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Abstract

Timbre is the attribute of sound that allows humans and other animals to distinguish among different sound sources.
Studies based on psychophysical judgments of musical timbre, ecological analyses of sound’s physical characteristics as well
as machine learning approaches have all suggested that timbre is a multifaceted attribute that invokes both spectral and
temporal sound features. Here, we explored the neural underpinnings of musical timbre. We used a neuro-computational
framework based on spectro-temporal receptive fields, recorded from over a thousand neurons in the mammalian primary
auditory cortex as well as from simulated cortical neurons, augmented with a nonlinear classifier. The model was able to
perform robust instrument classification irrespective of pitch and playing style, with an accuracy of 98.7%. Using the same
front end, the model was also able to reproduce perceptual distance judgments between timbres as perceived by human
listeners. The study demonstrates that joint spectro-temporal features, such as those observed in the mammalian primary
auditory cortex, are critical to provide the rich-enough representation necessary to account for perceptual judgments of
timbre by human listeners, as well as recognition of musical instruments.
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Introduction

A fundamental role of auditory perception is to infer the likely

source of a sound; for instance to identify an animal in a dark

forest, or to recognize a familiar voice on the phone. Timbre, often

referred to as the color of sound, is believed to play a key role in

this recognition process [1]. Though timbre is an intuitive concept,

its formal definition is less so. The ANSI definition of timbre

describes it as that attribute that allows us to distinguish between

sounds having the same perceptual duration, loudness, and pitch,

such as two different musical instruments playing exactly the same

note [2]. In other words, it is neither duration, nor loudness, nor

pitch; but is likely ‘‘everything else’’.

As has been often been pointed out, this definition by the

negative does not state what are the perceptual dimensions

underlying timbre perception. Spectrum is obviously a strong

candidate: physical objects produce sounds with a spectral profile

that reflects their particular sets of vibration modes and resonances

[3]. Measures of spectral shape have thus been proposed as basic

dimensions of timbre (e.g., formant position for voiced sounds in

speech, sharpness, and brightness) [4,5]. But timbre is not only

spectrum, as changes of amplitude over time, the so-called

temporal envelope, also have strong perceptual effects [6,7]. To

identify the most salient timbre dimensions, statistical techniques

such as multidimensional scaling have been used: perceptual

differences between sound samples were collected and the

underlying dimensionality of the timbre space inferred [8,9].

These studies suggest a combination of spectral and temporal

dimensions to explain the perceptual distance judgments, but the

precise nature of these dimensions varies across studies and sound

sets [10,11]. Importantly, almost all timbre dimensions that have

been proposed to date on the basis of psychophysical studies [12]

are either purely spectral or purely temporal. The only spectro-

temporal aspect of sound that has been considered in this context

is related to the asynchrony of partials around the onset of a sound

(8,9), but the salience of this spectro-temporal dimension was

found to be weak and context-dependent [13].

Technological approaches, not concerned with biology nor

human perception, have explored much richer feature represen-

tations that span both spectral, temporal, and spectro-temporal

dimensions. The motivation for these engineering techniques is an

accurate recognition of specific sounds or acoustic events in a

variety of applications (e.g. automatic speech recognition; voice

detection; music information retrieval; target tracking in multi-

sensor networks and surveillance systems; medical diagnosis, etc.).

Myriad spectral features have been proposed for audio content

analysis, ranging from simple summary statistics of spectral shape

(e.g. spectral amplitude, peak, centroid, flatness) to more elaborate

descriptions of spectral information such as Mel-Frequency

Cepstral Coefficients (MFCC) and Linear or Perceptual Predictive

Coding (LPC or PLP) [14–16]. Such metrics have often been

augmented with temporal information, which was found to

improve the robustness of content identification [17,18]. Common

modeling of temporal dynamics also ranged from simple summary
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statistics such as onsets, attack time, velocity, acceleration and

higher-order moments to more sophisticated statistical temporal

modeling using Hidden Markov Models, Artificial Neural

Networks, Adaptive Resonance Theory models, Liquid State

Machine systems and Self-Organizing Maps [19,20]. Overall, the

choice of features was very dependent on the task at hand, the

complexity of the dataset, and the desired performance level and

robustness of the system.

Complementing perceptual and technological approaches,

brain-imaging techniques have been used to explore the neural

underpinnings of timbre perception. Correlates of musical timbre

dimensions suggested by multidimensional scaling studies have

been observed using event-related potentials [21]. Other studies

have attempted to identify the neural substrates of natural sound

recognition, by looking for brain areas that would be selective to

specific sound categories, such as voice-specific regions in

secondary cortical areas [22,23] and other sound categories such

as tools [24] or musical instruments [25]. A hierarchical model

consistent with these findings has been proposed in which

selectivity to different sound categories is refined as one climbs

the processing chain [26]. An alternative, more distributed scheme

has also been suggested [27,28], which includes the contribution of

low-level cues to the large perceptual differences between these

high-level sound categories.

A common issue for the psychophysical, technological, and

neurophysiological investigations of timbre is that the generality of

the results is mitigated by the particular characteristics of the

sound set used. For multi-dimensional scaling behavioral studies,

by construction, the dimensions found will be the most salient

within the sound set; but they may not capture other dimensions

which could nevertheless be crucial for the recognition of sounds

outside the set. For engineering studies, dimensions may be

designed arbitrarily as long as they afford good performance in a

specific task. For the imaging studies, there is no suggestion yet as

to which low-level acoustic features may be used to construct the

various selectivity for high-level categories while preserving

invariance within a category. Furthermore, there is a major gap

between these studies and what is known from electrophysiological

recordings in animal models. Decades of work have established

that auditory cortical responses display rich and complex spectro-

temporal receptive fields, even within primary areas [29,30]. This

seems at odds with the limited set of spectral or temporal

dimensions that are classically used to characterize timbre in

perceptual studies.

To bridge this gap, we investigate how cortical processing of

spectro-temporal modulations can subserve both sound source

recognition of musical instruments and perceptual timbre judg-

ments. Specifically, cortical receptive fields and computational

models derived from them are shown to be suited to classify a

sound source from its evoked neural activity, across a wide range

of instruments, pitches and playing styles, and also to predict

accurately human judgments of timbre similarities

Results

Cortical processing of complex musical sounds
Responses in primary auditory cortex (A1) exhibit rich

selectivity that extends beyond the tonotopy observed in the

auditory nerve. A1 neurons are not only tuned to the spectral

energy at a given frequency, but also to the specifics of the local

spectral shape such as its bandwidth [31], spectral symmetry [32],

and temporal dynamics [33] (Figure 1). Put together, one can view

the resulting representation of sound in A1 as a multidimensional

mapping that spans at least three dimensions: (1) Best frequencies that

span the entire auditory range; (2) Spectral shapes (including

bandwidth and symmetry) that span a wide range from very

broad (2–3 octaves) to narrowly tuned (,0.25 octaves); and (3)

Dynamics that range from very slow to relatively fast (1–30 Hz).

This rich cortical mapping may reflect an elegant strategy for

extracting acoustic cues that subserve the perception of various

acoustic attributes (pitch, loudness, location, and timbre) as well as

the recognition of complex sound objects, such as different musical

instruments. This hypothesis was tested here by employing a

database of spectro-temporal receptive fields (STRFs) recorded

from 1110 single units in primary auditory cortex of 15 awake

non-behaving ferrets. These receptive fields are linear descriptors of

the selectivity of each cortical neuron to the spectral and temporal

modulations evident in the cochlear ‘‘spectrogram-like’’ represen-

tation of complex acoustic signals that emerges in the auditory

periphery. Such STRFs (with a variety of nonlinear refinements)

have been shown to capture and predict well cortical responses to

a variety of complex sounds like speech, music, and modulated

noise [34–38].

To test the efficacy of STRFs in generating a representation of

sound that can distinguish among a variety of complex categories,

sounds from a large database of musical instruments were mapped

onto cortical responses using the physiological STRFs described

above. The time-frequency spectrogram for each note was

convolved with each STRF in our neurophysiology database to

yield a firing rate that is then integrated over time. This initial

mapping was then reduced in dimensionality using singular value

decomposition to a compact eigen-space; then augmented with a

nonlinear statistical analysis using support vector machine (SVM)

with Gaussian kernels [39] (see METHODS for details). Briefly,

support vector machines are classifiers that learn to separate, in

our specific case, the patterns of cortical responses induced by the

different instruments. The use of Gaussian kernels is a standard

technique that allows to map the data from its original space

(where data may not be linearly separable) onto a new

representational space that is linearly separable. Ultimately, the

analysis constructed a set of hyperplanes that outline the

boundaries between different instruments. The identity of a new

Author Summary

Music is a complex acoustic experience that we often take
for granted. Whether sitting at a symphony hall or
enjoying a melody over earphones, we have no difficulty
identifying the instruments playing, following various
beats, or simply distinguishing a flute from an oboe. Our
brains rely on a number of sound attributes to analyze the
music in our ears. These attributes can be straightforward
like loudness or quite complex like the identity of the
instrument. A major contributor to our ability to recognize
instruments is what is formally called ‘timbre’. Of all
perceptual attributes of music, timbre remains the most
mysterious and least amenable to a simple mathematical
abstraction. In this work, we examine the neural under-
pinnings of musical timbre in an attempt to both define its
perceptual space and explore the processes underlying
timbre-based recognition. We propose a scheme based on
responses observed at the level of mammalian primary
auditory cortex and show that it can accurately predict
sound source recognition and perceptual timbre judg-
ments by human listeners. The analyses presented here
strongly suggest that rich representations such as those
observed in auditory cortex are critical in mediating timbre
percepts.

Biological Bases of Musical Timbre Perception
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sample was then defined based on its configuration in this

expanded space relative to the set of learned hyperplanes

(Figure 2).

Based on the configuration above and a 10% cross-validation

technique, the model trained using the physiological cortical

receptive fields achieved a classification accuracy of

87.22%±0.81 (the number following the mean accuracy

represents standard deviation, see Table 1). Remarkably, this

result was obtained with a large database of 11 instruments playing

between 30 and 90 different pitches with 3 to 19 playing styles

(depending on the instrument), 3 style dynamics (mezzo, forte and

piano), and 3 manufacturers for each instrument (an average of

1980 notes/instrument). This high classification accuracy was a

strong indicator that neural processing at the level of primary

auditory cortex could not only provide a basis for distinguishing

between different instruments, but also had a robust invariant

representation of instruments over a wide range of pitches and

playing styles.

The cortical model
Despite the encouraging results obtained using cortical receptive

fields, the classification based on neurophysiological recordings

was hampered by various shortcomings including recording noise

and other experimental constraints. Also, the limited selection of

receptive fields (being from ferrets) tended to under-represent

parameter ranges relevant to humans such as lower frequencies,

narrow bandwidths (limited to a maximum resolution of 1.2

octaves), and coarse sampling of STRF dynamics.

To circumvent these biases, we employed a model that mimics

the basic transformations along the auditory pathway up to the

level of A1. Effectively, the model mapped the one-dimensional

acoustic waveform onto a multidimensional feature space.

Importantly, the model allowed us to sample the cortical space

more uniformly than physiological data available to us, in line with

findings in the literature [29,30,40].

The model operates by first mapping the acoustic signal into an

auditory spectrogram. This initial transformation highlights the

time varying spectral energies of different instruments which is at

Figure 1. Neurophysiological receptive fields. Each panel shows the receptive field of 1 neuron with red indicating excitatory (preferred)
responses, and blue indicating inhibitory (suppressed) responses. Examples vary from narrowly tuned neurons (top row) to broadly tuned ones
(middle and bottom row). They also highlight variability in temporal dynamics and orientation (upward or downward sweeps).
doi:10.1371/journal.pcbi.1002759.g001

Figure 2. Schematic of the timbre recognition model. An acoustic waveform from a test instrument is processed through a model of cochlear
and midbrain processing; yielding a time-frequency representation called auditory spectrogram. This later is further processed through the cortical
processing stage through neurophysiological or model spectro-temporal receptive fields. Cortical responses of the target instrument are tested
against boundaries of a statistical SVM timbre model in order to identify the instrument’s identity.
doi:10.1371/journal.pcbi.1002759.g002

Biological Bases of Musical Timbre Perception
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the core of most acoustic correlates and machine learning analyses

of musical timbre [5,11,13,41,42]. For instance, temporal features

in a musical note include fast dynamics that reflect the quality of

the sound (scratchy, whispered, or purely voiced), as well as slower

modulations that carry nuances of musical timbre such as attack

and decay times, subtle fluctuations of pitch (vibrato) or amplitude

(shimmer). Some of these characteristics can be readily seen in the

auditory spectrograms, but many are only implicitly represented.

For example, Figure 3A contrasts the auditory spectrogram of a

piano vs. violin note. For violin, the temporal cross-section reflects

the soft onset and sustained nature of bowing and typical vibrato

fluctuations; the spectral slice captures the harmonic structure of

the musical note with the overall envelope reflecting the

resonances of the violin body. By contrast, the temporal and

spectral modulations of a piano (playing the same note) are quite

different. Temporally, the onset of piano rises and falls much

faster, and its spectral envelope is much smoother.

The cortical stage of the auditory model further analyzes the

spectral and temporal modulations of the spectrogram along

multiple spectral and temporal resolutions. The model projects the

auditory spectrogram onto a 4-dimensional space, representing

time, tonotopic frequency, spectral modulations (or scales) and

temporal modulations (or rates). The four dimensions of the

cortical output can be interpreted in various ways. In one view, the

cortical model output is a parallel repeated representation of the

auditory spectrogram viewed at different resolutions. A different

view is one of a bank of spectral and temporal modulation filters

with different tuning (from narrowband to broadband spectrally,

Table 1. Classification performance for the different models.

Mean STD

Auditory Spectrum (Gaussian kernel SVM) 79.1% 0.7%

Neurophysiological STRFs (Gaussian kernel SVM) 87.2% 0.8%

Full Cortical Model (Linear SVM) 96.2% 0.5%

Full Cortical Model (Gaussian kernel SVM) 98.7% 0.2%

The middle column indicates the mean of the accuracy scores for the 10 fold
cross validation experiment and the right column indicates their standard
deviation. Models differ either in their feature set (e.g. full cortical model versus
auditory spectrogram) or in the classifier used (linear SVM versus Gaussian
kernel SVM).
doi:10.1371/journal.pcbi.1002759.t001

Figure 3. Spectro-temporal modulation profiles highlighting timbre differences between piano and violin notes. (A) The plot shows
the time-frequency auditory spectrogram of piano and violin notes. The temporal and spectral slices shown on the right are marked. (B) The plots
show magnitude cortical responses of four piano notes (left panels), played in normal (left) and Staccato (right) at F4 (top) and F#4 (bottom); and
four violin notes (right panels), played in normal (left) and Pizzicatto (right) also at pitch F4(top) and F#4 (bottom). The white asterisks (upper
leftmost notes in each quadruplet) indicate the notes shown in part (A) of this figure.
doi:10.1371/journal.pcbi.1002759.g003

Biological Bases of Musical Timbre Perception
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and slow to fast modulations temporally). In such view, the cortical

representation is a display of spectro-temporal modulations of each

channel as they evolve over time. Ultimately each filter acts as a

model cortical neuron whose output reflects the tuning of that

neuronal site. The model employed here had 30,976 filters

(128freq622 rates611 scales), hence allowing us to obtain a full

uniform coverage of the cortical space and bypassing the

limitations of neurophysiological data. Note that we are not

suggesting that ,30 K neurons are needed for timbre classifica-

tion, as the feature space is reduced in further stages of the model

(see below). We have not performed an analysis of the number of

neurons needed for such task. Nonetheless, a large and uniform

sampling of the space seemed desirable.

By collapsing the cortical display over frequency and

averaging over time, one would obtain a two-dimensional

display that preserves the ‘‘global’’ distribution of modulations

over the remaining two dimensions of scale and rates. This

‘‘scale-rate’’ view is shown in Figure 3B for the same piano and

violin notes in Figure 3A as well as others. Each instrument here

is played at two distinct pitches with two different playing styles.

The panels provide estimates of the overall distribution of

spectro-temporal modulation of each sound. The left panel

highlights the fact that the violin vibrato concentrates its peak

energy near 6 Hz (across all pitches and styles); which matches

the speed of pulsating pitch change caused by the rhythmic rate

of 6 pulses per second chosen for the vibrato of this violin note.

By contrast, the rapid onset of piano distributes its energy across

a wider range of temporal modulations. Similarly, the unique

pattern of peaks and valleys in spectral envelopes of each

instrument produces a broad distribution along the spectral

modulation axis, with the violin’s sharper spectral peaks

activating higher spectral modulations while the piano’s

smoother profile activates broad bandwidths. Each instrument,

therefore, produces a correspondingly unique spectro-temporal

activation pattern that could potentially be used to recognize it

or distinguish it from others.

Musical timbre classification
Several computational models were compared in the same

classification task analysis of the database of musical instruments as

described earlier with real neurophysiological data. Results

comparing all models are summarized in Table 1. For what we

refer to as the full model, we used the 4-D cortical model. The

analysis started with a linear mapping through the model receptive

fields, followed by dimensionality reduction and statistical

classification using support vector machines with re-optimized

Gaussian kernels (see Methods). Tests used a 10% cross-validation

method. The cortical model yielded an excellent classification

accuracy of 98.7%±0.2.

We also explored the use of linear support vector machine, by

bypassing the use of the Gaussian kernel. We performed a

classification of instruments using the cortical responses obtained

from the model receptive fields and a linear SVM. After

optimization of the decision boundaries, we obtained an accuracy

of 96.2%±0.5. This result supports our initial assessment that the

cortical space does indeed capture most of the subtleties that are

unique to a common instrument but distinct between different

classes. It is mostly the richness of the representation that underlies

the classification performance: only a small improvement in

accuracy is observed by adding the non-linear warping in the full

model.

In order to better understand the contribution of the cortical

analysis beyond the time-frequency representation, we explored

reduced versions of the full model. First we performed the timbre

classification task using the auditory spectrogram as input. The

feature spectra were obtained by processing the time waveform of

each note through the cochlear-like filterbank front-end and

averaging the auditory spectrograms over time, yielding a one-

dimensional spectral profile for each note. These were then

processed through the same statistical SVM model, with

Gaussian functions optimized for this new representation using

the exact same methods as used for cortical features. The

classification accuracy for the spectral slices with SVM optimi-

zation attained a good but limited accuracy of 79.1%±0.7. It is

expected that a purely spectral model would not be able to

classify all instruments. Whereas basic instrument classes differing

by their physical characteristics (wind, percussion, strings) may

have the potential to produce different spectral shapes, preserved

in the spectral vector, more subtle differences in the temporal

domain should prove difficult to recognize on this basis (see

Figure 4). We shall revisit this issue of contribution and

interactions between spectral and temporal features later (see

Control Experiments section).

We performed a post-hoc analysis of the decision space based

on cortical features in an attempt to get a better understanding of

the configuration of the decision hyperplanes between different

instrument classes. The analysis treated the support vectors (i.e.

samples of each instrument that fall right on the boundary that

distinguishes it from another instrument) for each instrument as

samples from an underlying high-dimensional probability density

function. Then, a measure of similarity between pairs of

probability functions (symmetric Kullback–Leibler (KL) diver-

gence [43]) was employed to provide a sense of distance between

each instrument pair in the decision space. Because of the size

and variability in the timbre decision space, we pooled the

comparisons by instrument class (winds, strings and percussions).

We also focused our analysis on the reduced dimensions of the

cortical space; called ‘eigen’-rate, ‘eigen’-scale and ‘eigen’-

frequencies; obtained by projecting the equivalent dimensions

in the cortical tensor (rate, scale and frequency, respectively) into

a reduced dimensional space using singular-value decomposition

(see METHODS). The analysis revealed a number of observa-

tions (see Figure 5). For instance, wind and percussion classes

were the most different (occupy distant regions in the decision

space), followed by strings and percussions then strings and winds

(average KL distances were 0.58, 0.41, 0.35, respectively). This

observation was consistent with the subjective judgments of

human listeners presented next (see off-diagonal entries in

Figure 6B). All 3 pair comparisons were statistically significantly

different from each other (Wilcoxon ranksum test, p,1025 for all

3 pairs). Secondly, the analysis revealed that the 2 first ‘eigen’-

rates captured most of the difference between the instrument

classes (statistical significance in comparing the first 2 eigenrates

with the others; Wilcoxon ranksum test, p = 0.0046). In contrast,

all ‘eigen’-scales were variable across classes (Kruskal-Wallis test,

p = 0.9185 indicating that all ‘eigen’-scales contributed equally in

distinguishing the broad classes). A similar analysis indicated that

the first four ‘eigen’-frequencies were also significantly different

from the remaining features (Wilcoxon ranksum test, p,1025).

One way to interpret these observations is that the first two

principal orientations along the rate axis captured most of the

differences that distinguish winds, strings and percussions. This

seems consistent with the large differences in temporal envelope

shape for these instruments classes, which can be represented by a

few rates. By contrast, the scale dimension (which captures mostly

spectral shape, symmetry and bandwidth) was required in its

entirety to draw a boundary between these classes, suggesting that

unlike the coarser temporal characteristics, differentiating among

Biological Bases of Musical Timbre Perception
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instruments entails detailed spectral distinctions of a subtle

nature.

Comparison with standard classification algorithms
Spectral features have been extensively used for tasks of musical

timbre classification of isolated notes, solo performances or even

multi-instrument recordings. Features such as Cepstral Coeffi-

cients or Linear Prediction of the spectrum resonances yielded

performance in the range of 77% to 90% when applied to

databases similar to the one used in the present study [44–46].

There is wide agreement in the literature that inclusion of

simple temporal features, such as zero-crossing rate, or more

complex ones such as trajectory estimation of spectral envelopes, is

often desirable and results in improvement of the system

performance. Tests on the RWC database with both spectral

and temporal features reported an accuracy of 79.7% using 19

instruments [47] or 94.9% using 5 instruments [42]. Tests of

spectrotemporal features on other music databases has often

yielded a range of performances between 70–95% [48–51].

Whereas a detailed comparisons with our results is beyond the

scope of this paper, we can still note that, if anything, the recognition

rates we report for the full auditory model are generally in the

range or above those reported by state-of-the-art signal processing

techniques.

Psychophysics timbre judgments
Given the ability of the cortical model to capture the diversity of

musical timbre across a wide range of instruments in a

classification task, we next explored how well the cortical

representation (from both real and model neurons) does in

capturing human perceptual judgments of distance in the musical

timbre space. To this end, we used human judgments of musical

timbre distances using a psychoacoustic comparison paradigm.

Human listeners were asked to rate the similarity between

musical instruments. We used three different notes (A3, D4 and

G#4) in three different experiments. Similarity matrices for all

three notes yielded reasonably balanced average ratings across

subjects, instrument pair order (e.g. piano/violin vs. violin/piano)

and pitches, in agreement with other studies [52] (Figure 6A).

Therefore, we combined the matrices across notes and listeners

into an upper half matrix shown in Figure 6B, and used it for all

subsequent analyses. For comparison with previous studies, we

also ran a multidimensional scaling (MDS) analysis [53] on this

average timbre similarity rating and confirmed that the general

Figure 4. The confusion matrix for instrument classification using the auditory spectrum. Each row sums to 100% classification (with red
representing high values and blue low values). Rows represent instruments to be identified and columns are instrument classes. Off diagonal values
that are non-dark blue represent errors in classification. The overall accuracy from this confusion matrix is 79.1%60.7.
doi:10.1371/journal.pcbi.1002759.g004

Biological Bases of Musical Timbre Perception

PLOS Computational Biology | www.ploscompbiol.org 6 November 2012 | Volume 8 | Issue 11 | e1002759



configuration of the perceptual space was consistent with previous

studies (Figure 6C) [8]. Also for comparison, we tested acoustical

dimensions suggested in those studies. The first dimension of our

space correlated strongly with the logarithm of attack-time

(Pearson’s correlation coefficient: r= 0.97, p,1023), and the

second dimension correlated reasonably well with the center of

mass of the auditory spectrogram, also known as spectral centroid

(Pearson’s correlation coefficient: r= 0.62, p = 0.04).

Human vs. model timbre judgments
The perceptual results obtained above, reflecting subjective

timbre distances between different instruments, summarizes an

elaborate set of judgments that potentially reveal other facets of

timbre perception than the listeners’ ability to recognize

instruments. We then explored whether the cortical representa-

tion could account for these judgments. Specifically, we asked

whether the cortical analysis maps musical notes onto a feature

space where instruments like violin and cello are distinct, yet

closer to each other than a violin and a trumpet. We used the

same 11 instruments and 3 pitches (A3, D4 and G#4) employed

in the psychoacoustics experiment above and mapped them onto

a cortical representation using both neurophysiological and

model STRFs. Each note was then vectorized into a feature

data-point and mapped via Gaussian kernels. These kernels are

similar to the radial basis functions used in the previous section,

and aimed at mapping the data from its original cortical space to

a linearly separable space. Unlike the generic SVM used in the

classification of musical timbre, the kernel parameters here were

optimized based on the human scores following a similarity-based

objective function. The task here was not merely to classify

instruments into distinct classes, but rather to map the cortical

features according to a complex set of rules. Using this learnt

mapping, a confusion matrix was constructed based on the

instrument distances, which was then compared with the human

confusion matrix using a Pearson’s correlation metric. We

performed a comparison with the physiological as well as model

STRFs. The simulated confusion matrices are shown in

Figure 7A–B.

Figure 5. The average KL divergence between support vectors of instruments belonging to different broad classes. Each panel
depicts the values of the 3 dimensional average distances between pairs of instruments of a given couple of classes: (A) wind vs. percussion; (B)
string vs. percussion; (C) wind vs. string. The 3 dimensional vectors are displayed along eigenrates (x-axis), eigenscales (y-axis) and eigenfrequency
(across small subpanels). Red indicates high values of KL divergence and blue indicates low values.
doi:10.1371/journal.pcbi.1002759.g005

Biological Bases of Musical Timbre Perception
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The success or otherwise of the different models was estimated

by correlating the human dissimilarity matrix to that generated by

the model. No attempt was made at producing MDS analyses of

the model output, as meaningfully comparing MDS spaces is not a

trivial problem [52]. Physiological STRFs yielded a correlation

coefficient of 0.73, while model STRFs yielded a correlation of

0.94 (Table 2).

Control experiments
In order to disentangle the contribution of the ‘‘input’’ cortical

features versus the ‘‘back-end’’ machine learning in capturing

human behavioral data, we recomputed confusion matrices using

alternative representations such as the auditory spectrogram and

various marginals of the cortical distributions. In all these control

Figure 6. Human listener’s judgment of musical timbre similarity. (A) The mean (top row) and standard deviation (bottom row) of the
listeners’ responses show the similarity between every pair of instruments for three notes A3, D4 and G#4. Red (values close to 1) indicates high
dissimilarity and blue (values close to 0) indicates similarity. (B) Timbre similarity is averaged across subjects, musical notes and upper and lower half-
matrices, and used for validation of the physiological and computational model. (C) Multidimensional scaling (MDS) applied to the human similarity
matrix projected over 2 dimensions (shown to correlate with attack time and spectral centroid).
doi:10.1371/journal.pcbi.1002759.g006
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experiments, the Gaussian kernels were re-optimized separately to

fit the data representation being explored.

We first investigated the performance using auditory spectrum

features with optimized Gaussian kernels. The spectrogram

representation yielded a similarity matrix that captures the main

trends in human distance judgments, with a correlation coefficient

of 0.74 (Figure 7C, leftmost panel). Similar experiments using a

traditional spectrum (based on Fourier analysis of the signal) yield

a correlation of 0.69.

Next, we examined the effectiveness of the model cortical

features by reducing them to various marginal versions with fewer

dimensions as follows. First, we performed an analysis of the

spectral and temporal modulations as a separable cascade of two

operations. Specifically, we analyzed the spectral profile of the

auditory spectrogram (scales) independently from the temporal

dynamics (rates) and stack the two resulting feature vectors

together. This analysis differed from the full cortical analysis that

assumes an inseparable analysis of spectro-temporal features. An

inseparable function is one that cannot be factorized into a

function of time and a function of frequency; i.e. a matrix of rank

greater than 1 (see Methods). By construction, a separable function

consists of temporal cross sections that are scaled versions of the

same essential temporal function. A consequence of such

constraint is that a separable function cannot capture orientation

in time-frequency space (e.g. FM sweeps). In contrast, the full

cortical analysis estimates modulations along both time and

frequency axes in addition to an integrated view of the two axes

including orientation information The analysis based on the

separable model achieved a correlation coefficient of 0.83
(Table 2).

Second, we further reduced the separable spectro-temporal

space by analyzing the modulation content along both time and

frequency without maintaining the distribution along the tono-

topic axis. This was achieved by simply integrating the modulation

features along the spectral axis thus exploring the global

characteristic of modulation regardless of tonotopy (Figure 7C,

rightmost panel). This representation is somewhat akin to what

would result from a 2-dimensional Fourier analysis of the auditory

spectrogram. This experiment yielded a correlation coefficient of

0.70 (Table 2), supporting the value of an explicit tonotopic axis in

capturing subtle difference between instruments.

Next, we addressed the concern that the mere number of

features included in the full cortical model enough to explain the

observed performance. We therefore undersampled the full

cortical model by employing only 6 scale filters; 10 rate filters

and 64 frequency filters by coarsely sampling the range of spectro-

temporal modulations. This mapping resulted in a total number of

dimensions of 3840; to be comparable to the 4224 dimensions

obtained from the separable model. We then performed the

dimensionality reduction to 420 dimensions, similar to that used

for the separable analysis discussed above. The correlation

obtained was 0.86; which is better than that of the separable

spectro-temporal model (see Figure 8). This result supports our

main claim that the coverage provided by the cortical space allows

extracting specific details in the musical notes that highlight

information about the physical properties of each instrument;

hence enabling classification and recognition.

Finally, we examined the value of the kernel-learning compared

to using a simple Euclidian L2 distance at various stages of the

model (e.g. peripheral model, cortical stage, reduced cortical

model using tensor singular value decomposition). Table 2

summarizes the results of this analysis along various stages of the

model shown in Figure 2. The analysis revealed that the kernel-

based mapping does provide noticeable improvement to the

predictive power of the model but cannot –by itself– explain the

results since the same technique applied directly on the spectrum

only yielded a correlation of 0.74.

Discussion

This study demonstrates that perception of musical timbre could

be effectively based on neural activations patterns that sounds

evoke at the level of primary auditory cortex. Using neurophys-

iological recordings in mammalian auditory cortex as well as a

simplified model of cortical processing, it is possible to accurately

replicate human perceptual similarity judgments and classification

performance among sounds from a large number of musical

instruments. Of course, showing that the information is available

Figure 7. Model musical timbre similarity. Instrument similarity matrices based kernel optimization technique of the (A) neurophysiological
receptive field and (B) cortical model receptive fields. (C) Control experiments using the auditory spectral features (left), separable spectro-temporal
modulation feature (middle), and global modulation features [separable spectral and temporal modulations integrated across time and frequency]
(right). Red depicts high dissimilarity. All the matrices show only the upper half-matrix with the diagonal not shown.
doi:10.1371/journal.pcbi.1002759.g007

Table 2. Correlation coefficients for different feature sets.

L2 on features L2 on reduced features
Gaussian kernels on reduced
features

Fourier-based Spectrum - - 0.69

Auditory Spectrum 0.473 - 0.739

Global Spectro-temporal Modulations 0.509 - 0.701

Separable Spectro-temporal Modulations 0.561 0.561 0.830

Full cortical Model 0.611 0.607 0.944

Neurophysiological STRFs - - 0.73

Each row represents the correlation coefficient between the model and human similarity matrix using a direct Euclidian distance the specific feature itself (left); on a
reduced dimension of the features (middle column) or using the Gaussian kernel distance (right column). Auditory Spectrum: time-average of the cochlear filterbank;
Global Spectro-temporal Modulations: model STRFs averaged in time and frequency; Separable Spectro-temporal modulations: model STRFs averaged separately in rate
and scale, and then in time; Full cortical model: STRFs averaged in time; Neurophysiological STRFs: as the full cortical model, but with STRFs collected in primary
auditory cortex of ferrets.
doi:10.1371/journal.pcbi.1002759.t002
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at the level of primary auditory cortex does not imply that all

neural correlates of sound identification will be found at this level.

Nevertheless, it suggests that the spectro-temporal transforms as

observed at this stage are critical for timbre perception. Moreover,

our analysis highlights the ability of the cortical mapping to

capture timbre properties of musical notes and instrument-specific

characteristics regardless of pitch and playing style. Unlike static or

reduced views of timbre that emphasize three or four parameters

extracted from the acoustic waveform, the cortical analysis

provides a dynamic view of the spectro-temporal modulations in

the signal as they vary over time. A close examination of the

contribution of different auditory features and processing stages to

the timbre percepts highlights three key points.

First, neither the traditional spectrum nor its variants (e.g.

average auditory spectrum [54]) are well-suited to account for

timbre perception in full. According to our simulations, these

representations encode the relevant spectral and temporal acoustic

features too implicitly to lend themselves for exploitation by

classifiers and other machine learning techniques. In some sense,

this conclusion is expected given the multidimensional nature of

the timbre percept compared to the dense two-dimensional

spectrogram; and is in agreement with other findings from the

literature [19].

Second, when considering more elaborate spectro-temporal

cortical representations, it appears that the full representation

accounts best for human performance. The match worsens if

instead marginals are used by collapsing the cortical representation

onto one or more dimensions to extract the purely spectral or

temporal axes or scale-rate map (Figure 3, Tables 1 and 2). This is

the case even if all dimensions are used separately, suggesting that

there are joint spectro-temporal features that are key to a full

accounting of timbre. While the role of both purely spectral and

temporal cues in musical timbre is quite established [12], our

analysis emphasizes the crucial contribution of a joint spectro-

temporal representation. For example, FM modulations typical of

vibrato in string instruments are joint features that cannot be easily

captured by the marginal spectral or temporal representations.

Interestingly, acoustical analyses and fMRI data in monkeys

suggest that the spectro-temporal processing scheme used here

may be able to differentiate between broad sound categories (such

as monkey calls vs. bird calls vs. human voice), with corresponding

neural correlates when listening to those sounds [55].

Third, a nonlinear decision boundary in the SVM classifier is

essential to attain the highest possible match between the cortical

representation and human perception. Linear metrics such as L2

are less optimal, indicating that the linear cortical representation

may not be sufficiently versatile to capture the nuances of various

timbres. The inadequacy of the linear cortical mapping has

previously been described when analyzing neural responses to

complex sounds such as speech at the level of auditory cortex

[35,36,38]. In these cases, it is necessary to postulate the existence

of nonlinearities such as divisive normalization or synaptic

depression that follows a linear spectro-temporal analysis so as to

account fully for the observed responses. In the current study, the

exact nature of the nonlinearity remains unclear as it is implicitly

subsumed in the Gaussian kernels and subsequent decisions.

In summary, this study leads to the general conclusion that

timbre percepts can be effectively explained by the joint spectro-

temporal analysis performed at the level of mammalian auditory

cortex. However, unlike the small number of spectral or temporal

dimensions that have been traditionally considered in the timbre

literature, we cannot highlight a simple set of neural dimensions

Figure 8. Correlation between human and model similarity matrices as a function of reduced feature dimensionality. In each
simulation, a cortical representation is projected onto a lower dimensional space before passing it onto the SVM classifier. Each projection maintains
a given percentage of the variability in the original data (shown adjacent to each correlation data point). We contrast performance using full cortical
model (black curve) vs. separable spectro-temporal modulation model (red curve). The empirical optimal performance is achieved around 420
dimensions; which are the parameters reported in the main text in table 2.
doi:10.1371/journal.pcbi.1002759.g008
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subserving timbre perception. Instead, the model suggests that

subtle perceptual distinctions exhibited by human listeners are

based on ‘opportunistic’ acoustic dimensions [56] that are selected

and enhanced, when required, on the rich baseline provided by

the cortical spectro-temporal representation.

Methods

Ethics statement
All behavioral recordings of timbre similarity judgments with

human listeners were approved by the local ethics committee of

the Université Paris Descartes. All procedures for recordings of

single unit neural activity in ferrets were in accordance with the

Institutional Animal Care and Use Committee at the University of

Maryland, College Park and the Guidelines of the National

Institutes of Health for use of animals in biomedical research.

Psychoacoustics
Stimuli. Recordings of single musical notes were extracted

from the RWC Music Database [57], using the notes designated

‘‘medium-volume’’ and ‘‘staccato’’, with pitches of A3, D4, and

G#4. The set used for the experiments comprised 13 sound

sources: Piano, Vibraphone, Marimba, Cello, Violin, Oboe,

Clarinet, Trumpet, Bassoon, Trombone, Saxophone, male singer

singing the vowel /a/, male singer singing the vowel /i/. Each

note was edited into a separate sound file, truncated to 250 ms

duration with 50 ms raised cosine offset ramp (the onset was

preserved), and normalized in RMS power. More details on the

sound set can be found in [56]. The analyses presented in the

current study exclude the results from the 2 vowels, as only musical

instruments were considered in the model classification experi-

ments.

Participants and apparatus. A total of twenty listeners

participated in the study (14 totally naı̈ve participants, 6

participants experienced in psychoacoustics experiment but naı̈ve

to the aim of the present study; mean age: 28 y; 10 female). They

had no self-reported history of hearing problems. All twenty

subjects performed the test with the D4 pitch. Only six took part in

the remaining tests with notes A3 and G#4. Results from the 6

subjects tested on all 3 notes are reported here, even though we

checked that including all subjects would not change our

conclusions. Stimuli were played through an RME Fireface

sound-card at a 16-bit resolution and a 44.1 kHz sample-rate.

They were presented to both ears simultaneously through

Sennheiser HD 250 Linear II headphones. Presentation level

was 65 dB(A). Listeners were tested individually in a double-walled

IAC sound booth.

Procedure. Subjective similarity ratings were collected. For a

given trial, two sounds were played with a 500 ms silent interval.

Participants had to indicate how similar they perceived the sounds

to be. Responses were collected by means of a graphical interface

with a continuous slider representing the perceptual similarity

scale. The starting position of the slider was randomized for each

trial. Participants could repeat the sound pair as often as needed

before recording their rating. In an experimental block, each

sound was compared to all others (with both orders of

presentations) but not with itself. This gave a total of 156 trials

per block, presented in random order. Before collecting the

experimental data, participants could hear the whole sound set

three times. A few practice trials were also provided until

participants reported having understood the task and instructions.

A single pitch was used for all instruments in each block; the three

types of blocks (pitch A3, D4, or G#4) were run in counterbal-

anced order across participants. Two blocks per pitch were run for

each participants, and only the second block was retained for the

analysis.
Multidimensional scaling (MDS) and acoustical

correlates. To compare the results with previous studies, we

ran an MDS analysis on the dissimilarity matrix obtained from

human judgments. A standard non-metric MDS was performed

(Matlab, the MathWorks). Stress values were generally small, with

a knee-point for the solution at two dimensions (0.081, Kruskal

normalized stress1). We also computed acoustical descriptors

corresponding to the classic timbre dimensions. Attack time was

computed by taking the logarithm of the time taken to go from

240 dB to 212 dB relative to the maximum waveform amplitude.

Spectral centroid was computed by running the stimuli in an

auditory filterbank, compressing the energy in each channel

(exponent: 0.3), and taking the center of mass of the resulting

spectral distribution.

Auditory model
The cortical model is comprised of two main stages: an early

stage mimicking peripheral processing up to the level of the

midbrain, and a central stage capturing processing in primary

auditory cortex (A1). Full details about the model can be found in

[54,58]; but are described briefly here.

The processing of the acoustic signal in the cochlea is modeled

as a bank of 128 constant-Q asymmetric bandpass filters equally

spaced on the logarithmic frequency scale spanning 5.3 octaves.

The cochlear output is then transduced into inner hair cells

potentials via a high pass and low pass operation. The resulting

auditory nerve signals undergo further spectral sharpening via a

lateral inhibitory network. Finally, a midbrain model resulting in

additional loss in phase locking is performed using short term

integration with time constant 4 ms resulting in a time frequency

representation called as the auditory spectrogram.

The central stage further analyzes the spectro-temporal content

of the auditory spectrogram using a bank of modulation selective

filters centered at each frequency along the tonotopic axis,

modeling neurophysiological receptive fields. This step corre-

sponds to a 2D affine wavelet transform, with a spectro-temporal

mother wavelet, define as Gabor-shaped in frequency and

exponential in time. Each filter is tuned (Q = 1) to a specific rate

(v in Hz) of temporal modulations and a specific scale of spectral

modulations (V in cycles/octave), and a directional orientation (+
for upward and 2 for downward).

For input spectrogram z(t,f ), the response of each STRF in the

model is given by:

r+(t,f ; v,V; h,w)~z(t,f )�t,f STRF+(t,f ; v,V; h,w) ð1Þ

where �t,f denotes convolution in time and frequency and h and w
are the characteristic phases of the STRF’s which determine the

degree of asymmetry in the time and frequency axes respectively.

The model filters STRFz(t,f ; v,V; h,w) filters can be decom-

posed in each quadrant (upward + or downward 2) into

RF(t; v; h) into SF(f ;V; w) corresponding to rate and scale filters

respectively. Details of the design of the filter functions STRFz
can be found in [58]. The present study uses 11 spectral filters with

characteristic scales [0.25, 0.35, 0.50, 0.71, 1.00, 1.41, 2.00, 2.83,

4.00, 5.66, 8.00] (cycles/octave) and 11 temporal filters with

characteristic rates [4.0, 5.7, 8.0, 11.3, 16.0, 22.6, 32.0, 45.3, 64.0,

90.5, 128.0] (Hz), each with upward and downward directionality.

All outputs are integrated over the time duration of each note. In

order to simplify the analysis, we limit our computations to the

magnitude of the cortical output rz(t,f ; v,V; h,w) (i.e. responses

corresponding to zero-phase filters).
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Finally, dimensionality reduction is performed using tensor

singular-value decomposition [59]. This technique unfolds the

cortical tensor along each dimension (frequency, rate and scale

axes) and applies singular value decomposition on the unfolded

matrix. We choose 5 eigenscales, 4 eigenrates and 21 eigne-

frequencies resulting in 420 features with the highest eigenvalues,

preserving 99.9% of the variance in the original data. The

motivation for this cutoff choice is presented later.

Cortical receptive fields
Data used here was collected in the context of a number of

studies [60–62] and full details of the experimental paradigm are

described in these publications. Briefly, extracellular recordings

were performed in 15 awake non-behaving domestic ferrets

(Mustela putorius) with surgically implanted headposts. Tungsten

electrodes (3–8 MV) were used to record neural responses from

single and multi-units at different depths. All data was processed

off-line and sorted to extract single-unit activity.

Spectro-Temporal Receptive fields (STRF) were characterized

using TORC (Temporally-Orthogonal Ripple Combination)

stimuli [63], consisting of superimposed ripple noises with rates

between 4–24 (Hz) and scales between 0 (flat) and 1.4 peaks/

octave. Each stimulus was 3 sec with inter-stimulus intervals of 1–

1.2 sec, and a full set of 30 TORCs was typically repeated 6–15

times. All sounds were computer-generated and delivered to the

animal’s ear through inserted earphones calibrated in-situ. TORC

amplitude is fixed between 55–75 dB SPL.

STRFs were derived using standard reverse correlation

techniques, and a signal-to-noise ratio (SNR) for each STRF was

measured using a bootstrap technique (see [63] for details). Only

STRFs with SNR$2 were included in the current study, resulting

in a database of 1110 STRFs (average 74 STRFs/animal). Note

because of the experimental paradigm, STRFs spanned a 5-octave

range with low frequencies 125, 250 or 500 Hz. In the current

study, all STRFs were aligned to match the frequency range of

musical note spectrograms. Since all our spectrograms start at

180 Hz and cover 5.3 octaves, we scaled and shifted the STRF’s to

fit this range.

The neurophysiological STRFs were employed to perform the

timbre analysis by convolving each note’s auditory spectrogram

z(t,f) with each STRF in the database as in Equation (2).

rn(t,f )~z(t,f )�tSTRF (t,f ) ð2Þ

The resulting firing rate vector rn(t,f ) was then integrated over

time yielding an average response across the tonotopic axis. The

output from all STRFs were then stacked together, resulting in a

142080 (128 frequency channels 61110 STRFs) dimensional

vector. We reduced this vector using singular value decomposition

and mapped it onto 420 dimensions, which preserve 99.9% of the

data variance in agreement with dimensionality used for model

STRFs.

Timbre classification
In order to test the cortical representation’s ability to

discriminate between different musical instruments, we augmented

the basic auditory model with a statistical clustering model based

on support vector machines (SVM) [39]. Support vector machines

are classifiers that learn a set of hyperplanes (or decision

boundaries) in order to maximally separate the patterns of cortical

responses caused by the different instruments.

Each cortical pattern was projected via Gaussian kernel to a

new dimensional space. The use of kernels is a standard technique

used with support vector machines, aiming to map the data from

its original space (where data may not be linearly separable) onto a

new representational space that is linearly separable. This

mapping of data to a new (more linear space) through a the use

of a kernel or transform is commonly referred to as the ‘‘kernel

trick’’ [39]. In essence, kernel functions aim to determine the

relative position or similarity between pairs of points in the data.

Because the data may lie in a space that is not linearly separable

(not possible to use simple lines or planes to separate the different

classes), it is desirable to map the data points onto a different space

where this linear separability is possible. However, instead of

simply projecting the data points themselves onto a high-

dimensional feature space which would increase complexity as a

function of dimensionality, the ‘‘kernel trick’’ avoids this direct

mapping. Instead, it provides a method for mapping the data into

an inner product space without explicitly computing the mapping

of the observations directly. In other words, it computes the inner

product between the data points in the new space without

computing the mapping explicitly.

The kernel used here is given by

K(x,y)~e
{

x{yð ÞT x{yð Þ
s

� �
ð3Þ

where x and y are the feature vectors of 2 sound samples. The

parameter for the Gaussian kernel and the cost parameter for the

SVM algorithm were optimized on a subset of the training data.

A classifier Cij is trained for every pair of classes i and j. Each of

these classifiers then gives a label lij for a test sample. Note that

lij~i or j. We count the number of labels Ri~
P

1(lij~i). The

test sample is then assigned to the class with maximum count given

by arg maxiRi. The parameter s in Equation (3) was chosen by

doing a grid search over a large parameter span in order to

optimize the classifier performance in correctly distinguishing

different instruments. This tuning was done by training and testing

on a subset of the training data. For model testing, we performed a

standard k-fold cross validation procedure with k = 10 (90%

training, 10% testing). The dataset was divided into 10 parts. We

then left out one part at a time and trained on the remaining 9

parts. The results reported are the average performance over all 10

iterations. A single Gaussian parameter was optimized for all the

pair-wise classifiers across all the 10-fold cross validation

experiments.

Analysis of support vector distribution
In order to better understand the mapping of the different notes

in the high-dimensional space used to classify them, we performed

a closer analysis of the support vectors for each instrument pair i

and j. Support vectors are the samples from each class that fall

exactly on the margin between class i and class j, and therefore are

likely to be more confusable between the classes. Since we are

operating in the ‘classifier space’, each of the support vectors is

defined in a reduced dimensional hyperspace consisting of 5 eigen-

scales, 4 eigen-rates, and 21 eigen-frequencies as explained above

(a total of 420 dimensions). The collection of all support vectors for

each class i can be pulled together to estimate a high-dimensional

probability density function. The density function estimate was

derived using a histogram method by partitioning the sample

space along each dimension into 100 bins, counting how many

samples fall into each bin and dividing the counts by the total

number of samples. We label the probability distribution for the d-

th dimension (d = 1,..,420) pi,d . We then computed the symmetric

KL divergence, KLi,j(d) [43], between the support vectors for

classes i and j from the classifier Ci,j as shown in Equation (4). The
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KL divergence is simply a measure of difference between pairs of

probability distributions, is defined is next:

KLi,j(d)~pi,d log
pi,d

pj,d

� �
zpj,d log

pj,d

pi,d

� �
ð4Þ

The bins with zero probability were disregarded from the

computation of the KL divergence. An alternative method that

smoothed the probability distribution over the zero bins was also

tested and yielded virtually comparable results. Overall, this

analysis is meant to inform about the layout of the timbre decision

space. We analyzed the significance of the results between the

broad timbre classes (winds, percussions and strings) by pooling

individual comparisons between instruments within each group

(See Figure 5).

Dataset. We used the RWC music database [57] for testing the

model. 11 instruments were used for this task, which included string

(violin, piano, cello), percussion (vibraphone, marimba) and wind

instruments (saxophone, trumpet, trombone, clarinet, oboe, and

bassoon). We extracted an average of 1980 notes per instrument

ranging over different makes of the instruments, as well as a wide

range of pitches and styles of playing (staccato, vibrato, etc.). The

notes were on average 2.7 sec in duration but varied between 0.1–

18 sec. The sampling frequency of the wave files in the database was

44.1 kHz. We performed preprocessing on the sound files by first

down sampling to 16 kHz then filtering using a pre-emphasis filter

(FIR filter with coefficients 1 and 20.97).

Human vs. model correlation
We tested the auditory model’s ability to predict human

listeners’ judgment of musical timbre distances. Just like the timbre

classification task, we used the cortical model augmented with

Gaussian Kernels. In order to optimize the model to the test data,

we employed a variation of the Gaussian kernel that performs an

optimized feature embedding on every data dimension. The kernel

is defined as follows:

K(x,y)~exp {
XN

i~1

xi{yið Þ2

si

 !
ð5Þ

where N is the number of dimensions of the features x and y. si’s

are parameters for the kernel that need to be optimized. We define

an objective function that optimizes the correlation between the

human perceptual distances and the distances in the embedded

space.

J~

Pn
i~1

Pn
j~1

K(xi,xj){ �KK
� �

D(i,j){�DDð Þ

n(n{1)

2
{1

� �
sK sD

ð6Þ

where xi is the average profile for the ith instrument over all notes;

D(i,j) is the average perceived distance between the ith and jth

instrument based on psychoacoustic results K and D are the

average distances from the kernel and the psychoacoustic

experiment respectively. sK represents the variance of the kernel

distances over all samples (all instrument pairs). Similarly sD is the

variance of the human perceived distances. We used a gradient

ascent algorithm to learn fsig which optimize the objective

function.

The correlation analysis employed the same dataset used for the

human psychophysical experiment described above. Each note

was 0.25 s in duration with sampling rate 44.1 kHz and underwent

the same preprocessing as mentioned earlier. The absolute value of

the model output was derived for each note and averaged over

duration following a similar procedure as the timbre classification

described above. The cortical features obtained for the three notes

(A3, D4, G#4) were averaged for each instrument i to obtain xi.

Similarly the perceived human distances between instrument i and j

were obtained by averaging the (i,j)th and (j,i)th entry in the human

distance matrix over all the 3 notes to obtain D(i,j).

Finally, the human and model similarity matrices were

compared using the Pearson’s correlation metric. In order to

avoid overestimating the correlation between the two matrices (the

two symmetric values appearing twice in the correlation), we

correlated only the upper triangle of each matrix.

Dimensionality reduction of cortical features. As is the

case with any classification problem in high-dimensional spaces, all

analyses above had to be performed on a reduced number of

features which we obtained using tensor singular value decompo-

sition (TSVD), as described earlier. This step is necessary in order

to avoid the curse of dimensionality which reduces the predictive

power of the classifier as the dimensionality increases [64]. In

order to determine the ‘optimal’ size of the reduced features, we

ran a series of investigations with a range of TSVD thresholds.

The analysis comparing the correlation between the cortical model

and human judgments of timbre similarity is shown in Figure 8.

The analysis led to the choice of 420 dimensions as near optimal.

It is important to note that our tests were not fine-grained enough

in order to determine the exact point of optimality. Moreover, this

choice is only valid with regards to the data at hand and classifier

used in this study, namely a support vector machine. If one were to

choose a different classifier, the optimal reduced dimensionality

may be different. It is merely a number that reflects the tradeoff

between keeping a rich dimensionality that captures the diversity

of the data; while reducing the dimensionality in order to fit the

predictive power of the classifier.

To further emphasize this point, we ran a second analysis

contrasting the system performance with the full cortical model

(joint spectro-temporal modulations) against a model with

separable modulations; all while maintaining the dimensionality

of the reduced space fixed. This experiment (Figure 8 – red curve)

confirmed that the original space indeed biases the system

performance, irrespective of the size of reduced data. Results

from Table 2 are also overlaid in the same figure for ease of

comparison.

Control experiments
i) Auditory spectrum analysis. The auditory spectrum was

obtained by analyzing the input waveform with the 128 cochlear

filters described above, and integrating over the time dimension.

The resulting feature vector was 12861representation of the

spectral profile of each signal. Unlike a simple Fourier analysis of

the signal, the cochlear filtering stage operated on a logarithmic

axis with highly asymmetric filters.

ii) Separable spectro-temporal modulation analysis. For

an input spectrogram y t,fð Þ, the response of each rate filter (RF)

and scale Filter(SF) was obtained separately as follows:

rt(t,f ; v; h)~y(t,f )�tRF (t; v; h) ð7Þ

rs(t,f ;V; w)~y(t,f )�f SF (f ;V; w) ð8Þ

where �t denotes convolution in time, �f denotes convolution in
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frequency and h is the characteristic phase of the RF and w is the

characteristic phase of the SF which determine the degree of

asymmetry in the time and frequency axis respectively. Details of

the design of the filter functions SF and RF can be found in [58].

Unlike the analysis given in Equation (1), the spectral and

temporal modulations were derived separately using one-dimen-

sional complex-valued filters (either along time or along frequency

axis). The resulting magnitude outputs from Equations (7–8) were

then stacked together to form the feature vector with 4224

(11scales6128frequecies+22rates6128frequecies) dimensions. The

dimensionality was then reduced to 420 using tensor singular value

decomposition retaining 99.9% of the variance.
iii) Global modulation analysis. For this experiment, we

used the rt(t,f ; v; h) and rs(t,f ;V; w) from Equations (7–8), and

integrated the output over time and frequency for each note. The

resulting rate and scale responses were then stacked together to

form the feature vector.
iv) Under sampled joint modulation. In this experiment

we aimed to make the dimensionality of the cortical model

comparable to the separable model by under sampling the rate,

scale and frequency axes. The auditory spectrogram was down

sampled along the frequency axis by a factor of 2. This auditory

spectrogram representation was then analyzed by 6 spectral filters

with characteristic scales [0.25, 0.47, 0.87, 1.62, 3.03, 5.67]

(cycles/octave) and 5 temporal filters with characteristic rates [4.0,

8.0, 16.0, 32.0, 64.0] (Hz), each with upward and downward

directionality resulting in a 3840 dimensional representation. The

dimensionality was then reduced to 420 using tensor singular value

decomposition retaining 99.99% of the variance
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