
(Figure 6A-6D). In cells with entirely polar or entirely
cytoplasmic CheZ (with or without oligomerization), the
CheYp level quickly saturates (Figure 6A-6C), but with
dynamic CheZ localization, the level of CheYp continues to
rise throughout the entire activity range (Figure 6D). This
feature should allow a cell to distinguish repellent levels even
at high concentrations. For decreasing activity or increasing
attractant concentrations, all schemes perform equally well
(Figure 6E-6H).

Finally, our system is relatively robust to exact rate
constants. For example, with a 100-fold increase of the
oligomerization and deoligomerization constants (last four
lines of Table 1, reactions 8), the CheYp levels adapt after
only 2 s, but motor occupancy and dose-response curves
retain the advantages described above (not shown). This also
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leaves room for incorporation of new experimental data,
such as a higher proportion of AgAg homodimers [14].

Discussion

An early hint that CheZ might redistribute between the
cytoplasm and the membrane was obtained almost three
decades ago. In 1977, Ridgway and colleagues reported that
this newly described protein was present in both the
cytoplasmic and the membrane fractions of disrupted E. coli
[34]. Direct visual evidence, however, came only in 2000, when
Sourjik and Berg found that green fluorescent protein-
labeled CheZ colocalizes with the polar cluster of receptors
[35], an association shown to depend on the presence of
CheAghore [5]. A common feature of these and all subsequent
analyses is that considerable cell-to-cell heterogeneity exists
in the amounts of CheZ located at the cell poles [36].
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Figure 6. Dose-Response Curves

CheA activity (orange) was increased in ten equal steps from steady-state
to maximum level to mimic an increasing repellent concentration (A-D)
or decreased to mimic an increase in attractant (E-H). Orange, ratio of
active CheA; red, free CheYp; black, oligomeric CheZ.

(A, E) CheZ all dimeric and fixed at the cluster. Reactions 1, 3, 4 (Table 1).
(B, F) CheZ all dimeric and cytoplasmic. Reactions 1, 3, 5 (Table 1).

(C, G) Cytoplasmic CheZ oligomerization. Reactions 1, 3, 6, 7 (Table 1).
(D, H) Dynamic CheZ clustering. Reactions 1, 3, 8, 9 (Table 1).

DOI: 10.1371/journal.pchi.0020039.g006

The presented model predicts that the amount of CheZ
associated with receptor clusters shifts in response to external
stimulation. Detection of this movement will not be trivial, as
the predicted changes are small, short-lived, and dependent
on the formation of complex oligomeric structures, which
might be disrupted by labeled fusion proteins. At this point,
rate constants for association/dissociation of and hydrolysis
by the different oligomeric forms of AgAg(ZoYp), are not
known, and may be difficult to determine, as the dynamic
nature of the proposal implies that cells and in vitro reactions
will always contain a mixture of oligomers. Without these
numbers, precise quantitative predictions cannot be made
with any certainty—this, however, was not the aim of this
study. Although a lot of care has been taken to incorporate
and match known data, the goal was a proof of principle—to
show how a novel loop and spatial reorganization in the well-
studied network of bacterial chemotaxis can function and
benefit the cell.

If changes in localization are small, what significance can
they have for cellular function? The most striking conse-
quence will be to sharpen the chemotactic response, which is
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demonstrated in Figure 5. Sudden exposure to attractant will
initiate a rapid fall in CheYp (due to the activity of the
accumulated CheZ dimers) and cause dispersal of CheZ into
the cytoplasm. The departure of CheZ will limit the extent of
hydrolysis of CheYp at the receptor cluster while at the same
time it will enhance CheYp capture in the cytoplasm. This
could enable CheZ to scavenge CheYp from regions close to
the flagellar motors, thereby ensuring that these respond in a
timely fashion to the external stimulus. Note that CheYp only
has to be bound by CheZ, and not necessarily hydrolyzed, to
be unavailable to the motors. In reverse fashion, if the cell
encounters a repellent, this will engender a rapid rise in
CheYp concentration, closely followed by a movement of
CheZ to the membrane. The rise in CheYp in the vicinity of
the cluster will thereby be limited in duration while, at the
same time, it will be accentuated at the motors.

Another consequence of the changes in localization and
oligomeric state is that they will provide an additional layer
of adaptation. The ability to adapt to attractants on a
relatively slow time scale (slower than the initial phosphor-
ylation of CheY) is a crucial element in chemotaxis, since it
allows the organism to detect chemical gradients over a wide
range of concentrations. E. coli, for instance, can detect
aspartate at concentrations below 10 nM but continues to
move up gradients that reach almost 1 mM [37,38]. This
remarkable capacity is possible only because the system
returns to its initial position after each increment of
attractant. The principal mechanism for adaptation is the
well-characterized methylation of receptors, which acts as a
counterbalance for the inhibitory effects of the attractant
[39]. However, evidence from studies of bacterial mutants
lacking the methylation enzymes shows that an additional
level of adaptation exists that is independent of methylation
[26]. It has been suggested previously that this second tier of
adaptation could be due to CheZ oligomerization [12,23].
Almogy et al. [40] showed analytically that a delayed response
of CheZ to changes in CheYp would ensure a more rapid and
precise return to initial conditions and hence amplify the
range over which chemotaxis could work. In contrast to their
work, our model proposes that CheZ is the mobile element
that moves between cytoplasm and membrane, and not
CheAg. Our model does not require that CheAg’s affinity to
the cluster is dependent on receptor activity, although it does
not rule out that this could further enhance and refine CheZ-
based adaptation. However, whereas active receptors in their
model directly promote the release of cluster-bound mole-
cules, in ours they indirectly promote attachment to the polar
clusters. It thereby localizes the maximum dephosphorylation
activity to the cluster and not the cytoplasm, which is
consistent with recent FRET data [21]. Moreover, the
application of a whole-cell simulation, in which the spatial
location of each molecule is considered, takes the analysis to a
new level of confidence. A previously unmentioned function
of this second tier of adaptation is as a back-up system in
conditions in which the methylation system is impaired due
to toxins, mutation, or stochastic fluctuations in the low-copy
enzymes CheR and CheB [15,41-43].

The described changes and advantages are quite small, but
benefits do not need to be large to be selectable in evolution,
especially when there is no additional cost: our model uses
exactly the same components and amount of energy as the
traditional scheme. Considering the astronomical numbers of
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generations in the lineage of present-day bacteria and their
highly competitive environment, the required optimization of
binding affinities and conditional reaction constants is easily
covered by the subtle but real improvements. Many other
features of intracellular chemistry that might seem to us to be
inconsequential or even accidental could likewise have arisen
because they confer subtle selective advantages on the organism.
Our model adds to the examples where an altered function
of proteins (activation by phosphorylation of CheY) leads to
an altered structure (oligomers, polar clusters), which in turn
has an altered function (enhanced dephosphorylation). This
creates a feedback loop in which a molecule (CheYp) is directly
involved in its own destruction. Most known feedback loops
are built of more components. It is very likely that many other
intracellular systems display similar mechanisms and that
dynamic changes of macromolecular localization in response
to intracellular or extracellular conditions could refine and
enable properties that have not yet been appreciated.
Finally, it seems likely that the changes we postulate are still
only part of the picture. For simplicity we have assumed that
other components of the polar cluster—the receptors and
molecules of CheA—are stable and unchanging. In fact it
appears that both of these components do exist to some degree
in the cytoplasm and in isolated groups away from the polar
cluster [44], and there is some evidence that they also might
show dynamic changes in E. coli and Bacillus subtilis [45-48].
Interestingly, the orientation of movements is the same: The
addition of attractant leads to reduced clustering in both
chemoreceptors (as observed experimentally) and CheZ
(according to our model). An intriguing possibility is therefore
that clustered CheZ stabilizes and tightens the receptor cluster,
and vice versa. Another parameter that can vary is the ratio of
CheAjgng to CheAgnor- It was shown that during growth of a
culture, this ratio can change from 4:1 to 1:1. Maximal motility
was seen at the highest level of CheAg expression [49], i.e., at
maximal dynamic CheZ clustering. Once the cell has a
functioning signal transduction pathway, then subsequent
refinements that affect cellular localization and regulatory
interactions could be easily made. They could improve
performance while placing little, if any, burden on the cell.

Materials and Methods

Smoldyn. Smoldyn source code, executable program, manuals, and
detailed documentation are downloadable from http://lsahara.lbl.gov/
~sandrews/software.html (Steven Andrews) and http://lwww.pdn.cam.
ac.uk/groups/comp-cell/lSmoldyn.html (Dennis Bray’s group). A de-
tailed report of the theory and assumptions underlying Smoldyn is
given in [19]. Briefly, Smoldyn employs the Smoluchowski level of
detail, i.e.,, molecules have an identity and an exact position in
continuous space but no volume, shape, or inertia. They diffuse in
random directions by distances calculated from Fick’s second law
rewritten as a stochastic master equation: f,(r, ) = DyV2pp(r, 1), with
pg(r.t), spatial probability density of a single B molecule at position r
and time #; Dy, diffusion coefficient for a B molecule. The product
pg(r.t)dr is the probability that a specific B molecule is within a volume
dr about position r at time ¢ Solving the above equation shows that
the probability density for the displacement of a molecule after a
time step has a Gaussian profile on each Cartesian coordinate. These
results form the basis of the simulation method called Brownian
dynamics in which diffusion is simulated by picking a normally
distributed random displacement for each molecule at each step.
Since space is continuous, not compartmentalized, the level of detail
can be adjusted by a suitable choice of step time dt.

To run a Smoldyn simulation, the user writes a configuration file.
The coordinates of the simulation volume are specified, and identified
molecules are placed at specific positions within the framework of this
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cell box. Some molecules are anchored just inside the walls, whereas
others (those that are freely diffusing) are initially assigned random
locations. Each molecular species has a diffusion coefficient (which
may be zero if it is membrane-associated) and a color and size for the
graphical animation. The configuration file also includes a list of
potential reactions and reaction probabilities. The molecules them-
selves are point objects and have no dimensions. At each time step, all
mobile molecules undergo a diffusive step in a random direction.
Diffusive distances are calculated from Fick’s law, converted into
probabilities. At the end of this first simulation step, molecules are
moved to their new positions. Any molecule that crosses the boundary
of the cell box is reflected back in like a billiard ball. Unimolecular
reactions now occur with a probability calculated from the specified
rate constant. Bimolecular reactions are decided by the proximity of
two potential reactants: two suitable molecules that come within each
other’s binding radius are made to react. These radii are calculated to
give the correct reaction rates following diffusive encounter. The user
can specify intermittent changes, such as instantaneous reactions or
the probabilistic conversion of one molecular species to another, and
record the state of the system as required.

Simulations. Simulations were performed on an Apple Power Mac
G5 (2 CPUs, 2 GHz, 3.5 GB RAM), an AMD Athlon 2000+ cluster (26
CPUs, 1.67 GHz, 1 GB RAM each), and on an AMD Athlon MP cluster
(22 CPUs, 1.5 GHz, 1 GB RAM each), all running Smoldyn version 1.56.
Time steps of 0.1 ms were used throughout, after it was confirmed
that the simulation outcome at this level was the same as with slightly
larger and much smaller time steps (“rule-of-thumb-test”)—steps of
this length are not expected to confer any significant inaccuracies
[19]. Simulations were performed at the maximum accuracy level
and virtual boxes of 150 nm side length. With this setup and
molecule numbers (see below), it took approximately 8 to 24 h to
simulate 1 min.

The simulation systems were rectangular cells of 2 pm length and
0.84 pm thickness, with a cluster of 1,250 CheA kinase dimers 20 nm
from the anterior end (Figure 3). 156 CheAgy,,, dimers, the nucleation
points for CheZ oligomers, were 40 nm from the end. These lower
numbers compared to those in the text reflect the finding that, on
average, less than 50% of total CheA localizes to the pole [44]. Two
motors, each a ring of 34 FliM molecules, were included in the
analysis: motor #1 situated 0.2 pm and motor #2 situated 1.8 pm from
the anterior end. 8,200 CheY monomers were randomly placed and
diffuse in the cytoplasm. 1,600 CheZ dimers were either randomly
diffusing (Table 1, reactions 5, 6, and 8) or placed in a lattice 40 nm
from the anterior end (Table 1, reactions 4). Reactions from Table 1,
as specified in the figure legends, were included. See [20] for further
details of the simulation procedure.

Conversion of experimental data. For Figure 4D, the measured
values of counterclockwise bias (% CCW) were read in from [26],
Figure 10 (fraction of tethered cells that continuously rotated CCW
during the indicated 15-s intervals). Values were transformed to
numbers of CheYp molecules with Yp=Yp,, [c CWbias/(1 — CWbias)]””
(rearranged from the Hill equation in [50]), where Yp is the number of
CheYp molecules in the cell at each timepoint; Yp,, number of CheYp
molecules in an unstimulated cell = 1,640 = 0.2 * 8,200; CWhbias,
clockwise bias =1 — (% CCWI/100); ¢, adjustment constant = 1.5 (from
Yp = Yp, and CWhbias = 0.4 in unstimulated cells); H, Hill coefficient,
degree of cooperativity between CheYp concentration and motor bias
=5.0 [51,52] or 10.3 [25].
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