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Abstract

Progress in science depends on the effective exchange of ideas among scientists. New ideas can be assessed and criticized
in a meaningful manner only if they are formulated precisely. This applies to simulation studies as well as to experiments
and theories. But after more than 50 years of neuronal network simulations, we still lack a clear and common understanding
of the role of computational models in neuroscience as well as established practices for describing network models in
publications. This hinders the critical evaluation of network models as well as their re-use. We analyze here 14 research
papers proposing neuronal network models of different complexity and find widely varying approaches to model
descriptions, with regard to both the means of description and the ordering and placement of material. We further observe
great variation in the graphical representation of networks and the notation used in equations. Based on our observations,
we propose a good model description practice, composed of guidelines for the organization of publications, a checklist for
model descriptions, templates for tables presenting model structure, and guidelines for diagrams of networks. The main
purpose of this good practice is to trigger a debate about the communication of neuronal network models in a manner
comprehensible to humans, as opposed to machine-readable model description languages. We believe that the good
model description practice proposed here, together with a number of other recent initiatives on data-, model-, and software-
sharing, may lead to a deeper and more fruitful exchange of ideas among computational neuroscientists in years to come.
We further hope that work on standardized ways of describing—and thinking about—complex neuronal networks will lead
the scientific community to a clearer understanding of high-level concepts in network dynamics, and will thus lead to
deeper insights into the function of the brain.
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Introduction

Science advances human knowledge through learned discourse

based on mutual criticism of ideas and observations. This

discourse depends on the unambiguous specification of hypotheses

and experimental procedures—otherwise any criticism could be

diverted easily. Moreover, communication among scientists will be

effective only if a publication evokes in a reader the same ideas as

the author had in mind upon writing [1].

Scientific disciplines have over time developed a range of

abstract notations, specific terminologies and common practices

for describing methods and results. These have lifted scientific

discourse from handwaving arguments about sloppily ascertained

observations to precise and falsifiable reasoning about facts

established at a well-defined level of certainty. Well chosen

notation and systematization, from Linné’s classification of flora

and fauna, via the periodic system of the elements to Feynman

diagrams have widened the minds of scientists and continue to

induce new discoveries.

Matrix notation provides an illustrative example of the power of

notation. Consider a system of three differential equations

_xx~axzbyzcz

_yy~dxzeyzkz

_zz~lxzmyznz:

ð1Þ

Defining p1~x, p2~y, p3~z and A11~a, A12~b, etc., we can

write this more compactly as

_ppi~
X3

j~1

Aijpj for i~1,2,3: ð2Þ

Introducing matrix notation simplifies this further to

_pp~A:p, ð3Þ

with multiple advantages: the equation is much more compact,

since the summing operation is hidden, as well as the system size;

most importantly, the equation is essentially reduced to a simple

multiplication. This invites further exploration.
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From the study of one-dimensional differential equations, we

know that

_xx~ax ð4Þ

has the solution

x(t)~eatx0: ð5Þ

Comparing the shape of Eq. 4 to Eq. 3 immediately suggests the

following solution to Eq. 3

p(t)~eAt:p0, ð6Þ

with the formal definition

eAt~
X?

j~0

(At)j

j!
: ð7Þ

This formal solution can be made rigorous, and underlies the exact

integration method [2]. It is hard to see how the inspiration to

write down a solution such as Eq. 3 might have arisen from the

original form of the differential equations in Eq. 1.

Note that even though the notion and notation of vectors and

matrices is more abstract and, thus, more compact than the

original formulation of Eq. 1, it does not lose any detail. The

variables x, y, and z from the original system Eq. 1 are still

present, not as separate entities, but as components of the vector p.

The specific combinations of additions and multiplications are

embedded in the multiplication rule for vectors. To arrive at the

concise notation of Eq. 2 we must introduce the new mathematical

concept of vector spaces. This example illustrates how scientific

notation progresses together with scientific concepts.

Computational neuroscience lags behind mathematics and

other fields of science in standardization, expressiveness and

power of notation. We assess here the current scientific practice of

describing computational models of the brain. We focus on

network models built from large numbers of rather simple neurons

with an aim to test hypotheses on aspects of brain function.

Specifically, we study 14 papers chosen mainly from visual

neuroscience [3–16]; see Table 1 for a brief summary of the

models. Our selection of papers is by no means comprehensive,

although we have attempted to cover past as well as current work,

and to include a range of different approaches to the description of

neuronal network models.

A central motivation for our work is that sharing of materials,

methods, and data in the life sciences has received increased

attention in recent years, to a large part driven by developments in

molecular biology. The UPSIDE (uniform principle for sharing integral

Author Summary

Scientists make precise, testable statements about their
observations and models of nature. Other scientists can
then evaluate these statements and attempt to reproduce
or extend them. Results that cannot be reproduced will be
duly criticized to arrive at better interpretations of
experimental results or better models. Over time, this
discourse develops our joint scientific knowledge. A crucial
condition for this process is that scientists can describe
their own models in a manner that is precise and
comprehensible to others. We analyze in this paper how
well models of neuronal networks are described in the
scientific literature and conclude that the wide variety of
manners in which network models are described makes it
difficult to communicate models successfully. We propose
a good model description practice to improve the
communication of neuronal network models.

Table 1. Papers analyzed in this study.

Reference Abbr. Description

Brunel [3] B Unordered network of two populations of integrate-and-fire neurons with current-injecting synapses; random external input.

Destexhe et al. [4] D One-dimensional network with two layers of point neurons with several ionic currents and conductance based synapses.

Haeusler and Maass [5] HM Unordered six-population model of Hodgkin-Huxley-type neurons with conductance-based synapses with short-term
dynamics.

Hayot and Tranchina [6] HT Two-dimensional network with three populations of firing-rate neurons; spatiotemporally patterned input.

Hillenbrand and van Hemmen [7] HvH Model of corticogeniculate loops that tests if the visual cortex controls the spatiotemporal structure of cortical
receptive fields via feedback to the lateral geniculate nucleus.

Izhikevich and Edelman [8] IE ‘‘Whole brain’’ model covering several brain areas, each composed of layered two-dimensional networks of oscillator
neurons with plastic, conductance-based synapses.

Kirkland and Gerstein [9] KG Two-dimensional model of three layers of integrate-and-fire neurons with conductance-based synapses driven by
spatiotemporally pattered stimuli.

Lumer et al. [10] L Two-dimensional model of ten layers, with two neuron populations per layer; integrate-and-fire neurons with
conductance-based synapses.

Mariño et al. [11] M Two-dimensional model of two layers of Hodgkin-Huxley-type neurons with conductance-based synapses.

Saam and Eckhorn [12] SE Two-dimensional model of two layers of pulse-coding neurons.

Tao et al. [13] TA Two-dimensional two-layer model of integrate-and-fire neurons with conductance based synapses.

Troyer et al. [14] TR Two-dimensional network model with two populations of conductance-based integrate-and-fire neurons.

Vogels and Abbott [15] VA Unordered and one-dimensional networks of integrate-and-fire neurons.

Wielaard and Sajda [16] WS Two-dimensional two-layer model of integrate-and-fire neurons with conductance based synapses.

The table gives a brief overview of the type of model studied and assigns an abbreviation to each paper for reference in other tables.
doi:10.1371/journal.pcbi.1000456.t001
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data and materials expeditiously) doctrine proposed by the Committee on

Responsibilities of Authorship in the Biological Sciences of the National

Academies of Science (USA) defines the most comprehensive set of

rules for data sharing [17] and has been adopted by several leading

journals [18,19]. Sharing of experimental data has received

increasing attention in the neurosciences recently [20–23].

Sejnowski et al. [24] gave a fine account of the role of modeling

in neuroscience 20 years ago, when computational neuroscience as

a field just ‘‘took off’’. They characterized models as ‘‘provisional

framework[s] for organizing possible ways of thinking about the

nervous system.’’ Since then, modeling activity has multiplied, but

reflection about the modeling process has hardly kept up.

Computational neuroscientists are only now beginning to pay

increasing attention to the role of models and simulations, as well

as preconditions for the successful exchange of models, as

witnessed by recent workshops [25,26], collaborative reviews of

simulation software [27], and the development of software

providing common interfaces [28,29] and run-time interaction of

simulations on different simulators [30]. Most of these discussions

have been rather technical, though, and little attention has been

paid to the intellectual gain as part of the modeling process or to

the issue of how to convey models and simulations best in scientific

publications. Researchers in ecology, systems biology and

physiome modeling appear to be significantly ahead in these

issues [31–37]. Indeed, De Schutter [38] recently suggested that

computational neuroscience has much to learn from systems

biology.

The nature of neuronal network models
Philosophers of science have yet to develop a robust definition

and interpretation of models and simulations [39–42]. Most of that

debate focuses on models in physics, but Peck [31] gives an

interesting review of models and simulations in ecology, while

Aumann [32] thoroughly discusses requirements of successful

modeling of ecological systems; Wooley and Lin [43] give an

overview of modeling and simulation in biology. The only

comparable assessment of the role of models and simulations in

computational neuroscience is part of a book chapter by Clark and

Eliasmith [44]. A recent appraisal of the role of models in

neuroscience [45–47], based on a general reappraisal of the role of

computational models by Humphreys [48], has mostly focused on

connectionist models.

We shall not attempt to provide a general analysis of models and

simulations in computational neuroscience here. Our aim is more

practical: to promote standards for the description of neuronal

network models in the literature, to further sharing of knowledge

and facilitate critique. Thus, our focus is narrower yet than that of

Eliasmith and Anderson [49, Ch. 1.5], who proposed a

‘‘Methodology’’ of neural engineering. For our purposes, we

adopt a quite restricted working definition of a model:

A neuronal network model is an explicit and specific

hypothesis about the structure and microscopic dynamics of

(a part of) the nervous system.

Several aspects of this definition deserve note:

N The model must be explicit, i.e., all aspects of the model must be

specified.

N The model must be specific, i.e., all aspects must be defined so

detailed that they can be implemented unequivocally.

N The model specifies the structure (placement and type of

network elements; source, target and type of connections) and

dynamics of components (ion channels, membrane potential, spike

generation and propagation).

N The model does not describe the dynamics of the model as a

whole, which is an emerging property of the model.

The model is first of all a mental model formed in the brain of a

researcher. It is her hypothesis about the function of a part of the

brain. Heinrich Hertz expressed this idea first in his textbook

‘‘Prinzipien der Mechanik’’ in 1894:

‘‘We make for ourselves internal images or symbols of the

external objects, and we make them in such a way that the

consequences of the images that are necessary in thought are

always images of the consequences of the depicted objects

that are necessary in nature Once we have succeeded in

deriving from accumulated previous experience images with

the required property, we can quickly develop from them, as

if from models, the consequences that in the external world

will occur only over an extended period or as a result of our

own intervention.’’ (cited from [40]).

Scientific progress depends critically on the ability of neurosci-

entists to communicate models, i.e., hypotheses, among each

other: When Anna presents her model to Bob and Charlie—will

both build the same mental model in their minds as Anna? Or will

some nuances be lost, some aspects interpreted differently, some

parts misunderstood? Only a precise, unambiguous notation for

models will allow Anna, Bob and Charlie to discuss their

individual understandings of the model and thus to truly share

models. Efficient communication dictates that scientists should use

a common notation to describe their models, as it is demanding to

thoroughly acquaint ourselves with any advanced notation.

It is tempting to consider implementations of neuronal network

models in a specific simulator software as a sufficient model

description, as it is explicit, specific and describes structure and

dynamics. We believe this to be a fallacy. Implementations come

most often in the form of scripts or computer programs, which

tend to be difficult to reverse engineer: It is simply not possible to

infer the overall network structure from the bits and pieces of a

large script. Secondly, most simulation scripts rely on properties

hidden in a simulator, which may even change as a simulator

evolves over time. Translating a given implementation first to a

mental model and then to a second simulator software for

independent testing, opens for errors in both translation steps. We

believe that while scientific productivity benefits from sharing

simulation code through repositories such as ModelDB [50] and

standard languages such as NeuroML [51], implementations do

not fill the need for precise human-readable model descriptions in

the scientific literature. Based on experiences in systems biology,

Wimalaratne et al. [36] stress that it is crucial to identify

biophysical concepts as logical abstractions in order to create

meaningful and re-usable model implementations.

It is also worth mentioning that the translation of a

mathematical model into a computer program is lossy and

irreversible. The translation is lossy due to the finite precisions of

computers. For example, most real numbers cannot be represent-

ed on a computer. This is obviously problematic in the analysis of

chaotic systems where small errors have a big influence on the

state trajectories of the system. The translation is generally not

reversible, because the commonly used programming languages

are not accessible to formal analysis. It is generally not even

possible to prove that a function, implemented in a common

language such as C++, is correct. In some cases, one may even

Towards Reproducible Model Descriptions
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have to add equations to models in the computer implementation

to preserve stability and obtain results in agreement with

experimental observation [42,52].

While mathematical model descriptions can be treated with

formal methods, their computer implementations generally

cannot. This means that if we want to validate the claims about

a model, we must start from the description in the scientific

publication. If we start from the model implementation of the

authors, we can never refute that the model may be faulty or doing

something entirely different than what was claimed in the

publication. Taking a given implementation of a model or

hypothesis and simply executing it again does not constitute

independent testing, nor does it fulfill the criterion of falsifiability:

the same program run twice should yield identical results.

Methods

We shall now sketch key aspects of neuronal network model

descriptions: what is described where and by what means in the

computational neuroscience literature? This will introduce the

conceptual framework for the subsequent analysis of the papers

given in Table 1.

Components of model descriptions
A complete model description must cover at least the following

three components: (i) The network architecture, i.e., the composition of

the network from areas, layers, or neuronal sub-populations. (ii) The

network connectivity, describing how neurons are connected among

each other in the network. In most cases, connectivity will be given

as a set of rules for generating the connections. (iii) The neuron and

synapse models used in the network model, usually given by differential

equations for the membrane potential and synaptic currents or

conductances, rules for spike generation and post-spike reset. Model

descriptions should also contain information about (iv) the input

(stimuli) applied to the model and (v) the data recorded from the model,

just as papers in experimental neuroscience do, since a reproduction

of the simulations would otherwise become impossible.

Means of model descriptions
Neuronal network models are usually described by a combina-

tion of five means: prose (text), equations, figures, tables and

pseudocode. We shall discuss these in turn.

Prose is a powerful means of communicating ideas, intentions

and reasons. It is flexible and, if used carefully, precise.

Unfortunately, prose can easily—often unintentionally—become

ambiguous. Previous knowledge and ideas in the mind of the

reader will shape the reader’s understanding of a textual

description of a model and may lead to misunderstandings. Prose

that strives to be strictly unambiguous and provide all required

detail, on the other hand, will often be difficult to read.

Mathematical notation (equations) is compact and unambiguous.

Suitably chosen notation compresses complex relationships in

concise expressions, which allow for further manipulation in our

mind, as illustrated by the matrix exponentiation in the

Introduction. The now common mathematical notation emerged

alongside the great scientific achievements of Newton, Leibniz and

others between the 17th and 19th century [53,54]. Unfortunately,

not all mathematical notation is understood easily, and variations

in notation, as is common in computational neuroscience (cf.

Table 2), can present serious obstacles to effective communication.

Figures communicate the architecture and connectivity of

network models well, since vision is the dominating sense in most

humans. Most readers will first scan the figures in a paper to get an

overview of what the paper is about, using figure captions as a

guide, and read the full text of the paper only later. Thus, figures

and captions will shape the initial idea a reader forms about a

neuronal network model, and the ideas thus established may be

difficult to correct through textual description. Specifying complex

networks precisely in figures can be difficult, and disciplines

depending strongly on exact diagrams, such as mechanical and

electrical engineering, have developed precise standards for such

diagrams (see, e.g., [55]). Systems biologists have yet to arrive at a

definite standard for depicting their models, but they at least have

an open debate about graphical representations [56–59].

Tables are a useful means of organizing data, especially model

parameters. Data presented in table form is far more accessible

than data dispersed throughout a text, facilitating, e.g., compar-

isons of parameter choices between different papers and proof-

reading of simulation scripts against papers.

Pseudocode is often used to present algorithms in concise, human

readable form, without resorting to a specific programming

language. It will be an efficient means of communication only if

the pseudocode notation is sufficiently well established to be

unambiguous.

Placement of model descriptions
The placement of model descriptions within a scientific

publication depends on the focus of the paper and the journal it

is published in. Traditionally, model descriptions were either given

in the body text of a paper, or in an appendix. It has now become

common to give only brief model overviews in the paper itself, and

to relegate detailed model descriptions to supplementary material

published online, or even to place simulation code online in

community repositories such as ModelDB.

Results

We will now analyze model descriptions in the 14 papers listed

in Table 1. We study the placement of model descriptions in

publications first, followed by a general discussion of the means of

description used. We will then investigate in more detail how

Table 2. Membrane potential equations for some papers using conductance-based neurons.

Destexhe et al. [4, Eq. 2] Cm
_VVR~{gL(VR{EL){ITs{INa{IK{IAMPA{IGABAAR

Lumer et al. [10]
tm

dVi(t)

dt
~{VizE0{

X
j
gj (t)(Vi{Ej)

Tao et al. [13, Eq. 1] dvj

dt
~{gL(vj{VL){g

j
E (t)(vj{VE ){g

j
I (t)(vj{VI )

Vogels and Abbott [15, Eq. 2]
t

dV

dt
~(Vrest{V )zgex(Eex{V )zginh(Einh{V )

The model by Destexhe et al. is a Hodgkin-Huxley style neuron, all others are integrate-and-fire neurons.
doi:10.1371/journal.pcbi.1000456.t002
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specific aspects of models are described. Finally, we propose a good

model description practice.

Placement of description
Figure 1 summarizes the placement of the description of

architecture, connectivity and neuron and synapse models,

respectively, across all papers; for details, see Tables S1, S2, S3

in the Supporting files. All papers present at least an overview of

the model they investigate in the main body of the paper. Details

are frequently provided in supplementary material available

online, especially in more recent papers; appendices are used to

a lesser degree. Model descriptions in some papers are incomplete

in the sense that the authors refer to other publications for details

of neuronal dynamics in particular.

Within the body text of the paper, model descriptions were

placed in the ‘‘Methods’’ sections in 10 of the 14 papers surveyed,

even though the neuronal network model is in itself a product of

significant scientific analysis and synthesis [32]. As such, it would

rather belong in the ‘‘Results’’ section of a paper. Whether the

placement of the model description in the ‘‘Methods’’ section

genuinely reflects the way in which authors perceive their models,

or rather is a consequence of editorial policies shaped by ‘‘wet’’

neuroscience, is not clear at present. It is interesting to note in this

context that papers in theoretical physics generally do not follow

the strict ‘‘methods-results-discussion’’ pattern.

We would like to point out two interesting aspects of the

placement of model descriptions. First, the text of a paper

manuscript, including the appendix, undergoes thorough peer

review and copy editing, ensuring high standards in content and

presentation. It is not, at present, clear whether all material

published as supplementary material receives the same scrutiny in

the review process; it is often not copy-edited to the same

standards as the paper proper. Second, source code published in

community repositories represents an implementation of a model,

not the model itself [52]. It can thus serve only as a service to the

community to facilitate code-reuse, but not to communicate the

content of the model proper.

Incidentally, none of the 14 papers surveyed here describes re-

use of neuronal models available in repositories, such as ModelDB

[50]. Nor does any paper mention that the source code for the

model implemented in the paper was made available to the

community, even though models from several papers are at

present available from ModelDB [4,5,15]. In recent years, though,

there appears to be a slowly growing trend to explicitly reference

and re-use existing models from ModelDB; see http://senselab.

med.yale.edu/modeldb/prm.asp for an up-to-date list (Michael

Hines, personal communication).

Means of model descriptions
Figure 2 shows that equations are mostly used to describe the

dynamics of model neurons, while connections are most often

presented in a combination of prose and figures, occasionally in

form of pseudocode. We will review the quality of these

descriptions in detail below. Table 3 shows how parameters are

presented in papers. It regrettably indicates that too few authors

make parameters easily accessible in tables.

Network model descriptions in the literature show no consistent

order of description. Among the papers surveyed here, six begin

with a description of the neuron models and then proceed to

network architecture, seven papers use the opposite order, while

one paper mixes the description of neurons and network. We find

the latter option least useful to the reader.

Authors differ greatly in their efforts to anchor their models in

empirical data. Destexhe et al. [4] go to great lengths to justify the

design of their neuron and synapse models with respect to the

neurophysiological literature. They thus provide the synthesis

document proposed by Aumann [32] as the basis of any modeling

effort. Unfortunately for those readers who want to investigate the

resulting model, though, model description and justification are

tightly intertwined in the terse methods section, making it quite

demanding to extract the model description as such.

Among all papers surveyed here, only Destexhe et al. [4] and

Izhikevich and Edelman [8] show responses of individual synaptic

conductances and individual neurons to test stimuli, while all other

authors only show responses of the entire network. This means

that researchers who attempt to re-implement a model and find

themselves unable to reproduce the results from a paper, will not

Figure 1. Placement of description in papers surveyed. Bar
graphs show the percentage of papers describing (from top to bottom)
model architecture, model connectivity and neuronal dynamics in the
body text of the paper, the appendix, and in supplementary material.
Many papers spread descriptions over several locations and are thus
counted in several categories. For detailed data, see supporting
material Tables S1, S2 and S3.
doi:10.1371/journal.pcbi.1000456.g001

Figure 2. Use of different means of description in papers surveyed.
Bar graphs show the percentage of papers describing (from top to bottom)
model architecture, model connectivity and neuronal dynamics using prose,
equations, figures, tables, and references. Many papers combine several
means for one purpose and are thus counted in several categories. For
detailed data, see supporting material Tables S1, S2, S3.
doi:10.1371/journal.pcbi.1000456.g002

Table 3. Presentation of parameters.

All Most Some None

— IE, KG, L, SE HM B, D, HT, HvH, M, TA, TR, VA, WS

The table shows the papers presenting all, most, some or none of their
parameters in tables. See Table 1 for paper abbreviations.
doi:10.1371/journal.pcbi.1000456.t003
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be able to find out whether problems arise from neuron model

implementations or from a wrong network setup.

We will now analyze in detail which difficulties arise in

describing a network model, considering in turn network

architecture, connectivity, and neuron models, and point out

examples of good descriptions.

Network architecture
Descriptions of network architecture become challenging as

network complexity increases. Networks with a small number of

populations, random connectivity and no spatial structure are

easily described in a few lines of prose, as in Brunel’s paper [3]. A

combination of prose and simple figures is usually sufficient to

describe architecture of networks composed from a small number

of one- or two-dimensional layers of individual neurons; examples

are Destexhe et al. [4] and Kirkland and Gerstein [9].

Complex models spanning several brain areas with detailed

spatial, layered, and functional substructure, such as Lumer et al.

[10] and Izhikevich and Edelman [8], are more challenging to

describe. Authors generally adopt a top-down approach, giving

first an overview of the brain areas involved, before detailing the

structure of the individual areas. In models of systems with clearly

defined signal flow, areas are often visited in the predominant

order of signal flow [6,7,14], while others present the more

complex cortical structures before descending to subcortical

structures [8,10].

The most detailed explicit model studied here is the thalamo-

cortical model presented by Lumer et al. [10]. The description of

the cortical areas in this model (Vp and Vs), while complete, lacks

in our opinion the clarity desirable of a good model description,

and may thus help to identify rules for ideal model descriptions.

For one, discussions on model design and properties are embedded

in the model description, e.g., the reduction of a total of 32

‘‘combinations of response selectivities’’ to just two included in the

model, and a comparison of the number of neurons in the model

to that found in animals. We believe that design decisions and

model review should be kept separate from the model description

proper for the sake of clarity, since they are independent

intellectual endeavours [32]. Second, Lumer et al. mix different

views of their layer architecture without providing sufficient

guidance to the reader. They begin by describing the Vp layer as a

grid of 868 macro-units, with two ‘‘selectivities within a macro-

unit’’, each containing ‘‘a collection of 565 topographic elements,

each of which corresponded to a contiguous location in retinal

space’’, before proceeding to state that ‘‘[t]opographic elements in

Vp were organized in maps of 40640 elements for each of the two

modeled orientation selectivities.’’ We find it difficult to interpret

this description unambiguously. We are in particular in doubt

about the localization of macro-units and topographic elements in

retinal space. In our view, the most parsimonious interpretation is

as follows: 565 topographic elements placed in each of 868

macro-units result in a grid of 40640 topographic elements.’’ This

interpretation is sketched in Fig. 3.

Another interesting aspect is that model composition is often

described from a perspective orthogonal to the description of

connections. Lumer et al. [10], e.g., present the primary thalamus

and cortex as grids of 40640 topographical units, each containing

Figure 3. Interpretation of Lumer [10] model architecture. The most parsimonious interpretation of the description of the primary visual
cortical area Vp given by Lumer et al, is as two layers of 40640 topographic elements, representing horizontal and vertical orientations, respectively.
doi:10.1371/journal.pcbi.1000456.g003
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an excitatory and an inhibitory neuron (thalamus) and a

microcolumn composed of 10 neurons organized in three laminae

(cortex). Connections are then described by looking at this

architecture from an orthogonal perspective: Thalamus is

described as two layers, one of excitatory and one of inhibitory

neurons, while cortex is split into six layers, one of excitatory and

one of inhibitory neurons for each of the three laminae in the

model. We believe that it may be more sensible to base the model

description on the perspective used in defining connections, as

connectivity is the central aspect of a network model.

Izhikevich and Edelman [8] present a significantly more

complex model, covering the entire human cortex and thalamus.

Concerning the spatial placement, they only state that ‘‘[n]euronal

bodies are allocated randomly on the cortical surface, whose

coordinates were obtained from anatomical MRI.’’ No further

information is given on how MRI measurements were converted

to neuron densities in space. Thus, even if one had access to MRI

data of the human brain, it would be difficult to reproduce the

neuron distribution investigated by Izhikevich and Edelman. In

such cases it would be advantageous to either use datasets available

from community databases or to make data available to others.

Figures of network architecture vary widely between papers. We

will discuss them in the following section together with

connections.

Connections
Describing the connections well is the most challenging task in

presenting a neuronal network model. For networks with random

connections and no spatial structure, connectivity is easily

described in a few sentences [3]. Haeusler and Maass [5]

additionally represent connection strengths and probabilities in a

figure; this works well for their six-population model. If yet more

populations were involved, such a figure would soon become

cluttered, and it becomes more useful to present connection

parameters in tables , cf. supplementary material in ref. [8]. Even

in these simple networks, care must be taken to specify details:

N May neurons connect to themselves?

N May there be multiple connections between any pair of

neurons?

N Are connection targets chosen at random for a fixed sender

neuron (divergent connection), senders chosen at random for

fixed target (convergent connection), or are sender and

receiver chosen at random for each connection?

Few authors are explicit on all these points, although these

choices may have significant consequences for network dynamics

(Tom Tetzlaff, personal communication; see also Kriener et al.

[60]).

Models incorporating spatial structure have more complex

connection patterns, which we will call topographic connections,

since they usually describe the spatial distribution of connection

targets relative to the spatial location of the sending neuron, i.e.,

connections are typically described as divergent connections. In

most cases, connections have a random component: they are

created with a certain probability. In simple cases, such as

Kirkland and Gerstein [9], connections are made to neurons in a

rectangular mask with equal probability. In more complex models,

connection probability depends on the relative locations of the

neurons that are candidates for a connection, e.g., [10,11].

Unfortunately, few authors provide the equations for these

probability functions; Mariño et al. [11] is a laudable exception.

It is somewhat paradoxical if papers present long tables of

parameters for these connection probability functions, but do not

provide the equation into which these parameters enter.

Mariño et al. [11] are the only authors who explicitly discuss

self-connections (in their supplementary material), and as far as we

can see, no authors have discussed whether multiple connections

between any two neurons may be created. Another neglected issue

is precisely how probabilistic connections are created. The

following approach seems to be implied: For each pair of neurons

from the sender and target population, a connection is created if a

random number is smaller than the connection probability for the

pair. But one might equally well determine the total number of

connections to be made first, and then distribute the connections

according to the spatial probability profile [61]. Such schemes

offer significant performance gains [62]. A complete specification

of the connection algorithm should thus be given.

Among the papers surveyed, Izhikevich and Edelman [8] has by

far the most complex connectivity and the authors go to great

lengths to present gray-matter connectivity in figures, tables, and

prose. Alas, some information appears to be missing: It is not clear

from the text exactly how connections are distributed within the

axonal spans, and how they are distributed across dendritic

compartments of neurons with more than one compartment in a

cortical layer. We have also been unable to find specific

information on how synaptic weights and delays were assigned

to connections. Finally, no details are provided about the white-

matter (long-range) connections, which were based on diffusion-

tensor imaging (DTI) data. Without access to the DTI data it is

thus impossible to re-implement the model presented.

Paper authors draw network diagrams in quite different ways,

both in the overall style of their diagrams and in use of symbols.

Figure 4 shows network diagrams of a model loosely based on

Einevoll and Plesser [63, Fig. 3], drawn in the style of three of the

papers surveyed here. The diagram in the style of Hayot and

Tranchina [6] (Fig. 4A) gives a reduced but clear overview of the

overall architecture of the model; it provides no details. The style

of Haeusler and Maass [5] (Fig. 4B) carries most information, with

weights and probabilities shown next to connection lines, and line

widths proportional to the product of weight and probability.

Figure 4C, which imitates the style of Lumer et al. [10], is rather

illustrative: it provides no quantitative information and the

structure of the connectivity is less prominent than in the other

two figures; on the other hand, it is the only figure hinting at the

spatial structure of the network. Interestingly, all three diagram

styles use different ways of marking excitatory and inhibitory

connections: bars vs circles, black vs red, and arrows vs bars.

Indeed, bars at the end of connection lines mark excitatory

connections in Hayot and Tranchina’s style, but inhibitory

connections in the style of Lumer et al, nicely illustrating the lack

of standards in the field.

Izhikevich and Edelman [8] have illustrated their brain model

using diagrams presenting significantly more detail than in the

diagrams shown in our Fig. 4. Unfortunately, we cannot

reproduce Figures 2 and 8 from the supplementary material of

the paper by Izhikevich and Edelman here due to copyright issues;

the figures are available on the internet at http://www.pnas.org/

content/105/9/3593.figures-only and http://www.pnas.org/con-

tent/105/9/3593/suppl/DC1, respectively. Their diagrams,

though, provide so much detail of interest to the re-implementer,

that the reader will have difficulty to form a clear conceptual

model from the diagram. This is in many ways the curse of

complex models as the following analogy may illustrate: when a

physicist or electrical engineer sees a diagram of an RLC circuit,

she will intuitively ‘‘see’’ the circuit oscillate. When presented with

the complete wiring diagram for a modern analog radio receiver,
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though, it is hardly likely she will ‘‘hear the music’’. The figure in

the style of Haeusler and Maass [5] takes a middle ground. Since

the individual populations are homogeneous, they can be

represented by one circle each, with annotated lines providing

information about connection structure and parameters. By

marking connection strength through line width and differentiat-

ing excitation and inhibition by line color, the figure appeals quite

directly to our intuition. It is clear, though, that any further

populations would increase the complexity of the diagram to the

point of illegibility.

There is no established standard for the order in which

connections within a network are described. Some authors

proceed from local connectivity (e.g., intracortical intralaminar)

towards global connectivity [10]. Others rather follow the signal

flow through the network, from retina via LGN to cortex, e.g.,

Kirkland and Gerstein [9], Hayot and Tranchina [6], and Troyer

et al. [14].

Neuron and synapse models
Neuron and synapse models are commonly described by a

mixture of prose and equations, cf. Fig. 2; tables are used

inconsistently to present parameters, see Table 3. Some authors do

not provide complete model specifications in their paper, but rely

heavily [4] or even entirely [5] on references to earlier work. While

the desire to avoid repetition is understandable, we believe that

authors here walk a thin line toward incomprehensibility,

especially if the models used are spread over three or more

publications. Even though the re-use of neuron model implemen-

tations provided in repositories such as ModelDB may save effort

and contribute to a standardization in the field, none of the papers

we studied made use of available model implementations—or the

authors failed to point out that they did.

Table 2 shows the membrane potential equations found in

several papers and demonstrates that there is a reasonable amount

of variation in the way this central equation is written down. There

is in particular no widespread agreement on whether to include

the membrane capacitance Cm explicitly in the equation or rather

to subsume it in a membrane time constant tm. Some authors,

such as Tao et al. [13], even chose to normalize the membrane

potential equation by defining Cm:1. Yet greater variation is

found in the representation of synaptic currents. This means that

phrases such as ‘‘we use the standard equations for integrate-and-

fire neurons’’, which are not uncommon in the literature, are

essentially meaningless, since there are no established ‘‘standard

equations’’ for integrate-and-fire neurons.

Spike generation and detection, including subsequent reset and

refractory behavior, are usually described in prose, sometimes with

interspersed equations. ‘‘Vi was reset to … EK~{90 mV, when

it exceeded a threshold of … 251 mV …, at which point a spike

was recorded, and relayed …,’’ is a typical formulation [10].

Unfortunately, it does not state precisely how threshold crossings

are detected, which times are assigned to spikes, or when exactly

the reset is executed. All these issues can have significant

consequences for network dynamics [64–66].

Good model description practice: a proposal
The previous sections have documented a wide variety of

approaches to model descriptions in the literature. We believe that

this variety is detrimental to the field, as it makes it difficult to

communicate neuronal network models correctly and efficiently.

At the same time, we believe that the field of computational

neuroscience is too young to establish exacting standards for

model descriptions. We will return to this problem and its various

causes in the discussion. As a middle road, we propose to establish

a good model description practice for the scientific literature. We will

refer to it as ‘‘good practice’’ below for brevity. Some of our

suggestions are motivated by a recent analysis of modeling

techniques in ecology [32], but see also [49].

We propose a practice with the following elements:

Figure 4. Diagram styles for network models. Diagrams of a model of the thalamocortical pathway drawn using diagram styles from (A) Hayot
and Tranchina [6, Fig. 2], (B) Haeusler and Maass [5, Fig. 1], and (C) Lumer et al. [10, Fig. 1]. Numbers on arrows in B mark connection weight and
probability of connection, while line width represents the product of the two. In C, open circles show excitatory, filled circles inhibitory neurons. The
model depicted is loosely based on Einevoll and Plesser [63, Fig. 3], but the differentiation into two cortical layers, each with excitatory and inhibitory
subpopulations, in B and C, as well as the connection weights and probabilities, have been added here for the purpose of illustration.
doi:10.1371/journal.pcbi.1000456.g004
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1. Guidelines for the organization of a model description in a publication.

2. Checklists for model descriptions helping authors to present all

required information in a useful order.

3. Templates for tables describing the essential aspects and

components of a model in a compact, easily accessible manner.

4. Guidelines for diagrams visualizing neuronal network models.

We will discuss these elements in turn below, followed by more

detailed discussions about how to render specific aspects of a

network model. As an illustrative example, Figures 5 and 6 provide

a concise description of the Brunel [3] model following the good

practice format. A similar description of the Lumer et al. [10]

model is given in Figures 7–9.

We would like to stress that we present the good practice here to

stimulate the debate on model descriptions within the computa-

tional neuroscience community. If it is adopted widely throughout

the community, it will provide numerous advantages: authors will

have guidelines that will allow them to check their descriptions for

completeness and unambiguousness; referees will more easily be

able to assess the correctness and quality of a model; and readers

Figure 5. Tabular description of Brunel model [3]. The model is summarized in panel A and detailed in panels B–F.
doi:10.1371/journal.pcbi.1000456.g005
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will find it easier to comprehend and re-implement a model, and

to compare different models.

Guidelines for organization. Many journals require

authors to organize their manuscript into the sections Introduction,

Results, Methods, and Discussion and the question arises how

modeling papers fit into this framework. We believe that this

organization is also appropriate for modeling papers if the

meaning of the individual section headings are carefully observed.

Generally, a publication on a computational modeling study

should provide the following information:

1. Hypothesis: a concrete description of the question or problem

that the model addresses;

2. Model derivation: a presentation of experimental data that

support your hypothesis, your model, or both;

3. Model description: a description of your model, its inputs (stimuli),

and its outputs (measured quantities) and all free parameters,

according to the good practice proposed below;

4. Implementation: a concise description of the methods used to

implement and simulate the model (e.g., details of spike

threshold detection, assignment of spike times, time resolution,

etc.), as well as a description of all third party tools used, such

as simulation software or mathematical packages;

5. Model analysis: a description of all analytical and numerical

experiments performed on the model, and the results obtained;

6. Model justification: a presentation of all empirical or theoretical

results from the literature that support the results obtained

from your model and that were not used to derive the model.

We suggest that authors organize their presentation according

to these six points where possible. When publishing in a journal

that requires a traditional organization of manuscripts into

Introduction, Results, Methods, and Discussion, we recommend the

following structure:

1. Introduction

(a) Hypothesis

(b) Model derivation

2. Results

(a) Model description

(b) Model analysis

3. Methods

(a) Implementation

4. Discussion

(a) Model justification

The paper should be written such that readers who are not

interested in model derivation and implementation can skip these

sections to proceed directly from the model description to the analysis.

Many journals impose strict limits on the length of a paper,

making it impossible to provide a full model description along with

an elaborate model analysis. In this case, authors should consider

to split their manuscript in two (or more) separate manuscripts:

One describing the model, and the other describing the model

analysis. The model paper should include the full description of

the model but with the model analysis section reduced to only that

Figure 6. Alternatives for diagrams of simple network models (Brunel [10]). (A) Excitatory connections shown by full lines, inhibitory by
dashed lines. Lines beginning with open semicircle and ending in filled circle indicate random convergent connections. (B) Double lines represent
multiple connections, solid/dashed marks excitatory/inhibitory connections. Multiplicity of connections marked at line ends. (C) Same as B, but
inhibitory connections marked with circles on target side instead of dashed lines. (D) Same as C, but displaying explicitly that there are CE external
Poisson inputs (PG) to each neuron, and single lines are used instead of double lines.
doi:10.1371/journal.pcbi.1000456.g006
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information which is needed to validate the model and its

implementation. In the analysis paper, authors can cite the model

paper and reduce the model description to a brief outline of the

model, using the tables proposed below. This should offer

sufficient room to include a full account of the model analysis.

Where a companion paper is infeasible, authors should provide

a detailed model description as online supplementary materials,

although we see two disadvantages in this case: (i) Supplementary

material might not be peer-reviewed according to the same high

standards as a separate model paper. (ii) Hiding the model in

supplementary material deprives both author and model of the

proper credit for the intellectual effort that went into the creation

of the model.

Authors should be encouraged to make their model implemen-

tation available through community repositories under suitable

licensing terms [17,67], to promote re-use. We expect profession-

ally managed repositories for neuronal network models to emerge

that will give equal weight to human comprehensible and machine

readable model descriptions, and curate them according to

precisely defined quality standards; such efforts are underway in

a number of communities [37,50,68–70]. Once such a repository

is firmly established for computational neuroscience, papers might

Figure 7. Tabular description of Lumer et al. model [10], part 1. The model is summarized in panel A and detailed in panels B–I. See Figure 8
for panels E–I.
doi:10.1371/journal.pcbi.1000456.g007
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reference detailed model descriptions in a repository, instead of

including a full description in the paper itself.

Checklists for model descriptions. Model descriptions

should give the reader a good overview of the overall structure

of a model. We suggest a description in prose accompanied by

figures. The text should give an introduction to each composite

part, i.e., stating the number of parts, their size, and what sub-

parts they consist of. We recommend that authors concisely

summarize the information for each part in standardized tables

(see panel A in Figures 5, 7, and 8) and quote only the most

necessary pieces in the text. We will discuss network diagrams in

detail below.

Following the principle that models should be presented top-

down, we suggest that authors adhere to the following order when

describing the parts of their models:

1. Model composition

2. Coordinate systems and topology

3. Connectivity

4. Neurons, synapses, and channels

5. Model input, output, and free parameters

6. Model validation

7. Model implementation

Not all parts will apply to all models, but using such a checklist

(i) ensures that all necessary information is included in the paper;

(ii) allows referees to systematically check that all information is

given; and (iii), facilitates the comparison with other models. We

will address each of the items in the list below.

Past experience indicates that it is essential to review model

descriptions after one has implemented a model [32]. We strongly

suggest that authors carefully compare model description and

implementation. This ensures that the description is complete and

that any choices made during implementation are duly reflected. If

possible (and feasible), one should ask a colleague to re-implement

the model based on the description.

The model composition are the groups, or populations, of

neurons in a network model. Populations are either unordered,

such as Brunel [3] and Haeusler and Maass [5], or ordered, such

as the remaining models in Table 1.

A good model description should list all populations of the

model along with the used neuron model, their properties, their

number, and how each population relates to the modeled system.

Authors should name each population and use this name

consistently throughout the manuscript. Some populations may

Figure 8. Tabular description Lumer et al. model [10], part 2. See Figure 7 for panels A–D.
doi:10.1371/journal.pcbi.1000456.g008
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be selections of neurons from other populations. In this case,

authors should give explicit selection rules or equations.

Even for random selections, we recommend that authors

explicitly define the actual range of indices used, to avoid

formulations such as ‘‘we recorded from 50 randomly selected

neurons’’, when indeed a contiguous range of 50 neurons from an

unordered population was chosen [3].

Coordinate systems and topologies describe how individ-

ual neurons in a population can be addressed, or selected, and,

where applicable, the spatial relationships between neurons.

Authors should specify all coordinate systems used, because they

are central to defining the connectivity of the network.

The most basic is the index coordinate system which numbers each

neuron in the population. Index coordinates are often one-

dimensional, but if the populations are representing sheets or

volumes of nervous tissue, index coordinates may become two-,

three-, or even higher dimensional. Index coordinates are unordered,

because they do not imply a neighborhood relation between any two

neurons, nor do they define a distance function (e.g., Brunel [3]).

Many models have additional coordinate systems, e.g.,

anatomical coordinates, if the coordinates within a population refer

to positions in the brain, as in Izhikevich and Edelman [8], or

logical coordinates, if the coordinates within a population refer to

some logical property, such as stimulus dimensions or response

properties, e.g., orientation angle, as in Lumer et al. [10].

Anatomical or logical coordinates impose a topology on the

unordered population, because they allow one to measure

distances between neurons.

For each coordinate system used, authors should state exactly

how the coordinates are mapped to the index coordinates of the

population. A good model description should also give explicit

expressions for all distance functions used.

The description of the connectivity can now build on the

defined populations and coordinate systems. To describe the

connections we suggest using prose, equations and figure(s). Authors

should start with an overview of the connectivity at the level of

populations, followed by all information needed to link connectivity

at the level of populations to the connections between individual

neurons. The following checklist may assist authors in this task:

1. Are all populations of pre- and post-synaptic neurons defined?

2. Are all coordinate systems defined which are needed to select

pre- and post-synaptic neurons?

3. How are pre-synaptic neurons selected from a population?

4. How are post-synaptic neurons selected from a population?

5. How are boundary effects in topological connections handled?

6. If a pair of pre- and post-synaptic neurons can be chosen more

than once, is this connection allowed?

7. If the same neuron can be selected as pre- and post-synaptic

neuron, is this connection allowed?

8. How are the parameters (e.g., weight and delay) of a

connection determined?

9. If random connections are used, provide the algorithm used to

select the pre- and post-synaptic neurons and to determine

whether a connection is made.

10. Are all parameters of the connectivity explained and are

their numerical values given?

A figure of the connections in addition to the textual description

is of great help to the reader. Suggestions for how to draw

connection diagrams are given below.

To describe the dynamics of neurons, synapses, and
channels we suggest a combination of prose and equations.

Figure 9. Hierarchy of diagrams of a complex network model (Lumer et al. [10]). (A) Overview diagram of connectivity between high-level
populations. Excitatory connections are marked by arrows, inhibitory connections by circles. Excitatory and inhibitory populations have been lumped
in Tp, while Vp(v) and Vp(h) are composed of three layers of excitatory and inhibitory populations, as detailed in B. (B) Detailed diagram of
connectivity within cortical population Vp(v), which is tuned to vertically oriented stimuli. Vp(v) is composed of three cortical layers, each with an
excitatory (left) and inhibitory (right) subpopulation. Filled arrows mark excitatory, open circles inhibitory connections. Connections to and from
corresponding horizontally tuned cortical populations in Vp(h) are shown as dashed lines; black lines show input from the thalamus. Connections to
and from higher cortical areas are not shown. (C) Detailed rendition of connection masks and kernels projecting onto one cortical subpopulation
Vp(v)LI(e) from panel B, i.e., the excitatory subpopulation of the infragranular layer of Vp(v). Squares show projection masks, gray shade the
probability of a connection (black: p~1). Connections are created by centering the mask about each location in the layer and drawing connections
according to the probability distribution. Outgoing arrows indicate projections to other populations. Projection masks are scaled down in size to fit all
projections into the layer, and grayscales have been adjusted for visibility. Connections are placed to correspond to the layout of panel B:
Connections to and from thalamus are at the bottom, connections to and from Vp(v)LI(i) and Vp(h) to the right and connections to and from Vp(v)LS
and Vp(v)L4 at the top.
doi:10.1371/journal.pcbi.1000456.g009
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The text should give the overview, the equations the detail, since

they are more exact.

It is important to describe how the neuron behaves over time.

For spiking models, the description should encompass how the

neuron behaves before, during and after a spike is generated, e.g.,

state the spike threshold, set the refractory period and define if

there is a potential reset. Since this part of a neuron model is often

algorithmic, pseudo-code or flow-charts may be an effective means

of description. There should also be a description of the synapse

type and its behavior, and the algorithms for the plasticity should

be given.

Model input, output, and free parameters are important

aspects of a model. Models in computational neuroscience mostly

attempt to describe systems rather than phenomena. This is shown

by the fact that none of the models we investigated explicitly states

its input and output variables.

By contrast, models in statistics are built around the concepts of

independent variables (stimulus), dependent variables (response),

and the free parameters of a system. A model is then a function

that maps the independent variables onto the dependent variables,

using the free parameters. We find this view helpful, because it

makes the scope of a model explicit.

We suggest that authors explicitly list the independent and

dependent variables of their model, along with all free parameters.

A textual description of the stimuli accompanied by tabulated

parameter values will suffice in most cases to recreate the stimuli.

In addition, readers will benefit from a figure illustrating non-

trivial stimuli, such as Fig. 1 in Hayot and Tranchina [6]. If the

model uses complex stimuli, such as images or sound sequences,

authors should make them available online, so that readers can re-

implement the model. A good model description should also detail

how responses are measured.

The following checklist may help authors to compile all

information for the model description. Most of this information

is best placed in the tables, suggested below.

1. Model input

(a) Describe the stimulus ensemble;

(b) Describe which parts of the model are stimulated;

(c) Describe exactly how the stimulus is applied;

(d) Describe any scaling or normalization of the stimulus.

2. Model output

(a) Describe which quantities are measured;

(b) Describe exactly from which parts of the model measure-

ments are taken;

(c) Describe exactly how measurements are taken (e.g., specify

the sampling rate of the measurements);

(d) Describe how output quantities are computed from the

measurements (e.g., firing rates from spike-trains).

3. Free parameters

(a) Describe all free parameters of the model;

(b) List the chosen values for each parameter.

Model validation is crucial to the reliability of modeling

studies. Authors should provide information that will allow others

to systematically test re-implementations of neuronal network

models. To this end, they should include, e.g., membrane-

potential traces of model neurons in response to current injection

and crafted spike trains.

These figures help readers who attempt to re-implement a

network model to validate their implementation of the neuron

models; Destexhe et al. [4] and Izhikevich and Edelman [8] are

fine examples in this respect. Unless the model is new, such figures

are best placed in the appendix. For models that are well known in

the literature, these figures may be put in the supplementary

material.

Testing that parts of a model behave as expected is an excellent

way of reducing the chance of errors at a later stage, and is also

known as unit testing [71]. If performed in stages, unit testing

ensures that all components at a given level function properly,

such that any difficulties at the next level of integration can be

localized to that level. Systems biologists are ahead of neurosci-

entists in this respect, and have addressed this issue through the

development of the SBML Semantic Validation Suite [35].

Authors should specify the model implementation, i.e., list

details of the tools and methods that were used to obtain numerical

results. The information should be sufficient to allow readers to re-

implement the model and its analysis.

The following list may assist authors in compiling the required

information:

1. Which software was used to analyze the model?

(a) If third party software was used, list the name, version, and

provider of the software.

(b) If self-written software was used, provide sufficient informa-

tion on the algorithms and numerical methods used, to allow

re-implementation.

(c) Consider making the simulation program/scripts available

as supplementary material.

2. Which parameters, such as integration stepsize and accuracy

goals, were used?

3. Which software was used to analyze and visualize the data

obtained from the model?

(a) If third party software was used, list the name, version, and

provider of the software.

(b) If self-written software was used, provide sufficient informa-

tion on the algorithms and numerical methods used, to allow

re-implementation.

(c) Consider making the simulation program/scripts available

as supplementary material.

4. Consider making your analysis scripts available as supplemen-

tary material.

Templates for tables. To provide a full description of the

network model, we encourage authors to detail each model part.

Figures 5, 7, and 8 illustrate how such detailed descriptions may be

given in concise form. We invite readers to use these tables as

templates for their own publications.

At present, it does not seem possible, or even desirable, to define

precisely how these tables should be formed. Indeed, the reader

will notice that we describe the connectivity in the Lumer et al.

[10] model in a rather different way than in the Brunel [3] model.

Lacking any widely adopted formalism for the description of

connections, we could at present not see any other way of

providing descriptions that were at the same time compact and

informative. The connection set algebra recently proposed by

Djurfeldt [72] may eventually evolve into a common formalism for

connectivity.

For now, we have set up our tables pragmatically as follows:

1. The first table shall always present a concise Model Summary

based on the Checklist proposed above; one may compare it to

the ‘‘Nutrition facts’’ box on food packaging. Non-applicable
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entries in the table shall be kept in the table to make explicit

that a model does not have, e.g., topology or synaptic plasticity.

2. For each non-empty entry in the Model Summary, a table

presenting details shall follow.

3. These detailed tables shall in themselves be concise and be

presented in the same order as the entries in the Model Summary.

4. The tables shall contain the names (or symbols) used for

populations, connections or other model elements in the

modeling paper.

5. When model components have been obtained from a model

repository, or have a precise definition in a relevant online

ontology, accession numbers or ontology reference shall be given.

The tables proposed here describe the structure of the model. In

addition, we propose that all parameters of a model should be given in

tables to make them easily accessible; some authors do this already.

Guidelines for diagrams. Diagrams are a powerful way of

expressing relations between parts of a model. Authors should use

diagrams to illustrate their model structure and to specify relations

between the different model parts. A good model description

should use at least one diagram, showing the overall structure of

the model. Further diagrams can then be given to elaborate on

details and different aspects of the model.

Diagrams should be precise representations of a model and its

parts. To this end, we must use the graphical vocabulary of shapes,

lines and graphical styles to convey as much detail as possible

without sacrificing clarity.

To achieve their full potential, diagrams need to follow a common

standard, so that readers can perceive and compare diagrams from

different publications. We have seen earlier that there are currently

no established rules for drawing diagrams of neural network models.

At this point, we give some tentative suggestions only, as sketched in

Fig. 6 (Brunel [3] model) and Fig. 9 (Lumer et al. [10] model). These

figures are based on the following principles:

1. Unordered populations are shown as circles;

2. Populations with spatial structure are shown as rectangles;

3. Pointed arrowheads represent excitatory, round ones inhibitory

connections;

4. Arrows beginning/ending outside a population indicate that

the arrows represent a set of connections with source/target

neurons selected from the population;

5. Probabilistic connection patterns are shown as cut-off masks

filled with connection probability as grayscale gradient; the

pertaining arrows end on the outside of the mask.

We will return to the design of network diagrams in the

discussion.

Discussion

Communicating neuronal network models in scientific publica-

tions is a challenging task. We have demonstrated above that

current publication practices are far from ideal. This has two

unfortunate consequences: First of all, it hampers the critical,

mutual assessment of published models. As a result, there is no

tradition in the computational neuroscience community for

scientists to cross-examine each others models thoroughly. The

validation of models thus typically remains at the level of

individual studies and publications, i.e., not as reliable as is

desirable. Other fields, in contrast, have established the validity of

their central models beyond any reasonable doubt—and with a

clear understanding of their limits of viability—such as the central

laws of classical and quantum mechanics, electrodynamics and

statistical physics. A second unfortunate consequence of present

publication practices is that neuronal network models are rarely

re-used by others, thus reducing the overall productivity of the

computational neuroscience community. This second conse-

quence follows to a large degree from the first, as few scientists

would like to re-use models unless their validity was properly

established; in addition, the lack of precision in today’s model

descriptions often makes re-use difficult.

Network diagrams
The model survey presented here revealed a wide variety of

approaches to describing the composition and connectivity of

neuronal networks. We believe that this is, at least in part, due to a

lack of common high-level concepts for composition and

connectivity from a modeling perspective. Developing such high-

level concepts describing, e.g., certain types of randomized

connectivity patterns, is thus an important task for the computa-

tional neuroscience community. The challenge at hand is perhaps

best clarified when trying to draw diagrams representing neuronal

network models. Such diagrams have two aims: To give the reader

an intuitive understanding of model properties central to the

dynamics of the model, and to unambiguously provide the

necessary detail to allow a reconstruction of a model. In the

absence of a mathematical formalism for model specification,

diagrams often seem better suited than prose to present

unambiguous detail. Simple models, such as that by Brunel [3],

can be depicted in a single diagram, as illustrated in Fig. 6. The

four panels in that figure, though, show that one may choose from

a wide variety of styles for such diagrams, and it is not a priori clear

which style is best. In panels A–C in the figure we propose three

ways to differentiate between excitatory and inhibitory connec-

tions (line styles and endings) as well as to mark connectivity

patterns (line endings, styles, annotations). Panel D differs from the

other three in the way the external input is represented. Brunel [3]

states that ‘‘[each neuron] receives Cext ~CE½ � connections from

excitatory neurons outside the network. External synapses are

activated by independent Poisson processes with rate next.’’ This is

rendered in detail in panel D, which shows CE Poisson generators

per modeled neuron. In all other panels, these generators have

been collapsed into an external excitatory population Eext with the

implicit assumption that this population contains the correct

number of Poisson generators required by the model.

Presenting complex models is even more challenging. In Fig. 9,

we present a set of three figures describing the model by Lumer et al.

[10] at three levels of hierarchy: an overall view in panel A, details of

the connectivity within the cortical populations tuned to vertical

stimuli in panel B, and finally details of projection patterns into a

single cortical population in panel C. All figures are simplifications

of the full model, since we have left out the secondary thalamic and

cortical areas. We are currently pursuing research to identify

drawing styles and a hierarchy of diagrams that will be intuitive to a

majority of computational neuroscientists and provide the necessary

detail. Results will be presented elsewhere.

Why are standards lacking?
Given the importance of comprehensible and precise model

descriptions, it may seem surprising that no standards or good

practices have emerged in computational neuroscience to date.

Early proposals, such as the Neural Simulation Language [73] (see

also Eliasmith and Anderson [49, Ch. 1.5] and Kumar [74]), have

not been accepted widely in the community.

At present, two developments appear promising. NetworkML,

which is part of the NeuroML project [28,51], provides a
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simulator-agnostic XML-based declarative standard for neuron

network model descriptions. Simulation code for tools such as

Neuron and Genesis can be generated from models defined in

NeuroML. PyNN [29], in contrast, is an imperative scripting

language that can control a number of common neuronal network

simulators, such as NEST, Neuron, and Brian. One reason why

neither NetworkML nor PyNN has yet caught on as a means of

widespread model exchange may be that neither of the two

languages seems to aim at providing human-comprehensible

model descriptions that might be included in publications.

Another reason for the lack of model description standards may

be that computational neuroscience has to a large degree been an

ancillary science, an appendix of electrophysiology: The vast

majority of publications in computational neuroscience compares

its modeling results directly to specific sets of experimental data.

And even though models have driven the development in some

fields of neuroscience [75], very few authors have compared the

properties of different models with each other; Erwin et al. [76] is a

notable exception. De Schutter [77] even argues that there

currently is a trend away from the investigation of models as such,

and back to a one-to-one matching of models to experiments. As

long as computational neuroscientists focus on matching their

models to specific experiments, rather than either to spar their

models against each other, or build their models upon each other,

the motivation to use a standard notation is obviously limited.

Perspectives
We have no doubt that model sharing will increase in

computational neuroscience in years to come. This raises the

question of what model sharing precisely entails. At the simplest

level, models may be shared as simulator code. While this seems

convenient at first, it carries significant risk, as any code is likely to

contain errors, in particular errors that may surface only once an

existing model is used in a different context than the one in which

it was originally developed. Indeed, in at least one case, high-

profile publications (outside neuroscience), had to be retracted

after a subtle programming error was discovered in a widely

shared scientific software [78]. Some scientists argue that everyone

in a field should use the same, carefully maintained simulation

software to avoid such problems, and to make computational

science reliable [79]. We beg to differ: monoculture tends to create

more problems than it solves.

Establishing a new publication culture in computational

neuroscience will require considerable effort within the commu-

nity. We hope that the good model description practice that we have

outlined in the previous section may be a good starting point. We

believe in particular that a clear segregation of model derivation,

model description, implementation, and model analysis, as

proposed above, will make it easier for readers to discern the

model as such, compare it to other models, and evaluate its

relevance to their own research. The proposed Checklists for model

descriptions will help to ensure that model descriptions themselves

are reasonably complete and follow a common pattern, further

improving the communication of models, while the Templates for

tables invite a standardized presentation of details on various

aspects of models; similarly, the Guidelines for diagrams should aid

authors in illustrating their network models. Since all our proposals

are informal, we hope that authors will find it straightforward to

apply them when describing their network models, thus establish-

ing a de facto standard for model descriptions.

We are optimistic that we are beginning to see changes towards

more cooperation within computational neuroscience, as wit-

nessed by several collaborative reports on neuronal network

simulations in the last two years [25–27] and the development of

tools for the integration of various simulation software [29,30],

much helped by the establishment of the International Neuroin-

formatics Coordinating Facility (INCF) in 2005. The Connection

Set Algebra proposed by Djurfeldt [72] is an encouraging step

towards establishing high-level concepts for neuronal network

descriptions, i.e., giving us a concise language to talk about our

models. There is also much to be learned from model sharing and

curation efforts in other communities, such as the IUPS Physiome

and the European Virtual physiological human projects [37,80].

In closing, let us return to the power of notation, as exemplified

by the matrix notation in the introduction. In July 1924, Werner

Heisenberg gave a manuscript full of complicated mathematics to

his mentor Max Born, unsure whether it was worth publishing.

Born worked through Heisenberg’s ideas and realized that what

Heisenberg had written down, actually amounted to the matrix

mechanics of quantum theory. This insight of Born’s unleashed

the full power of Heisenberg’s ideas and let Born discover the non-

commutativity of quantum mechanics [81, p. 125f]. We are

looking forward to the day when a good formalism will give us

deeper insights into the secrets of signal processing in the brain.

Supporting Information

Table S1: Network architecture description: placement and means.

Each table entry gives the number of papers from Table 1 in main

paper using a given means (columns) and location (rows) to

describe the network architecture of the model used, with row-

and column-wise totals to the right and at the bottom. Most papers

combine several modes of description; the ‘‘References’’-column

contains papers that do not give explicit descriptions, but point to

published models. The network architecture description is an

overview only, and details are left out. That is the reason for why

columns ‘‘Eqns’’ and ‘‘Tables’’ are empty here. See Table 1 in

main paper for paper abbreviations.

Found at: doi:10.1371/journal.pcbi.1000456.s001 (0.27 MB PDF)

Table S2: Network connectivity description: placement and means.

The presentation is the same as in Table S1.

Found at: doi:10.1371/journal.pcbi.1000456.s002 (0.10 MB PDF)

Table S3: Neuron and synapse model description: placement and

means. The presentation is the same as in Table S1.

Found at: doi:10.1371/journal.pcbi.1000456.s003 (0.12 MB PDF)
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