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Abstract

Despite the current debate about the computational role of experimentally observed precise spike patterns it is still
theoretically unclear under which conditions and how they may emerge in neural circuits. Here, we study spiking neural
networks with non-additive dendritic interactions that were recently uncovered in single-neuron experiments. We show
that supra-additive dendritic interactions enable the persistent propagation of synchronous activity already in purely
random networks without superimposed structures and explain the mechanism underlying it. This study adds a novel
perspective on the dynamics of networks with nonlinear interactions in general and presents a new viable mechanism for
the occurrence of patterns of precisely timed spikes in recurrent networks.
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Editor: Lyle J. Graham, Université Paris Descartes, Centre National de la Recherche Scientifique, France

Received July 14, 2011; Accepted December 29, 2011; Published April 19, 2012

Copyright: � 2012 Memmesheimer, Timme. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by the Federal Ministry of Education and Research (BMBF), Germany, grant number 01GQ105B, and the Max Planck Society.
The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: r.memmesheimer@science.ru.nl

Introduction

Patterns of spikes that are precisely timed within the millisecond

range have been investigated and observed in a series of neuro-

physiological studies [1–9]. This supports the ongoing debate

whether cortical neurons are capable of precisely coordinating the

timing of their action potentials across recurrent networks and

whether only the neurons’ firing rate or also the precise timing of

their spikes encode key information that is intimately related to

external stimuli and internal events [2,3,10–14].

During the last two decades, a branch of theoretical research has

focused on the question how such precise timing could emerge. One

prominent, possible explanation for the occurrence of precisely

coordinated spiking is the existence of excitatorily coupled feed-

forward structures, ‘synfire-chains’, which are superimposed on a

network of otherwise random connectivity, e.g. through strongly

enhanced synaptic connectivity [10,15–18]. Under certain condi-

tions, these additional feed-forward structures enable the persistent

propagation of groups of spiking activity that is synchronous on a

time scale of down to one millisecond [17,19–24]. So far, however,

experimental research did not provide anatomical evidence for such

structures. Other studies proposed that asynchronous propagation

along paths with matching inhomogeneous delays [25] or the

dynamics of local recurrent networks [26,27] might underlie

precisely timed spike patterns.

Here we show that nonlinear dendritic interactions, recently

uncovered in neurophysiological experiments, offer a viable

mechanism to support stable propagation of synchrony through

random cortical circuits without additionally superimposed struc-

tures: Excitatory synaptic stimuli may not only superimpose linearly

or sublinearly [28,29], but may also induce strongly nonlinear,

supra-additive coupling enhancement due to dendritic spikes [30–

32]. Fast dendritic sodium spikes strongly enhance the effects of

stimulus-evoked post-synaptic potentials in a supra-additive way

and induce precisely timed and sharply peaked depolarizations in

the somatic membrane potential. Remarkably, this enhancement

occurs reliably only if the stimuli are synchronous in time with

temporal difference of less than 1{3ms [33–36], cf. also [37]. If the

resulting depolarization triggers an action potential, it is highly

precise in time up to less than 0:2 ms [33–35]. Other types of much

slower dendritic spikes are mediated by voltage gated Ca2z or

NMDA channels. They have longer time courses up to several

hundreds of milliseconds and do not depend on synchronous

stimulation (see, e.g., [38,39], and, for reviews, [32,40]).

In the following, we study consequences of coupling nonlinearities

that are due to fast dendritic spikes onto the collective dynamics of

recurrent neural networks. We find that, in contrast to linearly

coupled networks, propagating synchronous activity may persist

already in networks of simple neurons that have purely random

connectivity and exhibit no additional structures. We conclude that

the characteristic features of dendritic nonlinearity, in particular the

amplification of (only) synchronous input and the induction of

temporally precise output, predestine them to support the generation

and propagation of persistent, highly synchronous spiking activity.

Results

Neurons coupled via nonlinear dendrites
We investigate networks of integrate-and-fire neurons in the

limit of fast response to incoming spikes and with nonlinear
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interactions (see Methods). Similar models with linear interactions

are widely used for studying the dynamics of networks of spiking

neurons (see, e.g., [16,41–43], [44,45] for recent reviews) because

they capture essential features of cortical neurons and at the same

time allow to investigate the mechanisms underlying the dynamics

of networks without obscuring them by a many-parameter, many-

variable single neuron description (see, e.g., [44,46–48]). In this

study they allow to interpret the dynamical regimes of the network

activity qualitatively and to analytically assess them quantitatively.

We assume that the delay t between sending of a spike by a

presynaptic neuron and postsynaptic (somatic) response is identical

for all neurons. This is appropriate for the description of responses

mediated by fast dendritic spikes because these evoke a fast and

precise rise with sub-millisecond rise time constant in the somatic

potential [33,36]. Moreover, if a somatic action potential is

generated by fast dendritic spikes as observed in [33], this occurs

t~5ms after presynaptic axonal stimulation with only sub-

millisecond inter- and intra-neuronal jitter, while the action

potential timing strongly varies in time if no dendritic spike is

elicited. This is well resembled by our model dynamics where

nonlinearly enhanced inputs yield fast, jump-like responses in the

membrane potential and firing due to supra-threshold excitation

occurs precisely after the delay time t. For simplicity, we further

assume that all postsynaptic responses to spikes occur after this

delay time. ‘Imprecise’ spiking is generated due to a constant

supra-threshold input current.

To account for nonlinear enhancement and saturation of

synchronous excitatory inputs, we modulate the linear sum of the

amplitudes of excitatory post-synaptic potentials (EPSPs) that arise

simultaneously from different synapses by a nonlinear function s.

This covers the main features of experimentally found nonlinear

dendritic amplification (cf. [33,36,38–40]), thus effectively modeling

a neuron with one, nonlinear dendrite. For the neuron model

considered, s has a straightforward interpretation: It maps the peak

EPSP amplitude e expected from linearly adding the coupling

strengths of synchronously received excitatory signals to the actual

value s(e) (cf. Fig. 1b). Such a modulation function has been directly

[39] and indirectly [33] measured in experiments. It has a sigmoid

shape, with linear summation for small summed amplitudes e and

saturation at high e. We thus model the non-additive coupling using

a function s that is the identity s(e)~e at low values eƒVa, has a

constant saturation s(e)~Vc at high values e§Vb, and linearly

interpolates in between, cf. Fig. 1b. Inhibitory post-synaptic

potentials (IPSPs) at the same neuron are linearly summed,

independent on whether or not the synaptic signals are simulta-

neous, because there is no experimental evidence for supra-linear

enhancement. If s is the identity function (Fig. 1a), the same holds

for excitatory coupling and we recover a ‘‘conventional’’ network of

linearly coupled neurons.

Propagation of synchrony
In both additively and non-additively coupled sparse random

recurrent networks, asynchronous irregular spiking activity

constitutes a dynamical state typical for a wide range of

parameters [42,43,49,50]. Sequences of groups of synchronously

spiking neurons may spontaneously occur starting with a single

neuron, or they can be initiated by a group of neurons that was

excited to synchronous spiking by external input. If a single neuron

or a group of neurons send spikes at one given time, a subset of

neurons in the network will receive a synchronous pulse of spikes a

delay time t thereafter. All neurons for which the induced

postsynaptic response leads to a supra-threshold depolarization in

turn spike simultaneously so that another synchronous pulse of

spikes is generated which can excite a further group of neurons

and so on. Spontaneous chains are part of the background activity.

They usually involve only small numbers of synchronously spiking

neurons and quickly extinguish, cf. supporting Fig. S1.

How does a sparse random network respond to induced

synchronous activity, initiated, e.g., by external stimuli? We

compared the responses in networks with purely linear, additive

coupling to those where the excitatory inputs cooperate supra-

additively. For linearly coupled networks we find that pulse sizes in

chains of synchronous spiking activity quickly reduce to the level of

spontaneous synchronization and the chains rapidly die out (cf.

Fig. 2a). Propagation of synchrony is therefore short-lived in

linearly coupled networks, consistent with previous studies

[16,17,51]. In contrast, for nonlinearly coupled networks, in a

wide range of parameters (cf. Fig. 3), a chain initiated by a large

enough, but not too large synchronous group after a few steps

reaches pulse-sizes that fluctuate around some typical value,

Fig. 2b. These sizes are substantially larger than the sizes of

synchronous pulses occurring in the background activity (cf. Fig.

S1b), which persists while synchrony is propagating on top of it.

Only if the initial group size is too large, the chain of synchronous

activity is again short-lived. Taken together, we find persistent

propagation of synchrony in non-linearly coupled networks.

Persistent propagation of synchrony is robust against parameter

changes. We estimate a range of coupling strengths where persistent

propagation of synchrony occurs in linearly and in nonlinearly

coupled networks in Fig. 3. Background activity is here considered

stable if it contains at no time any synchronous pulse of more than

10% of the network size (red coloring if it became unstable

spontaneously, i.e. before initiation of synchronous activity, yellow

coloring if it became unstable thereafter, cf. also supporting Fig. S1).

Propagation of synchrony is considered persistent if background

activity is stable and if at least m~10 synchronized groups within

the chain are distinguishable from background activity, i.e. the

minimal group size gi
0, 0ƒiƒm, is larger than the largest group size

occurring in background activity (green coloring for stable

background activity but short-lived propagation of synchrony, blue

coloring for stable background activity and persistent propagation of

synchrony). In nonlinearly coupled networks, propagation of

synchrony is persistent in a wide range of parameters, while it is

usually short-lived in linearly coupled networks.

Author Summary

Most nerve cells in neural circuits communicate by sending
and receiving short stereotyped electrical pulses called
action potentials or spikes. Recent neurophysiological
experiments found that under certain conditions the
neuronal dendrites (branched projections of the neuron
that transmit inputs from other neurons to the cell body
(soma)) process input spikes in a nonlinear way: If the
inputs arrive within a time window of a few milliseconds,
the dendrite can actively generate a dendritic spike that
propagates to the neuronal soma and leads to a
nonlinearly amplified response. This response is temporally
highly precise. Here we consider an analytically tractable
model of spiking neural circuits and study the impact of
such dendritic nonlinearities on network activity. We find
that synchronous spiking activity may robustly propagate
through the network, even if it exhibits purely random
connectivity without additionally superimposed structures.
Such propagation may contribute to the generation of
spike patterns that are currently discussed to encode
information about internal states and external stimuli in
neural circuits.

Non-additive Coupling and Propagation of Synchrony
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Figure 1. Dendritic modulation function for (a) additive and (b) non-additive coupling. The modulation function maps the somatic peak
EPSP expected from linear summation of inputs to the actual peak EPSP strength. In networks with additively coupled neurons (a), the modulation
function is the identity. In networks with nonlinear dendritic enhancement of inputs (b), the modulation function is sigmoidal as found in
physiological experiments. Supra-additivity sets in when the expected (linearly added) input strength reaches a threshold Va; at some strength Vb

the response saturates at a level Vc .
doi:10.1371/journal.pcbi.1002384.g001

Figure 2. Non-additive coupling enables persistent propagation of synchronous spiking. The figure illustrates the temporal evolution of
propagating synchrony as typical for large ranges of parameters in conventional networks (a,b,c) and in networks incorporating nonlinear dendritic
interactions (d,e,f). Panels (c,f) show the spiking activity of the first 200 neurons in a network of N~1000 neurons versus time. A chain of synchronous
pulses is initiated by applying external supra-threshold inputs to the first 100 neurons at time t0~150ms (red colored spikes, grey vertical lines
indicate times where spikes occur as part of the chain). Panels (a,d) show the total size g’ of synchronized groups within the chain. In the linearly
coupled network, the chain of synchronous activity extinguishes after a few steps. In the network with nonlinear dendritic integration, synchronized
spiking activity propagates persistently. The presence of large synchronous pulses is reflected in the network rate, see panels (b,e) (rate in kHz, bin
size 1ms).
doi:10.1371/journal.pcbi.1002384.g002

Non-additive Coupling and Propagation of Synchrony
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The mechanisms underlying this persistent propagation of

synchrony can be intuitively understood. Sequences with small

groups of synchronized neurons behave as for linear, additive

coupling, i.e. they usually extinguish after a few steps, so there is no

persistent spontaneous propagation and irregular background

dynamics for the entire network is stable. If larger groups of

neurons send spikes simultaneously, their postsynaptic neurons

receive sufficiently many excitatory inputs so that the nonlinea-

rities become effective. Since the inhibitory couplings add only

linearly, excitatory input surpasses inhibitory input for a larger

fraction of postsynaptic neurons than in a linearly coupled

network. This causes more neurons to fire in response to the

synchronous pulse; the number of neurons synchronized in each

step of the chain grows. If synchronous pulses become too large,

saturation becomes important and excitation becomes less efficient

compared to inhibition. Further, many neurons are refractory.

This implies that less neurons are excited in response to overly

large groups of synchronously spiking neurons; consequently the

group size is reduced. In addition, fluctuations in groups sizes

occur due to the randomness of the network connectivity and the

distribution of membrane potentials during pulse reception. These

qualitative mechanisms keep the group sizes substantially large

and fluctuating within a certain range.

Quantitative analysis of the non-propagating and the
propagating state

To quantitatively understand the mechanisms underlying

persistent propagation of synchrony and to determine the group

sizes which initiate and take part in persistent propagation, we

studied the evolution of propagating synchrony both analytically

and numerically (see Methods and Fig. 4). Approximating the

dynamics of group sizes by a Markov process, we derived the

transition probabilities P(giz1Dgi) for the transitions from the sizes

of the ith pulse to those of the (iz1)th. Here gi,giz1, i[N, are

random variables that assume values in f0,1,:::,Ng, where N is

the number of neurons in the network. Accordingly,

P(giz1~giz1
0 Dgi~gi

0) is the probability that the ith pulse

generated by gi
0 simultaneously spiking neurons causes a group

of giz1
0 neurons to spike simultaneously in response. From the

conditional (transition) probabilities, we derived the conditional

expectation E(giz1Dgi~gi
0), i.e. the average size of a pulse

following a pulse of size gi
0. Since the distributions P(giz1Dgi) are

similar to P(g1Dg0) also for later stages i§1, we assume stationarity

and approximate E(giz1Dgi)~E(g1Dg0) and P(giz1Dgi)~P(g1Dg0)
for all stages i of propagation. The points Ga, a[f0,1,2,3g,
where Ga&E(g1Dg0&Ga) for a[f0,1,2g and G1&E(g1Dg0&G3),
G3wG2, determine the range of typical group sizes occurring in

the networks (Fig. 4). The analytical predictions agree well with the

numerical results. The quantities E(giz1Dgi) and P(giz1Dgi) yield a

quantitative explanation of the mechanisms that lead to persistent

propagation of synchrony:

For networks of linearly coupled neurons, each synchronous

group with g0
0
§G0 neurons (G0 small, e.g. G0&4 in Fig. 4a) on

average excites synchronous groups with less neurons. The smaller

groups in turn excite even smaller groups so that synchronous

activity rapidly decays to the level of a few synchronized neurons

and fluctuates near G0. Thereafter, due to the fluctuations from

the already small group size, propagating synchronous activity

rapidly extinguishes completely (group size zero). So the theory

predicts that in networks of linearly coupled neurons the chain of

synchronous activity quickly extinguishes even if excited by

external synchronous input, consistent with the above observations

(Fig. 2a). Since the shape of the transition matrix stays invariant

when network parameters like the coupling strengths are changed,

such a change will not lead to persistent propagation of synchrony.

If, e.g., the size of excitatory coupling strength is increased, only

the slope of the curve is increased. This predicts the transition to

unstable background activity shown in Fig. 3.

Figure 3. While propagation of synchrony is usually short-lived in linearly coupled networks (a), it is persistent for a wide range of
coupling parameters if the neurons are nonlinearly coupled (b,c). The parameter scans illustrate this by varying the mean total input
strengths �eeEx,ges,�eeIn,ges of the excitatory and the inhibitory input in a network of N~1000 neurons with 30% connectivity. For each combination,
synchronous activity was initiated with 100 neurons (a,b) or 75 neurons (c) and the stability of the temporal evolution was assessed. Blue coloring
indicates stable propagation of synchrony, red and yellow coloring refers to unstable background activity before and after onset of propagation, and
green coloring indicates unstable propagation (see Methods for details). White squres in (a) and (b) indicate the coupling strengths employed in
Fig. 2a) and b), respectively. The large blue areas in the scans for nonlinearly coupled networks indicate that propagation of synchrony is stable in a
wide range of parameters for such networks. This area is absent for linearly coupled networks as shown in (a), for smaller initial pulse sizes (e.g. 75
neurons) the number of successful trials is even smaller. In nonlinearly coupled networks with larger coupling strengths, an initial pulse size of 100
neurons can be larger than the upper bound of the propagation zone so that the chain is unstable (b) while for the same coupling parameters an
initial pulse of size 75 neurons starts a stable chain (c). For smaller coupling strengths, an initial pulse size of 75 neurons can be insufficient to initiate
stable propagation in contrast to a pulse of size 100 neurons.
doi:10.1371/journal.pcbi.1002384.g003

Non-additive Coupling and Propagation of Synchrony
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In contrast, nonlinear supra-additive excitatory coupling

enables persistent propagation of activity with a substantial

number of neurons synchronized. The sizes of the propagating

synchronous pulses are of the order of a typical size G2 and range

between G1 and G3, all of which are substantially larger than G0

(cf. Fig. 4b). Pulses of sizes between G1 and G3 usually evoke pulses

of sizes in the same range, i.e. between G1 and G3 again. Only

rarely, propagating synchronized activity becomes smaller than G1

or larger than G3; if so, the pulse size is likely to stay smaller than

G1 for longer, decay even further as for linearly coupled networks,

and the chain may cease to exist. A steeper and narrower peak can

lead to transiently increased activity and short-lived propagation of

larger synchronous groups [51].

The different dynamics for linearly and nonlinearly coupled

networks can also be understood by approximating the stochastic

dynamics by a deterministic iterative map derived from interpolat-

ing between the values of E(g1Dg0). For networks of linearly coupled

neurons, the map has only one stable fixed point G0 which is at

small pulse sizes of the order of spontaneous synchronization; it may

be distinct from the trivial fixed point zero. Any larger initial pulse

size will thus lead to a chain decaying to the level of spontaneous

synchronization. If coupling is non-additive, there can be two stable

fixed points G0 and G2, and an unstable fixed point G1 in between.

Chains starting with sizes in the basin of G2 between G1 and G3 then

evolve towards stable propagation with pulse-size G2. For different

parameter settings, stable propagation of synchrony is supported by

a stable periodic orbit close to an unstable fixed point G2.

Taken together, the theory for nonlinearly coupled networks

predicts persistent propagation of synchronous activity in a typical

range of pulse sizes and a decay that is possible only due to

fluctuations. This agrees with the numerical observations (Fig. 2b).

Discussion

In summary, we presented a theoretical analysis and numerical

simulations of recurrent networks of spiking neurons with

nonlinear dendritic interactions. The results indicate that networks

with nonlinear dendritic interactions are capable of generating

persistent propagation of synchronous spiking activity even if the

network is purely randomly connected and has no additional

structural features.

Theoretical studies on active dendrites mainly considered single

neurons. Simulations of neuron models with detailed channel

density and morphology showed dendritic spike generation in

agreement with neurobiological experiments [33,34,36,38]. For

neurons with slow dendritic spikes, which are largely insensitive to

temporal coincidence of inputs, firing rate models have been

developed [52]. They reproduce the response properties of

detailed models to diverse stimuli and possess computational

capabilities comparable to multi-layered feed-forward networks of

simple rate neurons [38,39]. Based on this result, the computa-

tional abilities of simple circuits have been considered, also with

other types of neuron models (e.g. [32,53,54]). Refs. [55,56]

studied propagation of bursts in networks where the bursts can be

explained by slow dendritic spikes, and slow nonlinear dendrites

Figure 4. Evolution of synchronous pulses in linearly (a) and nonlinearly (b) coupled networks. Numerically derived probability
distributions P(g1Dg0~g’0), i.e. probabilities of pulse-sizes g1 in response to a pulse of size g0~g’0 are shown by gray shading; associated conditional
expectations E(g1Dg0~g’0), i.e. numerically derived mean response group sizes, are displayed by green squares. Error of the mean (confidence
intervals: two times standard deviation) has about the size of the plot symbol, larger errors are given by error bars. Analytical results for E(g1Dg0)
derived from diffusion approximation and statistics of the underlying network topology are given by blue dots, results from a semi-analytical
approach are given by red dots. Assuming stationarity and the Markov property, the probability distributions can be interpreted as stochastic iterated
map or transition matrix for the pulse-sizes in a chain of propagating synchronous activity. For linearly coupled neurons, there is no area from where
the pulse-sizes do not quickly converge with high probability to the level of spontaneously synchronized neuron groups. As an explicit example, the
light blue dotted lines display the dynamics from Fig. 2a as result of graphical iteration using the stochastic iterated map. In contrast, for nonlinearly
coupled networks, the probability for chains with pulse-sizes between G1 and G3 to converge to the level of spontaneously synchronized neuron
groups is rather low: There is a state of persistent propagation in the network located around E(g1Dg0&G2)&G2 . As an explicit example for dynamics
assuming this state, the light blue dotted lines display the chain from Fig. 2b as a result of graphical iteration.
doi:10.1371/journal.pcbi.1002384.g004

Non-additive Coupling and Propagation of Synchrony
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were suggested to underlie the persistent activity observed in

working memory tasks [57]. Active dendrites generating fast

dendritic sodium spikes were studied in a two-neuron circuit and

in a simple feed-forward structure [58], and model neurons

incorporating such dendritic spikes were used as an output layer in

simulations of hippocampal network models [59]. Very recently,

ref. [51] has shown that fast dendritic spikes can lead to

intermittent, transiently increased propagation of synchrony and

it was suggested that they underlie hippocampal sharp wave/

ripples characteristic for slow wave sleep.

The present study now shows that fast dendritic spikes can lead

to persistent propagation of synchrony in random neural networks.

In particular, feed-forward structures based on large-scale

additional couplings [10,15,16] or strongly and systematically

adapted strengths of specific synapses and neuron properties [17]

may not be needed. As such, our results suggest an alternative

mechanism and a potential complementary explanation for the

occurrence of patterns of precisely timed spikes [1–5,7–9].

Our study uses a model that is appropriate for quantitative

numerical analysis of larger networks and at the same time allows

analytical predictions that yield further insights into the dynamics

of recurrent networks. The theoretical predictions made are based

on mean field arguments, strictly valid only in the limit of infinite

network size [42,49,60]. As our results indicate, these predictions

are in good agreement with simulation data already for networks

of finite size. The number of neurons participating in pulses of

synchronous activity as well as their number relative to the total

number of neurons may vary strongly with network features such

as the connectivity and the effective total input coupling strengths.

Additional external noise, e.g. due to further random spiking

inputs, is expected to be beneficial because it stabilizes background

activity and leads to a fast equilibration of the neurons’ potentials

after a synchronous pulse. Both facts support dynamical mixing

and thus are in favor of our approximation that the propagation of

synchronous activity does not further influence the statistics of the

background. We have demonstrated that nonlinear dendritic

interactions enable persistent propagation of synchrony even in

random neural networks. The results show that the nonlinear

interactions are in fact the main ingredient controlling the

mechanism underlying the transition to persistent propagation

(Fig. 4a vs. 4b), so that the phenomenon is insensitive against

variations in parameters such as details of the individual neuron

dynamics, the exact form of nonlinearly modulated interactions

(Fig. 1), and the coupling strengths (see Fig. 3).

The current study contributes to a new field of research that

focuses on neural networks with supra-additive coupling. The

influence of different levels of individual neuron reliability, of

recurrent and feed-forward network topologies, of dynamic

connectivity (learning) and of slow dendritic spikes have to be

reconsidered in this context. Our study also suggests future

experiments on the propagation of synchrony due to nonlinear

dendritic interactions e.g. in cultured neurons [61]. Interestingly,

the propagation of synchrony found here for nonlinearly

interacting neurons does not follow any specific, predefined

propagation paths of synchronous activity across the network;

the propagation path will depend not only on the currently excited

group but also on which neurons in the background activity are

sufficiently depolarized when they receive synchronous spikes from

the current group. In a random network, the propagation of

synchrony will thus resemble reverberating high-frequency

oscillations involving highly synchronous spiking activity. The

network structure might shape the activity and lead to a

significantly enhanced occurrence of specific sequences of

synchronous groups. These spike patterns, however, are noisy

and less obvious than those in synfire-chains [10,15–17,19–

21,23,24], where the propagation paths of synchronous activity

are predefined by the embedded feed-forward networks. These

different dynamics may provide an experimentally testable

distinction between synchronous events created by synfire chains

via additional feed-forward structures and those created by

nonlinear dendritic interactions in largely or purely random

networks. Of course, a more specifically structured network

connectivity [62–64], the effects of synaptic location on different

dendritic branches [39], specific distributions of transmission

delays [25,65–67] as well as strongly heterogeneous synaptic

strengths [17] will further influence pulse propagation. As an

example, nonlinear interactions may facilitate or enable localized

persistent synchrony in Hebbian cell assemblies [18,68,69]. It will

thus be important to extensively investigate to which degree

nonlinear interactions as well as non-random network structure

are contributing to creating collectively coordinated spiking

dynamics, in order to understand the computational capabilities

of cortical networks.

Methods

Neural network model
We considered networks of N leaky integrate-and-fire neurons

connected to form an Erdös-Rényi random graph [70] where each

directed synaptic connection between two neurons is present

independently with probability p0. For each connection, the

probabilities pEx and pIn~1{pEx specify whether the coupling is

excitatory or inhibitory. The dynamics of the membrane potential

Vl of neuron l obeys

dVl(t)

dt
~{clVl(t)z

X
f

½s(
X

j[MEx,l (f )

elj)z
X

j[MIn,l (f )

elj �

d t{tf {t
� �

zI0,l ,

ð1Þ

where tf denotes times at which spike are sent within the network,

the inverse membrane time constant cl~1=tmem,l measures the

dissipation of the neuron and t is the transmission delay. We

further introduced the set

MEx,l(f )~fj : (eljw0 ^ Ak : ts
jk~tf )g ð2Þ

of neurons sending at time tf an excitatory spike to neuron l,
where ts

jk is the kth spike time of neuron j and elj is the coupling

strength from neuron j to neuron l. The set

MIn,l(f )~fj : (eljv0 ^ Ak : ts
jk~tf )g ð3Þ

lists the neurons sending at time tf an inhibitory spike to neuron l.
s is the possibly nonlinear dendritic modulation function mapping

the input strength expected from linear addition of excitatory

inputs to the actual input strength. Each neuron receives some

constant external input I0,l . When the membrane potential reaches

or exceeds the threshold, Vl(t
{)ze§HU ,l , where e is the possibly

arriving total input at time t, it is reset to Vl(t)~Vr,l and a spike is

emitted. See supporting Table S1 for a tabular description of our

model following ref. [71].

The parameters used in the given examples are Va~2mV for

the onset of supra-additivity, Vb~4mV for the onset of saturation

and Vc~6mV for the level of saturation, in agreement with a

direct experimental measurement of s given in [39] for slow

Non-additive Coupling and Propagation of Synchrony
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nonlinear interactions. In [33], the onset of nonlinearity and the

level of saturation lie higher. For comparison with linearly coupled

networks, we take an identity s(e)~e modulating function,

effectively choosing Va~Vb~Vc~?, i.e. there is no supra-

additivity and no saturation. The analytical methods presented

below and the theory presented in the main text are valid for

arbitrary parameter choices and hold as long as the background

activity stays asynchronous, irregular and sufficiently uncorrelated.

In the simulations, the remaining network parameters are

N~1000, p0~0:3, pEx~pIn~0:5, tmem,l~8ms~1=cl , t~5ms,

I0,ltmem,l~17:6mV, HU ,l~HU~16mV, Vr,l~0mV. If not stated

otherwise, elj~0:2mV, if the coupling strength from neuron j to

neuron l is excitatory and elj~{0:2mV, if it is inhibitory.

Numerical methods
Network simulations were done in phase representation [72]. For

this, the membrane potential Vl and its threshold HU ,l are mapped

one-to-one to a phase wl and a phase-threshold Hl using the inverse

of the transfer function UIF,l(w)~I0,l=cl 1{ exp ({clw)ð Þ of the

leaky integrate-and-fire neuron, as elaborated in ref. [27]. wl evolves

linearly with slope 1 between spike sendings and spike receivings.

Spike sendings occur when the phase reaches or exceeds its

threshold Hl . When neuron l receives input of total strength e at

time t, its phase wl(t
{) is updated according to wl(t)~H(l)

e (wl(t
{)),

where H(l)
e (:) is the response function of the leaky integrate-and-fire

neuron, H (l)
e (w)~U{1

IF,l UIF,l(w)zeð Þ for subthreshold total inputs e

and H(l)
e (w)~0 for suprathreshold ones which evoke spike sending.

The numerical simulations were implemented using an event

based algorithm which may be outlined as follows [41,50,73,74]:

We keep track of the ‘‘pseudo-spike time’’ [75] of each neuron l,
i.e. of the time Hl{wl remaining to the next hypothetical spike of

the neuron without interaction. Further, we keep track of the spike

arrival times together with the neurons that sent the spikes. In each

step, the smallest pseudo-spike time is compared with the time

remaining until the next spikes arrive. If the next event is (i) a spike

sending event, the dynamics is linearly evolved to this event and

the pseudo-spike time of each sending neuron l is reset to Hl . The

newly sent spikes are stored in the spike list. If the next event is (ii)

a spike receiving event, the dynamics is linearly evolved to this

event and the excitatory and inhibitory input strengths to each

neuron l are determined. We apply s to the excitatory input

strength and add the inhibition. The resulting total input strength

e determines the update of the phase via H(l)
e (:) and therewith the

new pseudo-spike time as well as immediate spiking responses.

For the spike-train analysis, propagating chains initiated at some

time t0 can be separated from background activity because

synchronized groups which are part of the chain by construction

send spikes precisely at t0znt, n[N, while spikes which are part of

background activity are sent at times which are at least slightly

different.

Fig. 4 shows the numerically derived frequency of occurrence of

a group size g1
0 when the initial group had size g0

0 and its mean

value, which are approximations to the conditional probability

P(g1~g1
0Dg0~g0

0) and the conditional expectations E(g1Dg0~g0
0),

respectively. For the numerical measurements, synchronous pulses

of size g0
0[f1,7,13,:::,181gwere initiated twice after equilibration of

the dynamics (initial phases were randomly drawn from a uniform

distribution on ½{Hw,Hw� where Hw is the phase threshold, and

1{50 random initial spikes were added) in 50 different random

networks and the size g1
0 of the subsequent pulse was measured.

Fig. 2 shows two single simulations with g0
0~100.

For Fig. 3, the mean total input strengths �eeEx,ges,�eeIn,ges of the

excitatory and the inhibitory input were varied in steps of

0:375mV by changing eEx and eIn, from �eeEx,ges~24mV (corre-

sponding to eEx~0:16mV) to �eeEx,ges~60mV (eEx~0:4mV) and

from �eeIn,ges~{24mV (eIn~{0:16mV) to �eeIn,ges~{60mV
(eIn~{0:4mV). For each data point, the stability of background

activity and the persistence of propagating synchrony was checked

in 20 different random networks with different random initial

conditions, initial phases were drawn from a uniform distribution

on ½{Hw,Hw� where Hw is the phase threshold, and 1{50
random spikes initially in transit were added. The stability of

background activity without propagating synchrony was checked

for simulated time t[½0ms,t0�, where t0[½300ms,330ms�. At t0,

synchronous activity was initiated by external stimulation of a

group of 100 neurons. Stability of propagating synchrony was

checked for 10 steps after initiation (corresponding to 55ms of

propagation) and stability of background activity after t0 was

checked for an interval of 105ms after pulse initiation. We note

that for stable irregular background activity finally (for time

tending to infinity) every chain will die out with probability one,

because the group size has finite probability to leave the zone of

propagation and to reach the absorbing fixed point zero.

We implemented the network dynamics simulations in C and

embedded them with MathLink into Mathematica. We used

Mathematica to implement user interfaces, control programs and

data analysis.

Analytical methods
We computed the transition probabilities for the group-sizes

analytically and semi-analytically. In the analytical approach, the

probability distribution for the membrane potentials P(V ) was

derived in diffusion approximation, also approximating the actual

number of synaptic connections by its mean and describing the

background activity as consisting of independent Poissonian spike

trains [42,44]. To eliminate errors due to these approximations in

a semi-analytical approach, P(V ) was derived by direct measure-

ments of the relative frequency of occurrences of membrane

potentials at different times in 1000 numerical network simula-

tions, 10 simulations in 100 different random networks with

different random initial conditions as described above. In both

approaches, we computed from P(V ) the cumulative probability

distribution from the right,

F (e)~

ðHU

HU {e

P(V )dV , ð4Þ

which yields the average probability F (e) that a neuron is excited

above threshold when it receives an input of strength e. We further

assumed (a) that previous groups with jvi do not influence giz1
0 ,

i.e. the sequence of group sizes is a realization of a Markov chain,

(b) that the propagating synchrony does not change the statistics of

the background dynamics of the non-participating neurons, and (c)

that neurons which spiked in the ith step are refractory while the

other neurons are equilibrated at the time of the iz1th pulse. The

validity of the approximations depends on the network parameters

and was checked by numerical simulations. Under these

assumptions, the statistical properties of the neural network

topology allow to compute the probabilities that a neuron receives

an input of strength e at time tizt under the condition that a

synchronized group of size gi
0 has sent spikes simultaneously at

time ti. Together with F (e), the conditional probability distribu-

tions P(giz1Dgi) and the conditional expectations E(giz1Dgi) can

be derived. P(giz1~giz1
0 Dgi~gi

0), the probability that a group

size giz1~giz1
0 occurs in response to a group size gi~gi

0, follows

a binomial distribution,
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P(giz1~g0iz1jgi~g0i)~
N{g0i

g0iz1

 !
Ps(g0i)

g0
iz1

(1{Ps(g0i))
N{g0

i
{g0

iz1 ,

ð5Þ

where

Ps(g0i)~
Xg0i
j1~1

Xg0i{j1

j2~0

F (e(j1,j2))
g0i!

j1!j2!(g0i{j1{j2)!

(p0pEx)j1 (p0pIn)j2 (1{p0)
g0

i
{j1{j2

ð6Þ

is the probability that a neuron spikes in response to a synchronous

pulse of gi
0 spikes. e(j1,j2)~s(j1eEx)zj2eIn is the total input

strength due to j1 excitatory and j2 inhibitory inputs and eExw0
and eInv0 are the strengths of excitatory and inhibitory

connections. According to Eq. (5), E(giz1Dgi~gi
0), the average

next group size giz1 given a current group size of gi~gi
0, is

E(giz1Dgi~gi
0)~(N{gi

0)Ps(gi
0): ð7Þ

E(g1Dg0) as derived from the diffusion approximation and from the

semi-analytical approach is illustrated in Fig. 4 for linearly and

nonlinearly coupled networks. The values agree well with the

results of the explicit numerical measurements, deviations are due

to the specified approximations. The critical pulse-sizes G0, G1

and G2 are the intersection points of the interpolated

E(g1Dg0~g0
0)-values with the diagonal, G3 denotes the size

g0
0
wG2, where the interpolated E(g1Dg0~g0

0)-values equal G1.

If present, G1 and G3 roughly bound the pulse-sizes in persistently

propagating chains of synchronous activity.

Supporting Information

Figure S1 Distribution of sizes of synchronous pulses in the

background activity, where spikes belonging to the externally

initiated propagating chain of pulses have been removed. The

distributions are similar in linearly (a) and in nonlinearly (b)

coupled networks. The figure exemplarily displays the sizes of

spontaneously synchronized pulses in the background activity

within the interval ½100ms,200ms� for the dynamics shown in

Fig. 2a and 2b in the main text, respectively. While small pulse

sizes of the order of G0&4 (see Fig. 3 in the main text) are

relatively common, large pulses do not occur on relevant time

scales. The chain of synchronous activity excited in the linearly

coupled network quickly decays to this level of spontaneous

synchronization. In contrast, in the nonlinearly coupled network,

the pulse-sizes of propagating chains are of the order of 100
neurons and thus clearly separated from the spontaneously

occurring pulses: The propagation of synchrony is persistent.

(TIF)

Table S1 Tabular description of our model following ref. [71].

(PDF)
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30. Spruston N, Stuart G, Häusser M (2002) Dendritic integration. In: Spruston N,
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