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Abstract

Gene regulatory networks show robustness to perturbations. Previous works identified robustness as an emergent property
of gene network evolution but the underlying molecular mechanisms are poorly understood. We used a multi-tier modeling
approach that integrates molecular sequence and structure information with network architecture and population
dynamics. Structural models of transcription factor-DNA complexes are used to estimate relative binding specificities. In this
model, mutations in the DNA cause changes on two levels: (a) at the sequence level in individual binding sites (modulating
binding specificity), and (b) at the network level (creating and destroying binding sites). We used this model to dissect the
underlying mechanisms responsible for the evolution of robustness in gene regulatory networks. Results suggest that in
sparse architectures (represented by short promoters), a mixture of local-sequence and network-architecture level changes
are exploited. At the local-sequence level, robustness evolves by decreasing the probabilities of both the destruction of
existent and generation of new binding sites. Meanwhile, in highly interconnected architectures (represented by long
promoters), robustness evolves almost entirely via network level changes, deleting and creating binding sites that modify
the network architecture.
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Introduction

Robustness to genetic and environmental perturbations is

ubiquitous in biological systems [1]. An abundance of theoretical

and experimental evidence has shown robustness operating at

many levels ranging from microRNA precursors [2] to metabolic

pathways [3] and gene regulatory networks [4]. By definition,

genetic robustness will facilitate the accumulation of genetic

variation in a population, which in turn may prove useful for

adaptation or evolvability [5–7]. Previous theoretical studies using

gene regulatory network models have shown how robustness

evolves under conditions of stabilizing selection [8]. In this class of

models, mutations were allowed to alter only the interaction

strengths, constraining the model to fixed network architectures.

Therefore these models were not suitable to explore potentially

important factors such as evolved redundancy [9], modularity [10]

and degeneracy [11,12]. Model refinements that allowed the

network architecture itself to evolve have highlighted the

importance of network lability even under conditions of stabilizing

selection, while making arbitrary and sometimes conflicting

assumptions about gain and loss of interactions [13,14]. The

network lability seen in these cases coincides with genomic studies

where, for example, high rates of gain and loss of cis-regulatory

elements are observed [15–17] including cases where function is

highly conserved [18].

The actual mechanisms underlying changes in network

interactions will predominantly involve mutations at the sequence

level in cis-regulatory regions [19,20] rather than changes in

protein sequence and structure [21]. Even though many transcrip-

tion factors binding sites (TFBSs) have been characterized in detail

[22,23], there is still a limited understanding of the evolutionary

forces involved in the creation and maintenance of these TFBSs in

the context of a gene regulatory network. Relevant theoretical

studies have addressed evolution of cis-regulation by considering

single TFBSs or groups of TFBSs within a single cis-regulatory

region, for example, by calculating the distribution of canonical site

variants under mutation-selection balance [24,25]. One potential

mechanism for achieving robustness at the sequence level is TFBS

redundancy [26,27], i.e., the maintenance of multiple copies of

binding sites for a particular transcription factor. A variety of

evolutionary forces may be involved in maintaining TFBS

redundancy, including recombination within the cis-regulatory

region or simply the length of the promoter region, which increases

the probability of creating a binding sites de novo [9].

The evolution of robustness in gene regulatory networks is likely

to involve mechanisms at both the local-sequence and network-
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architecture levels. Until now these two levels have been

considered separately. Here we present a model that combines

these two levels, enabling us to address their relative influence and

how they interact in the context of the evolution of robustness. At

the sequence level we use structural models of transcription

factor(TF)-DNA interactions to estimate binding specificities for all

possible DNA binding sites, which allows an explicit sequence-

level representation of upstream regulatory regions (URRs) in

determining the architecture of the gene regulatory network. Point

mutations drive changes at the sequence level of individual TFBSs

(which can change the binding specificity) or at the network-

architecture level by creating or deleting interactions. Using this

model we are able to quantify the relative contributions of the

sequence and network level mechanisms to the evolution of

robustness. We find that in sparse architectures, reflected in the

use of short URRs, a mixture of local-sequence and network-

architecture level changes are exploited, whereas in highly

interconnected architectures (simulated with long URRs) the

balance shifts almost entirely to the network level.

Results

Molecular model of gene regulatory networks
The model is implemented on three levels: (1) TF-DNA

interactions, (2) gene expression and (3) population dynamics.

On the first level, TF-DNA interaction strengths for all possible

DNA sequences of 8 base pairs in length (8-mers) are obtained

from experimentally solved structures of protein-DNA complexes.

At the gene expression level, each gene is regulated via explicit

promoter sequences or URRs, which are scanned for binding sites

to build up a matrix of interaction strengths between all

transcription factors and all promoter regions, to determine the

gene expression dynamics within the context of a standard

network model. At the population level, genotypes (defined in

terms of explicit URRs) undergo cycles of reproduction, mutation

and selection. We now describe these levels in detail.

(1) TF-DNA interactions: as described in He et al. [28], statistical

weights, qx can be associated with individual DNA sites, x, upon a

TF binding as:

qx~½TF � Kx(max) e{b:DEx ðIÞ

where [TF] is the concentration of TF, Kx(max) is the binding

affinity of the consensus site (lowest energy site), b the Boltzmann

constant and DEx the binding energy difference of site x relative to

the consensus site x(max). Binding energies of a TF with all possible

x sites are difficult to assess experimentally. Previous studies have

used a variety of methods to approximate these TF binding

energies [28–31]. For example, computational methods have used

known DNA position weight matrices and assumed additive

interactions between DNA bases [28,31]. Protein binding micro-

array technology [22] offers an experimental approach to measure

binding strength of TFs, but the compression of all possible 10-

mers in the array produces a convoluted signal that is not trivial to

decode. The proper solution to this problem remains under debate

[32,33]. Alternatively, we use a computational method to obtain

TF binding preferences based on structural information from TF-

DNA complexes. Our approach uses a similar framework to that

of Morozov et al. [29]. The main difference is that we use an

atomistic statistical pair potential function to estimate TF-x

interactions (where x is an 8-mer site) [34] instead of the Rosetta

potential [35]. Similarly, we obtain a statistical score ex for each

site x, that represents an estimate of the binding strength between

TF and x. To be comparable, e scores must be normalized, since

they scale linearly with the number of atomic contacts at the TF-

DNA binding interface (Fig. S1). A convenient way to achieve this

[31] is to reference them to the consensus sequence, x(max), as

follows:

e0x~
ex ex(max)

Dex(max) ex(min)D
ðIIÞ

where ex(min) represents the e score of the least favored binding site.

Analogously to eq. I, we can calculate statistical weights for

binding as:

q0x~s e{l:e0x ðIIIÞ

where s is the relative concentration of TF (on a scale from 0 to 1),

e9x is the normalized statistical score of TF-x interaction (with

ex(max) = 0 for the preferred site) and l a scaling factor. l controls

the slope of the exponential and is a free parameter of the model.

The term e{l:e0x is analogous to a binding affinity or specificity

(referred to as kx from now on). It is displayed as a function of e9x

in Fig. 1D and is nearly zero for the majority of the putative

binding sites. Similarly, kx(max) is analogous to Kx(max) from eq. I

and becomes 1 after referencing the binding strengths to the

consensus site, x(max). We further applied a cutoff c on the

specificity kx, to differentiate specific from non-specific TF

binding, thus defining the set of TFBSs. Different cutoffs are

explored by varying the parameter c. The values of c and l were

chosen to generate the expected number of TFBSs within the

range 60 to 900, as previously estimated for a wide range of

transcription factors in mouse using protein binding microarrays

[22]. We identified e9opt = 0.209 (see Fig. 1D), as an optimal value

of e9x to obtain the expected number of TFBSs closest to the

average in the range of 60–900 for all studied TFs in the model

Author Summary

Development from egg to embryo depends to a large
extent on regulatory networks of genes called transcrip-
tion factors. Previous research has shown these gene
regulatory networks to be robust to perturbations at the
level of the connections between transcription factors.
Here, we investigate the mechanisms underlying the
evolution of robustness in gene networks using a
modeling approach, which considers three levels: binding
of individual transcription factors to DNA, dynamics of
gene expression levels, and fitness effects at the popula-
tion level. In our model the gene regulatory network is
determined by transcription factor binding sites within
DNA sequences, which undergo mutation. We categorize
these mutations in a continuum ranging from silent
mutations, which have no effect on regulation and change
only the DNA sequence (local-sequence level), to muta-
tions that change connections between genes in the
network (network-architecture level). We find that in
sparse networks, containing few connections between
genes, a balance of local-sequence and network-architec-
ture level mechanisms are responsible for the evolution of
robustness, but when the network is densely connected
the network-architecture level mechanisms become dom-
inant. We argue that the shift towards the network-
architecture level for more densely-connected networks
offers a potential explanation for the evolution of
increased complexity.

Evolution of Robustness in Gene Networks
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(Table S1 lists the specific number of TFBSs used for each TF). c
and l are linked in eq. III through the value of e9opt

(kx~c~e
{l:e0opt ). Changes to the slope of the exponential are

accompanied by a change in the specificity cutoff, c, thus

modulating the relative differences in specificity between binders.

Various values of c, which we will refer to as ‘specificity gap’ from

here on, were explored (0.05, 0.10 and 0.20) representing an

increasing discrimination between specific and non-specific

TFBSs.

We compared the predicted binding site preferences that we

obtained from our above described in silico approach with

experimentally-determined preferences from the JASPAR [23],

UniProbe [35] and TRANSFAC [36] databases for a subset of 6

TFs for which literature data is available, (Fig. 1E). For most cases

the computationally determined binding site preferences are very

similar to the experimentally-determined preferences. The only

exception is the transcription factor Rxr-A, for which none of the

known or computationally calculated motifs agree in the first two

positions. The overall good agreement demonstrates the usefulness

of our scoring procedures to recapitulate binding preferences.

We now describe in more detail how we acquire TF-x

interactions from structural models. A set of 10 TF-DNA crystal

structure complexes were chosen from the Protein Data Bank

(PDB) [37]. For each complex, we exchanged the DNA bases in all

possible combinations (limiting the length of the binding site to 8-

mers) using the NAMD 2.6 package [38]. In this way, we

generated 48 TF-DNA complexes (see Materials and Methods for

further details). Using the same software, we optimized TF-DNA

atomic interactions with an energy-minimization procedure. The

atomistic statistical pair potential method described above, based

on pairwise TF-DNA contacts, was used to obtain a score, e.

Fig. 1A shows the modeled structure of the Egr1 transcription

factor bound to the 8-mer 59-CGTTGTCG-39, based on the

Egr1-DNA crystal structure (PDB code: 1AAY). This particular 8-

mer ranked 300th (ex(300) = 2116.04) from the best scoring

complex (ex(max) = 2163.12), which corresponds to the original

crystal structure bound to the consensus sequence, 59-

GCGTGGGC-39. Fig. 1B illustrates the conformational differ-

ences of protein side-chains, located at the interface (residues

located within 3.5 Å of DNA atoms), in the modeled structure (in

red) when compared to the crystal structure (in blue). These

atomic rearrangements (typically displaying an RMSD difference

of less than 0.5 Angstrom) are the result of the employed energy-

minimization procedure, which relaxes the molecular interactions

in the complex to accommodate the new DNA sequence. The

largest changes are observed, as expected, on residues contacting

specific DNA bases, for example R88 that makes specific contacts

with base N3. The set of e scores for the Egr1 factor displays a

Boltzmann-like distribution, where only a small fraction of

sequences are recognized with favorable scores (Fig. 1C), similar

to observations made for various stable structural features in

globular proteins [39,40].

Previous works on this topic often employed Position Weight

Matrices (PWM) to estimate binding affinity of TF-DNA

interactions. The reason why we decided to employ the above

described more elaborate approach is because the PWM model

assumes independency of interactions with each base in the DNA

and therefore the accuracy of this model has been questioned

extensively in the literature [41,42].

(2) Gene expression: We use the TFBSs to define a gene

regulatory network model (Fig. 2A) using a set of 10 transcription

factors (Table S1). We assign to each TF gene an URR of length L

(values of L = 50, 100, 200 and 300 bp were explored). Initially,

the URR is chosen to be a random DNA sequence with equal

probability occurrences of G, C, A or T bases. The total number

of overlapping 8-mers in each URR is L-7, although only a

fraction of these will be actual TFBSs (as determined by the value

Figure 1. Determination of transcription factor binding sites
and relative binding specificities by in-silico molecular model-
ing. (A) Example of in-silico model of DNA-protein complex for the
transcription factor EGR1 (PDB:1AAY, originally with sequence 59-
GCGTGGGC-39) bound to the candidate 8-mer 59-CGTTGTCG-39. DNA
color codes: GUA:green, CYT:pink, ADE:blue, THY:orange. (B) Detailed
view of same model complex for protein residues at 3.5 Å distance from
DNA, showing residue repositioning upon energy minimization
procedure. Here, the crystal structure is shown in blue and the model
in red. (C) Distribution of calculated binding strengths, e, using the
Robertson-Varani statistical potential on TF-DNA complexes for all
possible 8-mers (48) for the Egr1 structure. (D) Transformation of
normalized e scores into relative binding specificities, k. Dashed line
indicates cutoff level c, below which all specificities are set to zero,
providing a variable separation between binding and non-binding 8-
mers. e9opt is a particular value of e9, defining constant numbers of
binding sites for each TF (see Materials and Methods). (E) Six in-silico
determined TFBS preferences were compared against those available in
JASPAR [23], UniProbe [35] and TRANSFAC [36] databases. N indicates
the number of sequences used (we used the N lowest energy
sequences to obtain in-silico preferences) to produce the information-
content sequence logos (WebLogo [60]). *Logos constructed from
frequency matrices.
doi:10.1371/journal.pcbi.1002865.g001

Evolution of Robustness in Gene Networks
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of x). To build a matrix w of interactions between each TF j and a

regulated gene i, we scan the URR of each gene i for TFBSs of

gene j (including overlapping TFBSs) and assign to each wij entry

the sum of kx values. Promoter length in our model determines the

number of connections between genes, also known as network

connectivity, which is defined as the fraction of nonzero entries in

the matrix w. Each gene j is randomly assigned a role as either a

transcriptional activator (+1) or repressor (21) via the sign of vj,

which remains unchanged throughout the simulation. Similarly to

previous models [8,43,44], we define expression levels si(t) for

each gene i over time t as:

si(tz1)~f
Xn

j~1
wij
:vj
:sj(t)

� �
, ðIVÞ

where f (x)~1= 1ze{axð Þ is a sigmoid function with steepness a.

The initial state, ŝs(0), is constant for each simulation and is set by

randomly choosing each si(0) to be 1 (on) or 0 (off). The equation

is iterated until either the system reaches a steady state expression

ŝs, or a time limit (see Materials and Methods). Only those

individuals that reached a steady state are considered viable.

(3) Population dynamics: Here, we largely follow previous

models [8,43,44] with the exception of the mutation operation

(Fig. 2B). Initially, a random individual (the Founder) is generated

and required to be viable, where its steady state output is defined

as the optimal phenotype, sOPT . This Founder is then cloned to

form an initial population of size M = 500. Subsequent generations

are produced via cycles of reproduction, mutation and selection.

For reproduction, offspring for the next generation are created via

sexual reproduction. Pairs of individuals from the parental

population are chosen at random, then random URRs are picked

from either parent and inserted as the corresponding URR of the

offspring (parental pairs are sampled with replacement from the

population). Mutation of the URRs is implemented by randomly

replacing base pairs at a fixed rate of 1 mutation per 100 bp of

DNA per genome. Selection has two components: first, viability

such that the offspring are required to reach steady state (typically,

less than 5% of the offspring need to be replaced at each

generation), and second, a fitness measure based on how close the

phenotype ŝs is to that of the founder, sOPT (see Materials and

Methods). Offspring are generated and undergo selection until a

new population of size M is reached.

Robustness increases with increasing promoter length
and specificity gap

Genetic robustness is defined as the difference in phenotypes

between a perturbed and an unperturbed individual [8,45]. A

smaller phenotypic difference means that the individual has

greater tolerance to perturbations and is therefore more robust.

Here, we measured genetic robustness by testing the phenotypic

consequences of single point mutations inserted into the URRs of

TF genes in the network. Previous investigations using similar

network models have shown the evolution of genetic robustness

[8,43,44]. Phenotypic differences or effects, monitored by the

Euclidean distance between perturbed and unperturbed pheno-

types, emerge as a combination of two components, due to stable

individuals (those that develop a stable phenotype after being

perturbed) and to unstable individuals (those resulting in an

unstable phenotype). In all simulations, stable individuals com-

pletely dominate the phenotypic effect (above 97% of the

perturbed individuals develop a stable phenotype). In this work

we focus on robustness coming from the fraction of stable

individuals because the contribution of unstable individuals is

negligible and the measured phenotypic distances of unstable

Figure 2. Schematic representation of the gene-regulatory
network model. (A) Model of development. The expression of each
gene is regulated by combinatorial interaction between an explicitly
modeled cis-regulatory sequence (black lines) and the gene products
(sequence specific transcription factors). Each gene product is
represented by a different color. Shapes within the cis-regulatory
regions represent sequence determinants of regulatory elements and
their colors define the identity of the interacting transcription factor.
Within the box, the explicit regulatory sequence representation is
illustrated by showing an example of a consensus binding site for a
given TF (maximal binding specificity, kmax) and a mutated site (with a
lower k). The extent of gene regulation is a function of the presence
and associated binding specificities of each regulatory element (kix,
where i is the input gene and x is a regulatory site on gene j),
transcription factor abundances (si) and the function of the interacting
transcription factors (activator or repressor of transcription, represented
as positive and negative si values). (B) Population model. Simulations
start with a randomly chosen developmentally stable founder. Variation
is introduced in two forms: exchange of promoter regions between two
randomly chosen parents (without recombination within promoter
regions) and single point mutations at the DNA level. Selective pressure
is applied to the offspring on two levels: they must develop a stable
expression pattern through time (phenotype) and that phenotype must
be similar to that of the founder.
doi:10.1371/journal.pcbi.1002865.g002

Evolution of Robustness in Gene Networks
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individuals adopt large and random values that are uninformative

for the purposes of this work (Fig. S2).

Using our model, we performed experiments consisting of 100

independent simulations under strong selection (see Materials and

Methods), each lasting 2000 generations with robustness evaluated

every 10 generations. We systematically varied the two different

free parameters of the model: the length of URRs, L, and the

specificity gap, c (Fig. 1D). In Fig. 3A we show the robustness

change, defined as the inverse of the difference between the final

and initial phenotypic distances (generations 2000 and 0,

respectively), as a function of L and c. Robustness change is

computed for each individual and averaged over the entire

population. By generation 2000, robustness levels out, reaching a

maximum value in every case (Fig. S3, upper panel). To confirm

that robustness saturated, we calculated p-values for the entire

length of the simulations in reference to the level of robustness at

generation 2000, using t-test (Fig. S3, lower panel). Consistent with

previous results using fixed-architecture models [8,43,44], we

found that the robustness change increases as a function of URR

length or network connectivity (observed in any subset of c values

in Fig. 3A).

Variations in c, the specificity gap between binders and

background sequences, also show an effect in the change in

robustness. Fig. 3A shows that our model networks achieve greater

robustness at larger values of c. We could interpret the specificity

gap, c, as a conformational change upon binding in any of the

parts in the TF-DNA complex (not explicitly modeled), potentially

producing an abrupt change in binding specificity. In the literature

there are many well-known examples of this phenomenon, such as

the dramatic bends produced at specific DNA sites by the TATA

binding protein [46] and LacI repressor [47]. Other cases include

folding coupled to binding in different families of TFs, like helix-

turn-helix motif containing cytidine repressor [48]) and bZIP (Jun

and Fos) [49]. Also, large changes in side chain conformers at the

binding interface have been reported, for instance in the case of

PhoB [50]. In summary, conformational changes upon binding of

TFs to DNA are recognized to be the rule rather than the

exception [51]. This suggests that nature has evolved a rather

discrete discrimination (specificity gaps) between specific and non-

specific binding as an alternative to smooth specificity transitions.

Another important parameter in our model is network

connectivity. Mutations in the DNA sequence modulate the

quantity as well as the specificity, k, of TFBSs, thus producing

natural rates of deletion and creation of TFBSs. The initial

network connectivity is controlled by the length of the URRs (L)

(Fig. S4). The changes in connectivity in our simulations are shown

in Fig. 3B, where the values of the final connectivity marked at the

end of each bar. We observe that connectivity drops in every

scenario (more dramatically at lower c). This observation in

general is consistent with other studies that used numerical models,

where the fixed-architecture constraint was relaxed using rates of

deletion or creation of connections. It was suggested that lowering

the connectivity presents less opportunities for disruptive muta-

tions, which in turn can generate a force towards sparser

architectures [13]. However, in our studies under conditions of

high values of c, the network connectivity remains unchanged,

showing that the final network connectivity depends only on the

specificity gap, c, and not on the URR length. Our results at lower

c, show that the system reduces connectivity by eliminating TFBSs

with very low k values, probably because these have negligible

effect on protein expression and therefore do not impact the

phenotype of the individuals. The observations about the role of c
highlight the importance of including molecular details in the

model.

Local-sequence level mechanisms drive robustness in
systems with shorter promoter lengths

To assess the underlying mechanisms that contribute to the

evolving robustness, we proceed by categorizing each mutation in

a URR sequence. Since we know the positions of each TFBS in a

given URR, we can identify whether a mutation affects a TFBS or

not. If the mutation affects a TFBS, we can further distinguish

whether the TFBS is destroyed as a result of it and if so, whether it

represents a unique (non-redundant) input for a gene (see decision

tree in Fig. 4A). Similar distinctions can be made for cases where

the mutations avoid TFBSs. Although a single mutation can

trigger multiple events (e.g. a deletion and simultaneous creation of

a TFBS from a different TF) we observed that the relative

frequencies of the components within a multiple event mirror

those of the single events (Fig. S5). We will therefore focus on the

contributions of the single-event categories.

Each of the mutation types (Fig. 4A) can also be categorized on

broader conceptual levels (Fig. 4B) between two extremes: local-

Figure 3. Evolution of robustness depends on URR length and
specificity gap. (A) Change in robustness, measured as the difference
of the mean phenotypic distances between unperturbed and perturbed
individuals at generations 2000 and 0. The mutation rate used for this
measure was 1 mutation per 100 bp per genome. (B) Change in
connectivity (comparing generation 2000 to generation 0), measured
by the fraction of unique inputs in the network of a given individual.
The numbers at the end of each bar represent the connectivity at the
end of the simulations. Error bars are the standard error of the mean
over 100 independent simulations.
doi:10.1371/journal.pcbi.1002865.g003

Evolution of Robustness in Gene Networks
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sequence and network-architecture level changes. At the extreme

of network-architecture level, mutations qualitatively change the

network architecture either by adding an interaction between two

previously unconnected genes (‘‘unique created’’), or by deleting a

non-redundant link between two genes (‘‘unique deleted’’). At the

extreme of local-sequence level, the network architecture is

unaffected (‘‘silent mutations’’). Mutation types that change

interactions quantitatively fall between these two extremes.

By applying single point mutations to an individual (see

Materials and Methods) we can record the frequency of

occurrence of each type of mutation as well as their average

effect on the phenotype. We observe that that frequency of all

mutation types is gradually decreasing with increasing specificity

gap (c) and URR lengths (L) (Fig. 5A). Among all the mutation

types, under all conditions, the silent mutations dominate (Fig. 5A).

This is especially true at low specificity gap (c) and URR lengths

(L). Since silent mutations do not affect the phenotype, we

hypothesized that they could be indirectly involved in the gain of

robustness through an unknown mechanism. The frequency of

silent mutations could increase for two reasons. First, the odds of a

silent mutation may increase with increasing TFBS-free promoter

regions, and second, TFBS-free regions could become more

resilient to the creation of new TFBSs. These two possibilities are

intertwined as a result of the dramatic drop in connectivity

observed at lower values of c (Fig. 3B). However, the latter one can

be estimated by dividing the frequency of silent mutations with the

size of TFBS-free region, at each time point during the simulation.

Fig. 6A shows that TFBS-free promoter regions indeed evolve

sequences that are more resilient to the creation of new TFBSs

upon mutations, a mechanism that we term ‘‘TFBS avoidance’’. A

further verification of this effect is the observed decreased

probability of generating a TFBS in the TFBS-free regions upon

point mutations (Fig. S6). This decrease is larger for sparser

networks, correlating well with the normalized frequencies of silent

mutations shown in Fig. 6A. Next, we estimated the relative

contribution of TFBS avoidance to the increase in robustness (see

Materials and Methods) (Fig. 5B). Clearly, the local-sequence

contribution is more important at low values of c as well as at low

URR lengths (L).

Another possible mechanism underlying the increase in

robustness is related to changes in the ‘‘preserved’’ binding events

(Fig. 4A). Robustness should increase proportionally to the degree

to which a TFBS is preserved in the face of point mutations, a

property we call ‘‘TFBS conservation’’. We found that, generally

speaking, the more similar a TFBS is to the consensus one (i.e.

more conserved), the less likely a single mutation will make it a

non-binder. We cannot capture this phenomenon directly from

frequency values due to the confounding effects of decreasing

connectivity. Therefore, we quantify TFBS conservation as the

fraction of single point mutants (there are 863 = 24 such mutant

sequences for any given 8-mer) that remain as binding sites for the

same TF (Fig. 6B). A binding site with greater TFBS conservation

is more resilient to point mutations and should therefore

contribute to greater robustness. Because in our structural model

the atomic contacts at the interface between the TF and the DNA

molecules are explicitly modeled, our model should capture the

complexity of the set of binding sites [22] including any TFBS

conservation features. The average TFBS conservation (Fig. 6B)

follows the same behavior as the TFBS avoidance (Figs. 6A and

S6), but its contribution to robustness is limited, since for example

only 12% of the robustness remains unexplained in the case of

c = 0.05 and L = 50 bp (Fig. 5B, brown portion of the bar) where

TFBS conservation is at a maximum (Fig. 6B). This number, 12%,

thus represents an upper bound for the contribution of the TFBS

conservation mechanism to robustness. The similar behavior

observed for TFBS conservation and TFBS avoidance suggests

that the former mechanism could be conceptually classified more

as a local-sequence level mechanism.

Network-architecture level mechanisms buffer the
detrimental effect of mutations at longer promoter
lengths

The remaining mechanisms to be analyzed are related to the

effect of redundant sites and unique sites (Fig. 3A). Redundant sites

can reinforce network connections, conferring robustness to the

system, while the creation and deletion of unique sites rewires the

genetic network, giving an opportunity to explore different

qualitative connections and select those that more effectively

buffer the effect of mutations.

To better understand the role of redundancy we measured the

net amount of redundant TFBSs at the end of the simulations.

There is a trivial increase in redundancy associated with increased

network connectivity (Fig. S7A). Therefore, we corrected this effect

by subtracting the amount of redundant sites that emerged in

randomly generated networks with similar connectivity (Fig. S7B).

Figure 4. Classification of events produced by single point
mutations on a cis-regulatory segment. (A) Decision tree defining
all possible events on cis-regulatory regions after the introduction of a
point mutation. (B) These events can be thought of as ‘‘tools’’ available
to the system, since they summarize all the changes the system can
potentially make. For clarity, we also classified them in a continuum,
according to their impact on the network architecture. Silent mutations
are located at the local-sequence level extreme, since they produce
changes that only affect the sequence without modifying either
network architecture or gene expression levels. On the other hand,
deletion or creation of unique TFBSs is found at the other extreme
(network-architecture level) because these events directly impact the
network’s architecture. A preserved TFBS has the ability to change the
relative specificity of a binding site.
doi:10.1371/journal.pcbi.1002865.g004
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We find that the net gain in redundancy is small or nonexistent,

meaning that redundancy is constantly maintained during the

simulations. The constant redundancy is reflected in the ‘‘uncor-

rected redundancy’’ (Fig. S7C). We observe that for longer URRs

their values are quite large. At first, this seems to suggest that

robustness should be large at long URRs, but if this were the case,

then it should be large even at the start of the simulations, which it

is not what we observe. Instead, networks with high redundancy

display the smallest values of initial robustness (Fig. S3). This

suggests that if redundancy is being used by highly interconnected

systems to increase robustness, it may be done by relocating

redundant inputs and reinforcing genetic interactions that are

important in determining the phenotype of the individuals.

Now, consider the role of creating and deleting unique binding

sites. By definition, these events rewire the network, introducing

changes at the network-architecture level (Fig. 4A). We can

calculate the contribution of network rewiring (W) by measuring

the normalized amount of network changes with respect to the

Founder in each simulation (see Materials and Methods). W is a

number between 0 and 1, where 1 means that all the connections

changed, giving the maximum network rewiring. Fig. 7 shows the

correlation between the ‘‘other contributions’’ to robustness

(brown portions of the bars in Fig. 5B) and W. An overall

exponential correlation can be observed, which explains the

increase in robustness. According to Fig. 7, W depends mainly on

the length of the promoter region and to a much lesser degree on

the specificity gap (c). c affects TF expression levels, which are

controlled by a sigmoid curve, therefore large values tend to

saturate TF expression levels, favoring turnover of binding sites by

Figure 5. Decomposition of robustness. Robustness due to stable
individuals is the sum of the products between the frequency and the
average phenotypic distance of the mutational events described in
Fig. 4A. Therefore they can be used to decompose robustness. (A)
Relative composition of the frequencies of each mutation type. They
were measured as the differences between final and initial generations
in the simulations for each of the classified mutational events (see
Materials and Methods). Silent mutations dominate in almost all cases,
especially at low specificity gap (c) and URR lengths (L). Silent mutations
are found at the extreme of local-sequence level changes (Fig. 4B). (B)
Fraction of local-sequence and network-architecture level changes.
Local changes were calculated as the fraction of the total robustness
change assuming constant frequency of silent mutations (see Materials
and Methods). The length of the URRs (in base pairs) is indicated on top
of each bar in both graphs.
doi:10.1371/journal.pcbi.1002865.g005

Figure 6. Local-sequence level mechanisms. (A) Resistance to
creation of TFBSs within TFBS-free regions, measured as the frequency
of silent mutation events (Fig. 4) normalized to the fraction of TFBS-free
region in the genome. (B) TFBS conservation or degree of resilience to
deletion of TFBSs, measured as the average probability that a TFBS will
remain a TFBS following a point mutation. Error bars are computed as
the standard error of the mean over 100 independent simulations.
doi:10.1371/journal.pcbi.1002865.g006
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making changes neutral (same TF expression value irrespective of

the changing k).

Network rewiring explains the larger robustness changes and

shows that it is an effective mechanism for the creation of

robustness. In summary, as the networks evolve, TFBSs are

rearranged, thus creating and deleting network connections and

occasionally forming, with the opportunity to fix, specific network

motifs (including reinforced connections due to the existence of

TFBS redundancy) that have an improved capacity to absorb the

detrimental effects of the introduced mutations.

Discussion

The available structural information about TF-DNA complexes

allowed us to construct an explicit DNA sequence based model of

gene regulatory networks for the study of the genetic mechanisms

that make a biological system robust to mutations. The level of

connectivity and architecture of gene regulatory networks in

biological systems is still being explored, therefore in this study we

considered and discussed networks that span a range of

interconnectedness between genes. While our model has limita-

tions, most notably the simplified model of transcriptional

regulation where no restrictions are applied to positioning or

interaction between TFBSs, it has allowed us to probe the

mechanisms underlying robustness in gene networks at the DNA

level. By extending this approach in the future, more detailed

questions will become amenable to investigation, for example,

understanding the evolutionary forces that shape promoter

architectural features such as TFBS clustering and cooperativity.

However, addressing questions such as these will require more

detailed modeling of the transcriptional process, perhaps by

incorporating thermodynamics-based models that include dis-

tance-dependent interactions among TFBSs and position depen-

dent negative regulation or repression [28]. The model could also

incorporate more complicated population-level mechanisms, such

as recombination within promoter regions, as it has been shown to

evolve robustness even more efficiently [9].

Our results showed that sparse networks, which could be

broadly related to gene regulatory mechanisms in simpler

organisms, show a contribution from both local-sequence level

and network-architecture level mechanisms to robustness. These

sparse networks have difficulties in rewiring connections, since

the few available need to be conserved to maintain a viable

phenotype. Instead, these networks rely on local-sequence

mechanisms, manipulating the genetic sequence to decrease the

probability of generating spurious binding sites de novo (TFBS

avoidance mechanism) and decrease the probability of losing

existing binding sites (TFBS conservation mechanism). When

assuming a small specificity gap between non-specific and specific

binding (c), TFBS avoidance becomes a dominant driving force in

evolving robustness. On the other hand, when greater robustness

in sparse networks is achieved by means of a larger specificity

gap, it happens by balancing out TFBS avoidance, TFBS

conservation and network rewiring. Meanwhile, in more inter-

connected networks, which one could relate to higher level

organisms, we observe a complete shift towards the use of

network-architecture level mechanisms. Specifically, these net-

works rewire, exploring different network motifs and fixing those

that dampen the harmful effects of mutations. We would argue

that this rewiring constitutes an increase in complexity of the

network. Evolution of network complexity in more interconnect-

ed networks thus appears as the dominant source of robustness,

especially in networks with a large specificity gap separating

binding and non-binding sites.

There is evidence in the literature of the existence of all three

observed mechanisms. i) TFBS avoidance: Hahn and coworkers

examined polymerase binding regions in Eubacteria and Archaea

genomes and showed that polymerase binding sites were under-

represented in binding-free regions, even more so in Eubacteria

[52]. ii) TFBS conservation: Wunderlich and Mirny [53]

compared the information content of TFBSs in prokaryotes and

eukaryotes, finding that the simpler prokaryotic organisms use

TFBSs with higher information content than the more complex

eukaryotic organisms. Higher information content is equivalent to

higher TFBS conservation values in our simulations, since both

measures are directly proportional to the interaction strengths of

TFBSs (see Fig. S8 for the relationship with our calculated binding

specificities). iii) Network complexity: the use of this mechanism

requires extensive turnover of TFBSs and there is evidence in the

literature of this phenomenon. For example, Bradley et al.

observed that the same genes in closely related species of

Drosophila were differently regulated [54] and Ben-Tabou de-

Leon and Davidson also showed differences at the promoter level

in gene regulatory networks of two related species, the sea star and

sea urchin [55]. The existence of network motifs that are robust to

interferences have also been previously described [56,57], but the

conditions of their evolution still remains under scrutiny [58].

Depending on the explored parameters in our simulations, we

observed a varied interplay of the different mechanisms. While it is

uncertain which of them better reflects real biological organisms, it

is encouraging that our model demonstrated all the three naturally

observed mechanisms. Leclerc [13] previously estimated the

number of TF inputs per gene in gene regulatory networks for

different organisms and found them to be sparsely connected, with

values ranging from 1.37 (Escherichia coli) to 2.75 (Arabidopsis

thaliana). However, this analysis did not contain measurements for

higher organisms such as mouse or human, for which the number

Figure 7. Network-architecture level mechanisms. Correlation
between the ‘‘other contributions’’ portion of the change in robustness
(Fig. 5B) and the average network rewiring as a function of URR (L) and
specificity gap (c). Rewiring, W, was computed between individuals at
generation 2000 and their respective founders (see Materials and
Methods). These values were corrected for the effects of changing
connectivity by calculating W between two randomly chosen stable
individuals, both with the same average connectivity values observed
for the individuals at the end of the simulations. The correlation shows
that W explains for the most part the ‘‘other contributions’’ component
of robustness. The amount of rewiring depends primarily on L and to a
lesser extent on c. Error bars are the standard error of the mean over
100 independent simulations.
doi:10.1371/journal.pcbi.1002865.g007
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of inputs per gene could be higher given the apparent trend of

increasing number of TF inputs per gene with organismal

‘‘complexity’’. According to these estimates, promoters with more

than 100 bp in our linear model would result in unrealistic levels

of interconnections.

The evolution of increased complexity is a major unaddressed

question in Biology [59]. Our results suggest a potential path for

increased complexity as a consequence of the shift to network-

architecture level changes when more interconnected networks are

considered. Two outcomes suggest that network-architecture level

changes are more effective at evolving robustness than local-

sequence changes. First, local-sequence level changes were not

used under high connectivity in spite of also having equal, if not

greater, access to these types of changes. This suggests that

robustness at the network level is more easily evolved. Second, the

increase in robustness is stronger under conditions of high

connectivity (Fig. 3A). Thus, high connectivity settings create

favorable conditions to employ more effective network-architec-

ture level changes towards evolving robustness.

Materials and Methods

Modeling of TF-DNA complexes
10 TF-DNA complexes with resolution below 2.3 Å were

selected from the Protein Data Bank (www.pdb.org) such that the

TF was in contact with 8 or 9 bases on the DNA. DNA structures

of length 9 were shortened to length 8 by discarding the terminal

base with the least number of atomic contacts. We modeled TF-

DNA complexes with all possible 48 (65536) different DNA

segments of length 8 (8-mers) as follows. The original nucleic acid

bases were stripped in the coordinates file and replaced by those

corresponding to the desired sequence (all but the bases’ atom

triad of one nitrogen and two carbons attached to the sugar, which

retain information about the planarity of the base) using the

program psfgen from NAMD 2.6. TF structures were not

changed. To optimize the interactions between interfacing atoms,

the resulting TF-DNA complexes were minimized for 3000 steps

using the conjugate gradient algorithm in NAMD 2.6 with the

CHARMM force field. The simulation took place in vacuum,

retaining any available crystal water molecules.

TF-DNA binding specificity, k
We used an all-atom, distance-dependent statistical pair

potential [34] to obtain normalized statistical preferences (e9) of

the 10 chosen transcription factors bound to each of the 48 (65536)

possible 8-mers. The function considers protein and nucleic acid

heavy atoms in a residue-specific manner and maps the continuous

value of distances dij, between atoms i and j, to a set of distance

bins, only counting atoms falling in the dij range. We used the

following function parameters: i) a maximum distance of 10 Å,

considered between any two interface atoms, ii) a 3 Å distance for

the first bin and iii) 1 Å distance for the remaining 7 bins, giving a

total of 8 distance bins. In order to score the set of TF-DNA

complexes for a given transcription factor we trained the statistical

potential on the original TF-DNA crystal complex, which we

found gave a better performance than the standard approach of

using several TF-DNA crystal complexes.

Gene expression dynamics
Equation IV is applied iteratively until either reaching a steady

state ŝs, or a time limit. The steady state ŝs is defined when a

measure Y(s(t)) analogous to a variance over the last t time-steps

is less than 1024:

Y(s(t))~
1

t

Xt

h~t{t
D s(h),�ss(t)ð Þ,

where D sU ,sVð Þ~
Pn

i~1 sU
i {sV

i

� �2
.

n is a distance metric

between two expression vectors of length n and �ss(t) represents

the mean gene expression across the interval t{t,:::,tð Þ. If the

system does not reach equilibrium before 100 iterations, it is

considered unstable. The phenotype of each individual is defined

by the final stable equilibrium expression pattern, denoted ŝs. For

all simulations presented, sigmoid slope a = 20, the number of

genes n = 10 and t = 10.

Selection
At each generation, offspring are selected based upon their

fitness. For each individual we compute their phenotypic similarity

to the founder, which is measured as the mean distance to the

optimal phenotype, sOPT . Then, we define fitness as:

F (̂ss)~e{
D ŝs,sOPTð Þ

s

where s modulates the strength of selection. Our results use strong

stabilizing selection, i.e. s = 0.001. Offspring that are not viable

(i.e., no stable equilibrium found) are assigned fitness zero.

Robustness to mutations
Each individual in the population is subjected to 100

independent random single point mutations. Following this, each

mutated individual undergoes development (we discard unstable

solutions) and the phenotypic distance, D, between the mutated

individual and the original unmutated individual is measured (see

‘‘Gene expression dynamics’’ above for definition of D). Then, the

robustness of an individual is defined as the average phenotypic

distance over the 100 perturbations.

Local-sequence level contribution to robustness to
mutations

By applying single point mutations to an individual we can

record the frequency of occurrence of each type of mutation as

well as the average effect they have on the phenotype. In this

manner, the observed robustness becomes the product of the

average phenotypic effect of a mutation i (ei) and the frequency at

which it occurs (fi). The frequencies (only from stable individuals)

at any given generation add up to 1, therefore the sum of the

changes in frequencies between the beginning and end of the

simulation for each mutation type is zero:

0~
X

i

f 2000
i

f 2000
S

{
f 0
i

f 0
S

� �

fi
2000 and fi

0 are the frequencies at generations 2000 and 0 for a

given mutation type i, and fS
2000 and fS

0 are the total frequencies of

the stable individuals at generations 2000 and 0, used to normalize

for changes in the amount of stable individuals. This equation is

used to generate Fig. 5A.

We estimate the contribution of silent mutations to robustness

by assuming that the negative frequency changes (mutations that

lower the frequency over time in response to the increasing

frequency of silent mutations) remain constant for the duration of

the simulation and compare them to the observed robustness:
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CS~1{
X
iz

riz
X
i{

r0i

 !,X
i

ri

CS is the fractional contribution of silent mutations to the change

in robustness (discussed and shown in Fig. 5B of the main text).

Mutations with positive indices (i+) indicate the sum over mutation

events whose changes in frequencies are positive and mutations

with negative indices (i2) similarly indicate the sum over those with

negative frequency changes. ri is the observed robustness change

and r9i is the robustness change assuming constant frequency,

detailed as follows:

ri~e2000
i

f 2000
i

f 2000
S

{e0
i

f 0
i

f 0
S

r0i~ e2000
i {e0

i

� � f 0
i

f 0
S

where ei
2000 and ei

0 are the average phenotypic distances at

generations 2000 and 0 for each type of mutations. Note that in

the robustness change at constant frequency (r9i) the ratio

f 2000
i

�
f 2000
S equals that of the initial generation (f 0

i

�
f 0
S ).

Estimation of network rewiring
We estimate network rewiring by measuring the number of

changes (gene connections gained and lost) of individuals in the

evolving population with respect to the founder. We use a

normalized form of network rewiring, W, expressed as follows:

W~1{
wF\wI

wF|wI

W is a number between 0 and 1, where 1 represents the maximum

network change or rewiring; wF and wI are the sets of nonzero

entries in the matrices of respectively the founder F and a given

individual I in the population. The equation calculates the

complement of the normalized number of common interactions

(intersection between matrix elements), which quantifies the

number of changes in the w matrices. As the promoter length

increases, it becomes easier to observe common interactions that

happen by chance. Consequently, we measured W for randomly

generated networks and found a linear correlation with network

connectivity (Fig. S9). We correct W for spurious common

connections using the regression equation as follows:

Wcorrected~
W

Wr(c)

where Wr(c)~{0:08:cz1:04 and is the network rewiring from

random networks. c represents the network connectivity.

Supporting Information

Figure S1 Statistical pair potential scores, e, scale
linearly with the number of TF-DNA atomic contacts.
We collected 162 TF-DNA complexes from the Protein Data Bank

and measured the number of TF-DNA atomic contacts (using a

cutoff value of 5 Angstroms) and plotted them against their TF-

DNA interaction strengths, ex (x is the DNA sequence in the

crystal). Only non-hydrogen atoms were considered. We observe

that these two measures are correlated (r2 = 0.47 -fit is shown as a

green line). Therefore, in order to compare scores from two

different TF-DNA complexes, it is necessary to apply a

transformation and obtain normalized scores in the range from

0 to 1.

(TIF)

Figure S2 Phenotypic distance of unstable individuals.
Unstable individuals are spontaneously generated when mutations

are introduced to measure robustness via phenotypic distance

between perturbed and unperturbed individuals. Here, we show

average phenotypic distances of unstable individuals throughout

the simulations for different parameters, promoter length (L) and

specificity gap (c). The contribution to robustness due to unstable

individuals was discarded on the basis of their quasi-random values

across each simulation and their very low frequency of occurrence

(,2%). Error bars are the standard error of the mean over 100

independent simulations.

(TIF)

Figure S3 Evolution of robustness as a function of
specificity gap and promoter length. Robustness was

measured as the phenotypic distance between perturbed and

unperturbed individuals as a function of time, in generations using

a logarithmic scale. Each point represents the average phenotypic

distance over 100 independent simulations (standard error of the

mean is displayed). The upper panel illustrates that robustness

reaches a maximum in each simulation. The statistical significance

of the differences of robustness values over the length of simulation

with respect to generation 2000 were calculated using t-test. The

p-values are displayed in the lower panel. The differences become

insignificant approximately after generation 500 in all cases.

(TIF)

Figure S4 Connectivity and number of TFBSs as a
function of the cis-regulatory region length (L). The

number of TFBSs displays a linear relationship with L (blue curve).

On the other hand, network connectivity, measured as the sum of

the number of unique inputs on each gene in a given network

expressed as a fraction of the total, shows a saturating curve (grey

curve). Network connectivity saturates at high promoter lengths

because there is a limited amount of transcription factors in the

system. The difference between the two curves represents the

initial random amount of redundant inputs at given values of L.

Error bars are standard deviations of 500 randomly generated

networks for which we measured both connectivity and number of

TFBSs.

(TIF)

Figure S5 Internal composition of the ‘‘combined’’
category of mutations. Frequencies of mutational categories

as described in Fig. 4A (left plots). On the right plots we display the

relative frequencies of the individual components within the

‘‘combined’’ category. The internal composition of the combined

events (right plots) reflects the frequencies of the individual

categories (left plots). Error bars are the standard error of the mean

over 100 independent simulations.

(TIF)

Figure S6 Propensity of generating TFBSs de novo in
TFBS-free promoter regions. For each 8-mer in the TFBS-

free regions of the promoters we computed the fraction of single

point mutations that turns an 8-mer into a TFBS for any TF,

which represents the probability of generating a TFBS de novo upon

a point mutation. We show here the average propensity of all 8-

mers in TFBS-free regions as a function of promoter length (L) and

specificity gap (c). We observe an increased resistance to the
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creation of TFBSs for small L’s and c’s. Error bars are the standard

error of the mean over 100 independent simulations.

(TIF)

Figure S7 The use of redundancy of TFBSs. (A) Relation-

ship between redundant sites and network connectivity (also

proportional to promoter length -Fig. S4). There is a strong

correlation between the two observables, showing TFBS redun-

dancy (as derived from randomly generated networks) as a

function of the conditions of the simulation. (B) Net redundancy,

computed from TFBS redundancy of individuals at generation

2000, corrected by subtracting TFBS redundancy calculated from

random networks that used the same average network connectivity

as the measured individuals. (C) Uncorrected TFBS redundancy

for individuals at generation 2000. Error bars are the standard

error of the mean of 100 independent simulations.

(TIF)

Figure S8 Relationship between TFBS conservation and
binding specificity. The plots compare the degree of TFBS

conservation (see main text for definition) with the calculated

binding specificities for each TF. The table at the bottom shows

correlation coefficients for each of the scatter plots. TFBS

conservation and TFBS specificities are highly correlated.

(TIF)

Figure S9 Spurious network rewiring as a function of
network connectivity. We measured the amount of spurious

network rewiring for different URR lengths and found both

measures linearly correlated within the tested range. Spurious

rewiring decreases due to an increase in the probability of finding

common connections between two different networks as a function

of network connectivity. The green solid line corresponds to the

linear fit (equation and R2 correlation are also displayed). Error

bars are the standard deviation on each measure computed from

500 randomly generated network pairs.

(TIF)

Table S1 List of transcription factors used in the
simulations. List of 10 TF-DNA complexes available in the

Protein Data Bank [37] that were used for network simulations.

The provided number of TFBS describe those 8-mers displaying

relative binding scores (e9) greater than e9opt = 0.209, which

produced the expected number of TFBSs closest to the average

in the range of 60–900 for all considered TFs.

(DOC)
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