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Abstract

Inferring regulatory and metabolic network models from quantitative genetic interaction data remains a major challenge in
systems biology. Here, we present a novel quantitative model for interpreting epistasis within pathways responding to an
external signal. The model provides the basis of an experimental method to determine the architecture of such pathways,
and establishes a new set of rules to infer the order of genes within them. The method also allows the extraction of
quantitative parameters enabling a new level of information to be added to genetic network models. It is applicable to any
system where the impact of combinatorial loss-of-function mutations can be quantified with sufficient accuracy. We test the
method by conducting a systematic analysis of a thoroughly characterized eukaryotic gene network, the galactose
utilization pathway in Saccharomyces cerevisiae. For this purpose, we quantify the effects of single and double gene
deletions on two phenotypic traits, fitness and reporter gene expression. We show that applying our method to fitness traits
reveals the order of metabolic enzymes and the effects of accumulating metabolic intermediates. Conversely, the analysis of
expression traits reveals the order of transcriptional regulatory genes, secondary regulatory signals and their relative
strength. Strikingly, when the analyses of the two traits are combined, the method correctly infers ,80% of the known
relationships without any false positives.
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technologies for CB, a scholarship from the Natural Sciences and Engineering Research Council of Canada for KM, and an Ontario Graduate Scholarship for HP. MK
is a Canada Research Chair in Systems Biology. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the
manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: mkaern@uottawa.ca

Introduction

Inferring biological pathways and gene networks from mea-

surements of genotype-phenotype relationships has been a central

problem in genetics research for decades [1,2]. These relationships

represent the basic building blocks of biological network models,

and underpin much of our knowledge about genes and their

functions. The problem is not fully solved despite tremendous

progress in the development of tools and resources enabling

quantitative measurements of genetic interactions [3–5]. This is in

part because of the uncertain biological basis of complex traits [6],

and in part because methods used to analyze genetic interaction

data rarely take advantage of its quantitative nature [7].

We have developed a method to infer and quantify causal

relationships within hierarchical pathways responding to an

external signal from genetic interaction data. Avery and Wasser-

man addressed part of the inference problem [8] by examining the

hypothetical effects of single and double loss-of-function or

constitutive mutations in the presence and absence of the signal.

Based on the assumption that the signal and the two genes are

either ON or OFF, with no intermediate levels of activity, they

deduced a set of rules to infer which gene acts upstream of the

other and whether it activates or represses the downstream gene.

When applied to gene deletions, these rules can be stated as

follows:

(1) A given gene deletion must impact the trait when the signal is

ON, or when the signal is OFF, but not both.

(2) If two gene deletions impact the trait in opposite signal states,

and one masks the impact of the other, then the masked gene

is upstream and represses the downstream gene.

(3) If two gene deletions impact the trait in the same signal state,

and one masks the impact of the other, then the masked gene

is downstream and is activated by the upstream gene.

The requirement of masking restricts the inference to a special

subclass of genetic interactions commonly referred to as epistatic

interactions. While epistasis is sometimes used synonymously with

genetic interactions in general (see [9,10] for discussion), we use

the term in reference to an interaction where the mutation of one
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gene masks the impact of mutating another. Correspondingly, we

refer to the identification of masking gene pairs, and the inference

of order and causality among them, as epistasis analysis.

The Avery-Wasserman rules, which have been used broadly to

interpret epistasis, suffer several shortcomings. For one, many

genes have both signal-independent and signal-specific functions.

The Avery-Wasserman rules are not applicable in this case since

gene deletion will have an impact when the signal is OFF and

when it is ON. Additionally, the rules offer no means to quantify

the relative contributions of different pathways on a trait, or to

assign weights to different influences within a given pathway.

Therefore, important information is lost when the rules are

applied to quantitative data.

To address these limitations, we develop and benchmark a

novel method for epistasis analysis. The method takes full

advantage of quantitative trait measurements, and enables

pathway inference even when the Avery-Wasserman rules cannot

be applied. We developed the method using a theoretical model

incorporating signal-independent and signal-specific gene func-

tion, as well as feedforward loops. These loops allow the signal to

influence the trait independently of the two genes, and the

upstream gene to influence the trait independently of the

downstream gene. We show that the Avery-Wasserman rules

correspond to special instances of the model, and determine the

assumptions required for them to be valid. Additionally, we use the

model to derive a unique rule for inferring gene order in signal-

responsive pathways.

Our inference method involves comparing the effects of

combinatorial gene deletions measured experimentally to those

predicted by our model for different hypothetical pathways. In this

aspect, it is related to a ‘best-fit’ model discrimination approach to

analyze quantitative genetic interaction data [11]. However, our

method differs in a number of important ways: (i) we incorporate

the external signal into a single model, (ii) we retain the notion that

epistasis can be observed even when the assumptions made by

Avery and Wasserman are invalid, (iii) we use both the signs and

magnitudes of gene deletion effects to enable complete pathway

inference, and (iv) we require that the experimental data be fully

consistent with a hypothetical pathway that predicts epistasis.

Correspondingly, our method seeks to interpret only the subset of

genetic interactions for which masking is observed.

We demonstrate that our method, in addition to pathway

inference, enables quantification of influences describing the

function of the inferred pathway as a whole. This is an appealing

feature that can be used to answer important biological questions:

How much of the effect of the signal is mediated through the two

genes? To what degree does the upstream gene affect the trait

directly? How much of the effect is mediated through the

downstream gene? These questions cannot be answered by

currently available methods for epistasis analysis.

We assess the strengths and limitations of our method by

analyzing genetic interaction data generated for all gene pairs in

the yeast galactose utilization pathway. We chose this particular

system because it is thoroughly studied, thus providing a natural

standard for benchmarking pathway inference algorithms. We also

chose to analyze two quantitative traits, fitness and reporter gene

expression, to demonstrate that the method applies equally well to

different phenotypes. While fitness is one of the most commonly

analyzed traits [12–15], the use of gene expression, either in the

form of microarrays [16–18] or fluorescent reporters [7,19], is

becoming more widespread [20].

We show that applying our method to fitness and expression

traits provides complementary information. While the analysis of

fitness provides information about the metabolic part of the

network, the analysis of gene expression is required to infer how

the network is regulated. When we combine the results of the two

analyses, the method recovers nearly 80% of the known pair-wise

relationships, without any false positives. This striking result

suggests that our method can reliably extract important informa-

tion about the causal relationships that define biological pathways

and networks.

Results

Quantifying the effects of gene deletions
To quantify the phenotypic effects associated with single and

double gene deletions, we first denote the two genes as X and Y. In a

given experiment, we measure a quantitative trait T as a function of

a signal S that we control. The signal can be present or absent, and

X and Y may be present or deleted. These experimentally controlled

conditions are specified by the Boolean variables s, x and y,

respectively. Correspondingly, for each gene pair, there are eight

different experimental conditions where the trait is measured.

We quantify the effects of gene deletions on the trait using

multilinear regression [1,11,21]. Mathematically, the regression

equation used to analyze the eight experiments is given by:

T(x,y,s)~T0z(1{s)(b0
xxzb0

Y yzb0
I xy)zs(bSzb1

xxzb1
Y yz

b1
I xy)ze,

s~
1 if the signal is ON

0 otherwise

(
,

x~
1 if X is deleted

0 otherwise

(
,

y~
1 if Y is deleted

0 otherwise
,

(

ð1Þ

where e represents an error term. The regression parameters

describe the trait value in the absence of the signal (T0), the effect

Author Summary

Cells have evolved elaborate pathways that allow them to
optimally use available nutrients, for example, and alter
gene expression in response to external challenges. The
mapping of these pathways provides an understanding of
cell function critical for advancements in a number of
fields, from biofuel production to drug discovery. In this
study, we developed a novel method to map pathways of
genes that function in the cellular response to a given
signal or stress. The method represents a significant
advancement since it takes full advantage of modern
genomics techniques to provide novel, detailed informa-
tion about gene function, including the contribution from
different genes individually, and in combination with other
genes or pathways. We tested the method on a pathway in
yeast whose human equivalent is associated with a serious
and potentially fatal hereditary disease called galacto-
semia. We demonstrate that the method allows a highly
accurate reconstruction of this pathway, correctly segre-
gating genes with major and minor functions, and
recapitulating the known mechanisms associated with
the disease.
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of the signal in the absence of gene deletions (bS ), and, for each

signal state, the impact of deleting gene X (bs
X ) or gene Y (bs

Y ), and

an interaction term (bs
I ). The interaction term captures the effect

of deleting both genes that cannot be accounted by the effects of

deleting the two genes individually.

Identifying genetic interactions and epistasis
Equation (1) is consistent with a commonly used approach to

identify genetic interactions when traits are quantified in a single

environment or signal state. In this approach, a genetic interaction

is inferred when the fitness trait W of the double mutant deviates

from multiplicative neutrality, defined by WXYWwt = WXWY [22].

Moreover, an epistatic genetic interaction is inferred when the trait

of the double mutant is different from that of the wildtype

(WXY?Wwt) and identical to one of the single mutants (WXY = WX

or WXY = WY).

Multiplicative neutrality is recovered from Equation (1) when

the trait is defined as the log-transformed fitness. For example, in

the ON signal state (s = 1), the impacts of the signal and single gene

deletions are given by:

T0~ log W 0
wt

� �
, b1

X ~ log
W 1

X

W 1
wt

� �
, b1

Y ~ log
W 1

Y

W 1
wt

� �
,

bS~ log
W 1

wt

W 0
wt

� �
:

ð2Þ

It follows from Equation (1) that the interaction term is given by:

b1
I ~ log W 1

XY

� �
{T0{bS{b1

X {b1
Y ~ log

W 1
XY W 1

wt

W 1
X W 1

Y

� �
: ð3Þ

An equivalent neutrality function can be derived for the OFF

signal state (s = 0). In both cases, a genetic interaction is identified

when bI?0, and this interaction is epistatic when bI = 2bX or

when bI = 2bY.

A quantitative model for interpreting epistasis
To develop a quantitative pathway inference method, we use a

theoretical model to predict the effects of gene deletions within

different signal-responsive hierarchical pathways (Table 1A). We

consider eight pathway architectures, corresponding to activation

or repression at each of three pathway steps. To predict the

theoretical impact of gene deletions, we assume that gene X is

upstream of gene Y. Later, we will use these predictions to

interpret experimental data obtained without knowing the identity

of the upstream gene or whether the genes even interact. In this

case, we must discriminate among 16 possible pathways, as well as

a null model corresponding to no interaction.

The theoretical model, which is illustrated in Figure 1, uses the

Boolean variables x, y and s to describe the experimental

conditions, and two Boolean variables xS and yS to describe the

respective signal-specific activities of gene X and gene Y. We

assume that xS and yS behave in accordance with the relationships

depicted in Table 1A. Correspondingly, in the absence of gene

deletions, xS is determined exclusively by the signal s, and yS is

determined exclusively by xS. In the presence of gene deletions, the

signal-specific activities are defined by the following rules:

xS(x,s)~
(1{x)s if S activates X

(1{x)(1{s) if S represses X

(

yS(x,y,s)~
(1{y)xS if X activates Y

(1{y)(1{xS) if X represses Y

( ð4Þ

The rules simply state that the signal-specific activity of each gene

is present only when it is not deleted and not inactivated by the

factor directly upstream. They also define the signal-dependent

genetic interaction between the two genes.

The model uses three signal-specific influences, sS, sX and sY,

and three signal-independent influences, aX, aY and aI, to capture

how the different model variables contribute to a theoretical trait

(see Figure 1). While the signal-independent influences reflect the

basal functions of the genes, the signal-specific influences sS, sX,

Table 1. Hypothetical pathways and predicted values of experimental parameters.

A 1
S
Q
X
Q
Y
Q
T

2
S
Q
X
Q
Y
H
T

3
S
Q
X
H
Y
Q
T

4
S
Q
X
H
Y
H
T

5
S
H
X
Q
Y
Q
T

6
S
H
X
Q
Y
H
T

7
S
H
X
H
Y
Q
T

8
S
H
X
H
Y
H
T

B Predicted parameter values

b0
X

{aI {aX {aI {aX {aI {aX {sX {sY {aI {aX {sX zsY

b0
Y

{aI {aY {aI {aY {sY {aI {aY {sY {aI {aY

b0
I

aI aI aI zsY aI {sY

b1
X

{aI {aX {sX {sY {aI {aX {sX zsY {aI {aX {aI {aX

b1
Y

{aI {aY {sY {aI {aY {aI {aY {aI {aY {sY

b1
I

aI zsY aI {sY aI aI

(A) Hypothetical pathway architectures defining signal-dependent relationships.
(B) The definitions of b-parameters in terms of influence parameters predicted from the model in Figure 1.
doi:10.1371/journal.pcbi.1002048.t001
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and sY provide quantitative information about pathway function.

A non-zero value of sY indicates that the pathway is involved in

the cellular response to the signal, and correspondingly, pathways

with higher values of sY contribute more to the response. A non-

zero value of sX implies a pathway branch point where the

upstream gene affects the trait independently of the downstream

gene. The absence of such a feedforward loop indicates that the

two genes encode factors that function as a single entity (e.g.,

different subunits of a protein complex). Lastly, a non-zero value of

sS indicates that the effect of the signal is mediated through

multiple pathways, and not defined exclusively by the two genes

being analyzed.

The six influences can contribute to the theoretical trait value h
in a manner that depends on the environmental conditions and the

pathway architecture as follows:

h(x,y,s)~h0zaX (1{x)zaY (1{y)zaI (1{x)(1{y)z

sSszsX xS x,sð Þð ÞzsY yS x,y,sð Þð Þ,

s~
1 if the signal is ON

0 otherwise

(
,

x~
1 if X is deleted

0 otherwise

(
,

y~
1 if Y is deleted

0 otherwise
:

(

ð5Þ

Here, h0 is a baseline trait value, and xS(x,s) and yS(x,y,s) define

the architecture of the pathway in accordance with the rules in Eq.

(4). Correspondingly, the signal-specific influences sS, sX, and sY

contribute to the trait only when the signal is present, and only

when the two genes are active, respectively. In contrast, the signal-

independent influences aX and aY contribute to the value of the

trait whenever X and Y are not deleted, respectively, and their

basal interaction, aI, has an effect only when both genes are

present.

We can now derive expected effects of gene deletions by

equating the measured trait T defined in Eq. (1) and the theoretical

trait h defined in Eq. (5) for different pathway architectures and

experimental conditions. The result is provided in Table 1B (see

Table S1 for details), which gives the definitions of b-parameters in

terms of the signal-specific and signal-independent influences. The

predicted b-parameters are defined identically for pathways that

differ only by the downstream gene having a positive (sY.0) or

negative (sY,0) signal-specific effect on the trait. We also note that

for each pair of b-values (i.e., the two values of each bs
X , bs

Y and

bs
I ), one of two values is always defined entirely by the basal,

signal-independent effect of the gene deletions.

Recovering the Avery-Wasserman inference rules
Before addressing the pathway inference problem, we examined

the model to determine the assumptions required to recover the

rules deduced by Avery and Wasserman. From Table 1B, it is

immediately apparent that Rule (1) can be recovered when genes

have no signal-independent functions (i.e., aX = aY = aI = 0).

Because one of each bs
X , bs

Y and bs
I is defined exclusively by aX,

aY, and aI, gene deletions will in this case have an impact when the

signal is either ON or when it is OFF, but not both.

To determine the applicability of Rule (2) and Rule (3), we

examined the values of the b-parameters predicted when Rule (1)

is valid by setting all signal-independent influences equal to zero.

These values are given in Table 2A. In this case, gene deletions

affect the trait in the same signal state when the upstream gene

activates the downstream gene (i.e., a ‘positively regulated

pathway’), and in opposite signal states when the upstream gene

represses the downstream gene (i.e., a ‘negatively regulated

pathway’). Thus, we recover the parts of Rule (2) and Rule (3)

that govern the inference of causality between the two genes.

Interestingly, by analyzing the model, we find that the parts of

Rule (2) and Rule (3) governing which gene masks the other

depend differentially on the presence of a feedforward loop.

Within negatively regulated pathways, masking of the upstream

gene can only be observed if the value of the influence sX is zero,

since this is the only case where bI = 2bX?0 (Pathways 3, 4, 7 and

8 in Table 2A). Therefore, Rule (2) is only applicable if the

upstream gene acts exclusively through the downstream gene.

Conversely, for positively regulated pathways, masking can only be

observed if sX is non-zero, since this is the only case where

bI = 2bY?0 (Pathways 1, 2, 5 and 6 in Table 2A). Therefore, Rule

(3) is only applicable when the upstream gene influences the trait

independently of the downstream gene.

A general rule for inferring gene order
Since the Avery-Wasserman rules are not generally applicable,

we re-examined the b-parameters predicted when no assumptions

are made (Table 1B). We found that taking the difference between

b-parameters in opposite signal states could eliminate all signal-

independent influences. This correction for basal gene deletion

effects yields three differential parameters, di~b0
i {b1

i for i = (X,

Y, I), that are defined exclusively by signal-specific influences

(Table 2B). They quantify the signal-dependent effects of gene

deletion (dX and dY) and the signal-dependent effect of the genetic

interaction (dI).

Moreover, for all pathways, the model predicts that the effect of

deleting the downstream gene (dY) is negated by the interaction

term (dY = 2dI). We can therefore formulate a single, general rule

for inferring gene order:

N When the deletion of one gene masks the signal-dependent effect of deleting

another, the masked gene is downstream irrespectively of the pathway

architecture.

Correspondingly, in the experimental analysis of two arbitrary

genes, A and B, we can determine their order by evaluating if

Figure 1. Theoretical model used to interpret epistasis in
signal-responsive pathways. Lines ending in circles indicate
influences that can be activating or repressing. Dotted lines indicate
Boolean relationships defined in Eq. (4). Variables and influences are
defined in the text (aI is omitted for clarity).
doi:10.1371/journal.pcbi.1002048.g001
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dA = 2dI or if dB = 2dI without making any assumptions about the

data.

The d-parameters capture the effects of gene deletions on the

difference trait, D, defined as the change in trait values when the

signal is absent and present, D(x,y) = T(x,y,0)2T(x,y,1). According-

ly, when T is the log-transformed fitness, D is the log-transformed

sensitivity, S, since, by definition, log(S) = log(W0)2log(W1).

Moreover, the relationship between the d-parameters and D is

given by the regression equation:

D(x,y)~D0zdX xzdY yzdI xyze,

x~
1 if X is deleted

0 otherwise

(
,

y~
1 if Y is deleted

0 otherwise
,

( ð6Þ

where D0 is the base-line difference trait. In other words, dX and dY

capture the effect of single gene deletion on the ‘sensitivity’ or

difference trait, while dI captures the impact of the genetic

interaction with respect to this trait.

The use of d-parameters for the identification and interpretation

of genetic interactions is not without precedent. St-Onge et al.[14]

argued that examining the sensitivity of deletion mutants enables a

focus on pathways responding to cellular changes, and used

sensitivity to sub-classify genetic interactions involved in the

response to drug treatment. Subsequently, Batenchuk et al. [23]

demonstrated that multiplicative neutrality based on sensitivity

phenotypes, SXYSwt = SXSY, can be used to quantify how genetic

interactions change in response to environmental perturbations.

This analysis corresponds to determining the signal-dependent

genetic interaction term dI:

dI~b0
I {b1

I ~ log
W 0

XY W 0
wt

W 0
X W 0

Y

� �
{ log

W 1
XY W 1

wt

W 1
X W 1

Y

� �

~ log
SXY Swt

SX SY

� �
,

ð7Þ

where superscript indicates whether the signal s is ON (s = 1), or

OFF (s = 0). An equivalent approach was recently used by

Bandyopadhyay et al. [24] to map how a genetic interaction

network involving hundreds of genes is modulated by the presence

of a drug.

Inferring the architecture of signal-responsive pathways
It is straightforward to discriminate among the different

hypothetical pathways when gene order has been determined,

provided that genes have no signal-independent functions. In this

case, we can narrow down the number of plausible pathways from

eight to two by comparing the measured b-parameters obtained

from experimental data using Equation (1) to those predicted

when aX, aY and aI are equal to zero (Table 2A). The most general

approach to match experimental parameters to those predicted for

a hypothetical pathway is to determine the signal states where one

of the two experimental values of bX, bY and bI is equal to zero.

This is because the relationships involving the signal and the two

genes can be identified uniquely by the signal states where the

genes are inactive (see Table 2A). Correspondingly, the inference

of pathway architecture does not require the use of statistical

model discrimination methods. Lastly, whether the downstream

gene increases (sY.0) or decreases (sY,0) the trait can be inferred

directly from the sign of the experimental non-zero interaction

term. For example, for pathways 3 and 4, the influence is

predicted to have the opposite sign of the measured interaction

term (i.e. bI = 2sY), and therefore pathway 3 would be inferred if

the measured interaction was negative or pathway 4 if it was

positive (see Table 2A).

The pathway inference method described above can also be

applied when genes have signal-independent functions. In this

case, however, the definitions of the b-parameters in Table 2A

correspond to corrected b-values, obtained by subtracting the

basal effects of deletions associated with each parameter. As noted

earlier, one of two measured values of bX, bY and bI always

corresponds to this basal effect (see Table 1B). The problem is to

identify whether the basal effect is observed when the signal is OFF

or ON.

To obtain corrected b-parameters, we assume that the basal

effect of gene deletion corresponds to the experimental b-value

with the lowest magnitude. This assumption is valid for genes

Table 2. Predicted values of experimental parameters used for inferring pathway architecture and gene order.

Pathways 1 & 2 Pathways 3 & 4 Pathways 5 & 6 Pathways 7 & 8

A Difference parameters

b0
X

0 0 {sX {sY {sX zsY

b0
Y

0 {sY {sY 0

b0
I

0 0 sY {sY

b1
X

{sX {sY {sX zsY 0 0

b1
Y

{sY 0 0 {sY

b1
I

sY {sY 0 0

B Difference parameters

dX sX zsY sX {sY {sX {sY {sX zsY

dY sY {sY {sY sY

dI {sY sY sY {sY

(A) Predicted b-parameters after the correction for signal-independent effects.
(B) Predicted d-parameters obtained by analyzing difference traits.
doi:10.1371/journal.pcbi.1002048.t002
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whose primary biological function is associated with a signal-

responsive pathway. The assumption is also valid when the

activating or repressing functions of the gene are the same in the

presence and absence of the signal. In this case, the effect of losing

both basal and signal-specific gene functions is necessarily greater

in magnitude than the loss of basal function alone (see Table S2).

While these two conditions should cover most instances, there

are cases where the assumption may introduce false inferences, for

example when a gene functions as a repressor when the signal is

OFF and as an activator when the signal is ON. One of the central

genes in the galactose pathway actually displays such dual

functionality with respect to fitness (see below). However, a false

inference is not made since the pattern of corrected b-values does

not match any of those listed in Table 2A.

Quantifying causal relationships from measured trait
values

Once the pathway has been inferred, the signal-independent

and signal-specific influences in Figure 1 can be calculated directly

from measured trait values using the definitions given in Table 3.

In most cases, the definitions of the influences are intuitive. For

example, in pathways where the upstream gene is an activator, the

signal-independent influence of the upstream gene (aX) is given by

the effect of deleting gene X when gene Y and the signal are

absent. Similarly, the signal-specific influences sY and sX can be

calculated using the difference traits. They are defined by the

change in D caused by deleting Y relative to wildtype, and the

change in D caused by deleting X when Y is absent, respectively.

A step-wise inference method
The three previous sections have addressed the inference of

gene order, pathway architecture and quantitative influences. We

used the results from these analyses to develop an inference

algorithm that can be applied to experimental data. The following

steps summarize the algorithm as applied to two arbitrary genes A

and B:

Step 1: Determine if the two genes have a signal-dependent

interaction, i.e., if dI?0.

Step 2: Evaluate if dA = 2dI?dB or if dB = 2dI?dA to

determine whether A or B is the downstream gene.

Step 3: Correct the measured b-parameters for basal, signal-

independent effects and infer the pathway by matching the

corrected values to those given in Table 2A.

Step 4: Calculate the influence parameters using Table 3.

We note that Step 2 restricts the analysis to pathways where the

upstream gene influences the trait independently of the down-

stream gene and sX?0 (see Table 2B). When the effect is mediated

exclusively through the downstream gene (sX = 0), the single

deletion mutants have the same trait values and there is no unique

masking interaction (dB = dA = 2dI). Order can in this case be

identified in Step 3 if the non-zero impact parameters (bA and bB)

are found in opposite environments (corresponding to a negatively

regulated pathway, see Table 2A). If this is not the case, the two

genes are inferred to act as a cohesive unit. We also note that there

are several ways to evaluate equivalence in Step 2. In our

experimental benchmarking of the method (see below), we

determine epistasis by evaluating if the difference between the

observed (i.e., dI) and the predicted interaction term (i.e., 2dA or

2dB) is smaller than the experimental error (see Materials and

Methods). However, other methods should apply equally well.

Experimental benchmarking using the GAL network
To benchmark the method, and to critically assess fitness- and

expression-based epistasis analyses in general, we investigated a

thoroughly characterized network, the yeast galactose utilization

pathway. This network, which is depicted in Figure 2, involves

three regulatory genes (GAL3, GAL4 and GAL80) and five

structural genes (GAL1, GAL2, GAL6, GAL7 and GAL10) that

enable yeast to detect and metabolize galactose. Quantitative traits

were measured for a library of single and double GAL gene

deletion strains in a genetic background expressing yeast enhanced

green fluorescent protein (yEGFP) from the promoter of the GAL10

gene (see Materials and Methods). Growth rates during early log-

phase (fitness) and reporter expression were determined in rich

media containing raffinose under inducing (+galactose; ‘‘ON’’)

and non-inducing (-galactose; ‘‘OFF’’) conditions (see Materials

and Methods).

The GAL network consists of a core regulatory branch and a

metabolic branch. The protein encoded by GAL4 (Gal4p) is

considered the main regulator of the network. It binds to the

regulatory regions of all other GAL network genes, but remains

inactive in the absence of galactose due to repression by Gal80p.

Intracellular galactose induces the expression of the GAL structural

genes by activating Gal3p, which subsequently relieves the

Table 3. Definitions of influences for hypothetical pathways
based on the values of the trait T and the difference trait D.

Pathways
1 & 2

Pathways
3 & 4

Pathways
5 & 6

Pathways
7 & 8

sY DY=Dwt Dwt=DY Dwt=DY DY =Dwt

sX DXY=DY DXY =DY DY=DXY DY =DXY

sS 1=DXY 1=DXY 1=DXY 1=DXY

aX T0
Y =T0

XY T0
Y =T0

XY T1
Y=T1

XY T1
Y =T1

XY

aY T0
X

T0
XY

DY T0
X

DwtT
0
XY

T0
X

T0
XY

DwtT
1
X

DY T1
XY

aI T0
XY T0

wt

T0
X T0

Y

T0
XY T0

wt

T0
X T0

Y

T1
XY T1

wt

T1
X T1

Y

T1
XY T1

wt

T1
X T1

Y

The trait values are not log transformed for clarity.
doi:10.1371/journal.pcbi.1002048.t003

Figure 2. Canonical yeast galactose utilization pathway
(adapted from [26]). Gray arrows indicate cellular processes likely
impacted by GAL gene deletions. Abbreviations: intracellular galactose
(galIN), galactose-1-phosphate (gal1P), glucose-1-phosphate (glu1P),
uridine diphosphate (UDP), UDP-glucose (UDPglu), UDP-galactose
(UDPgal).
doi:10.1371/journal.pcbi.1002048.g002
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repression of Gal4p by Gal80p. Since Gal4p binds to the

promoters of GAL3 and GAL80, the network contains both a

positive and a negative feedback loop.

The structural GAL genes are involved in converting intracel-

lular galactose into glucose-1-phosphate (glu1P) in a process that

involves galactose-1-phosphate (gal1P), UDPglu and UDPgal (see

Figure 2 for details). Some of the structural genes and metabolic

intermediates have been implicated in the regulation of the

network. The GAL2 gene encodes a trans-membrane transporter,

which, together with transporters encoded by the HXT genes,

allows galactose to enter the cell and activate Gal3p. This

establishes a second positive feedback loop since Gal4p binds to

the promoter of GAL2. The deletion of GAL6 and GAL7 has been

reported to change the expression of other GAL genes [25,26],

suggesting that Gal6p and gal1P may have regulatory functions.

However, these roles are not firmly established.

Most GAL genes have galactose-independent functions
As expected, the deletions of individual GAL genes (GAL80

excepted) are associated with significant reductions in fitness in the

presence of galactose (Figure 3A). While the deletions of GAL1,

GAL10 or GAL7 resulted in severe sickness and fitness reductions of

68%, 88% and 92%, respectively, the deletions of GAL3 or GAL4

resulted in relatively mild defects and fitness reductions of ,30%.

The severity of the GAL7 deletion can be attributed to a combination

of pathway disruption and accumulation of the toxic intermediate

gal1P [27]. Accumulation of gal1P may also explain the severity of

the GAL10 deletion since Gal10p is required to replenish the UDPglu

consumed in the conversion of gal1P into glu1P.

Unsurprisingly, most of the single deletions are also associated

with significant fitness defects under the non-inducing condition

(Figure 3A), and their interactions cannot be analyzed using the

Avery-Wasserman rules. These defects, which range between

reductions of 7% in the gal1D mutant to 74% in the gal80D
mutant, indicate that the GAL genes have important activities even

in the absence of galactose. The severity of the GAL80 deletion is

not intuitive since expression of the structural GAL genes should

not be this detrimental when galactose is absent. The effect is due

to the activation of Gal4p, since deleting GAL4 in the gal80D
mutant results in the restoration of normal growth in the absence

of galactose (see below). A plausible explanation is that Gal4p

effectively shuts down the utilization of the alternate carbon

source, raffinose. This phenomenon, called catabolite repression

[28], also explains the severity of the GAL1 deletion in the presence

Figure 3. Analysis of fitness traits. (A) Relative fitness for single GAL gene deletions, in presence (red) and absence (blue) of galactose. Asterisk
marks significant effect (t-test p-value ,0.05). (B) Signal-dependent genetic interactions (green: dI.0, red: dI,0, t-test p-value ,0.05). (C) Inferred
causal relationships. (D) Transitive reduction of the network in (C).
doi:10.1371/journal.pcbi.1002048.g003
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of galactose. In this case, Gal4p is fully active, but neither galactose

nor the alternate carbon source can be metabolized.

Fitness traits reveal metabolic pathways and
relationships

We analyzed fitness traits by applying the step-wise inference

method described above (Figure 3). We found that 23 of the 28

gene pairs had a galactose-dependent genetic interaction

(Figure 3B, Table S3). Gene order could be determined for 18

out of 23 pairs by identifying signal-dependent epistasis based on

d-parameters. In 17 of these cases, the patterns of zero-valued

experimental b-parameters, once corrected for basal effects,

matched the pattern predicted for Pathway #1 in Table 1A.

The regulatory relationships inferred for the 17 gene pairs are

shown in Figure 3C.

The only epistatic interaction that is inconsistent with a

hypothetical pathway is the one involving GAL4 and GAL80. This

is likely due to Gal4p functioning as both an activator and a

repressor of fitness. While Gal4p contributes positively to growth

in the presence of galactose, activating Gal4p by deleting GAL80

causes a severe fitness defect in the absence of galactose.

Pair-wise causal relationships contribute to a global
network model

The establishment of network models from genetic interaction

data is a complex problem (see Battle et al. [7]). Here, we focus on

the problem of extracting a directed graph incorporating casual

upstream/downstream relationships inferred between gene pairs

that exhibit epistasis. Correspondingly, the graph only contains

genetic interactions that conform to our model.

The most straightforward approach is to generate the transitive

reduction of the network diagram containing all inferred linkages

[29]. This approach eliminates the shorter of two paths connecting

any two genes. For example, suppose that in the analysis of three

genes, A, B and C, A is inferred upstream of B and C, and B is

inferred upstream of C. Here, the transitive reduction will imply

that the influence of A on C is indirect through B. This approach

yields the simplest network diagram consistent with all upstream/

downstream relationships. Because our inference of pathway

architecture is contingent on each gene being regulated by a single

upstream factor, the use of transitive reduction is justified.

The global network model generated by transitive reduction is

shown in Figure 3D. Here, we infer the correct order and

dependency among the structural genes GAL1, GAL2, GAL7 and

GAL10. The deletion of GAL2 masks the effects of deleting GAL1 or

GAL10, correctly identifying Gal2p as the first enzyme in the

metabolic cascade. Similarly, the deletion of GAL1 masks the

impact of deleting GAL10 or GAL7, and Gal1p is correctly

identified as the second enzyme in pathway. Lastly, deleting

GAL10 masks the impact of deleting GAL7, placing Gal10p

upstream of Gal7p.

We also correctly infer Gal4p as an activator of all the

structural genes. The placement of GAL4 upstream of GAL1 is

consistent with complete disruption of galactose metabolism

when GAL4 is deleted. However, it is inconsistent with protein-

DNA and transcriptional data demonstrating that Gal4p

directly activates the transcription of all the structural genes

independently of GAL1. Indeed, the analysis of epistasis reveals

functional rather than physical relationships. For example, the

inference of GAL4 upstream of GAL7 is not due to the fact that

Gal4p is required for GAL7 expression. If this were the case, the

gal7D and the gal4Dgal7 D mutants would have similar

phenotypes. Instead, deleting GAL4 rescues the severe fitness

defect of deleting GAL7 by preventing GAL1 expression and,

therefore, gal1P accumulation.

Pathway influences imply multiple sources of galactose
toxicity

Once gene order and pathway architecture was established

between two genes, we calculated the influences involved in each

pathway using the definitions in Table 3. The resulting pathway

models are shown in Figure 4, where the values of the pathway-

dependent (sY), feedforward (sX) and pathway-independent (sS)

influences allow for a quantitative interpretation of pathway

function. A complete list of the calculated influence parameters

and 95% confidence intervals is in Table S4.

Strikingly, the quantities of the influences parameters demon-

strate that the effect of galactose is not mediated through a single

gene or pathway step. Most inferred pathways have significant

repressing feedforward and pathway-independent influences (95%

confidence), resulting in incoherent feedforward architectures. In

the context of metabolic pathways, such influences quantify the

effect of accumulation of a toxic metabolic intermediate produced

by the upstream enzyme, or by the loss of a beneficial

intermediate. For example, the effect of galactose accumulation

[30] is captured by the pathway-independent influence of the

signal in pathways where GAL4 is the upstream gene (sS = 20.6).

Accumulation of the second metabolite in the pathway, gal1P, can

be attributed to the feedforward influence in the GAL1/GAL7

pathway (sX = 22.3). This accumulation is less profound when

captured by the feedforward influence in the GAL1/GAL10

pathway (sX = 21.7), presumably because alternative sources of

UDPglu are available to convert gal1P to glu1P in the absence of

Gal10p ([31,32], see Figure 2). The effect of imbalance in UDPglu

pools can be attributed to the feedforward influence in the GAL10/

GAL7 pathway (sX = 20.6). Moreover, the effect of catabolite

repression is captured by the feedforward influence in the GAL4/

GAL1 pathway (sX = 21.2). Interestingly, fitness is more severely

affected by perturbation of toxic galactose-derived metabolites

(e.g., sY = 3.6 in pathways where GAL7 is the downstream gene)

than complete disruption of galactose metabolism (i.e.,sY = 0.4 in

the GAL3/GAL4 pathway).

Expression traits identify transcriptional regulators of the
GAL network

We applied the step-wise inference method to reporter expression

traits exactly as described for fitness phenotypes (Figure 5). Single

deletion expression traits, measured in the presence and absence of

galactose, are shown in Figure 5A. The traits of the gal1D and gal6D
mutants are indistinguishable from that of the wildtype strain,

suggesting that these genes do not contribute to transcriptional

regulation of the reporter. Most of the other GAL genes have a

statistically significant impact. Notably, the deletion of GAL3 or

GAL4 causes complete pathway deactivation (decrease by 98%) in

the presence of galactose. This identifies GAL3 and GAL4 as central

network activators. Similarly, the central regulatory function of

GAL80 is reflected by the phenotype of the gal80D mutant, which

displays a 100-fold increase in expression in the absence of galactose.

Surprisingly, the deletions of many structural genes (GAL2,

GAL7 or GAL10) also cause a statistically significant decrease of

reporter expression under inducing conditions. The decrease in

the gal7D and gal10D strains could arise from the severe growth

defects of these mutants [33]. We ruled out this possibility by

examining reporter expression driven by the constitutive PACT1

promoter. For both the gal7D and gal10D mutants, PACT1 reporter

expression was increased rather than decreased compared to the

Quantitative Epistasis Analysis
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wildtype (data not shown). This suggests that GAL7 and GAL10 are

involved in modulating regulatory signals within the network.

Expression traits reveal regulatory pathways and
interactions

By applying the step-wise inference method to reporter

expression traits, we identified 17 signal-dependent genetic

interactions (Figure 5B, Table S3), of which 9 were epistatic and

consistent with a hypothetical pathway. The resulting regulatory

relationships inferred are shown by means of an acyclic graph in

Figure 5C.

Performing transitive reduction of the graph in Figure 5C allows

for full recovery of the core regulatory branch of the network, in

the form of a linear cascade containing GAL3, GAL80 and GAL4

(Figure 5D). Notably, the expression phenotypes of the gal3D and

gal4D mutants are indistinguishable, and hence the order between

GAL3 and GAL4 cannot be inferred based on this relationship

alone. However, it can be deduced from the inferred relationships

between GAL3 and GAL4 with GAL80. While GAL3 is correctly

inferred to repress GAL80, GAL80 is correctly inferred as a

repressor of GAL4. Correspondingly, GAL3 must be upstream of

GAL4, and act on GAL4 indirectly through GAL80. The analysis

also correctly identifies GAL4 as an activator of GAL2, GAL7 and

GAL10, implicating both GAL3 and GAL80 as regulators of these

genes (Figure 5D).

The analysis also identifies epistatic relationships among the

structural GAL genes. Specifically, GAL2 is identified as an

upstream activator of GAL10, and GAL1 is identified upstream of

GAL10. The pathway involving GAL1 and GAL10 cannot be

inferred because the deletion of GAL1 has no differential impact

(dX = 0). However, order can be inferred since deleting GAL1

completely masks the effect of deleting GAL10. This implies that a

metabolic intermediate downstream of GAL1 and upstream of

Figure 4. Quantitative pathway inference using fitness traits. Relationships inferred between the signal (gal) and GAL genes are shown with
values of their signal-specific influences (95% confidence) on fitness (T). Pathways involving GAL6 are omitted.
doi:10.1371/journal.pcbi.1002048.g004
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GAL10 has a regulatory role in the GAL pathway. With this in

mind, the interaction between GAL2 and GAL10 may be explained

by a reduced rate of galactose influx, preventing the concentration

of this regulatory metabolite from being significantly perturbed.

Pathway influences on expression distinguish major and
minor regulatory pathways

In Figure 6, we depict the significant contributions of the signal-

specific influences in pathways inferred based on the expression

trait. A complete list of mean influence parameters and 95%

confidence intervals is given in Table S5.

In contrast to the analysis of fitness traits, we infer that the effect

of galactose on reporter expression is mediated almost exclusively

through the linear cascade involving GAL3, GAL4, and GAL80.

The pathway-independent influence sS is negligible or small in

pathways where GAL3, GAL4 or GAL80 is the upstream gene

(Figure 6). In addition, GAL3, GAL4 and GAL80 are identified as

forming a cohesive regulatory unit since the feedforward influence

sX is negligible in all pathways involving these genes. The

pathways involving GAL2 and GAL10 provide the contrast to these

observations. The GAL2/GAL10 pathway mediates only a minor

effect, and the feedforward influence is consistently high for

pathways where GAL2 or GAL10 is the downstream gene.

Surprisingly, the regulatory effect mediated through GAL7

(sY = 0.4) is less than that mediated through GAL10 (sY = 1). The

hypothesis that gal1P has regulatory functions would predict the

opposite result since gal1P should accumulate to higher levels in

the gal7D mutant than in the gal10D mutant (see Figure 2).

Correspondingly, it seems likely that the perturbed regulatory

metabolite is UDPglu or UDPgal rather than gal1P.

Most known network interactions are recovered without
false positives

A critical step in our method is the identification of signal-

dependent epistasis (Step 2) where the signal-dependent effect of

gene deletion is negated by the signal-dependent genetic

interaction. In the above analysis, we identify signal-dependent

epistasis by evaluating if the difference between the measured (dI)

and predicted (2dX or 2dY) values of the interaction term is

smaller than a threshold value ethr that we extract from the

experimental data. Specifically, the threshold is defined by the

relative standard error averaged over all significant interactions

terms. The values of ethr used in the analyses of fitness and

expression traits were 13% and 20%, respectively.

To formally address the accuracy of our method, we

systematically tested how varying the threshold used to identify

Figure 5. Analysis of reporter expression traits. (A) Relative traits for single GAL gene deletions, in presence (red) and absence (blue) of
galactose. Asterisk marks significant effect (t-test p-value ,0.05). (B) Signal-dependent genetic interactions (green: dI.0, red: dI,0, t-test p-value
,0.05). (C) Inferred causal relationships. (D) Transitive reduction of the network in (C).
doi:10.1371/journal.pcbi.1002048.g005
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epistasis impacts our inference. Notably, this is the only step in the

algorithm that has a significant effect on the false positive rate.

True epistatic interactions were predicted from the known GAL

network topology (Figure 2), and consist of all well-established

direct and indirect interactions between the GAL genes, including

the four feedback loops (Gal4p activates Gal2p, Gal3p and

Gal80p, and Gal7p is upstream of Gal10p).

The first two panels in Figure 7 demonstrate the effect on the

true and false positive rates of changing the epistasis threshold in

the analysis of fitness and expression traits, respectively. In both

cases, the false positive rate is zero for a broad range of threshold

values. False positives are only observed when the threshold

reaches ,50% for the fitness-based analysis (Figure 7A) and

,40% for the expression-based analysis (Figure 7B). In both cases,

the number of true positives plateau when the threshold is ,20%.

At this value of the threshold, the true positive rates for the analysis

of fitness and expression traits is ,60% and ,30%, respectively.

The reason a true positive rate of 100% is never reached is that

additional criteria are imposed. Specifically, epistatic interactions

are only inferred if a signal-dependent genetic interaction is

observed, and if the involved genes have statistically significant

effects when deleted individually (see Materials and Methods).

Additionally, as expected, none of the known feedback loops are

inferred.

To demonstrate the benefit of combining fitness- and

expression-based epistasis analyses, we show in Figure 7C the

true and false positive rates obtained by merging the results from

the two datasets. Additionally, in Figure 7D, we compare the

receiver operating characteristic (ROC) curves obtained from the

individual analyses, and when they are combined. In both cases, it

is apparent that considering both traits significantly improves the

number of true positive relationships inferred while keeping the

false positive rate low. Notably, when the threshold is kept below

20%, which is the case when it is extracted from the experimental

error, nearly 80% of the interactions are correctly inferred with no

false positives.

Discussion

We have developed a quantitative model to facilitate the

inference of causal relationships among genes functioning within

signal-responsive pathways. The model generalizes the framework

by Avery and Wasserman [8] where genes are strictly ON or OFF,

with no intermediate levels of activity. Our model allows genes to

have both signal-specific and signal-independent functions. It also

allows the signal to influence the trait independently of the two

genes, and the upstream gene to influence the trait independently

of the downstream gene.

We used the model to develop a method to infer signal-

responsive pathways from data generated in systematic gene

deletion experiments. In this method, we first identify signal-

dependent genetic interactions. This step is equivalent to recently

developed methods referred to as ‘sensitivity-based epistatic

analysis’ [23] or ‘differential epistasis mapping’ [24]. While the

former identifies signal-dependent interactions based on the

difference in mutant phenotypes in the presence and absence of

the signal, the latter identifies these interactions by examining the

change in genetic interaction strength caused by the signal. Next,

we identify interactions where deleting one gene masks the signal-

dependent effect of deleting the other. For these interactions, we

can infer gene order since the masked gene is always the

downstream gene when analyzing signal-dependent effects. Once

Figure 6. Quantitative pathway inference using expression traits. Relationships inferred between the signal (gal) and GAL genes are shown
with values of their signal-specific influences (95% confidence) on expression (T).
doi:10.1371/journal.pcbi.1002048.g006
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gene order has been established, we determine the causal

relationships within the pathway by matching the observed effects

of gene deletions to those predicted for different hypothetical

pathways.

When applied to experimental data obtained for the yeast

galactose utilization pathway, the method recovers close to 80% of

known causal relationships, with no false positives. The method

can also be used to extract novel quantitative information about

pathway function not made available by commonly used

approaches that identify undirected functional relationships from

fitness [12,15,24,34] or expression data [35,36]. For example, it

automatically quantifies the relative effect of the signal mediated

through parallel pathways, and the effect of the upstream gene

independently of the downstream gene. This information in turn

identifies pathway branch-points and provides weights to different

pathway steps.

Our method is not without limitations. Notably, it is only

applicable to data obtained using loss-of-function mutations, and,

therefore, cannot reveal the feedback loops that are critical for a

complete understanding of biological network function. Addition-

ally, it can only infer pathways wherein gene activity is regulated

by a single upstream factor. Further development is required to

determine how the method may be applied to other types of

pathways, including those containing functional and regulatory

redundancies, and other types of genetic perturbations, such as

partial loss-of-function, copy-number reduction and over-expres-

sion.

Network inference algorithms should in principle yield a concise

model that accounts for all experimentally observed linkages while

retaining only those corresponding to direct effects [36]. We

resolved the issue of indirect effects by computing the transitive

reduction [29] of the network containing all pairwise relationships.

This is a valid approach since we apply it only to epistatic

interactions that fully conform to our model. This restriction is

likely why we make no false positive inferences and have no

conflicts among the inferred interactions.

We anticipate that complex networks will contain more non-

epistatic than epistatic interactions. Battle et al. [7] recently

addressed this inference problem. In their approach, five types of

pairwise hypothetical relationships, representing both epistatic

and non-epistatic interactions, were used to generate putative

network models. Each gene pair was assigned a consistency score

based on the deviation of the observed double deletion

phenotype from that predicted by the hypothetical relationship

between the two genes. An optimization step was then applied to

find an optimal network model by minimizing a global network

Figure 7. Analyses of true (TPR) and false positive rates (FPR) for inference of causal relationships among GAL genes. (A, B) TPR
(circles) and FPR (diamonds) for analysis of fitness and expression, respectively. (C) TPR (circles) and FPR (diamonds) for combined analyses. (D)
Receiver operating characteristic curves for fitness, expression and combined analyses.
doi:10.1371/journal.pcbi.1002048.g007
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score, aggregating the individual consistency scores within the

network. We anticipate that our method can readily be

integrated into such an approach and used to identify signal-

dependent cascades and pathways within the global network

architecture prior to optimization. Correspondingly, we antici-

pate that our method will play a key role in the establishment of

quantitative network models from measurements of genetic

interactions.

Materials and Methods

Strains and plasmids
To conduct an epistasis analysis of the GAL network, a library of

36 strains harboring PGAL10-GFP or PACT1-GFP at the ade2 locus

and single or combinatorial deletions for all eight GAL genes was

generated in haploid yeast S. cerevisiae (BY4742 MATa his3D1

leu2D0 lys2D0 ura3D0, Open Biosystems). Briefly, the 1 kb region

upstream of GAL10 or ACT1 was PCR amplified, digested and

integrated upstream of GFP in a plasmid carrying HIS3 and an

ampicillin-resistance gene. Following integration into the ADE2

locus using a PCR-based gene replacement strategy [37], reporter

strains were selected by growth on yeast synthetic drop-out media

(SC) without histidine containing 6.7 g/L yeast nitrogen base

without amino acids (Wisent, Inc.), 1.92 g/L yeast synthetic drop-

out media supplement without histidine (Sigma), and 20 g/L agar

(Wisent, Inc.). Correct integration of each reporter construct was

confirmed by PCR. Thereafter, single gene deletion strains were

generated by replacing the corresponding loci with a Kanamycin

resistance gene (KanMX6, [38]). Single mutants were selected by

growth on SC without histidine and 0.3 g/L Geniticin (G418,

Wisent, Inc.), and confirmed by PCR. Double gene deletion

strains were generated from single deletion reporter strains, by

replacing the second loci with URA3. Double mutants were

selected by growth on SC agar plates without histidine and uracil,

and confirmed by PCR. Yeast strains were stored at 280uC in

yeast peptone dextrose (YPD) containing 10 g/L yeast extract and

20 g/L bacteriological peptone (Wisent, Inc.), supplemented with

2% (w/v) glucose (Sigma), 0.042 g/L adenine (Sigma), and 15%

(w/v) glycerol (Sigma).

Culture conditions for growth and reporter expression
measurements

The library of 38 strains (including wildtype and a control strain

lacking a reporter and deletions) were grown for two days at 30uC
under continuous shaking (250 rpm) in Yeast Peptone Raffinose

(YPR) media [26], and then stored for a maximum of four days in

liquid culture at 4uC for experimental purposes. In each replicate

experiment, 60 ml of 4uC stock cultures were used to inoculate a 96-

well deep well plate containing 400 ml fresh YPR. Inoculated

cultures were grown overnight (,18 h) at 30uC under continuous

shaking (250 rpm). Following overnight growth, the turbidity of

each culture was measured using a Victor3V plate reader

(PerkinElmer), and optical density (OD600nm) was adjusted to

,0.15 by adding the appropriate volume of overnight culture into

300 ml of inducing (YPR with 2% w/v galactose) or non-inducing

(YPR) media [26]. After 3 hours of growth, the optical density (OD)

of cultures was readjusted by dilution to an OD of ,0.02 in

inducing or non-inducing media, in a final volume of 750 ml.

Aliquots of 300 ml were taken from each media condition and plated

in a 100-well honeycomb microplate (Growth Curves USA) wherein

optical density was monitored over 22 h at 30uC using a Bioscreen

C Analyzer (Growth Curves USA). The remaining 450 ml-cultures

were kept at 30uC (250 rpm shaking) for 3 h, prior to expression

analysis by flow cytometry. Four replicate experiments were

conducted over a period of four days, for which growth rate and

expression data were acquired to generate replicate data (four

replicates for all combinatorial deletion strains, and eight replicates

for all single deletion strains, wildtype and control).

Quantification of growth rates
Optical density time courses were performed using a Bioscreen

C Analyzer (Growth Curves USA). Turbidity in a 100-well

honeycomb microplate was measured using a wideband filter

(450–580 nm) every 15 min for 22 h at 30uC, without shaking.

Growth rates were estimated by fitting OD values over time to an

exponential growth model using MATLAB. Fits were restricted to

OD values obtained within a window where reads are most

accurate (0.1.OD,0.4) and a time interval corresponding to the

timing of expression measurements conducted in parallel.

Quantification of reporter expression
PGAL10-GFP reporter gene expression was quantified in individ-

ual cells using a Beckman-Coulter FC500 flow cytometer. A total

of 60,000 events were collected for each sample and filtered using

a custom software script in MATLAB where a fixed elliptical

forward/side-scatter autogate was used to capture approximately

50% of the events. The fluorescence intensity (488 nm excitation,

510–550 nm emission) associated with these events was used to

generate representative expression distributions for each sample.

The means of these distributions were used as the reporter

expression trait.

Data analysis
Data analysis and pathway inference was conducted in

MATLAB. A fully annotated inference script and the full dataset

are available upon request. Replicate measurements of mean

reporter expression and growth rates were log2 transformed and

used to calculate experimental parameters quantifying the impacts

of single gene deletions and interactions, by multilinear regression,

as described in the results section. All significant single-deletion

impacts and signal-dependent genetic interactions were identified

using a p-value threshold of 0.05 (see Table S3).

To identify masking interactions, we calculated the absolute

relative difference between the measured values of dX or dY and dI,

using ei = |di+dI|/max|di,dI| for i = (X,Y) and compared these e
values to a set threshold ethr. We inferred that gene X masks Y

when eY#ethr and eX.ethr; that gene Y masks X when eX#ethr and

eY.ethr; or that the two genes are co-equivalent when eY#ethr and

eX#ethr. The mean relative standard error of all significant

interaction terms (dI?0, t-test p-value ,0.05) was used to define

ethr for a given trait dataset.

Influence parameters were calculated directly using experimen-

tally measured trait values using the definitions in Table 3.

Confidence intervals were obtained by estimating standard errors

from replicate data.
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Table S4 Influence parameters obtained from log2-transformed

fitness data. The means (m) and 95% confidence intervals (CI) of

influences calculated from a minimum of four experimental

replicate trait measurements are shown.

(DOC)

Table S5 Influence parameters obtained from log2-transformed

expression data. The means (m) and the 95% confidence intervals

(CI) of influences calculated from a minimum of four experimental

replicate trait measurements are shown.

(DOC)
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