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Abstract

Bacteria are able to sense and respond to a variety of external stimuli, with responses that vary from stimuli to stimuli and
from species to species. The best-understood is chemotaxis in the model organism Escherichia coli, where the dynamics
and the structure of the underlying pathway are well characterised. It is not clear, however, how well this detailed
knowledge applies to mechanisms mediating responses to other stimuli or to pathways in other species. Furthermore,
there is increasing experimental evidence that bacteria integrate responses from different stimuli to generate a coherent
taxis response. We currently lack a full understanding of the different pathway structures and dynamics and how this
integration is achieved. In order to explore different pathway structures and dynamics that can underlie taxis responses in
bacteria, we perform a computational simulation of the evolution of taxis. This approach starts with a population of virtual
bacteria that move in a virtual environment based on the dynamics of the simple biochemical pathways they harbour. As
mutations lead to changes in pathway structure and dynamics, bacteria better able to localise with favourable conditions
gain a selective advantage. We find that a certain dynamics evolves consistently under different model assumptions and
environments. These dynamics, which we call non-adaptive dynamics, directly couple tumbling probability of the cell to
increasing stimuli. Dynamics that are adaptive under a wide range of conditions, as seen in the chemotaxis pathway of E.
coli, do not evolve in these evolutionary simulations. However, we find that stimulus scarcity and fluctuations during
evolution results in complex pathway dynamics that result both in adaptive and non-adaptive dynamics depending on
basal stimuli levels. Further analyses of evolved pathway structures show that effective taxis dynamics can be mediated
with as few as two components. The non-adaptive dynamics mediating taxis responses provide an explanation for
experimental observations made in mutant strains of E. coli and in wild-type Rhodobacter sphaeroides that could not be
explained with standard models. We speculate that such dynamics exist in other bacteria as well and play a role linking
the metabolic state of the cell and the taxis response. The simplicity of mechanisms mediating such dynamics makes them
a candidate precursor of more complex taxis responses involving adaptation. This study suggests a strong link between
stimulus conditions during evolution and evolved pathway dynamics. When evolution was simulated under conditions of
scarce and fluctuating stimulus conditions, the evolved pathway contained features of both adaptive and non-adaptive
dynamics, suggesting that these two types of dynamics can have different advantages under distinct environmental
circumstances.
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Introduction

Bacterial responses to external stimuli and the pathways with

which they are mediated are model systems for studying the

molecular basis of behaviour. Much of the research in this field has

focused on chemotaxis, the ability of bacteria to swim up a

gradient of a chemical attractant, as performed in the model

organism Escherichia coli. More than 30 years after the first studies

[1,2], we now have extensive knowledge of the underlying

biochemical pathway [3,4]. Briefly, E. coli swims in a forward

direction (undergoing some degree of rotational diffusion) when

the reversible motor proteins on its outer membrane rotate

counter-clockwise (CCW) and the attached flagella intertwine to

form an effective propeller. When the motors reverse and rotate

clockwise (CW), the flagella disassociate and cause the bacterium

to tumble, resulting in a new swimming direction. The switching

frequency of the motor is coupled to receptor activity by a set of

proteins constituting a signalling pathway. With increasing

attractant levels, the excitatory branch of the pathway causes

suppression of CW rotation and tumbling, while the adaptation

branch causes the cell to resume its original tumbling levels at

constant attractant concentrations independently of this concen-

tration level. The former branch involves the receptor-coupled

kinase CheA and the associated response regulator CheY, which

when phosphorylated binds the motor and increases the

probability of CW rotation. The adaptation is achieved via

control of receptor methylation, and hence receptor sensitivity,

through the proteins CheR and CheB. The combination of these

two branches results in the tumbling frequency approximately

following a negative time-derivative of the attractant concentration
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[5]. Adaptation is the hallmark of this response, allowing bacteria

to perform temporal comparisons of attractant with high sensitivity

over a wide dynamic range [5–9].

While this ‘E. coli paradigm’ of chemotaxis is well established,

our knowledge of taxis responses towards other stimuli and in

other species [10–12] indicates that the derivative response with

adaptation observed in E. coli is neither universal nor necessary for

effective taxis. For example, the response to oxygen in E. coli is

believed to be mediated by the receptor Aer that lacks methylation

sites, indicating lack of adaptation [13]. In Rhodobacter sphaeroides,

adaptation to persistent stimuli occurs much slower or not at all

[14]. In the same species, growth under aerobic conditions results

in an ‘inverted’ chemotaxis response where increasing attractant

concentration causes an increase in tumbling frequency [15]; this

inverted response is also observed in certain Halobacteria [16] and

in certain mutant strains of E. coli that have been ‘gutted’ of some

or most of the chemotaxis proteins [17,18]. Interestingly, these

natural and mutant strains all still show the ability to chemotax.

These diverse chemotaxic dynamics could result from multiple

pathways that allow bacteria to integrate information about the

internal and external state to produce coherent taxis behaviour

[13]. For instance, in R. sphaeroides, genetic studies indicate that the

large number of taxis proteins in this species are arranged into

several distinct pathways [19]. The chemotaxic response towards

certain molecules in this species requires transport into the cell

[20], demonstrating the link between metabolism and chemotaxis.

Despite much effort, we still lack a comprehensive understanding

of the different molecular mechanisms involved in bacterial taxis

responses, their underlying dynamics, and how these different

dynamics are integrated.

Here, we use a computational approach to address some of

these questions by simulating the evolution of a taxis response

using computer modelling of bacterial movement and pathway

dynamics. These simulations use a population of virtual bacteria

existing in a virtual world complete with a stimulus source that is

assumed to signal the presence of favourable conditions. Bacteria

start with a set of non-interacting proteins, as well as a receptor

and a reversible motor. Interactions between the proteins evolve

through random mutations, with bacteria selected for reproduc-

tion based on their ability to localise at sites of favourable

conditions. These evolutionary simulations consistently result in

bacteria with a strong ability to move towards the stimulus.

Interestingly, under conditions of abundant stimuli these bacteria

evolve so that the tumbling probability is directly coupled to

stimulus levels without any adaptation. We find that such non-

adaptive dynamics can be mediated by as few as two signalling

components, allowing for the possibility of metabolites acting as

effectors. Simulation conditions mimicking environments with

scarce or fluctuating stimulus sources result in evolution of

pathways with complicated dynamics that have features of both

non-adaptive and adaptive dynamics. Combined with experimen-

tal observations, these results demonstrate that adaptive dynamics

are not necessary for effective chemotaxis. This work also suggests

that non-adaptive dynamics underlie the chemotaxis observed in

gutted E. coli strains and may have a role in the complex taxis

behaviour of R. sphaeroides. We speculate that mechanisms leading

to such dynamics exist in current-day bacteria and provide a way

to fine-tune taxis responses in different conditions, or link it to the

energy state of the cell.

Results

In order to study the evolution of bacterial taxis, we use virtual

bacteria that move in a computer-based two-dimensional

environment containing a fixed stimulus source and periodic

boundary conditions. As such, this computer environment mimics

a natural environment with abundant stimuli. The movement of

these bacteria is coupled to the dynamics of a signalling pathway

consisting of several proteins that catalyse each other’s activation

and deactivation, corresponding to kinases and phosphatases in

real cells (see Methods). These proteins include a receptor whose

activity level is directly coupled to the local stimulus level and an

effector that, when activated, can bind to a reversible motor,

reversing its direction and causing the bacteria to tumble.

Evolutionary simulations start with a population of bacteria, each

of which contains a certain number of proteins that are initially

non-interacting. These bacteria are allowed to explore the

environment for a ‘generation-time’ consisting of a certain number

of time steps. At each time step, the bacteria either can continue to

swim forward or can tumble to orient to a new random direction.

Additionally, the concentrations of activated proteins in the

pathways of each bacterium are updated, and the probability of

tumbling during the next time step is computed based on the

concentration of activated effector. After this generation-time,

bacteria are selected for replication based on the integrated

amount of stimulus they have encountered. During replication,

there is a probability for mutations to occur, which alters the

structure and parameters of the biochemical pathway. To

summarise, these evolutionary simulations couple mutational

events occurring at molecular level (i.e. pathway level) with

selection at behavioural level (i.e. taxic response). Note that this is a

generic model where the stimulus represents anything capable of

activating a receptor (e.g., chemical attractant, light, pH) and there

are no a priori assumptions regarding pathway structure or

dynamics.

Figure 1 shows the population average of fitness (encountered

stimuli) during one evolutionary simulation for a signalling

pathway consisting of four proteins. As shown, the fitness value

rapidly improves over a few generations and reaches a plateau.

Clearly, the pathway structure and dynamics in virtual bacteria

Author Summary

Here, we study how signalling networks mediating
chemotaxis could have evolved. We simulated the
evolution of virtual bacteria, which can explore their
environment by alternating between swimming and
tumbling. The tumbling frequency is dictated by the
output of a signalling network that senses extracellular
nutrient levels, while the bacteria’s reproductive success is
determined by their ability to find nutrients. Under
conditions of abundant food, we find that bacteria quickly
evolve signalling networks that enable effective chemo-
taxis, where increasing nutrient levels increase tumbling
frequency. Our findings provide explanation for network
dynamics underlying similar behaviour as observed in
certain mutant strains of Escherichia coli and in other
bacterial species. Conversely, wild-type E. coli respond to
increasing nutrient levels by decreasing their tumbling
frequency and adapting to constant attractant levels. We
observe such adaptive network dynamics when we repeat
evolutionary simulations under conditions of scarce food.
These findings suggest that (i) adaptation is not necessary
for effective chemotaxis, (ii) an ancestral minimal chemo-
taxis system could have used a simple coupling between
the signalling network and the metabolic state, and (iii)
environmental conditions are one of the determining
factors for the evolution of adaptive responses.

Evolution of Taxis Responses in Bacteria
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are evolving in such a way to mediate taxis. This behaviour can be

seen from the average time spent by the population at different

parts of the environment (see insets of Figure 1). While un-evolved

bacterial populations are distributed irrespective of stimulus

source, final populations are able to quickly co-localise with it.

This behaviour is mediated by a specific biochemical pathway

dynamics; at steady state, in absence of any signal, the

concentration of activated effector is at a low level and the

bacterium mostly swims without tumbling (see Figure 2 for typical

pathway structure and dynamics, kinetic parameters are shown in

Dataset S1). When the bacterium encounters higher stimulus levels,

the effector is rapidly activated and stays activated as long as the

signal is present, resulting in increased bacterial tumbling. We find

that the qualitative nature of this type of dynamics is independent of

basal stimuli level (data not shown). This non-adaptive dynamics

allow the bacteria to spend more time in regions of high stimulus

and swim straight when the stimulus level decreases. In

evolutionary simulations repeated five times for pathways of 2 to

5 proteins, this mechanism always evolved as the dominant one.

The structures of pathways resulting from these simulations

were diverse (see Dataset S1) indicating that there are several

possible biochemical signalling cascades that can mediate non-

adaptive dynamics. In case of the sample pathway shown in

Figure 2, we find that the receptor acts as a global inhibitor

shutting down effector activity in absence of stimuli. Incoming

signals suppress receptor activity, allowing a build up of effector,

which is involved in a feedback loop with one of the intermediary

proteins, protein one (see cartoon representation in Figure 2). The

other protein acts as a kinase (i.e. activator) on both the receptor

and protein one, thereby ensuring rapid response termination

when the stimulus is removed. This complex pathway structure

and the resulting dynamics allow efficient chemotaxis behaviour as

described above. However, similar dynamics can be achieved with

much simpler circuits containing only two proteins (see Discus-

sion).

Using a simple analytical model, we can capture the movement

of bacteria as mediated by non-adaptive dynamics (see Methods).

This model shows that in simple environments the presented

dynamics should lead to bacteria accumulating approximately

proportionally with the local level of the stimulus. Note that as

long as the stimulus levels are above a certain threshold, this

mechanism is only sensitive to the ratio of the relative levels and

not their absolutely magnitudes. This suggests that an efficient

taxis response can be achieved over a wide dynamic range of

stimuli with pathway-dynamics that does not display adaptation to

stimulus and results in increases in tumbling probability with

increasing stimulus. Both these dynamical features are in striking

contrast to the chemotaxis behaviour of E. coli, where the pathway

ensures decreasing tumbling probability with increasing stimulus

followed by rapid adaptation [5] (see Figure 2).
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Figure 1. Evolution of the taxis response in silico. The average
fitness in an evolving population of virtual bacteria. The inset shows the
time-averaged distribution of positions of the population at generation
0, 200 (corresponding to a fitness of approximately 2.0), and 5,000 (final
generation) as a contour plot. Areas enclosed by darker lines indicate
more time spent there. Note that in these simulations the entire
population starts at grid location (30,30) while stimulus source is fixed
at (50,50).
doi:10.1371/journal.pcbi.1000084.g001
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Figure 2. Adaptive versus non-adaptive pathway dynamics.
Time course of phosphorylated CheY concentration (top), as simulated
by the model presented in [10] and the time course of active effector
concentration for the most frequent pathway in the evolutionary
simulation described in Figure 1 (bottom). The inset shows the cartoon
representation of this pathway. In both simulations, the system is
allowed to pre-equilibrate for 1,000 timesteps. A stimulus of one is then
added at time 1,000 and removed at time 2000. Kinetic parameters for
the shown pathway are given in Dataset S1.
doi:10.1371/journal.pcbi.1000084.g002
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There are a number of different possible explanations for why

the taxis pathways evolved in these simulations are characterised

by an ‘inverted’ response (i.e. response to increasing stimuli is

opposite of that seen in E. coli) and non-adaptive dynamics. Firstly,

the evolutionary processes as modelled here might make non-

adaptive pathways more evolutionarily accessible. Secondly, it

might be that the modelled environmental situations are

particularly well-suited for taxis mediated via such dynamics. In

particular, the assumptions of stimulus consistency and abundance

in the environment might reduce the need for adaptation. Thirdly,

there could be other factors such as intra-cellular communication,

multi-state receptors (i.e. receptors with methylation sites), and

various physical processes [21] that are not included in the model

and that could be important for the evolution of taxis responses

mediated by other dynamics.

To see if the non-adaptive dynamics were the result of the

difficulty of evolving adaptive dynamics, we performed additional

simulations. These started with an initial bacterial population

containing biochemical pathways with dynamics similar to that

found in E. coli [22]. In five separate simulations, the bacteria

always evolved more fit pathways with non-adaptive dynamics and

inverted response. In other words, under the conditions of these

simulations (i.e. under high stimulus abundance), there always

existed a pathway with non-adaptive dynamics that could mediate

a more efficient taxis response than the original adaptive pathway.

This indicates that the results we obtain are not due to lack of an

evolutionary route to the conventional dynamics observed in E.

coli. It does not indicate, however, that taxis responses mediated by

non-adaptive dynamics are superior as it was not possible to

reproduce all environmental conditions and the other possibly-

important features as mentioned above.

To explore the effect of environmental conditions on the

evolution of chemotaxis, we ran two sets of simulations under (i)

periodic-boundary conditions and fluctuating stimulus source and

(ii) non-periodic boundary conditions and fixed stimulus source.

The first set of conditions allow us to test the hypothesis that

adaptive dynamics provide a means for bacteria to preserve

robustness of the response to fluctuations in the external

environment or internal parameters [23]. The latter conditions

mimic an environment with scarce stimulus, where exploration is

expected to be more important than exploitation. In five

simulations run under each condition, we did not find pathways

with dynamics that are adaptive over a wide range of stimuli as

seen in E. coli. However, several simulations resulted in pathways

that had dynamical behaviour similar to that of E. coli under some

conditions. As shown in Figure 3, these pathways give a ‘‘normal’’

response (i.e. decreased tumbling probability with stimuli) and

have limited adaptation to continuous stimuli. Interestingly, most

pathways evolved under non-periodic boundary conditions show

dynamics that are dependent on basal stimuli levels. This affects

mostly the adaptation dynamics and we observe one pathway

achieving perfect adaptation under a narrow range of basal stimuli
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Figure 3. Diverse taxis mechanisms. Time course of active effector concentration for the most frequent and unique pathways obtained from
selected evolutionary simulations that are run under different environmental conditions (see main text). Each panel displays dynamics for a specific
pathway structure shown in the inset. The system is allowed to equilibrate for 1,000 timesteps at the background basal stimulus level. A stimulus of
one is added at time 1,000 and removed at time 2,000. Pathway response to such stimuli given on top of a selected basal level is shown in different
line types (basal level is 0, 1, and 2, respectively, for solid, dotted, and dashed). Pathways shown in the upper panels are from simulations with
periodic boundary conditions and fluctuating stimulus source, while those shown in the lower panel are from simulations with non-periodic
boundary conditions and fixed stimulus source. Kinetic parameters for these pathways are given in Dataset S1.
doi:10.1371/journal.pcbi.1000084.g003
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levels (see Figure 3). Most simulations run under sparse stimulus

conditions resulted in approximately same fitness levels as shown

in Figure 1. However, simulations run under these conditions (ii)

took much longer (usually more than 2000 generations) to reach

these fitness levels. Taken together, these results indicate that

realistic and complex environmental conditions lead to evolution

of complex pathway dynamics that contain features of both

adaptive and non-adaptive dynamics. Untangling the role of each

type of dynamics in the efficiency of chemotaxis requires further

detailed analyses.

Discussion

The molecular systems mediating the taxis responses observed

in bacteria are more complicated than the dominant picture of E.

coli chemotaxis suggests. Bacteria can sense and respond to a

variety of environmental clues, possibly integrating the signal from

different biochemical pathways. Recent experimental observations

from an increasing number of bacterial species and past studies

from mutant strains of E. coli hint at the diversity of molecular

mechanisms involved in generation of these responses. Here we

provide evidence for the effectiveness of one possible dynamical

scheme. The main features of this dynamics is an inverted

response, leading to increasing tumbling frequency with increasing

stimulus level, and an absence of adaptation to continuous stimuli.

We show that such non-adaptive dynamics readily evolve under

different environmental conditions and model assumptions and

allow bacteria to accumulate at favourable conditions efficiently.

These findings provide a possible explanation for the non-

adaptive dynamics and inverted responses observed in wild type R.

sphaeroides [14,15] and the inverted responses observed in

Halobacteria [16] and gutted strains of E. coli [18]. In each case,

efficient taxis responses were observed, although the exact nature

of the underlying molecular mechanisms could not be determined.

It is likely that these mechanisms form systems similar to the

pathways presented here. An analysis of results from simulations

with two proteins reveals the minimum signalling systems to

achieve taxis responses mediated by non-adaptive dynamics (see

Figure 4). They involve coupling of the signal to an effector via a

receptor, with self-regulation of both proteins (through allosteric

interactions or processes such as auto-phosphorylation). The

striking simplicity of these minimal systems lead to the speculation

that non-adaptive dynamics could even be achieved without any

signalling proteins; a small molecule, that is a by-product of

metabolism or is taken into the cell via a transporter, could directly

regulate tumbling probability of the cell. We hypothesise that

exactly such a scenario is responsible for chemotaxis observed in

gutted E. coli [18]. Attractant-related metabolism causes increases

in fumarate levels inside the cell, which binds the motor and

increases tumbling probability. It has been demonstrated exper-
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Figure 4. Minimal pathways with non-adaptive dynamics. Cartoon representation and time course of active effector concentration for the
most frequent and unique pathways with 2 proteins obtained from 5 different evolutionary simulations. The pathway on the left and right were
found in 1 and 4 simulations, respectively. Bottom panels show fitness curves for the corresponding simulations and the time-averaged distribution
of positions of the final population. Kinetic parameters for these pathways are given in Dataset S1.
doi:10.1371/journal.pcbi.1000084.g004
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imentally that fumarate can be involved in chemotaxis [24] and

can control motor switching [25], although the exact dynamics of

how it could lead to chemotaxis was unknown.

If non-adaptive dynamics are available and provide efficient

taxis responses, why do we observe adaptive dynamics in E. coli

and other bacterial species? Adaptive mechanisms might be more

efficient in exploring the environment and achieving a robust

response under fluctuating stimuli. The evolution of complex

dynamics in simulations run under conditions mimicking scarce

and fluctuating stimulus sources supports such arguments. The

dynamics of these pathways contained both adaptive and non-

adaptive features, further indicating the possible complexity of

chemotaxis behaviour. As indicated by experiments with gutted E.

coli and other species, non-adaptive pathways probably function in

conjunction with the canonical mechanism, and are involved in

the fine-tuning of taxis responses under certain environmental

conditions or in providing a link between energy related taxis

responses and chemotaxis. Alternatively, given the simplicity of the

required molecular machinery, the non-adaptive dynamics could

be the precursor of the more complicated adaptive mechanisms.

Both hypotheses could be tested with specific experimental setups

and a sequence analysis of the proteins involved in taxis responses

respectively.

Methods

To study the pathways underlying taxis responses we used a

previously described pathway model [22]. This model assumes

that a pathway consist of a set of Np proteins, all of which can exist

in a deactivated or activated state (activation can correspond to

phosphorylation, methylation, or any other type of chemical or

structural modification). Each protein is capable, in the activated

state, of causing the activation or deactivation of any of the other

proteins. The first protein in the pathway is arbitrarily chosen to

act as a receptor that can be activated by the external stimuli,

while protein Np is arbitrarily chosen to be an effector. When

activated, it can bind to the motor protein causing a reversal of the

motor and the bacterium to tumble. The biochemical dynamics

for [Pi*], the fraction of protein i that is activated, obeys

d P�i½ �
dt

~ kiiz
P
j=i

kij P�j

h i
zdi1k1A A½ �

 !
1{ P�i
� �� �

{ liiz
P
j=i

lij P�j

h i
zdi1l1A A½ �

 !
P�i
� � ð1Þ

where kij (lij) is the rate at which activated protein j activates

(deactivates) protein i, kii (lii) is protein i’s rate of self-activation

(deactivation), k1A (l1A) represents the rate at which the stimulus

activates (deactivates) the receptor protein 1, [A] is the local level of

stimulus, and d is a Kronecker delta. The total concentration of

each protein is assumed to be one. For simplicity we assume

that any given protein can either activate or deactivate

another, but not both. That is, kij lij = 0 for all i and j. We

formulate this by considering a value of cij, where positive

(negative) values of cij, correspond to positive values of kij (lij). This

can be expressed as

kij~ cij

�� ��H cij

� �
lij~ cij

�� �� 1{H cij

� �� � ð2Þ

where H(x) is the Heaviside step function, equal to one if x is

positive, and zero otherwise. The probability pTumble of a protein

tumbling at any given timestep is given by

kij~
cm PNP

�½ �
1zcm PNp

�� � ð3Þ

where cm is the affinity of protein Np for the motor.

The evolutionary simulations are carried with a population of

Nbacteria = 1000 bacteria existing on a two-dimensional 1006100

square space with periodic boundary conditions. The level of

stimulus is defined as a Gaussian distribution located at the centre

(50, 50) of the space with maximum value 10.0 and width 7.1. At

each generation, every bacterium starts at a location (30, 30)

pointed in a random direction, with all activated protein

concentrations set to zero. At each timestep the bio-kinetic

equations (Equation 1) are integrated based on the local level of

stimulus. The bacterium then can either tumble (choose a new

random direction) with probability pTumble or, alternatively swim

in a straight line in the current direction a distance given by the

swimming speed (0.2). Each bacterium absorbs an amount of

stimulus proportional to the local stimulus level, without

consuming it. At the end of Nstep = 5000 timesteps, the next

population of bacteria are selected using tournament selection: a

set of five bacteria is chosen at random, and of the five, the

bacterium that has accumulated the most stimuli is assigned to the

next generation. This procedure is repeated (with replacement)

Nbacteria times. During each assignment process, there is a

probability pmutation = 0.1 of a mutation occurring. This mutation

involves adding or subtracting a Gaussian-distributed value (mean

0, standard variation 0.1) to one of the cij chosen at random.

In summary, the resulting pathway model captures the basic

biochemistry of signalling pathways and allows coupling of

external signals to the tumbling probability. The basic assumptions

of the model are that proteins can only occur in two states and that

each protein can interact with any other. The latter assumption

allows generality in the model without imposing limitations. Every

pathway structure that could be constructed in the presented

model could be constructed with real biochemistry (potentially

requiring more proteins). Still, we have tested the effects of

imposing possible limitations on the pathway structure on the

evolution of taxis responses. These included imposing the

requirement that the receptor can only be a kinase (i.e. it could

only activate other proteins), that each protein can have only a

single interaction, or that self-regulation is not allowed in the

model. We find such limitations not to significantly affect the

outcome of the evolutionary simulations (data not shown).

To test the effect of having fluctuating stimulus source in the

environment on the evolution of taxis responses we run additional

simulations where a number of the parameters were chosen

independently for each generation. These included; (i) a

background uniform stimulus distribution, chosen from a uniform

distribution [0–5.0], (ii) the peak height of the Gaussian stimulus

distribution, chosen from a uniform distribution [1.0–10.0], (iii)

the variance (width squared) of the Gaussian stimulus distribution,

chosen from a uniform distribution [50.0–500.0], and (iv) the

initial location for the bacteria chosen at random from all points in

the 1006100 space. In addition, for these runs, 20 percent of all

mutations resulted in an interaction being deleted (set equal to

zero) rather than modification through addition of a randomly

chosen increment. The result of these simulations were analysed

by subjecting the pathway to a specified time-course of stimulus

levels, and monitoring the resulting response as shown in Figure 2.

To perform a simple estimate of the efficiency of taxis response

mediated by the non-adaptive pathway dynamics (see main text),

we consider the equilibrium situation where there is a steady-state

Evolution of Taxis Responses in Bacteria

PLoS Computational Biology | www.ploscompbiol.org 6 May 2008 | Volume 4 | Issue 5 | e1000084



concentration of bacteria rB ~xxð Þ and stimulus rA ~xxð Þ at any

location ~xx. At each time step a bacterium can either tumble or

swim, so we can express the probability that a bacterium that starts

at location ~xx1 will swim to location ~xx2 as equal to

1{pTumble ~xx1ð Þð Þp1?2, where p1R2 is the probability that a

swimming bacterium at location 1 will swim to location 2. If we

now invoke detailed balance, the overall flux of bacteria swimming

from~xx1 to~xx2 will exactly equal those swimming from~xx2 to~xx1, or

r ~xx1ð Þ 1{pTumble ~xx1ð Þð Þp1?2~r ~xx2ð Þ 1{pTumble ~xx2ð Þð Þp2?1. In gen-

eral, p1R2 will be a complicated function that includes information

about the previous location (and thus the current swimming

direction) of the bacterium at ~xx1, but if we ignore these

correlations and assume that the bacteria are swimming in an

isotropic manner in a simple space, p1R2 = p2R1. We can further

assume that for the described non-adaptive pathway dynamics, the

concentration of the effector is proportional to the local stimulus

level PNV

�½ �~lrA. Under these conditions, assuming the tumbling

probability follows Equation 3, it is straightforward to show that

the relative concentration of bacteria at different locations is given

by rB ~xxð Þ~C 1zcm l rA ~xxð Þð Þ where C is a normalisation

constant. In other words, for sufficient gain (cm l) and stimulus

level, the steady-state bacteria concentration is proportional to the

stimulus level resulting in an efficient taxis response.

Supporting Information

Dataset S1 Most frequent and unique pathways resulting from

all the evolutionary runs explained in the main text.

Pathway structure is shown in a matrix form, where each row

lists the coefficient of interaction between a given protein and all

the others. Letters, A, R, P, and E stand for attractant, receptor,

protein, and effector respectively. Note that attractant can only

interact with the receptor. The affinity of the effector for the motor

(cm) is shown next to the interaction matrix. The coefficients for

each pathway are used to simulate its dynamics as described in

Methods. Matrices, for which the dynamic behavior is shown in

the main text are: Figure 4: All shown matrices for 2-protein

pathways, fixed attractant conditions. Figure 2: The matrix from

run 03 for 4-protein pathways, fixed attractant conditions. Figure 3

top row: Matrices from runs 02, 03, and 04 for 4-protein

pathways, fluctuating attractant conditions. Figure 3 bottom row:

Matrices from runs 02, 03, and 04 for 4-protein pathways, non-

periodic boundary conditions.

Found at: doi:10.1371/journal.pcbi.1000084.s001 (0.46 MB

DOC)
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