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The discovery and analysis of cis-regulatory modules (CRMs) in metazoan genomes is crucial for understanding the
transcriptional control of development and many other biological processes. Cross-species sequence comparison holds
much promise for improving computational prediction of CRMs, for elucidating their binding site composition, and for
understanding how they evolve. Current methods for analyzing orthologous CRMs from multiple species rely upon
sequence alignments produced by off-the-shelf alignment algorithms, which do not exploit the presence of binding
sites in the sequences. We present here a unified probabilistic framework, called MORPH, that integrates the alignment
task with binding site predictions, allowing more robust CRM analysis in two species. The framework sums over all
possible alignments of two sequences, thus accounting for alignment ambiguities in a natural way. We perform
extensive tests on orthologous CRMs from two moderately diverged species Drosophila melanogaster and D.
mojavensis, to demonstrate the advantages of the new approach. We show that it can overcome certain computational
artifacts of traditional alignment tools and provide a different, likely more accurate, picture of cis-regulatory evolution
than that obtained from existing methods. The burgeoning field of cis-regulatory evolution, which is amply supported
by the availability of many related genomes, is currently thwarted by the lack of accurate alignments of regulatory
regions. Our work will fill in this void and enable more reliable analysis of CRM evolution.
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Introduction

Two-sequence alignment has been an indispensable tool in
the bioinformatician’s repertoire for nearly two decades now
[1,2]. With scientific interest swinging toward the noncoding
part of the genome, there has been a recent upsurge in
adapting alignment algorithms beyond the usual tasks of
identifying gene or protein orthologs. In the absence of the
relatively rigid organization of coding sequences, noncoding
sequences are often hard to align over moderate evolutionary
divergences. Even in cases in which sequence homology is
established on the scale of, say, a few hundred base pairs, the
actual alignment of these orthologous noncoding sequences
is ambiguous. This in turn impedes comparative analysis of
cis-regulatory sequences, which relies on an accurate knowl-
edge of base-level orthology. The natural response to this
challenge has been the proposal of probabilistic alignment
methods that can, for example, provide a confidence value on
any two bases being aligned (orthologous) without commit-
ting to any single ‘‘best’’ alignment. We shall see below some
of the successful manifestations of this idea.

A somewhat orthogonal line of research with respect to
noncoding sequence analysis has been the search for cis-
regulatory modules or CRMs (sometimes called enhancers) by
scanning for statistically significant clusters of transcription
factor binding sites, which in turn are detected by sequence
similarity to a priori known ‘‘motifs.’’ Discovery of CRMs has
played a key role in understanding gene regulation in
metazoa, especially the fruitfly [3] and the sea urchin [4].
Although the earliest genome-wide computational scans for
CRMs were based on counting high-quality matches to the

motifs [5,6], it was not long before probabilistic approaches
permeated this area, and efficient implementations of
Hidden Markov models (HMMs) led to CRM discovery with
high sensitivity [7,8]. The application of HMMs to CRMs
allows us to consider all possible ways of ‘‘parsing’’ a CRM as a
collection of binding sites interspersed with random bases,
while weighting each parse by a probabilistic score. It was
shown previously [9] how the HMM framework can be
integrated with multispecies comparison, in an algorithm
called ‘‘Stubb,’’ in order to improve CRM discovery. This is
achieved by using sequence alignment as a first step, and
modeling aligned binding sites by a stochastic model of
binding site evolution. One limitation of this algorithm is that
it assumes that the correct alignment can be computed (e.g.,
by using the alignment program LAGAN [10]) in its first step.
Here, we combine the two seemingly separate ideas

mentioned above—probabilistic alignment of two sequences
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and probabilistic analysis of CRMs—into an integrated
probabilistic framework. The new framework provides a
robust way to compare CRMs across moderate evolutionary
distances at which sequence-level regulatory changes are
prominent and tractable. We implement efficient procedures
for learning the parameters of the model, based on the
expectation-maximization (E-M) technique. Two programs
with related but somewhat distinct functionalities are made
available: (1) the ‘‘MorphMS’’ program predicts CRMs located
within a pair of orthologous sequences, whereas (2) the
Morphalign program constructs an alignment of two given
sequences and uses a novel display format to point out the
ambiguities in the alignment as well as the locations of
putative binding sites. Both programs require as input a set of
transcription factor binding motifs that the user is interested
in. All parameters of the model, except for the length of
CRMs to be predicted by MorphMS, can be automatically
learned from the data. The alignments produced by the
Morphalign program are viewable in the highly portable
HTML format, and both MorphMS and Morphalign are
available for download as source code (see Supplementary
Materials at our site http://veda.cs.uiuc.edu/Morphalign/
supplement/ (http://rd.plos.org. pcbi_0030216_0001).

We first use synthetic data to demonstrate that the new
probabilistic model, henceforth called the MORPH frame-
work, can lead to highly significant improvement in (1)
alignment accuracy on cis-regulatory sequences, as compared
to a state-of-the-art alignment program, and (2) binding site
prediction accuracy, as compared to an HMM-based program
(Stubb [9]) that works with a fixed alignment. We next apply
the framework to a comprehensive collection of CRMs in two
species of fruitfly—D. melanogaster and D. mojavensis—and
present our alignments and binding site predictions through
a Web interface. We demonstrate a remarkable improvement
in CRM prediction accuracy, for this dataset, over that from
the HMM-based Stubb program. We find that probabilisti-
cally summing over all possible alignments and using binding
sites during alignment provide a very different picture of

orthologous CRM relationships than existing approaches. We
show that this greatly affects the conclusions one draws about
binding site loss and gain between species. We expect the
MORPH framework to strongly impact future studies on cis-
regulatory evolution and binding site turnover.

Previous Work
Sequence alignment is an intensely researched topic with

several major achievements, and we refer the reader to [11]
for a review of this field. The highly popular, scoring
function–based alignment method of Needleman and
Wunsch [1] has a natural extension to probabilistic methods,
as shown by Holmes and Durbin [12]. They modeled align-
ment generation as a first-order Markov process involving
three states called ‘‘Match,’’ ‘‘Insert,’’ and ‘‘Delete,’’ with the
Match state generating aligned pairs of bases and the latter
two states emitting gap-aligned bases. This type of model,
called pair-HMM, has been used in a number of studies, with
differences in the model details. For example, the ProbCons
algorithm of Do et al. [13] uses the same Match, Insert, and
Delete states as in [12,14], but does not allow any direct
transitions between Insert and Delete states.
Another class of probabilistic methods, called statistical

alignment, uses an evolutionarily motivated stochastic proc-
ess of indels (insertions and deletions) to construct the
maximum-likelihood alignment. Earlier work in this class,
including TKF91 model [15] and its equivalent HMM
formulation [16], is based on a simple indel process, where
at each position, a single nucleotide is randomly inserted or
deleted following a Poisson process. Later work improves the
model by allowing insertions or deletions of multiple
nucleotides as a single event, and a pair-HMM approximation
of this complicated stochastic process has been used in
[17,18]. The main advantage of the pair-HMM and/or
statistical alignment methods is that the parameters—the
transition probabilities, indel length distribution parameter
(often assumed to be geometric), and sometimes the nucleo-
tide emission probabilities—can all be estimated automati-
cally from the input sequences, using maximum likelihood
method, without external training. We borrow the pair-HMM
framework in the alignment model of MORPH.
Our previously published probabilistic method called

Stubb [9] comes closest to how the MORPH framework deals
with cis-regulatory sequences from two species. As mentioned
above, Stubb first finds the optimal scoring alignment using a
standard alignment program such as LAGAN [10], and fixes
this alignment. It then uses a probabilistic model that
generates orthologous CRMs by transitioning among ‘‘motif’’
and ‘‘background’’ states, and sampling binding sites or
‘‘background’’ nucleotides (respectively) from appropriate
emission probability distributions. When generating aligned
positions, the orthology of binding sites is modeled using a
simple stochastic model parameterized by the known
sequence specificity (motif) of the binding sites. The MORPH
framework uses exactly the same model for generating
orthologous CRMs, except that the alignment is not fixed in
the first step, and is modeled probabilistically as explained in
the previous paragraphs.
One of the first attempts to couple alignment with binding

site predictions was made in the program CONREAL [19].
This program predicts binding sites from a given set of
position weight matrices (PWMs), and uses pairs of conserved
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Author Summary

Interspecies comparison of regulatory sequences is a major focus in
the bioinformatics community today. There is extensive ongoing
effort toward measuring the extent and patterns of binding site
turnover in cis-regulatory modules. A major roadblock in such an
analysis has been the fact that traditional alignment methods are
not very accurate for regulatory sequences. This is partly because
the alignment is performed independently from the binding site
predictions and turnover analysis. This article describes a new
computational method to compare and align two orthologous
regulatory sequences. It uses a unified probabilistic framework to
perform alignment and binding site prediction simultaneously,
rather than one after the other. Predictions of binding sites and their
evolutionary relationships are obtained after summing over all
possible alignments, making them robust to alignment ambiguities.
The method can also be used to predict new cis-regulatory modules.
The article presents extensive applications of the method on
synthetic as well as real data. These include the analysis of over 200
cis-regulatory modules in D. melanogaster and their orthologs in D.
mojavensis. This analysis reveals a significantly greater degree of
conservation of binding sites between these two species than will
be inferred from existing alignment tools.
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binding sites to serve as anchors in a traditional sequence
alignment algorithm. Recently, a method called EEL [20] has
been proposed to predict cis-regulatory sequences while
constructing sequence alignment at the same time, an
objective that overlaps with ours. It first scans the given pair
of orthologous sequences to find all putative binding sites,
and then applies the Smith-Waterman dynamic programming
algorithm to the sequences of binding sites. That is, the
binding sites are the basic units (symbols) to be aligned, not
nucleotides. The alignment parameters, in particular the
penalty for changed spacing between two adjacent pairs of
aligned binding sites, are estimated from external data. Our
probabilistic framework MORPH offers several important
advantages over such a method: (1) the uncertainty in
assigning binding sites is handled by using a probabilistic
model for CRM, so no cutoff is needed for determining
binding sites; (2) the parameters in the model are automati-
cally estimated; and (3) the ambiguity in alignment as well as
binding site annotation can be precisely quantified using
probabilities (see below). Additionally, MORPH simultane-
ously considers both background sequences and binding sites
for alignment, unlike EEL, which ignores the non-site
sequences.

Results/Discussion

Model
We begin by describing the probabilistic process (the

‘‘MORPH’’ model) that generates two orthologous sequences
(CRMs), given a set of transcription factor binding motifs in
the form of their PWMs [21]. A PWM specifies the probability
distribution of nucleotides at each position of the binding
site and is typically determined from multiple alignments of
experimentally characterized binding sites. Motif databases
such as TRANSFAC [22], JASPAR [23], and FlyReg [24] also
provide such PWMs.

Here, we provide an informal description of the MORPH
model, and leave the detailed description for Materials and
Methods. At the outer level of the model, we use a first-order
Markov process with three states: Match, Delete, and Insert.
The Match state corresponds to aligned positions and emits
two equal-length strings (one for each species). The Delete
and Insert states correspond to unaligned positions in either
species and emit a string that will be appended to the first or
second species’ sequence, respectively. Thus, this outer level
of the model generates alignments with blocks of aligned
positions separated by unaligned strings in either or both
species.

The string emitted in any of the three states of the above
process is chosen by another probabilistic process, which
models the interspersed arrangement of binding sites and
non-binding ‘‘background’’ sequence in the CRMs. This
process first chooses a particular motif and samples a string
from the probability distribution prescribed by that motif
(PWM). In the Match state, the sampled string is ‘‘evolved’’
using an evolutionary model to obtain two related strings that
are then emitted. The motif choices available include all
input PWMs as well as a single-column ‘‘background’’ PWM
that models random sequence.

The model parameters include all transition probabilities
among the Match, Insert, and Delete states, as well as the
transition probabilities into each motif state. These param-

eters are trained using an E-M strategy employing dynamic
programming for efficient calculations. For the two evolutio-
narily related strings emitted from a Match state, there is a
model parameter representing evolutionary divergence of
the species. This is either user-specified (e.g., by using the
PAML package [25] to estimate neutral substitution proba-
bilities), or it can be automatically learned from the data.
A note regarding the semantics of the alignment generat-

ing process is in order. In previous work on probabilistic
alignment, such as Holmes and Durbin [12], all transitions
(among the three states Match, Insert, and Delete) are
allowed, except for Insert ! Delete. The pairwise alignment
is viewed here as comprising (1) blocks of successive aligned
positions and (2) unaligned sequences in both species
separating them. For the unaligned sequences between any
two blocks, there is no notion of the order in which they were
generated in the two species. Hence, we may arbitrarily
assume that the entire interblock sequence in the first species
was generated first, followed by the entire interblock
sequence in the second species. This is represented by a
Delete ! Insert state transition. The same semantics of
unaligned sequences are adopted in the MORPH framework.

Experiments with Synthetic Data
We first performed extensive experiments with synthetic

datasets, where ‘‘orthologous CRMs’’ were generated artifi-
cially. Testing on synthetic data has become a common
practice in evaluation of bioinformatics algorithms today,
offering the following advantages: (1) the correct answers are
known in synthetic data, (2) the datasets are created with
complete control over different aspects of the signal strength,
and (3) large numbers of datasets can be obtained. Therefore,
synthetic datasets allow us to evaluate and compare various
algorithms, and gain insights into how such comparisons
depend on different aspects of the data. Here, we obtained
synthetic ‘‘orthologous CRMs’’ by sampling from the MORPH
probabilistic model. A set of seven PWMs, corresponding to
transcription factors involved in early development in
Drosophila, were included in the model, and their motif
transition probabilities were set to pi¼ 0.01. The parameters
lI and lD, which determine the length distribution of
unaligned sequences (Materials and Methods), were set to
be equal and to range between 0.2 and 0.8, in increments of
0.1. The parameter l, which is related to the length
distribution of aligned blocks, was varied between 0.05 and
0.20, in increments of 0.05. For each combination of lI (lD)
and l, called an ‘‘experiment set,’’ we obtained ten pairs of
sequences.
Improvement in alignment accuracy. In the first analysis, we

evaluated the accuracy of computed alignments by comparing
them with the true alignments. For each of the ten sequence
pairs in an experiment set, we counted what percentage of the
truly aligned positions are aligned by the computed alignment,
thus obtaining an ‘‘alignment sensitivity’’ that ranges between
0% (worst) to 100% (best). An ‘‘alignment specificity’’ was
similarly computed. These two scores were computed for the
popular alignment tool LAGAN, as well as for the Morphalign
program, with PWMs and the / (evolutionary divergence)
parameter being known and all other parameters learned from
the data. The Morphalign program computes a global align-
ment of two sequences using the MORPH framework. In this
exercise, we configured it to report the maximum likelihood

PLoS Computational Biology | www.ploscompbiol.org November 2007 | Volume 3 | Issue 11 | e2162177

Probabilistic Alignment of CRMs



(Viterbi) alignment (see ‘‘Morphalign’’ in Materials and
Methods). The alignment parameters (lI, lD, and l) and motif
transition probabilities (pi) are automatically learned by
Morphalign for each sequence pair. Figure 1 compares the
alignment sensitivity and specificity of these two alignment
methods for all sequence pairs in experiment sets having lI¼
lD¼0.2, and different values of l. We see a clear and consistent
improvement in alignment accuracy (both sensitivity and
specificity) when using Morphalign (and PWM knowledge),
compared to LAGAN, with the improvement being more
pronounced as the aligned blocks get shorter (larger l). The
same trend is seen for other values of lI (¼ lD) (unpublished
data). This test therefore shows us how we may get more
accurate alignments of orthologous regulatory sequences if we
know the relevant binding site motifs and exploit them within
the MORPH framework. We also repeated these tests on
synthetic datasets generated by a simple evolutionary model
that is different from the MORPH probabilistic model. We
find again, as shown in the Supplementary Materials at ((http://
rd.plos.org. pcbi_0030216_0001), that the Morphalign pro-
gram provides significantly greater sensitivity and specificity
of alignments than LAGAN run with default parameters.
Details of the new simulation program, which is based on the
Dawg program [26], are also are provided in the Supplemen-
tary Materials at (http://rd.plos.org. pcbi_0030216_0001).

Improvement in binding site prediction. In the second
analysis, we investigated whether use of the probabilistic
model of alignment improves binding site prediction over
that from using a fixed alignment, as in Stubb [9]. Given the
true locations of the binding sites, and the predicted
locations from an algorithm, it is straightforward to compute
the nucleotide-level sensitivity and specificity of predictions.
(This computation was done based on sites in only one of the
‘‘species’’.) As in the previous section, these scores were

computed for each of the ten sequence pairs in an experi-
ment set. We compared the performance of Morphalign with
that of Stubb (in the two-species mode)—both algorithms
were given all known PWMs and thus are run with the same
prior knowledge; whereas Stubb uses a preprocessing align-
ment step (based on LAGAN), Morphalign considers all
possible alignments probabilistically. Each algorithm was
made to predict locations of binding sites using the same
confidence value (‘‘marginal probability’’ threshold; see
‘‘Synthetic Data Experiments’’ in Materials and Methods).
Figure 2 shows the sensitivity (2A) and specificity (2B) with
both methods for all sequence pairs in experiment sets having
lI ¼ lD ¼ 0.2 and different values of l. We find a clear and
consistent improvement in binding site prediction using
Morphalign, in terms of both sensitivity and specificity.
Morphalign’s specificity is always significantly better, and so is
its sensitivity. These results remain practically unchanged for
other values of lI ( ¼ lD) (unpublished data). This analysis
provides a compelling demonstration of the advantage of
using the Morphalign program for binding site prediction
from orthologous CRMs.

Comparative Analysis of D. melanogaster and D.
mojavensis CRMs
The recent sequencing of 12 Drosophila genomes (http://

rana.lbl.gov/drosophila/) and the recent publication of the
largest database of experimentally validated CRMs (REDfly
[27]) has opened up the opportunity for us to examine
orthologous regulatory sequences for their binding site
content and mutual similarity. We chose to apply the MORPH
framework on D. melanogaster and D. mojavensis, the latter
being one of the most-diverged species (from the former)
among the newly sequenced Drosophila genomes. These two
species are expected to exhibit common modes of cis-
regulation, using highly conserved transcription factors and

Figure 1. Alignment Sensitivity (A) and Specificity (B) of LAGAN and Morphalign

(A) Sensitivity and (B) specificity of LAGAN and Morphalign on experiment sets with simulation parameters lI ¼ lD ¼ 0.2 are shown. Diagonal lines
represent equal scores.
doi:10.1371/journal.pcbi.0030216.g001
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DNA binding affinities (‘‘motifs’’). At the same time, they are
diverged enough (;40 Myr) to demonstrate substantial
evolutionary flux at the binding site level. (See, for example,
the works of Moses et al. [28] and Emberly et al. [29], both of
which studied species with less divergence.) At the nucleotide
level, the orthologous sequences we analyzed had a median
percent identity of 52 (using LAGAN with default parame-
ters). High incidence of short tandem repeats, including
tandem repeats of binding sites, has been recorded in
Drosophila CRMs [30], and is likely to create alignment
ambiguities between the two species compared. For all these
reasons, application of our MORPH framework to ortholo-
gous CRMs in D. melanogaster and D. mojavensis holds the
promise of bringing out interesting evolutionary analyses of
cis-regulation.

Computational prediction of a large class of CRMs. We
collected a set of 208 experimentally verified D. melanogaster
CRMs from the REDfly database, spanning a broad spectrum
of biological processes. For each CRM, we included 1-Kbp
flanking sequence on either side, and extracted the ortholog
of this entire sequence from D. mojavensis. (These sequences
had a mean length of 2,702 bp in D. melanogaster, with a
standard deviation of 535.) We also collected a set of 53
PWMs from FlyReg [24]. Our goal was (1) to align these
orthologous CRMs and predict binding sites, orthologous or
otherwise, using the MORPH framework, and (2) to inves-
tigate whether the MORPH framework is able to predict
CRMs by using a fairly broad collection of known motifs.

It is expected that any given CRM is regulated by a small
subset of the 53 motifs, but such information is not available
for most of the CRMs. Therefore, we decided to use all 53
motifs in our initial analysis. As such, false positives are
inevitable during binding site prediction, and more specific
information about transcription factors (such as genetic
information on transcription factor–gene regulatory inter-

actions) is necessary to deal with these. A researcher
interested in analyzing a specific class of CRMs, e.g., those
involved in anterior–posterior patterning of the embryo (e.g.,
Schroeder et al. [3]), will use motifs corresponding to
transcription factors known to regulate that class, and can
expect to see significantly better predictions of binding sites.
We come back to this issue in ‘‘Alignment and Regulatory
Evolution in Two Specific Pathways’’ in Results/Discussion.
Our first exercise was to apply the MorphMS program on

each CRM sequence. This program (see ‘‘Algorithm and
Implementation’’ in Materials and Methods) slides a window
of length 500 bp (in shifts of 250 bp) on the input sequence,
and, for each position of this sliding window, reports two log-
likelihood ratio (LLR) scores. The LLR1 score compares the
likelihood (of the sequence data) under the MORPH model to
the likelihood under a null model in which only the
background PWM is used. The LLR2 score uses a null model
in which the Match state is not allowed, which means that the
two orthologous sequences are assumed to be generated
independently. To examine whether the LLR1 and LLR2
scores are able to discriminate CRMs, we considered all 208
CRMs as the ‘‘positive’’ class of sequences, and collected
equally many length-matched sequences (and their orthologs)
from randomly selected noncoding regions of the genome,
forming the ‘‘negative’’ class. We then asked how well the
positive class can be discriminated from the negative class,
based on these scores. In order to test the advantage offered
by the MORPH framework, we also used the LLR1 score
computed by the Stubb program. We chose to compare
MORPH performance with Stubb because (1) Stubb’s prob-
abilistic framework is very similar to MORPH, except that
Stubb relies on a ‘‘hard’’ alignment, and (2) Stubb has been
shown to improve CRM prediction using two fruitfly genomes
over its single-species version [31]. We also included in our
comparisons the simple strategy of using the percentage

Figure 2. Binding Site Prediction Sensitivity (A) and Specificity (B) with Stubb and Morphalign

(A) Sensitivity and (B) specificity with Stubb and Morphalign on experiment sets with simulation parameters lI ¼ lD ¼ 0.2 are shown.
doi:10.1371/journal.pcbi.0030216.g002
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identity (PID) between orthologous pairs of sequences as a
classifier between the positive and negative classes. Each
strategy (PID, Stubb, MorphMS LLR1, or MorphMS LLR2)
was used to score all sequences, and the number of ‘‘errors’’
(i.e., negative-class sequences) included in the top K scoring
sequences was plotted as a function of K (Figure 3A). Thus,
the y-axis in Figure 3A is proportional to the false-positive
error rate. The error rate expected by chance (50%) is shown
as a reference. We find that the MorphMS LLR2 score
provides significantly better discrimination than all other
scores. For example, in the top 50 predictions by LLR2 score,
there are only seven negative sequences and 43 positives. (The
second-best strategy in this range is PID, which reports 15
negative sequences, more than double the error rate of
LLR2.) This remarkable ability of the MorphMS LLR2 score

to discriminate regulatory sequences is even more significant
when we consider that our dataset includes CRMs from a wide
spectrum of biological processes, and not just the blastoderm-
stage embryonic segmentation pathway that has been the
focus of previous computational studies [5,8,32,33]. This
exercise also reveals that conservation information (LLR2)
is substantially more effective than information on binding
site clustering alone (LLR1 and Stubb) in our test scenario. In
fact, even the simple strategy of computing PID gives better
discrimination than LLR1 and Stubb. We believe that these
two methods (LLR1 and Stubb) are not able to better
distinguish CRMs from random sequences because they used
an extremely broad collection of motifs, and should provide
much improved results with small, pathway-specific sets of
motifs. The LLR2 score, on the other hand, is guided by the

Figure 3. CRM Prediction Accuracy on a Dataset with 208 ‘‘Positive’’ Sequences (CRMs) and 208 ‘‘Negative’’ Sequences (Random Noncoding Genomic

Fragments)

The y-axis shows the number of negatives included in a given number (x-axis) of top scoring sequences. Green line (diagonal) represents error rate
expected by chance.
(A) Predictions were made based on percentage identity (PID, purple line), Stubb score (blue), Morph LLR1 score (red), and Morph LLR2 score (black).
(B) Predictions were based on the total number of binding sites predicted by Stubb (blue) and Morph (black).
doi:10.1371/journal.pcbi.0030216.g003
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increased conservation levels and not just the motif cluster-
ing, and hence performs significantly better. The improve-
ment it brings over the PID score shows that it helps to
measure conservation at the binding site level than at the raw
nucleotide level.

Next, we investigated the accuracy of binding site predic-
tions. Our synthetic data results have shown how MORPH can
predict binding sites with added sensitivity and specificity, in
comparison to Stubb. In the current dataset, MorphMS
predicted many more sites than Stubb (unpublished data).
However, it was not possible to directly assess which of the
methods is more accurate, since far too few binding sites have
been experimentally identified in these 208 CRMs. Never-
theless, we can get a high-level insight into performance by
framing the evaluation in a classification setting, as follows.
The idea is that the ‘‘better method’’ will predict more sites in
CRMs compared to random genomic segments, to the extent
that this differential prediction of binding sites may allow us
to classify CRMs from random sequences. Hence, we
considered the total number of binding sites predicted by
each method in each sequence, and tested which method is
better at discriminating the positive class (CRMs) from the
negative class (random genomic sequences) based on these
total site counts. We note that this is only an indirect way to
assess binding site prediction accuracy, and does not allow us
to evaluate individual site predictions. Figure 3B shows the
false-positive rate (as in the previous paragraph) when using
total site counts as the discriminating feature. First, both
MorphMS and Stubb show significant departure from the
random expectation. Moreover, MorphMS is consistently
better than Stubb in terms of the error rate, presenting
indirect evidence that its binding site predictions are more
accurate. If we believe this evidence, it would seem that proper
treatment of alignment ambiguities reveals many more
binding sites than Stubb’s hard alignment approach, a
conclusion that will be further corroborated in the next
section.

Alignment and Regulatory Evolution in Two Specific
Pathways

The above analysis was performed on CRMs spanning many
different pathways, using a very broad collection of motifs, to
get a relatively unbiased view of MORPH performance. We
next show results from two specific developmental pathways.
We collected two sets of CRMs from REDfly: ‘‘BLASTODERM.
A-P,’’ a set of 54 CRMs regulating anterior–posterior
segmentation at the blastoderm stage, and ‘‘MESODERM,’’ a
set of 46 CRMs involved in mesoderm specification. For each
set, we also collected a set of motifs (PWMs) for transcrip-
tion factors believed to be involved in that pathway—a
collection of ten and 18 motifs for the BLASTODERM.A-P
and MESODERM sets, respectively. (See Supplementary
Materials at http://rd.plos.org. pcbi_0030216_0001 for lists
of these CRMs and motifs.) For each dataset, the Morphalign
program (Materials and Methods) was used to align and
predict binding sites in the D. melanogaster and D. mojavensis
orthologs of each CRM. (The alignments were displayed using
the maximum expected accuracy alignment as backbone; see
‘‘Morphalign’’ in Materials and Methods.) We analyzed the
results of this exercise with respect to insights it provides
about evolution of CRMs, and how such insights differ from
traditional methods of evolutionary sequence comparison.

The complete set of alignments for both sets is available
online (see Supplementary Materials at http://rd.plos.org.
pcbi_0030216_0001), and will be a valuable resource for
biologists studying the evolution of these important sets of
CRMs, or of CRMs in general.
Morphalign highlights ambiguities in alignment. A distinct

difference of Morphalign alignments from traditional (non-
probabilistic) alignment programs is that ambiguities in the
alignment are explicitly pointed out. To quantify this aspect,
we asked what fraction of the positions in one species (D.
melanogaster) were aligned with marginal probability above a
threshold of 0.1 to two or more positions in the second
species (D. mojavensis). This measure, which we call the
alignment ambiguity fraction, is shown in Figure 4A. We find
the majority of the BLASTODERM.A-P CRMs to have
between 10% and 20% ambiguous positions by this measure.
One obvious source of alignment ambiguities is the presence
of short tandem repeats in the CRMs, whose high frequency
has been reported in [30]. We computed the separations
between positions that are aligned to the same position in the
other species, and found the median separation to be very
small (6 bp for BLASTODERM.A-P and 4 bp for MESO-
DERM), i.e., most ambiguities are ‘‘local.’’ We also computed
statistical significance of overlaps between ambiguously
aligned positions (the two or more positions in D. mojavensis
aligned to the same position in D. melanogaster) and tandem
repeat positions of the CRMs (predicted using TRF, the
Tandem Repeat Finder program [34]), using a hypergeomet-
ric test (p , 0.01). Of the 43 CRMs in BLASTODERM.A-P that
had over 10% alignment ambiguity, 14 CRMs had a
significant overlap of ambiguously aligned and tandem repeat
positions. Similar results were found in the MESODERM set.
This provides statistical evidence that short tandem repeats
play a large role in creating alignment ambiguities in CRMs.
Although the above observation points to short repeats as a

source of alignment ambiguity, we also found ambiguously
aligned positions separated by relatively large distances
within the CRM. (That is, position a in one species aligned
to two different positions b and c in the second species, with b
and c being separated by a large distance.) For this, we looked
at contiguous stretches of ten or more ambiguously aligned
positions (in one species), and measured the distance between
their two aligned regions in the other species. Twenty percent
of such cases had separation more than 10 bp (i.e.,
subsequence a aligned to subsequences b and c that are
separated by more than 10 bp). This suggests that these
alignment ambiguities are the result of mechanisms other
than tandem repeats, or that insertions have happened since
the tandem repeat was created that have significantly
separated the alternative alignable regions.
Morphalign alignments are different from conventionally

obtained alignments. LAGAN [10] is a popular tool for
pairwise sequence alignment, and was therefore a natural
choice with which to compare the Morphalign alignments.
We first note that LAGAN alignments crucially depend on the
user-specified ‘‘gap penalty’’ parameters, whereas Morphalign
has no such parameters and automatically learns the ‘‘best’’
parameter values to use. We therefore compared the align-
ments from Morphalign to those from running LAGAN with
different values of the gap opening penalty. The ‘‘Agreement
score’’ used to compare two alignments is defined as the
number of positions of the first species that are identically
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Figure 4. Morphalign Alignments: Differences from Alternative Alignment Methods

(A) For each CRM in the BLASTODERM.A-P set, the fraction of the D. melanogaster sequence that was ambiguously aligned (to two or more positions in
D. mojavensis) was computed. The figure shows the histogram of these alignment ambiguity fractions for the set.
(B) Median of alignment agreement scores between output of Morphalign and output of LAGAN (run separately with a range of gap opening penalties)
for CRMs in the BLASTODERM.A-P (blue) and the MESODERM (red) sets.
(C) Histogram of alignment agreement scores between Morphalign and its no-motifs version, for the BLASTODERM.A-P set of CRMs.
doi:10.1371/journal.pcbi.0030216.g004

PLoS Computational Biology | www.ploscompbiol.org November 2007 | Volume 3 | Issue 11 | e2162182

Probabilistic Alignment of CRMs



aligned in both alignments. As seen in Figure 4B, the LAGAN
alignments are very different from Morphalign alignments
(median agreement score less than 65% for both datasets,
across the board). This demonstrates that using a probabil-
istic framework for pairwise alignment, along with binding
site predictions, gives a very different picture of sequence
similarities from that obtained using a traditional alignment
tool such as LAGAN, regardless of the gap parameters.

We also compared the Morphalign alignments to those
obtained by running the same program without any motifs,
i.e., a probabilistic alignment program that does not predict

binding sites in the process of alignment. This differs from
LAGAN in its probabilistic nature and the fact that alignment
parameters are learned automatically from the data. Figure
4C shows the histogram of agreement scores between these
two alignment methods for CRMs of the BLASTODERM.A-P
set. (Similar results were obtained for the MESODERM
dataset; unpublished data.) Majority of the CRMs show high
alignment agreement (46/54 above 70%), whereas three (hairy
stripe 7, hairy stripe 6, and slp1 A) show less than 50%
agreement. The latter are of particular interest to us, since
these are where using binding site predictions made the

Figure 5. Examples of Difference in Alignments Produced by Morphalign and Its No-Motifs Version, for the hairy stripe 6 enhancer

Each panel shows one example, with the Morphalign alignment at the top of that panel and the motif-agnostic alignment at the bottom. D.
melanogaster is shown as the top sequence in an alignment. Vertically aligned positions are shown in blue if they are identical, in black otherwise. Red
lines indicate aligned positions, with their thickness proportional to confidence (marginal probability) of that positional alignment. Only positional
alignments with confidence greater than 0.1 are marked by red lines. (Note that one position may align with multiple positions in the other alignment.)
Morphalign additionally shows predicted binding site locations with blue bars (whose height represents confidence level), and the motif names in
green characters.
(A) The red boxes show a predicted Kruppel site that is entirely unaligned by Morphalign, but is poorly and ambiguously aligned by the motif-agnostic
alignment. The green box shows a similar situation.
(B) A very well-aligned block with conserved Kruppel sites is found by Morphalign, but the sites are clearly separated in the motif-agnostic alignment.
(C) A DStat site is aligned between the two species (by Morphalign). The no-motifs alignment conspicuously separates these potentially orthologous
sites.
doi:10.1371/journal.pcbi.0030216.g005
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greatest difference to the alignments. We scrutinized the
hairy stripe 6 CRM to find the source of poor agreement
(42%) between Morphalign and its ‘‘no-motifs’’ version.
Figure 5 shows several interesting differences between the
alignments. Figure 5A shows two binding sites of Kruppel
(red and green boxes) that are present in D. melanogaster and
not in D. mojavensis, and are unaligned in the Morphalign
alignment (top), but have been aligned with several gaps in
the no-motifs version. Figure 5B shows a highly conserved
binding site for Kruppel (red box) being aligned by the
former method, but unaligned or erroneously aligned by the
latter method. Figure 5C shows a strong match to the DStat
motif (red box) in D. melanogaster being aligned to a weaker
match in D. mojavensis, as per the Morphalign program. These
seemingly orthologous DStat sites are not aligned by the no-
motifs version of the program. Thus, manual inspection
suggests that Morphalign, using motif information, is able to
identify (potentially) orthologous binding sites even when its
no-motifs version cannot.

Morphalign presents a different picture of binding site loss
and gain. A question that many researchers are interested in
is the evolutionary dynamics of binding sites in CRMs: to what
extent are binding sites conserved between species, and how
do their evolutionary rates compare to various ‘‘neutral’’
rates? An indispensable component of such studies is the
alignment of orthologous CRMs, to find conserved and non-
conserved binding sites. Typically, this step is done using
traditional alignment programs such as LAGAN, which is
acknowledged to be a weak link in the analysis, and is
sometimes supplemented with a manually performed realign-
ment step. Morphalign, with its integrated view of binding
site prediction and evolutionary events (indels and substitu-
tions), is therefore likely to help produce a different and
perhaps more accurate picture of binding site evolution.
Here, we present evidence that the picture presented by
Morphalign alignments is indeed very different from what
LAGAN alignments suggest.

We used a well-characterized PWM of the Bicoid tran-
scription factor, predicted all binding sites above a threshold
in the D. melanogaster BLASTODERM.A-P set, and asked how

many of these sites were (1) aligned to a D. mojavensis site also
above the PWM match threshold (see ‘‘D. melanogaster and D.
mojavensis Comparisons’’ in Materials and Methods), (2)
aligned to a site below threshold, and (3) unaligned. We
examined these numbers using Morphalign alignment, as well
as with LAGAN alignments that used a wide range of gap
penalties. There is an expected tradeoff between sensitivity
and specificity here: LAGAN alignments with a high gap
penalty will tend to produce more aligned regions, and hence
align more binding sites (of D. melanogaster), but at the cost of
aligning sites that are not ‘‘truly’’ orthologous. One way to
control for this is to compare alignments that overall align
similar fractions of the CRMs (or numbers of binding sites),
and then check what fraction of the aligned binding sites are
conserved (i.e., match PWM above threshold) in the second
species. If we assume that most alignable binding sites are
functional in both species (i.e., infrequency of lineage-specific
selection), the better alignment should have more of its
aligned binding sites conserved. Indeed, Figure 6A shows that
all but one of the LAGAN runs (blue diamonds) differ
substantially from Morphalign in terms of the fraction of D.
melanogaster sites aligned. Only the LAGAN run with the
lowest gap penalty (green diamond) agreed with Morphalign
(red circle) with respect to this measurement. However, as
Figure 6B shows, this run of LAGAN (green diamond) was
significantly different from Morphalign (red circle) in terms
of the fraction of aligned sites that were above threshold in
both species. Both programs align a total of approximately
160 sites (Figure 6A), but Morphalign aligned 87 of these sites
with potential sites in D. mojavensis, whereas LAGAN (with
lowest gap penalty) had only 55 of the 160 aligned sites
conserved in the second species, suggesting a much higher
rate of binding site loss or gain. Another way to look at these
results is simply to count what fraction of the sites aligned by
a program were conserved: although Morphalign finds this
fraction to be 53%, the LAGAN runs across the spectrum of
gap penalties projected a value of 28%–34% (data inferred
from Figure 6A and 6B). Thus we find, as expected, that
Morphalign has a stronger tendency to align conserved
binding sites in the two species, as compared to traditional,

Figure 6. A Total of 383 Binding Sites for the Bicoid Transcription Factor Were Predicted Computationally (Using a Threshold) in D. melanogaster CRMs

of the BLASTODERM.A-P Dataset

(A) The number of sites that were aligned, versus the number of unaligned sites, using different alignments: Diamonds ¼ LAGAN with varying gap
penalties; red circle¼Morphalign. (Green diamond represents LAGAN with lowest gap penalty.)
(B) Of the sites aligned by a method, how many were conserved (i.e., PWM match score above threshold) in D. mojavensis. Color code is as in (A).
doi:10.1371/journal.pcbi.0030216.g006
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motif-agnostic alignment tools like LAGAN. Studies on cis-
regulatory evolution, which often focus on the aligned
binding sites in multiple species, will therefore report very
different findings when using Morphalign and LAGAN,
respectively. Similar results were obtained with well-charac-
terized PWMs for other transcription factors such as Kruppel,
Hunchback, Caudal, Tailless, and DStat (unpublished data).

Having shown that Morphalign gives a different picture of
binding site evolution, we investigated whether this is
justified. We therefore analyzed some specific examples and
found that the difference is in part due to the ability of
Morphalign to overcome some alignment errors. Figure 7
(top left) shows the output of Morphalign on a portion of the
eve stripe 2 enhancer [27], with a pair of predicted Kruppel
sites aligned to each other. (Kruppel is a known regulator of
this CRM.) In contrast, in the LAGAN alignment, the
rightmost two positions of the site are not aligned to each
other, with the implication that approaches that look for
orthologous binding sites in a fixed alignment will fail to find
this orthologous pair. These two sites are not completely
aligned by LAGAN with any tested setting of the gap penalty
(unpublished data). The same scenario is observed for the eve
stripe 1 enhancers, with a pair of bicoid sites (Figure 7, top
right). (Bicoid is a known regulator of this CRM.) Note that in
both examples, the alternative alignment found by the motif-
agnostic method (LAGAN) is better than or as good as the
Morphalign method in terms of number of matches, suggest-
ing that this is going to be a common case of alignment
‘‘error,’’ especially when analyzing binding site evolution.

The next snapshot (Figure 7, bottom), from the ‘‘stumps_

hbr_early’’ CRM in the MESODERM set, shows another
merit of the Morphalign output: a binding site (for the Dorsal
transcription factor) that is present in one species and absent
in the other, yet is only partly aligned between the species.
Here, the MORPH framework has apparently considered (1)
alignments in which the entire site is unaligned and (2)
alignments in which the site is not predicted, but its first two
positions align between the two species. The final alignment
output by the Morphalign program is an ‘‘average’’ over both
types of alignments. This leads to the interesting scenario of a
binding site overlapping an aligned-block boundary. Looking
for binding sites entirely in aligned blocks or entirely outside,
as is done by the Stubb program for example, would not
reveal this site.

Conclusions and Future Work
We have presented a novel probabilistic framework for

two-species CRM prediction and analysis, combining the
established probabilistic (HMM-based) approaches to two
distinct problems: sequence alignment and CRM analysis.
Our implementation of this framework is available as source
code, and will particularly help researchers studying cis-
regulatory evolution. We have used synthetic data to show-
case the potential advantages of the new framework, in
improving alignment as well as binding site prediction
accuracy. We have demonstrated that CRM prediction is
greatly improved with the new method over existing methods
that use two-species data. We present the results of using our
new motif-aware alignment tool on two well-established
regulatory networks in Drosophila. These are publicly available
via a Web interface. We have used these alignments to

Figure 7. Snapshots from Alignments of Three CRMs: eve stripe 2 (Top Left), eve stripe1 (Top Right), and stumps_hbr_early (Bottom)

In the top two panels, the alignment above was produced by Morphalign, and the alignment below it was produced by LAGAN (with gap opening
penalty of 300).
doi:10.1371/journal.pcbi.0030216.g007
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demonstrate that the new framework highlights ambiguities
in the alignments, and produces alignments that are
significantly different from those using a traditional align-
ment program like LAGAN, or even a motif-agnostic version
of the same probabilistic framework. Finally, we have
demonstrated that our proposed method paints a very
different picture of binding site evolution, namely, one with
significantly less loss or gain of functionality among aligned
binding sites than projected by motif-agnostic methods. We
have showcased specific examples of why this difference
arises, and found the common source to be local misalign-
ments by the traditional methods, which are not aware of the
locations of potential binding sites. It is easy to appreciate
that such traditional methods will always make arbitrary
decisions when there are two alternative alignments with the
same score, and if a pair of orthologous binding sites falls at
the positions of alignment ambiguity, they may be misaligned.
When we use motif information, our decision is no longer
arbitrary (e.g., the example of Figure 7, top right panel),
especially in light of the common opinion that a good binding
site tends to be conserved evolutionarily.

The Insert and Delete states of the MORPH model are
somewhat misleading in their names. These states emit not
only the evolutionary insertions and deletions that happened
between the species, but also the orthologous regions that are
so diverged that they are better left unaligned. It may be
beneficial to model these two types of sequences (indels and
orthologous but highly diverged) separately, since they may
have distinct statistical properties. This is an interesting
direction for future work.

It is worth discussing here the two LLR scores (LLR1 and
LLR2) reported by the MorphMS program. The LLR2 score
contrasts the MORPH model with a null model in which the
sequences are assumed unrelated, and thus implements a
‘‘homology testing’’ approach. This is akin to methods
designed for identifying conserved noncoding sequences,
such as phastCons [35] and Regulatory Potential scores [36],
the difference being that MORPH explicitly accounts for
binding site occurrences in computing its LLR2 score.
Admittedly, in the tests discussed in ‘‘Computational Pre-
diction of a Large Class of CRMs’’ in Results/Discussion, in
which a large collection of 53 motifs was used for CRM
prediction, the distinction between LLR2 and these other
scores may be somewhat blurred; the distinction will be more
pronounced in the tests of ‘‘Alignment and Regulatory
Evolution in Two Specific Pathways’’ in Results/Discussion
where smaller, pathway-specific sets of motifs were used. On a
related note, we would like to point out that a possible way to
use the MorphMS scores would be to use the LLR2 score to
identify the highly conserved regions of the genome, and then
use the LLR1 score on these to identify putative CRMs that
have a significant clustering of binding sites in them.

An obvious line of future research is to combine pairwise
alignments into a multiple alignment of three or more
species. We may adopt ideas of consistency-based clustering
[13] in merging the marginal alignment probabilities from
separate pairwise alignments. Motif-based multiple align-
ments of CRMs from the several Drosophila genomes will prove
to be an invaluable resource for studies on binding site
turnover, such as the recent work of Moses et al. [28]. This, in
turn, will be crucial to our understanding of how regulatory

sequences evolve, and in computational prediction of addi-
tional regulatory sequences using comparative genomics.

Materials and Methods

Model. We first describe the probabilistic process (MORPH model)
for generation of two orthologous CRMs using given PWM motifs.

Alignment states. The main states of the model are Start, Stop,
Match, Delete, and Insert. Of these, the first two, i.e., Start and Stop
states, have no emissions, the Match state emits two strings of the
same length, the Delete state emits a string to be appended only to S1,
and the Insert state emits a string to be appended only to S2. For
clarity of exposition, we illustrate the HMM as in Figure 8A, with four
additional non-emission states ‘‘Pre-Start,’’ ‘‘Pre-Match,’’ ‘‘Pre-De-
lete,’’ and ‘‘Pre-Insert.’’ All allowed transitions and their probabilities
are shown in Figure 8A. Semantics of the nine states are explained in
Table 1. We note that the alignment is generated by alternating
between the Match state and the Delete/Insert states. That is, the
generated alignment will have blocks of aligned positions, separated
by unaligned strings in either or both species. The model does not
make any further discrimination of how the unaligned string between
two successive aligned blocks were formed. The interblock unaligned
string in the first species is generated, followed by that in the second
species. Hence, there is a transition from the Delete to the Insert state
(via Pre-Insert), but the reverse transition is not allowed.

The edges in Figure 8A show the probabilities associated with the
respective state transitions. Thus, the Match state has a l probability
of exiting to Pre-Delete and generating unaligned sequence in at least
one species. The Delete state has lD probability of continuing
generation of unaligned sequence in S1, whereas the Insert state has
lI probability of staying put. From the Start state, there is a lS
probability that unaligned sequences will be generated before the
first aligned block is formed. s2 is the termination probability from
the Pre-Match state. We can now form the transition probability
matrix for the main five states of the HMM, Start, STop, Match,
Delete, and Insert, as shown in Table 2. s1, s2, lS, lD, lI, and l are
parameters of the model that will be trained from the data, as
described later.

Motif states and emission probabilities. Once in a Match, Delete, or
Insert state, the process transitions to one of several available ‘‘motif’’
states in order to decide which string to emit (Figure 8B). The
available states include one state for each of the K input PWMs Wi, as
well as a ‘‘background state’’Wb corresponding to nonbinding sites of
unit length. All states are named by the motifs they represent:
fW1, W2, . . ., WK, Wbg, and are called the motif states. Each state has a
fixed probability pi of being chosen, called its motif transition
probability. Each state has its own emission probability distribution,
determined by the PWM Wi that the state represents. (The Back-
ground state represents a single-column PWM capturing background
nucleotide frequencies.) For motif states in Delete or Insert states,
the emission probability distribution is directly prescribed by the
respective PWM: the probability that stateW emits a string s of length
l (where lmust be the length of PWMW) is PrðsjWÞ ¼

Ql
i¼1 Wisi . Motif

states in the Match state emit two equal-length strings related by a
stochastic model of binding site evolution. (This is true also of the
Background motif state, if visited while in the Match state.) The
probability that state W emits strings s and t, each of length l (where l
must be the length of PWM W) is given by:

Prðs; tÞ ¼
Yl

i¼1
Wisi ð/Witi þ ð1� /Þdsi ti Þ ð1Þ

where djk is the Kronecker delta and / is the neutral substitution
probability between the two species. This model was used in our
earlier work [9,37] and is a special case of the Felsenstein 81 model
[38] with equilibrium frequencies given by the PWM W.

The motif transition probabilities fp1, p2,. . ., pK, pbg are param-
eters of the model, with the constraint

PK
i¼1 pi ¼ 1� pb, and are

inferred from the data. The evolutionary parameter / in Equation 1
is related to the expected conservation level in aligned sites. For an
aligned position whose emission probabilities in each species are
given by the probability distribution fa, we expect (from Equation 1)
/ 3ð1�

P
a2fA;C;G;Tg f

2
a Þ mismatches per position. Although Equa-

tion 1, as used in previous publications, interprets / as a neutral
substitution probability, here it is the effective neutral substitution
probability, conditional on the fact that the site survived during
evolution and was therefore aligned. We prefer to interpret / simply

PLoS Computational Biology | www.ploscompbiol.org November 2007 | Volume 3 | Issue 11 | e2162186

Probabilistic Alignment of CRMs



as a parameter that controls what fraction of aligned positions are
expected to be conserved.

Algorithm and implementation. We employ rigorous maximum
likelihood estimation of the model parameters s1, s2, lS, lD, lI, l, and
all pi’s. That is, the algorithm attempts to learn the values of these
parameters, collectively referred to as H, so as to maximize the

probability of generating the sequence data S given H. (The algorithm
used finds local maxima of the likelihood; see below.) Let T be a
particular ‘‘path’’ in the generative process, i.e., a sequence of
states that were visited in the generation of S. T is ‘‘hidden’’
information, hence the likelihood has to be computed by summing
over all possible T. In other words, we have to find H that maximizes
PrðSjHÞ ¼

P
T PrðS;TjHÞ. (The PWMs fW1, W2,. . ., WK, Wbg are

known parameters of the model, and are left out of this expression
for clarity.) We use an E-M approach to maximize Pr(SjH). This is an
iterative update algorithm that is guaranteed to improve the
likelihood Pr(SjH) in every iteration, until convergence to a local
optimum. In our case, the E-M strategy is implemented by adapting
the popular Baum-Welch algorithm for HMMs [14,39]. Adapting
the original Baum-Welch algorithm to our probabilistic model
involves considerable reformulation, and these calculations are
omitted here for clarity. Our algorithm belongs to the general
algorithmic paradigm of ‘‘dynamic programming,’’ akin to Needle-
man-Wunsch alignment, and has quadratic time complexity. In
particular, its running time is O(L2Klmax), where L is the length of
the sequence(s), K is the number of input PWMs, and lmax is the length
of the longest PWM.

Our implementation of the MORPH probabilistic framework
allows some additional features that the user may find useful.

Background. The user may specify separate background sequences
for the two species, for the purpose of training the background
motif Wb. This is motivated by the common observation that
orthologous genes may have very different nucleotide composition
in their respective regulatory regions. If this option is exercised,
the evolutionary model specified by Equation 1 (for background
positions) is no longer time reversible. The joint probability of seeing
base s in species 1 and base t in species 2 is now given by
Prðs; tÞ ¼ W ð1Þ

s ð/W
ð2Þ
t þ ð1� /ÞdstÞ, where W(1) and W(2) are the

background PWMs in the two species. Also, the user may specify
the ‘‘Markov order’’ of the background, in order to capture
neighboring nucleotide dependencies in typical sequences. For
example, a first-order Markov background captures dinucleotide
frequencies.

Figure 8. Hidden Markov Model Structure of the MORPH Model

(A): Transition probabilities among various states. Circular states have emissions, and octagonal states do not.
(B) Motif emissions from Match, Insert, and Delete states. For each, one of K motif states, or the background motif state is visited. In case of the Match
state, two aligned sites are emitted, whereas for the Insert and Delete states, only one unaligned site is emitted.
doi:10.1371/journal.pcbi.0030216.g008

Table 1. Semantics of the States of the HMM

State Semantics

Pre-Start This is the initial state of the process.

Stop This is the terminal state of the process.

Start Once in this state, the process must emit at least one non-empty

sequence.

Match In this state, two strings of equal length are emitted. This models

aligned positions in the pairwise alignment.

Pre-Match Once in this state, the process must either enter the match state

or terminate.

Delete In this state, one string is emitted, which is appended to S1. This

models positions that are gap positions of S2.

Pre-Delete Once in this state, the process must generate at least one

unaligned string, either from the Delete state or Insert state

or both.

Insert In this state, one string is emitted, which is appended to S2. This

models positions that are gap positions of S1.

Pre-Insert This state can only be entered if the process has just visited the

Delete state. The process has the option of generating more

unaligned sequence (from the Insert state), but may also

skip the Insert state.

doi:10.1371/journal.pcbi.0030216.t001
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Special Match state. The user has the option of specifying that the
Match state only emit non-background sites, i.e., when in the Match
state, the motif transition probability forWb is zero. For other PWMs,
motif transition probabilities (�pi ) in the Match state are scaled
versions of their respective values for the Insert and Delete states.
That is, �pi ¼ piP

j 6¼b pj
. This option may be useful when analyzing highly

diverged species in which one expects only binding sites to be
conserved and alignable.

Speedup. The E-M parameter estimation algorithm has quadratic
time complexity because it considers the possibility of every position
i in the first sequence being aligned with every position j in the
second sequence. The user may opt to have the algorithm consider
only those pairs of positions that are not too ‘‘far removed,’’ e.g., ji� jj
, 100. This option leads to a significant speedup of the algorithm,
with a negligible effect on accuracy. This is similar to the idea of band
alignment [40].

Estimation of the divergence parameter. By default, the evolutionary
parameter /, controlling the expected conservation level at aligned
sites (see ‘‘Motif States and Emission Probabilities’’ in Materials and
Methods), is user-specified. (The user may have an estimated value of
the neutral substitution probability based on existing packages such
as PAML [25].) We provide the option of having this parameter
heuristically estimated, by starting with the default value, calculating
the conservation level of aligned positions given the data, and
adjusting the / parameter based on these calculated conservation
levels.

The current implementation aligns a typical CRM of approximate
length 1,000 in a few minutes, running on a single processor
workstation.

MorphMS. The MorphMS program is designed for CRM prediction
from two-species data. Given two orthologous sequences, it scans one
of the sequences with a fixed-length window (in fixed-length shifts),
and for each such window, computes the boundaries of its
orthologous window in the other sequence by using a standard
alignment tool. Thus, a ‘‘hard’’ alignment is used in this first step of
detecting ‘‘orthologous window pairs,’’ after which the alignment
information is discarded. For each window pair, MorphMS uses the
MORPH model to compute the maximum likelihood parameters Hm.
It then computes two LLRs, by comparing this maximum likelihood
Pr(SjHm) to the likelihood under two suitable null models.

In the first score, called LLR1, the null model is the maximum
likelihood model under the constraint that all motif transition
probabilities pi, except that for the background, are zero. That is, the
first null model is the maximum likelihood model in the absence of
motifs. The score LLR1 therefore captures whether we can better
explain the data by allowing it to contain binding sites for the given
transcription factors.

In the second score, called LLR2, the null model includes all motif
transition probabilities as learnable parameters, but requires that the
Match state is not visited, i.e., the entire data is generated by a single
visit to the Delete state, followed by a single visit to the Insert state.
The LLR2 score measures how much of an improvement (to the
likelihood) comes from allowing the data to contain aligned sites. For
example, a window pair that was erroneously marked as orthologous,
and in reality consists of two completely unrelated sequences each
containing binding site clusters, will not receive a high LLR2 score.

In summary, the LLR1 score accounts for binding sites, whereas
LLR2 accounts for alignment. The MorphMS program reports the
LLR1 and LLR2 scores for every window pair, and leaves the analysis
of these scores to the user. Each of these scores, being an LLR, is

comparable across window pairs, implying that the user may choose
the top scoring window pairs as CRM predictions.

Morphalign. Morphalign is a pairwise alignment program for
orthologous CRMs that uses known PWM motifs and the MORPH
probabilistic framework. It is very similar to the MorphMS program,
except that it processes the entire input sequence instead of sliding a
window, and produces a graphical output at the end. It uses potential
binding sites to impose a higher-order structure on the sequences
and performs alignment on this higher-order structure. All possible
parses of each sequence into their higher-order structure are
considered and weighted probabilistically, as described in ‘‘Align-
ment and Regulatory Evolution in Two Specific Pathways’’ in Results/
Discussion. Moreover, in contradistinction to usual alignment
methods, Morphalign highlights the ambiguous parts of the align-
ment and quantifies them, thus providing a more complete picture of
alignment of two moderately diverged sequences.

The Morphalign program comes with a graphical visualization tool
that produces an HTML file (with embedded JavaScript code) that
may be viewed through any browser, making the visualization highly
portable. The most likely alignment (Viterbi solution of the HMM in
the MORPH framework) or the maximum expected accuracy align-
ment (explained below) forms the backbone of the display, and is
displayed in the usual alignment format with gaps and nucleotides.
For any pair of positions (in the two sequences), their marginal
alignment probability is shown (if above some threshold) by a colored
line whose thickness is proportional to the probability. This allows
nonaligned positions (in the backbone alignment) to be flagged as
being potentially orthologous. The alignment display is annotated by
presence of potential binding sites. The marginal probability of a
binding site for any particular transcription factor at any particular
position is shown by colored (blue) bars at the appropriate position,
as shown in Figure 5.

The user has two options regarding how to display the backbone of
the alignment (i.e., which position is shown vertically aligned with
which position). The Viterbi option uses the maximum likelihood
path through the HMM and the Match states that this path goes
through, to decide this backbone. Another option, which we have
found useful in practice, is to vertically line up all those pairs of
positions whose marginal alignment probabilities have the largest
sum. This is called the maximum expected accuracy alignment [12].

Data and experiments. Synthetic data experiments. The MORPH
probabilistic process was sampled from, with parameter values s1 ¼
0.005, s2 ¼ 0.005, and / ¼ 0.5. This resulted in sequences of median
length 487 bp. PWMs corresponding to Drosophila transcription
factors Bicoid, Hunchback, Knirps, Kruppel, Tailless, and Caudal and
the TorRE binding factor were used in the sequence generation
process. (PWM lengths varied between 9 and 15.) LAGAN was run
with its default parameters, as was done in the evaluations performed
by Pollard et al. [41]. Morphalign and Stubb were run with the correct
value of the evolutionary parameter / ¼ 0.5. Each of these two
programs outputs, for every position in a sequence, a ‘‘marginal
probability’’ that an occurrence of a binding site begins at that
position. We used a threshold of 0.1 on this marginal probability to
predict binding sites.

D. melanogaster and D. mojavensis comparisons. We started with a
complete list of 284 nonredundant (and nonoverlapping) CRMs from
the REDfly database [27], and retained only those 208 cases for which
the CRMs (with their 1-Kbp flank on either side) had clear orthologs
in D. mojavensis. We used a set of 53 PWMs based on the FlyReg
database [24] and the online resource maintained by Pollard (http://
rana.lbl.gov/;dan/matrices.html). These were all motifs that were
based on at least five verified binding sites from the FlyReg database.

Table 2. Transition Probabilities for Alignment States in the MORPH Model

State S T M D I

S 0 s1 (1 � s1)(1 � lS) (1 � s1)lSlD (1 � s1)lS(1 � lD)

T 0 1 0 0 0

M 0 (1 � l)s2 (1 � l)(1 � s2) llD l(1 � lD)

D 0 (1 � lD)(1 � lI)s2 (1 � lD) (1 � lI)(1 � s2) lD (1 � lD)lI

I 0 (1 � lI)s2 (1 � lI)(1 � s2) 0 lI

The five main states are as follows: D, Delete; I, Insert; M, Match; S, Start; and T, Stop.
doi:10.1371/journal.pcbi.0030216.t002
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Short tandem repeats in CRMs were predicted by running the
Tandem Repeat Finder (TRF) program of Benson [34] with
parameters: match ¼ 2, mismatch ¼ 3, indel ¼ 5, match probability
¼ 0.8, indel probability ¼ 0.1, minimum score ¼ 25, and maximum
period¼10. This finds approximate tandem repeats (with mismatches
and indels) of periodicity up to 10.

All runs of Morphalign on the real datasets were done so as to
output the maximum expected accuracy alignments (see ’’Morpha-
lign’’ in Materials and Methods), rather than the maximum likelihood
(Viterbi) alignment.

Binding sites for the Bicoid transcription factor (‘‘Morphalign
Presents a Different Picture of Binding Site Loss and Gain’’ in
Results/Discussion) were obtained as follows: the match score of any
string to the PWM was computed as usual by comparing the
probability of sampling the string from the PWM to the probability
of sampling it from background, i.e., the LLR score of the string. (The
background used was constructed from the nucleotide frequencies of
the CRM in which the string is located.) The maximum possible LLR

score for any string was computed, and all strings with an LLR score
at least 50% of this maximum were considered as binding sites for
Bicoid.
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