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Abstract

The identification of MHC class II restricted peptide epitopes is an important goal in immunological research. A number of
computational tools have been developed for this purpose, but there is a lack of large-scale systematic evaluation of their
performance. Herein, we used a comprehensive dataset consisting of more than 10,000 previously unpublished MHC-
peptide binding affinities, 29 peptide/MHC crystal structures, and 664 peptides experimentally tested for CD4+ T cell
responses to systematically evaluate the performances of publicly available MHC class II binding prediction tools. While in
selected instances the best tools were associated with AUC values up to 0.86, in general, class II predictions did not perform
as well as historically noted for class I predictions. It appears that the ability of MHC class II molecules to bind variable length
peptides, which requires the correct assignment of peptide binding cores, is a critical factor limiting the performance of
existing prediction tools. To improve performance, we implemented a consensus prediction approach that combines
methods with top performances. We show that this consensus approach achieved best overall performance. Finally, we
make the large datasets used publicly available as a benchmark to facilitate further development of MHC class II binding
peptide prediction methods.
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Introduction

The activation of CD4+ helper T cells is essential for the

development of adaptive immunity against pathogens [1–4]. A

critical step in CD4+ T cell activation is the recognition of epitopes

presented by MHC class II molecules [5]. MHC class II molecules

are heterodimers expressed on the surface of professional antigen

presenting cells that bind peptide fragments derived from protein

antigens [6]. X-ray crystallographic studies demonstrated that the

MHC class II epitope binding site consists of a groove and several

pockets provided by a b-sheet and two a-helices [7,8]. Unlike class

I, the class II binding groove is open at both ends. As a result,

peptides binding to class II molecules tend to be of variable length,

but typically between 13 and 25 residues.

A hallmark of the MHC class II binding peptide groove is that

there are four major pockets. These pockets accommodate side-

chains of residues 1, 4, 6, and 9 of a 9-mer core region of the

binding peptide. This core region interaction largely determines

binding affinity and specificity [9]. In addition, peptide residues

immediately flanking the core region have been indicated to make

contact with the MHC molecule outside of the binding groove,

and to contribute to MHC-peptide interaction [10].

MHC class II molecules are highly polymorphic, and this

polymorphism largely corresponds with differences along the

peptide binding groove. However, the binding motifs derived for

MHC class II molecules are highly degenerate, and many

promiscuous peptides have been identified that can bind multiple

MHC class II molecules [11]. Promiscuous peptides are a prime

target for vaccine and immunotherapy and computational tools

have been developed to facilitate systematic scanning for

promiscuous peptides [12].

Computational prediction of MHC class II epitopes is of

important theoretical and practical value, as experimental

identification is costly and time consuming [13,14]. The basis of

a successful computational prediction is a sufficiently large set of

high quality training data. There are several databases hosting

MHC epitope related data such as SYFPEITHI [15], MHCBN

[16], Antijen [17], FIMM [18], HLA Ligand [19] and our own

project, the Immune Epitope Database (IEDB) [20,21]. Information

from those databases is, for the most part, extracted from the

literature. These databases typically combine data from different

sources and different experimental approaches, which can compli-

cate the generation of consistent training and evaluation datasets.

The establishment of numerous MHC class II epitope databases

has facilitated the development of a large number of algorithms

aimed at predicting peptide binding to MHC molecules. Early

works focused on finding peptide patterns and deriving motifs for

MHC molecules [22–24]. With the accumulation of epitope data,

more sophisticated algorithms were developed. Several methods

have derived scoring matrices that evaluate the contribution to

binding of different residues in a peptide based on quantitative

binding data (ARB [25], SMM-align [26]). Others base similar

scoring matrices on multiple peptide alignments (RANKPEP

[27,28]) or domain expert knowledge (SYFPEITHI method [15]).

By combining the similarities of key residues forming the pockets

of the binding groove with quantitative matrices derived from
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experiments, the TEPITOPE [29] algorithm can predict binding

to MHC alleles for which no binding affinities were determined.

Other machine learning algorithms that have been applied include

hidden Markov models [30], evolutionary algorithms [31] and

linear programming [32]. The MHC class II binding prediction

problem has also been modeled with a distance function in a

recently developed method PepDist [33]. In addition to the

previously listed models that are directly interpretable, ‘‘black

box’’ approaches, such as support vector machines [34] and

artificial neural networks [35–37], have also been applied to MHC

class II binding prediction with success.

Despite the large number of available prediction methods,

computational prediction of MHC class II epitopes remains a

challenging problem. It has been suggested that the prediction

performance of class II algorithms is systematically inferior to that

of MHC class I epitope prediction methods [25]. To assess the

current state of the MHC class II binding predictions, we have

here sought to establish a systematic and quantitative benchmark

similar to our previous effort for MHC class I molecules [38]. We

present a large dataset of unpublished MHC class II-peptide

binding affinities that were experimentally determined under

uniform conditions. We then proceed to evaluate a set of nine

publicly available MHC class II prediction methods using this

dataset and systematically compared their performance. Finally,

we analyzed the ability of current methods to identify the binding

cores of peptides and to predict T-cell responses from peptide

sequences.

Results

Overview of MHC Class II Epitope Affinity Dataset and
MHC Class II Binding Prediction Methods

We assembled a dataset of peptide binding affinities for various

MHC class II molecules experimentally measured in our group

(see Materials and Methods for details). Table 1 gives an overview

of the dataset, encompassing a total of 10,017 experimentally

determined peptide MHC II binding affinities. These data span a

total of 16 human and mouse MHC class II types. The number of

unique MHC-peptide affinities measured per type varies greatly,

from 3,882 for HLA DRB1*0101, to only 39 for H-2-IEd.

Compared to datasets publicly available on the IEDB and other

MHC class II epitope databases, our new dataset expands the

number of measured peptide-MHC class II interactions signifi-

cantly for a large number of MHC class II molecules. For

example, the number of peptides with known IC50 values for HLA

DRB1*0101 was more than tripled with the addition of our new

dataset.

The MHC class II binding prediction tools evaluated in this

study are listed in Table 2. We included as many prediction

methods as possible provided that they (1) can perform predictions

for MHC class II types in our dataset; (2) were publicly available;

and (3) did not specifically disallow the use of automated

prediction retrieval scripts. A total of nine methods matched these

criteria. A more detailed description of tested methods is provided

in the Materials and Methods section.

Performance Evaluation of Publicly Available Prediction
Tools

The binding predictions for peptides in our affinity dataset were

extracted from the MHC class II binding prediction tools with

custom scripts (see Materials and Methods for details). From the

experimental data, peptides were classified into binders

(IC50,1000 nM) and nonbinders (IC50$1000 nM) based on

measured affinities. The performance of the prediction methods

was then measured by ROC curves (see Materials and Methods

for details). Since the new dataset was never published before, it is

equivalent to a blind test. An important exception is the ARB

method. Since it was developed at IEDB and was constantly

updating with new data, its performance was instead evaluated via

10-fold cross validation.

Table 3 shows the prediction performance of the various

methods in terms of area under ROC curve (AUC). The ROC

curves for tested methods were also plotted in Figure 1 using HLA

DRB1*0101 as an example. SVMHC was not evaluated

Table 1. Overview of the MHC-peptide binding affinity
dataset.

Organism MHC class II types

Number of
MHC-peptide affinities

New Knowna

Human HLA-DRB1*0101 3882 1390

HLA-DRB1*0301 502 817

HLA-DRB1*0401 512 675

HLA-DRB1*0404 449 233

HLA-DRB1*0405 457 175

HLA-DRB1*0701 505 424

HLA-DRB1*0802 245 213

HLA-DRB1*0901 412 174

HLA-DRB1*1101 520 522

HLA-DRB1*1302 289 242

HLA-DRB1*1501 520 491

HLA-DRB3*0101 420 104

HLA-DRB4*0101 245 203

HLA-DRB5*0101 520 383

Mouse H-2-IAb 500 225

H-2-IEd 39 231

aNumber of records in IEDB as of 12-04-2006.
doi:10.1371/journal.pcbi.1000048.t001

Author Summary

A critical step in developing immune response against
pathogens is the recognition of antigenic peptides
presented by MHC class II molecules. Since experiments
for MHC class II binding peptide identification are
expensive and time consuming, computational tools have
been developed as fast alternatives but with inferior
performance. Here, we carried out a large-scale systematic
evaluation of existing prediction tools with the aim of
establishing a benchmark for performance comparison
and to identify directions that can further improve
prediction performance. We provide an unbiased ranking
of the performance of publicly available MHC class II
prediction tools and demonstrate that the MHC class II
prediction tools did not perform as well as the MHC class I
tools. In addition, we show that the size of training data
and the correct identification of the binding core are the
two factors limiting the performance of existing tools.
Finally, we make available to the immunology community
a large dataset to facilitate the evaluation and develop-
ment of MHC class II binding prediction tools.

Assessment of MHC Class II Binding Predictions
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separately, since it implements the same TEPITOPE matrices

utilized by PROPRED. When overall performance is assessed by

averaging across all available MHC class II molecules SMM-align

and PROPRED are associated with the best AUC value (0.73).

The ARB method has the third best performance with an average

of AUC of 0.71. When performance on individual MHC class II

molecule is examined, the ARB, PROPRED or SMM-align

perform best for all but the H-2 IEd molecule, for which

RANKPEP gives the best result.

Since we restrict our testing to publicly available tools, it is

important to point out that the methods were trained on different

datasets (Table 2). Some databases such as MHCPEP only include

positive binding data and the lack of nonbinders would be

expected to negatively impact some methods that require negative

training data. Two of the top performing methods (SMM-

align and ARB) utilize the IEDB dataset, confirming that the size

of the training set maybe an important factor contributing to

better performance. PROPRED is among the most accurate

MHC class II binding prediction methods, despite being based

on the TEPITOPE method developed over eight years ago.

The good predictive power of TEPITOPE demonstrates the

validity of its approach, based on pocket information derived

from MHC class II structures and quantitative peptide binding

profiles.

Table 2. Overview of nine MHC class II peptide prediction methods tested with the new dataset.

Category Method MHC class II typesa Training dataset Algorithm

Matrix based ARB 16 (16) IEDB Average relative binding (ARB) matrix

PROPRED 51 (11) TEPITOPE Pocket profile

SVMHC 51 (11) TEPITOPE Pocket profile

SYFPEITHI 6 (6) SYFPEITHI Position specific scoring matrices

RANKPEP 46 (16) MHCPEP Position specific scoring matrices

SMM-align 17 (16) IEDB SYFPEITHI Stabilized matrix

Machine Learning based SVRMHC 6 (5) AntiJen Support vector machine regression

MHC2PRED 21 (15) MHCBN JenPep Support vector machine

Multivariate regression MHCPRED 10 (6) JenPep Quantitative structure activity relationship
(QSAR) regression

aNumber of MHC class II types covered by a prediction method. The number in parentheses is the number of MHC class II types also in our dataset.
doi:10.1371/journal.pcbi.1000048.t002

Table 3. Performance of various MHC class II prediction methodsa.

MHC class II
type

Number of
peptides ARB MHC2PRED MHCPRED PROPRED RANKPEP SMM-align SVRMHC SYFPEITHI Consensus

DRB1*0101 3882 0.76 0.67 0.62 0.74 0.70 0.77 0.69 0.71 0.79

DRB1*0301 502 0.66 0.53 0.65 0.67 0.69 0.65 0.72

DRB1*0401 512 0.67 0.52 0.60 0.69 0.63 0.68 0.66 0.65 0.69

DRB1*0404 449 0.72 0.64 0.79 0.66 0.75 0.80

DRB1*0405 457 0.67 0.51 0.75 0.62 0.69 0.62 0.72

DRB1*0701 505 0.69 0.63 0.78 0.58 0.78 0.68 0.83

DRB1*0802 245 0.74 0.70 0.77 0.75 0.82

DRB1*0901 412 0.62 0.48 0.61 0.66 0.68

DRB1*1101 520 0.73 0.60 0.80 0.70 0.81 0.73 0.80

DRB1*1302 289 0.79 0.54 0.58 0.52 0.69 0.73

DRB1*1501 520 0.7 0.63 0.72 0.62 0.74 0.64 0.67 0.72

DRB3*0101 420 0.59 0.68

DRB4*0101 245 0.74 0.61 0.65 0.71 0.74

DRB5*0101 520 0.7 0.59 0.79 0.73 0.75 0.63 0.79

IAB 500 0.8 0.56 0.51 0.74 0.75 0.86

IED 39 0.53 0.83

Mean 0.71 0.58 0.58 0.73 0.66 0.73 0.65 0.68 0.76

Min 0.59 0.48 0.51 0.58 0.52 0.66 0.62 0.65 0.68

Max 0.8 0.70 0.63 0.80 0.83 0.81 0.69 0.73 0.86

aPerformance is measured in terms of AUC as described in Materials and Methods. Evaluation of ARB was carried out via 10-fold cross validation. Evaluation of the rest of
the methods were done as blind tests.

doi:10.1371/journal.pcbi.1000048.t003
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The cutoff of 1000 nM to classify peptides into binders and non-

binders was chosen following an expert immunologist’s recommen-

dation for an immunologically relevant threshold, but it is still

somewhat arbitrary. To further our analysis in a systematic fashion,

we varied the cutoff from 50 nM to 5000 nM. The changes in

cutoffs enable us to evaluate performances of binding prediction to

identify peptides with different affinities. A cutoff of 50 nM focuses

on identifying strong binders, while a cutoff of 5000 nM will identify

all including very weak binders. The results of the evaluation using

different cutoffs are shown in Dataset S1. For MHC molecules with

large number of binding affinities (such as HLA DRB1*0101),

varying the cutoff has little impact on the AUC values. For datasets

with smaller number of binding affinities (such as H-2-IEd), the

change in AUC values is more significant. Despite the variations in

AUC values introduced by different cutoffs, the relative perfor-

mance of different methods remains largely the same, suggesting our

conclusion of different methods’ performance is not strongly

dependent on the cutoff used to decide binders.

Existing Tools Lack Consistency in Identifying the 9-Mer
Core Interacting with the Binding Groove of the MHC
Class II Molecule

A key difference between MHC class I and class II molecules is

that the binding groove of class II molecules is open at both ends

[7,8]. As a result, the length of peptides binding class II molecules

can vary considerably, and typically range between 13 and 25

amino acids long. Thus, a requisite for all MHC class II binding

prediction approaches is the capacity to identify within longer

sequences the correct 9-mer core residues that mediate the binding

interaction [9]. All methods included in our study explicitly predict

cores when they predict MHC class II binding peptides. They

either predict binders as 9-mer peptides, or clearly state in

prediction the location of the predicted 9-mer core.

We next analyzed whether the various class II prediction tools

can accurately identify the 9-mer cores of a binding peptide. We

extracted MHC-peptide complex structures from the Research

Collaboratory for Structural Bioinformatics (RCSB) Protein Data

Bank (PDB). A total of 29 structures associated with 14 different

MHC class II molecules were identified (Table 4). For each method

we compared the predicted cores with the true cores extracted from

crystal structures. The results are shown in Table 5. The

PROPRED method based on TEPITOPE was associated with

the best performance, with all the predicted cores matching the

cores determined by PDB structures. This is in good agreement with

the fact that TEPITOPE is directly based on experimental assays.

SYFPEITHI is the second best method with an accuracy of 0.9.

However, this result should be interpreted with caution since seven

of the nine correctly predicted peptides are documented in the

SYFPEITHI database. Apart from PROPRED and SYFPEITHI,

the method most effective in predicting binding affinity (SMM-

align) is also the method with highest accuracy in predicting 9-mers

cores, with an accuracy of 0.625. RANKPEP and SVRMHC come

next with accuracies about 0.55. The remaining three methods had

limited success (21–25%), although they still perform above random

prediction (the probability to randomly guess the right core for a 15-

mer peptide is 1 out of 7 or 0.143). Overall, these data suggest that

correctly aligned cores contribute to the superior performance of

PROPRED and SMM-align, and that there is substantial room to

improve the quality of the core predictions of other methods.

Predicting T Cell Activation from Peptide Sequences with
Existing MHC Class II Epitope Prediction Tools

The ultimate goal of MHC binding peptide prediction is to

identify epitopes that activate T cells. Recognition of a peptide

bound to an MHC molecule by a T cell receptors is the critical

step in this activation, and binding of peptide to the MHC

molecule is obviously a necessary requirement [39]. In a separate

study carried out in our lab, a set of 664 peptides overlapping the

LCMV proteome were tested for their abilities to promote H-2

IAb specific IFN gamma production from CD4+ T cells in

splenocytes from previously LCMV infected mice (manuscript in

preparation). These peptides provided an ideal test set to evaluate

MHC class II binding predictions as a tool to identify peptides that

trigger an immune response.

For each of the 664 peptides, we obtained H-2 IAb binding

predictions from the five methods in our study that cover H-2 IAb

following exactly the same procedures as predictions of simple

binding. We then evaluated the methods’ performance in

predicting which peptides triggered an immune response. The

ROC curves quantifying the performance of each method are

shown in Figure 2. The Consensus method is the best performing

methods with AUC of 0.8960.05. ARB is the second best

performing method with an AUC of 0.8560.05. SMM-align and

RANKPEP have similar performance with AUC about 0.7660.08

and 0.7860.07, respectively. MHCPRED and MHC2PRED do

not perform as well, with AUC values of about 0.6760.12 and

0.3660.1 (standard deviations calculated by bootstrapping with

replacement). Except MHCPRED, every other method’s perfor-

mance in this evaluation compared favourably to that in predicting

peptide binding. Overall, the ranking of prediction performances

is well in concert with that for predicting peptide binding,

specifically when taking into account the high standard deviations

of AUC values. These large standard deviations are due to the

limited number of positive datapoints in the set utilized.

To further analyze the performance of the T cell activation

prediction, we classified peptides into predicted binders and non-

binders. Since different methods produce scores on different scales,

we adopt a rank based classification in that we classify the top 10%

highest scoring peptides as binders. We then calculated sensitivity

and positive predictive value (PPV) for each method (Table 6).

Figure 1. Performance of nine MHC class II prediction methods
using HLA DRB1*0101 as an example. Prediction results for eight
methods for HLA DRB1*0101 are shown in the ROC curve. The curves
were generated by plotting the true positive rate (y-axis) against the
false positive rate (x-axis). The AUC values for corresponding ROC curves
were shown in parentheses.
doi:10.1371/journal.pcbi.1000048.g001
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These two measures were chosen since we are primarily interested

in identifying T cell activating peptides while minimizing the

number of false positive predictions. In our system, sensitivity is the

percentage of peptides activating T cells predicted to be binders

and PPV is the percentage of predicted binders that actually

activate T cells. The data in Table 6 show that results of these two

measures are largely consistent with the AUC results. Methods

with high AUCs tend to have high PPV and sensitivity. Only the

consensus method has sensitivity above 50%, indicating that 5 out

of 6 methods missed more than half of the T cell activating

peptides when top 10% ranked peptides are classified as binders.

In addition, the consensus method also had the highest PPV value

of 9.4%, making it again the best prediction method by this

measure. The overall low PPV values are expected, as many

peptides that are capable of binding MHC are not recognized by

T cells following a natural infection, due to other factors such as

peptide processing and the available T cell repertoire.

Improving MHC Class II Binding Prediction with a
Consensus Approach

Our evaluation of prediction performance suggests that in all

cases there is clearly room for improvement, and that no single

method is dominantly better than all others. Motivated by the

success of a consensus prediction approach to map MHC class I

epitopes in vaccinia virus [40], we implemented the same

approach for MHC class II binding predictions. This consensus

approach is based on calculating the median rank of the top three

predictive methods for each MHC class II molecule (see materials

and methods for details).

The consensus prediction performance is shown in the last

column of Table 3 for the 14 MHC alleles for which three or more

predictions were available. For ten of these fourteen alleles, the

consensus method gives similar or higher performance than the

best individual method. For each of the remaining four datasets, a

single prediction performs better (i.e., ARB for DRB1*1302,

SMM-align for DRB1*1101 and DRB1*1501, and PROPRED

for DRB1*0405). In terms of overall performance across all

molecules in our dataset, the consensus method outperforms all

individual MHC class II prediction methods.

Availability
The MHC-peptide affinity, MHC-peptide structure and T cell

activation datasets are available as supplemental material at

http://mhcbindingpredictions.immuneepitope.org/MHCII.

Table 4. MHC class II structures used to evaluate the performance of different MHC class II epitope prediction methods.

Core Peptide Chain PDB ID MHC class II type

PFPQPELPY LQPFPQPELPY C 1S9V DQB1*0201

EALYLVCGE LVEALYLVCGERGG C 1JK8 DQB1*0302

LPSTKVSWA EGRDSMNLPSTKVSWAAVGGGGSLVPRGSGGGG C 1UVQ DQB1*0602

MRMATPLLM PVSKMRMATPLLMQA C 1A6A DRB1*0301

FKGEQGPKG AGFKGEQGPKGEPG E 2FSE DRB1*0101

IGILNAAKV GELIGILNAAKVPAD C 1KLG DRB1*0101

VIPMFSALS PEVIPMFSALSEGATP C 1SJE DRB1*0101

WRFLRGYHQ GSDWRFLRGYHQYA C 1AQD DRB1*0101

YSDQATPLL AAYSDQATPLLLSPR C 1T5W DRB1*0101

YVKQNTLKL PKYVKQNTLKLAT C 2G9H DRB1*0101

MRADAAAGG AYMRADAAAGGA E 2SEB DRB1*0401

YVKQNTLKL PKYVKQNTLKLAT C 1J8H DRB1*0401

VHFFKNIVT ENPVVHFFKNIVTPR C 1BX2 DRB1*1501

FKNIVTPRT NPVVHFFKNIVTPRTPPPSQ C 1FV1 DRB5*0101

YHFVKKHVH GGVYHFVKKHVHES C 1H15 DRB5*0101

AQKAKANKA FEAQKAKANKAVDGGGG B 1LNU IAb

MRMATPLLM GSHSRGLPKPPKPVSKMRMATPLLMQALPMGSGSGS C 1MUJ IAb

SQAVHAAHA RGISQAVHAAHAEI B 1IAO IAd

TQGVTAASS GHATQGVTAASSHE B 2IAD IAd

IAPVFVLLE YEIAPVFVLLEYVT B 1ES0 IAg7

RHGLDNYRG AMKRHGLDNYRGYS P 1F3J IAg7

DYGILQINS STDYGILQINSRW P 1IAK IAk

HRGAIEWEG GNSHRGAIEWEGIESG P 1D9K IAk

GGASQYRPS HSRGGASQYRPSQRHGTGSGSGS P 1K2D IAu

IAYLKQASA ADLIAYLKQASAKGG B 1KTD IEK

IAYLKQATK ADLIAYLKQATKGGG B 1KT2 IEK

IAYPKAATK ADLIAYPKAATKF E 1R5V IEK

ITAFNDGLK KKVITAFNDGLKGGG B 1FNE IEK

ITAFNEGLK KKVITAFNEGLKGGG B 1I3R IEK

doi:10.1371/journal.pcbi.1000048.t004

Assessment of MHC Class II Binding Predictions

PLoS Computational Biology | www.ploscompbiol.org 5 2008 | Volume 4 | Issue 4 | e1000048



These data are presented in this paper for immediate access by the

immunology and bioinformatics community. We are currently in

the process of depositing these data into the IEDB, making them

available through the epitope informatics framework of the IEDB.

Discussion

In this study we have presented a comprehensive dataset for the

systematic evaluation of MHC class II peptide binding prediction

methods. This dataset consists of three components. The first

component is a large set of 10,017 quantitative peptide-binding

affinities for 16 MHC class II types that significantly expands the

amount of publicly available data. These data were generated

under identical experimental conditions and comprise affinities for

binders as well as non-binders. The second component is a set of

non-redundant structures of MHC class II molecules complexed

with peptide ligands compiled from the PDB. This set of structures

provided a ‘‘gold standard’’ for evaluating the ability of prediction

methods to locate the 9-mer core of epitopes. The last component

is a set of 664 peptides that has been tested experimentally to

determine their ability to stimulate CD4+ T cells from widely

utilized C57BL/6 (H-2b) strain of laboratory mice. Together,

these datasets serve as a benchmark set to facilitate the

development and testing of algorithms for predicting peptide

binding to MHC as well as T-cell responses.

Several previous studies have compared the performances of

various MHC class II binding prediction methods [41–43]. The

Borras-Cuesta study [43] from 2000 only had a limited number of

peptides, alleles and methods to compare. The two recent studies

were published after we finished our initial comparison. Gowtha-

man et al [42] compared six commonly used method with data

spanning seven MHC class II alleles. However, their evaluation

dataset comprised only 179 peptides, limiting the significance of

their results. Rajapakse et al [41] compared their multi-objective

evolutionary algorithms (MOEA) with five other algorithm using

two datasets. The first dataset consisted of 1 training and 10 testing

datasets on HLA DRB1*0401 assembled from different sources.

The second dataset was extracted from the IEDB and comprised

more than 5,000 peptides covering 16 MHC class II alleles. We

couldn’t include MOEA in our comparison since it is not publicly

available at the moment. Despite the difference in datasets used in

comparison, their conclusion is consistent with ours in that SMM-

align, TEPITOPE and ARB are the better performing methods.

Figure 2. The performance of various MHC class II binding
prediction approaches to identify CD4+ T cell epitopes. ROC
curves are generated from the predictions made by five MHC class II
peptide binding prediction methods on the LCMV CD4+ T cell
activation data. The AUC value for each method is shown in
parentheses.
doi:10.1371/journal.pcbi.1000048.g002

Table 5. Accuracy of MHC class II prediction methods for identifying epitope core regions.

MHC class II type Known cores Methods (Number of core regions identified correctly)

PROPRED SMM-align RANKPEP ARB MHCPRED MHC2PRED SVRMHC SYFPEITHI

DQB1*0201 1 NA NA 0 NA NA 0 NA NA

DQB1*0302 1 NA NA 0 NA NA 0 NA NA

DQB1*0602 1 NA NA 0 NA NA NA NA NA

DRB1*0101 6 6 5 5 4 1 2 3 6

DRB1*0301 1 1 1 1 0 NA 0 NA 1

DRB1*0401 2 2 1 1 0 0 2 0 1

DRB1*1501 1 1 1 1 0 NA 0 1 1

DRB5*0101 2 2 1 0 0 NA 0 2 NA

IAb 2 NA 1 2 0 0 0 NA NA

IAd 2 NA 0 0 0 0 0 NA NA

IAg7 2 NA NA 0 NA NA 1 NA NA

IAk 2 NA NA 1 NA 0 NA NA NA

IAu 1 NA NA 0 NA NA NA NA NA

IEk 5 NA NA 5 NA 3 NA NA NA

Accuracy (Correct/Total) 29 1.000 (12/12) 0.625 (10/16) 0.552 (16/29) 0.250 (4/16) 0.211 (4/19) 0.250 (5/20) 0.545 (6/11) 0.900 (9/10)

doi:10.1371/journal.pcbi.1000048.t005
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We have carried out a comprehensive unbiased evaluation of

existing MHC class II epitope prediction algorithms using these

datasets. Except binding prediction for ARB, all the other MHC

class II prediction algorithms are evaluated in a completely

blinded fashion. In our analysis, the better performing methods

proved to be those that are based on quantitative matrices

extended by method specific features. For example, SMM-align is

the only method tested that considers the contribution of residues

outside of the binding groove, and TEPITOPE is the only method

whose matrices are based on experiments aimed to determine

individual amino acid’s contribution to binding. Merely using

quantitative matrices alone is not sufficient to ensure good

performance, since pure position specific scoring matrix based

methods such as RANKPEP and SYFPEITHI do not perform as

well.

One potential reason for the differential performance of various

methods is the likely different number of data points utilized by the

various methods in the training stage. In this respect, we anticipate

that the datasets described herein, and now made publicly

available, could be utilized to retrain several of the methods and

further increase their performance.

Despite the large number of existing MHC class II epitope

prediction methods, the best performance is generally not as good

as that for MHC class I methods. Indeed, it is notable that the

majority of methods examined in the present study have also been

employed to make predictions for MHC class I peptide binding,

and almost invariably their performance is appreciably better in

the context of class I [38]. For example, when SMM [44] was

applied to predict epitopes for several MHC class I molecules, it

achieved an average AUC of 0.874, which is substantially higher

than that for class II (0.783).

In an attempt to identify what limits the performance of MHC

class II binding prediction, we tested the ability of prediction

methods to identify the 9-mer peptide cores revealed in crystal

structures of MHC-peptide complexes. Except for PROPRED

and SYFPEITHI, the methods examined performed poorly,

suggesting that difficulties in identification the correct binding

core contribute to the inferior performance of class II binding

prediction. It is noteworthy that the two methods with the best

core predictions do not take all positions of a peptide into account

when making binding predictions, but rather focus on anchor

positions in the peptide. This may explain why especially the ARB

method performs much poorer in the core identification rather

than the binding predictions: It treats all positions in the peptide

identically and relies on automated peptide alignments to derive

an overall peptide profile. While this inclusion of weakly

interacting positions can be an advantage to predict overall

peptide binding, it may lower the accuracy when picking the

correct core.

In an attempt to improve upon the prediction performance

realized by individual prediction tools, we implemented a

consensus approach for class II binding predictions. The consensus

approach was found to clearly outperform each individual

prediction approach when measured over the entire dataset, and

provided the best predictions for 10 out of 14 molecules. This

shows that the consensus approach is just as useful for MHC class

II peptide binding prediction as its recent successful application for

MHC class I molecules [40]. In a smaller study addressing 3

different prediction methods in the context of a single DR type,

Mallios previously came to a similar conclusion [45].

Other types of meta approaches have been successfully applied

to MHC binding prediction. For example, Mallios [46] has used

an iterative stepwise discriminant analysis meta-algorithm to

successfully classify binders and non-binders for HLA-DR1. Stern

and co-workers effectively used a two-dimensional dot plot to

combine the prediction results of SYFPEITHI and TEPITOPE

[47]. Finally, Trost et al [48] have reported achieving greater

accuracy in MHC class I binding predictions by combing results

from multiple prediction tools. Compared to these methods, our

median rank approach does not depend on the absolute values of

scores and it has exceptional scalability since typical sorting

algorithms have running times proportional to n log n where n is

the number of cases needed to be sorted. Overall, it is astonishing

that the systematic use of consensus predictions comes rather late

(see Mallios [45,46]) to the problem of MHC peptide binding since

consensus approaches have for quite some time proven their

superiority in a number of fields, notably protein structure

prediction [49].

In any case, it is also likely that the remarkable increase in

performance obtained by the use of the consensus approach hinges

on the fact that it combines information derived from methods

trained on large numbers of data points with methods incorpo-

rating structural considerations leading to effective core predic-

tions. We are currently working on development of algorithms

specifically combining these two different features.

We also tested the ability of MHC class II binding prediction

methods to predict a peptide’s ability to activate CD4+ T cells.

Most of the methods were associated with good performance. This

was somewhat surprising since T cell activation is a multi-step

process where multiple signals are needed for successful activation

[50–52]. In addition, a peptide that binds well to MHC molecules

is not necessarily a good stimulator for T-cell response as different

amino acids are interacting with T cell receptor. It is important to

point out that the performance was based on a set of 664 peptides

of which only 9 activated CD4+ T cells. The limited number of

positive cases makes the ROC curve jagged and the AUC values

calculated less robust. Despite the encouraging AUC values

achieved by several methods, it is still necessary to test a large

number of peptides to identify most of the T cell activating

peptides. In addition, all those methods still have high numbers of

false positives peptides that are predicted binders but will not

activate T cells. Since experimental efforts to test T cell activation

are even more time consuming than testing peptide-MHC

binding, significant efforts are needed to develop tools that can

identify T cell activating peptides with high sensitivity and

specificity.

In conclusion, we have presented a set of benchmarks to

facilitate the evaluation and development of MHC class II binding

Table 6. Sensitivity and positive predictive value for predicting T cell activation.

ARB MHC2PRED MHCPRED RANKPEP SMM-align Consensus

Sensitivity 4/9 (44.4%) 2/9 (22.2%) 1/9 (11.1%) 3/9 (33.3%) 2/9 (22.2%) 6/9 (66.7%)

Positive predictive value 4/64 (6.2%) 2/64 (3.1%) 1/64 (1.6%) 3/64 (4.7%) 2/64 (3.1%) 6/64 (9.4%)

doi:10.1371/journal.pcbi.1000048.t006
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predictions. While several good methods are available, these do

not reach the performance of those for MHC class I molecules.

We have shown that a simple and robust consensus approach can

improve the prediction performance for the great majority of the

MHC class II molecules tested. Finally, we speculate that novel

approaches that capture distinct features of MHC class II peptide

interactions could lead to more successful predictions than the

current approaches, which are commonly developed as extensions

of MHC class I predictions.

Materials and Methods

Peptide Synthesis
Peptides utilized for the assessment of MHC binding,

antigenicity and immunogenicity were purchased as crude

material from Mimotopes (Minneapolis, MN and Clayton,

Victoria, Australia), Pepscan Systems B.V. (Leylstad, Netherlands)

or A and A Labs (San Diego, CA). Quality control analyses of

crude syntheses were performed by mass spectrometry on

randomly selected peptides. Peptides selected for additional

deconvolution and HLA peptide binding assays were resynthesized

by A and A as purified material. Peptides were purified to .95%

by reversed-phase HPLC, and the purity assessed by amino acid

sequence and/or composition analysis.

Experimental Procedures to Measure MHC Class II
Peptide Affinity

Quantitative assays to measure the binding affinities of peptides

to purified soluble class II molecules are based on the inhibition of

binding of a radiolabeled standard peptide. Binding assays were

performed essentially as described previously [13,53]. Briefly, 0.1–

1 nM radiolabeled peptide was coincubated for 2 days at room

temperature with 1 mM to 1 nM purified MHC in the presence of

a cocktail of protease inhibitors. Following a two-day incubation,

the amount of MHC bound labelled peptide was determined by

capturing MHC/peptide complexes on LB3.1 antibody coated

Lumitrac 600 microplates (Greiner Bio-one, Longwood, FL), and

measuring bound cpm using the TopCount microscintillation

counter (Packard Instrument Co., Meriden, CT). Individual

peptides were typically tested in 3 or more independent

experiments for its capacity to inhibit the binding of the

radiolabeled peptide. The concentration of peptide yielding 50%

inhibition of the binding of the radiolabeled peptide was

calculated. Under the conditions used, in which [label],[MHC]

and IC50$[MHC], the measured IC50 values are reasonable

approximations of the true Kd values. The binding affinities are

expressed in terms of IC50 and are capped at 50,000 nM,

reflecting the experimental sensitivity threshold.

Dataset of Binding Affinities Used in the Study
The assembled MHC class II peptide binding affinities are listed

in Table 1. The peptide binding affinities for various MHC class II

molecules were generated in the context of various projects

currently ongoing in our laboratory. Because they have been

recently generated, to the best of our knowledge, none of the

binding affinities in this dataset has been previously published.

This assessment was confirmed by comparing our dataset to

publicly available records contained in the IEDB (Table 1) or

elsewhere. There are total 10,017 measured affinities in our

dataset spanning thirteen human and three mouse MHC class II

types. Peptides for 114 proteins from 30 organisms were

synthesized and tested. While peptide sizes ranged form 9 to 37

amino acids, the vast majority of the measured affinities are for

15-mers (9,632 out of 10,017). The present dataset is currently in

the process of being deposited in the IEDB.

PDB Structures of MHC Class II and Epitope Complexes
Structures of MHC class II were retrieved from the Protein Data

Bank with a keyword search (using keyword ‘‘MHC class II’’). The

retrieved structures were then examined to select complexes have

epitopes with at least 9 amino acids. In addition, the structures were

examined to identify entries with identical MHC and binding

peptide sequences. For duplicated structures of the same MHC and

epitope, we retained the structure with the highest resolution. The

final dataset contains 29 non-redundant structures.

MHC Class II Binding Prediction Tools Evaluated in This
Study

The eight MHC class II binding prediction tools evaluated in

this study are listed in Table 2. Five of the prediction methods are

based on various scoring matrices. The method developed at

IEDB utilizes the Average Relative Binding (ARB) matrix [25].

PROPRED [54] and SVMHC [55] are web servers based on

TEPITOPE’s pocket profile [29]. Both SYFPEITHI [15] and

RANKPEP [28] use position specific matrices. Another matrix

based approach, SMM-align [26], utilizes the stabilized matrix

method (SMM [44]), but introduces a novel step to identify

peptide binding cores, which makes it applicable to MHC class II

predictions. Two of the methods, SVRMHC [56] and

MHC2PRED (http://www.imtech.res.in/raghava/mhc2pred/in-

dex.html), apply support vector machine or support vector

regression to predict epitopes. Finally, MHCPRED is a quanti-

tative structure activity relationship (QSAR) regression based

method [57].Three of the nine methods, ARB, MHC2PRED and

SMM-align, give predictions in terms of the quantitative affinity of

a peptide for a MHC class II molecule. The predictions of the

other six methods are given as a score which is not directly

translatable into an affinity of peptide-MHC binding.

In terms of the number of MHC class II types covered, the two

TEPITOPE based methods (PROPRED and SVMHC) have the

broadest coverage with 51 types, 11 of which also appear in our

dataset. The next most comprehensive method is RANKPEP

which covers 46 types, 16 of which overlap with our dataset. ARB,

MHC2PRED and SMM-align make predictions for about 20

MHC class II types and the majority of the types (15 to 16) also

appear in our dataset. The three remaining methods

(MHCPRED, SVRMHC and SYFPEITHI) have less coverage,

as they only predict peptide binding for 5 to 6 MHC class II types

in our dataset.

Table 2 also lists the dataset used by each method to train their

predictive models. Training on larger sets of data would be

expected to yield better performance when tested on independent

new data. In this context, the IEDB has HLA-DRB1*0101

binding information for 1390 peptides, AntiJen for 730, and

MHCBN for 588. By contrast, SYFPEITHI lists only 42 entries

for HLA-DRB1*0101. Thus the ARB and SMM-align methods

which use data from the IEDB, had access to the largest training

set compared to other methods, while the SYFPEITHI method

had access to the smallest dataset.

MHC Class II Epitope Prediction with External Tools
We identified eight publicly available MHC class II prediction

tools through literature search and the IMGT link list at http://

imgt.cines.fr/textes/IMGTbloc-notes/. For each tool, we mapped

the MHC types for which predictions could be made to the four-

digit HLA nomenclature (e.g., HLA-DRB1*0101). If this mapping
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could not be done exactly, we left that type/tool combination out

of the evaluation. For example, HLA-DR4 could refer to HLA-

DRB1*0401, DRB1*0402 etc, which do have distinct binding

specificities.

For the ARB evaluation, the 10-fold cross validation results

stored at IEDB was used to estimate performance since ARB was

trained on datasets overlapping with the one used in this study. For

the other seven tools in the evaluation, we wrote python script

wrappers to automate prediction retrieval. For the SYFPEITHI

prediction, we patched each testing peptide with three Glycine

residues at both ends before we submitted it for prediction. This

was recommended by the creators of SYFPEITHI method to

ensure that all potential binders are presented to the prediction

algorithm. For all other methods, the original testing peptides were

submitted directly for prediction. Peptide sequences were sent to

the web servers one at a time and predictions were extracted from

the server’s response. To assign a single prediction for peptides

longer than nine amino acids in the context of tools predicting the

affinity of 9-mer core binding regions, we took the highest affinity

prediction of all possible 9-mers within the longer peptide as the

prediction result.

Consensus Approach to Predict MHC Class II Binding
Peptides

For each MHC class II molecules whose binding can be

predicted by three or more algorithms, we employed the following

approach to generate a consensus prediction. First, we selected the

top three methods that give the best performance. For each

method, the tested peptides are ranked by their scores with higher

ranks for better binders. For each tested peptide, the three ranks

from different methods are then taken and the median of the three

is calculated. This median rank is taken as the consensus score.

Performance Measure of External Tools
Receiver operating characteristic (ROC) curves [58] were used

to measure the performance of MHC class II binding prediction

tools. For binding assays, the peptides were classified into binders

(experimental IC50,1000 nM) and nonbinders (experimental

IC50$1000 nM), which was determined as a practical cutoff in

a previous study [59]. For CD4+ T cell activation assays, the

peptides were classified into T-cell epitopes (experimental SFC

count$100) or non-epitopes (experimental SFC count ,100). For

a given prediction method and a given cutoff for the predicted

scores, the rate of true positive and false positive predictions can be

calculated. An ROC curve is generated by varying the cutoff from

the highest to the lowest predicted scores, and plotting the true

positive rate against the false positive rate at each cutoff. The area

under ROC curve is a measure of prediction algorithm

performance where 0.5 is random prediction and 1.0 is perfect

prediction. The plotting of ROC curve and calculation of AUC

are all carried out with the ROCR [60] package for R [61].

LCMV Epitope Identification
C57BL/6 (H-2b) mice were purchased from The Jackson

Laboratory (Bar Harbor, ME), and infected intraperitoneally with

26105 PFU of LCMV Armstrong (i.p.). Spleens were harvested

eight days post infection, and IFN-c ELISPOT assays were

performed as previously described [62] using CD4+ T cells

isolated with anti-CD4+ magnetic beads (Miltenyi Biotech Inc.,

Auburn, CA). Experimental values were expressed as the mean net

spots per million CD4+ cells 6SD for each peptide pool or

individual peptide. For the initial screening of the 83 pools,

responses against each pool were considered positive if a) the

number of spot forming cells (SFCs) /106 CD4+ T cells exceeded

the absolute value of the mean negative control wells (effectors plus

APCs without peptide) by two-fold, b) the value exceeded 200

SFCs/106 CD4+ cells and c) these conditions were met in at least

two replicate independent experiments. Positive pools were

deconvoluted into their eight individual components and tested

again, to determine which individual peptides were responsible for

the pooled IFN-c response. Responses against individual peptides

were considered positive if they exceeded the threshold of the

mean negative control wells (effectors plus APCs without peptide)

by at least 2 standard deviations and exceeded a threshold of 200

SFCs/106 CD4+ cells.

Supporting Information

Dataset S1 AUC values for the tested MHC class II binding

prediction methods using different cutoffs. The cutoffs for binders

were varied from 50 nM to 5000 nM.

Found at: doi:10.1371/journal.pcbi.1000048.s001 (0.03 MB XLS)
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