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Abstract

In this paper we used a general stochastic processes framework to derive from first principles the incidence rate function
that characterizes epidemic models. We investigate a particular case, the Liu-Hethcote-van den Driessche’s (LHD) incidence
rate function, which results from modeling the number of successful transmission encounters as a pure birth process. This
derivation also takes into account heterogeneity in the population with regard to the per individual transmission
probability. We adjusted a deterministic SIRS model with both the classical and the LHD incidence rate functions to time
series of the number of children infected with syncytial respiratory virus in Banjul, Gambia and Turku, Finland. We also
adjusted a deterministic SEIR model with both incidence rate functions to the famous measles data sets from the UK cities
of London and Birmingham. Two lines of evidence supported our conclusion that the model with the LHD incidence rate
may very well be a better description of the seasonal epidemic processes studied here. First, our model was repeatedly
selected as best according to two different information criteria and two different likelihood formulations. The second line of
evidence is qualitative in nature: contrary to what the SIRS model with classical incidence rate predicts, the solution of the
deterministic SIRS model with LHD incidence rate will reach either the disease free equilibrium or the endemic equilibrium
depending on the initial conditions. These findings along with computer intensive simulations of the models’ Poincaré map
with environmental stochasticity contributed to attain a clear separation of the roles of the environmental forcing and the
mechanics of the disease transmission in shaping seasonal epidemics dynamics.
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Introduction

A plethora of deterministic epidemic models involving suscep-

tible (S), infected (I) and recovered (R) individuals have been

proposed [1,2], carefully analyzed [3–8] and confronted with data

sets in the biomathematics and ecology literatures [9–12]. A well

defined topic within this mathematical ecology research area is the

study of SIR-type models with seasonal forcing [13–16]. These

models have proved to be useful for understanding the observed

patterns and the natural processes behind human and non-human

epidemics [17–21]. Here, we restrict our attention to the SIRS
and SEIR models in which we introduce seasonal forcing while

varying the structural form of the incidence rates. Two hypotheses

pertaining the RSV and the measles transmission mechanisms

were modeled with two simple functional forms of the incidence

rates. We show that in doing so, we are able to attain a clear

separation of the roles of the environmental forcing and the

mechanics of the disease transmission in shaping the epidemics

dynamics.

The construction of deterministic incidence rates functions is a

critical building block of epidemiological modeling. In a seminal

paper, Hethcote [1] showed that because there are many choices

for the form of the incidence, demographic structure and the

epidemiological-demographic interactions, there really is a pleth-

ora of incidence rate functional forms to choose from. Not

surprisingly, the biomathematics literature abound in qualitative

mathematical analyses of many of these functional forms [22–26].

However, biological first principles derivations of incidence rate

functional forms are not too common. As we show in this study,

using such first principles derivations greatly enrich the reaches of

the practice of confronting models with data while testing

biological hypotheses. Thus, despite the big amount of available

functional incidence rates forms [1], we believe that the set of

models chosen to be confronted with data should be restricted to

those forms derivable from first principles. To illustrate this

argument, in this study we first show that a simple probabilistic

setting wherein infectious encounters are modeled with a pure

birth stochastic process leads to a general nonlinear incidence form

proposed previously by Liu [24] and later analyzed by Hethcote

and Van Den Driessche [23] (hereafter we refer to the Liu,

Hethcote and Van Den Driessche incidence rate as the LHD

incidence rate). The LHD incidence rate leads to models with

qualitatively different dynamics compared with the ones obtained

using the classical incidence rate.

In the SIRS model with either incidence rate and seasonal

forcing, R0 becomes a periodic function of time and the trajectory

PLoS Computational Biology | www.ploscompbiol.org 1 February 2011 | Volume 7 | Issue 2 | e1001079



(S(t),I(t),R(t)) ‘‘pursuits’’ a moving target thus giving rise to limit

cycles. That moving target is the former endemic equilibrium that

bounces back and forth between two points. In either model, the

target switches between that moving point and the disease free

equilibrium when R0(t) crosses 1, giving rise to a period doubling

bifurcation. In the SIRS model with classical incidence rate this

mechanism does not depend on the initial conditions. In this work

we show that the disease free equilibrium (DFE) is unconditionally

an attractor in the SIRS model with LHD incidence rate. This

leads to a scenario where two regions of attraction can coexist. The

trajectory (S(t),I(t),R(t)) will either reach the disease free

equilibrium or have periodic solutions depending on the initial

conditions. Furthermore, after carrying a formal model selection

we show that the SIRS model with LHD incidence rate leads to a

significant fit improvement over the classical SIRS model with the

same seasonal forcing. Finally, we compared the applicability and

generality of the classical and LHD incidence rates functions by

fitting them to two measles time series data sets. Using the later

function leads to a vast improvement of model fit in both cases.

Since we were fitting a deterministic SEIR model, we chose to use

the data from the two largest cities in the measles data set (London

and Birmingham, see http://www.zoo.cam.ac.uk/zoostaff/grenfell/

measles.htm), where the effects of demographic stochasticity are

expected to be less influential in the dynamics of the epidemics

[10].

Varying the form of the contact rate function while including

environmental stochasticity in the SIRS and SEIR models leads to

a better understanding of the dynamics of an infectious disease

transmission. Depending on the model and contact rate, the

disease free equilibrium (DFE) is either a saddle point or an

attractor. In the first case, if a trajectory located originally in the

basin of attraction of the endemic equilibrium (EE) basin of

attraction is perturbed with environmental noise, it may

transiently visit the DFE stable submanifold and then return to

the EE basin of attraction. If however the DFE and the EE coexist

as stable equilibria, a trajectory initially at the EE basin of

attraction may end up in the DFE basin of attraction. The

interaction between stochasticity and the different contact rate

models was studied using computer intensive simulations of the

Poincaré map [27].

Model

SIRS dynamics
The classical SIR model has been extensively studied in order to

predict and understand various disease dynamics behaviors, as

well as their spread and persistence [28]. For many infectious

diseases, the pool of susceptible individuals is replenished due to

the waning of immunity [17,18]. To account for the lost of

immunity, the classical susceptible (S), infected (I) and recovered

(R) model is adjusted by allowing a fraction of the recovered

individuals R to move back into the susceptible pool S at a rate c.

This susceptible, infected, recovered and susceptible (SIRS)
model is expressed as

dS

dt
~mN{mS{b

I

N
SzcR, ð1Þ

dI

dt
~b

I

N
S{(nzm)I , ð2Þ

dR

dt
~nI{(czm)R, ð3Þ

where n is the rate of loss of infectiousness and the total population

size remains constant (i.e. N~SzIzR). The constant m
represents both, the birth and mortality rates. Assuming that

birth and mortality rates are equal is justified on the grounds that

the annual infection rate is considerably higher than the

population growth. The constant b is the contact rate, the average

number of individuals with whom one infected individual makes

sufficient contact to pass on the infection [29]. The fraction bI=N

represents the average number of infections per susceptible

individual and hence b
I

N
S represents the expected number of

infections when S susceptible individuals are available [5]. Note

that the above definition of b as a per individual constant leads to a

consistency of the units within each of the model equations and

assumes homogeneous mixing. In the following sections we will

discuss different ways to model the incidence rate.

SEIR dynamics
The equations for the classic SEIR (Susceptible-Exposed-

Infectious-Recovered) model are as follows [30]:

dS

dt
~mN{mS{b

I

N
S, ð4Þ

dE

dt
~b

I

N
S{(szm)E, ð5Þ

dI

dt
~sE{(czm)I , ð6Þ

dR

dt
~cI{mR, ð7Þ

Author Summary

Nonlinearity in the infection incidence is one of the main
components that shape seasonal epidemics. Here, we
revisit classical incidence and propose a first principles
derivation of the infection incidence rate. A qualitative
analysis of the SIRS model with both the classical and the
proposed incidence rate showed that the new model is
physically more meaningful. We conducted a statistical
analysis confronting the SIRS and SEIR models formulated
using both incidence rate functions with four data sets of
seasonal childhood epidemics. Two data sets were hospital
records of cases of syncytial respiratory virus (RSV). The
other two data sets were taken from the well-known UK
measles epidemics database. We found that seasonal
epidemics is better explained using our incidence rate
model embedded in a Poisson sampling process. The
results presented here are not by any means an exhaustive
exploration of the interplay between nonlinear dynamics
and stochasticity. Our results may be viewed as the
starting point of multiple research avenues. Three such
research topics could be: the first-principles derivation of
non-linear incidence rate functions, the role of bistability
and demographic stochasticity for disease persistence and
the simulation of environmental and demographic sto-
chasticity in the Poincaré map.

Modeling Incidence Rates in Seasonal Epidemics
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where m represents both, the birth and mortality rates per capita.

The mean latent and infectious periods of the disease are 1=s and

1=c. As written, the SEIR model has a stable endemic equilibrium

provided R0~
b

szm

s

czm
w1. Further biological realism to model

recurrent epidemics can be incorporated to both this SEIR model

and the SIRS model above by assuming that the transmission rate

varies seasonally. Indeed, Earn et al [30] study the range of the

dynamical behavior of the SEIR model with seasonality and find it

useful for explaining the measles numerous transitions between

regular cycles and irregular, possibly chaotic epidemics. Also,

Alonso et al. [31] show that noise amplification provides a possible

explanation for qualitative changes from regular to irregular

oscillations of lower amplitude. In this paper, we follow the

suggestion made by Hethcote [1] and couple Liu, Hethcote and

Van Den Driessche’s incidence rate with seasonal forcing in both

the SIRS and SEIR models.

Seasonal forcing
To incorporate the claim that epidemics of recurrent infections

is driven by seasonality, it is customary to depart from the standard

incidence rate b(I=N)S by assuming that the average number of

incidences sufficient for transmission per infected individual b, is a

periodic or quasi-periodic function of time (b~b(t)). Often, the

incidence rate is assumed to have a sinusoidal form of the type

b(t)~b0 1zb1 cos
2pt

T

� �� �
, ð8Þ

where b1 stands for the strength of the seasonality and T~1 year.

Various authors have shown that such a generic description of the

seasonal variation in transmission rates is not as revealing as a

detailed description of the actual processes underlying the seasonal

drivers of transmission through mechanistic seasonal forcing

functions [11,18,30,32,33]. However, as we show in the results

section, in some cases this sinusoidal function may unequivocally

represent a linear transformation of a weather covariate. Although

other authors have used a more flexible Haar step function for the

seasonal forcing (e.g. [30]), we restrict ourselves to the incorpora-

tion of the sinusoidal form above (eq. 8) as the seasonal forcing.

This has the advantage of ease of interpretation and qualitative

analysis. In any case, the main purpose of incorporating the

forcing is to explore the main qualitative characteristics of

coupling the seasonally varying disease transmission and different

incidence rate functional forms.

First principles modeling of incidence rates
Brauer [34] generalizes the incidence rate definition in the

following way: if the average member of the population makes

C(N) contacts in one unit of time with C’(N)§0, and if I=N is

the probability of choosing one infected individual from the

population at random, then C(N)|
I

N
|S is the rate of new

infections per unit of time. The mass-action incidence rate model

bIS is recovered using C(N)~bN and the classic incidence rate is

recovered by picking C(N)~b. A general incidence rate function

was proposed by Hethcote and van den Driessche [23]:

f (S,I ,N)~
k1

I
N

� �p

1zk2
I
N

� �q

S

N
,

where k1,k2,p and q are constants. Consider the special case

where p~2 and q~1. Using Brauer’s generalization and idea,

Hethcote and van den Driessche’s model is recovered using the

function C(I ,N)~

k1I

k2N

N
k2

zI
. Then, the incidence rate function

becomes

b
I

Iza

I

N
S,

where b~
k1

k2N
and a~N=k2. Although the mathematical

properties of the general function are known in general

[23,35,36] a mechanistic, first principles derivation of it is still

lacking. Such a derivation can be obtained using a probabilistic

reasoning analogous to the argument used by [37] to model the

Allee effect through stochastic mating encounters:

Through physical movement or any other means of dispersion,

an infected individual will have contact with a given number of

susceptible individuals in the population. The potential to

effectively disperse the disease (virus) could be thought of as being

proportional to that number of susceptibles with whom the

infected individual makes contact: indeed, the more contact the

infected individual has with susceptibles, the more likely he is to

effectively transmit the disease. It then follows that the magnitude

of the realized disease dispersion could be measured for example,

in terms of the dispersion ability (i.e. vagility) of the infected

individual. Accordingly, every infected individual will be expected

to realize a certain virus (or micro-parasite) dispersion potential.

Let the realized disease dispersion made by one infected individual

be denoted by a. Then, the number of successful transmission

encounters per infectious individual can be modeled with a

random variable X (a). By writing X (a), we are stressing the fact

that the infection process is a function of the magnitude of the

realized dispersion. Furthermore, we assume that the probability

that an infected individual encounters and infects a susceptible

individual given a realized change in dispersion Da is proportional

to the previous number of successful infection encounters times a

function h(I) of the number (or density) of the infected individuals

in the population. Often [7], a non-linear function h(I) is chosen

to account for factors such as crowding of infected individuals,

multiple pathways to infection, stage of infection and its severity or

protective measures taken by susceptible individuals. These

assumptions allow us to specify a new infection event as the

conditional probability

P½X (azDa)~xjX (a)~x{1�~d(x{1)Dah(I): ð9Þ

where d(:) is a non-negative function such that d(0)~b is a

constant. Towards the end of this section we discuss possible

functional forms for h(I). We remark that if X (a) counts the

number of successful transmission encounters of an infected

individual that recently invaded a population consisting only of

susceptible individuals, then the expected value of X (a) is in

fact equal to the mean number of secondary infections R0

in the context of the SIRS model. If the SEIR model dyna-

mics is in place, then, when there is only one infected indivi-

dual in the population, R0~
s

szm
E½X (a)�. Assuming that the

probability that more than one successful infectious encounter

occurs after an extra dispersion amount Da is negligible, then

X (a) can be modeled using a simple homogeneous birth

process where the quantity being born is the number of success-

ful virus transmission encounters. The probabilistic law of

this stochastic process is completely defined by the terms

Modeling Incidence Rates in Seasonal Epidemics
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px(a):P(X (a)~x),x~0,1,2, . . .. To solve for these terms, first

note that according to eq. (9)

px(azDa)~d(x{1)Dah(I)px{1(a)z½1{d(x)Dah(I)�px(a),

which leads to

px(azDa){px(a)

Da
~d(x{1)h(I)p(x{1)(a){d(x)h(I)px(a):

In the limit when Da?0, the above equation leads in turn to the

following system of differential equations:

dpx(a)

da
~h(I)½d(x{1)px{1(a){d(x)px(a)�, x~0,1,2,3, . . .

Then, it is well known [38] that solving this system of equations

leads to

p0(a)~ exp{ad(0)h(I) ~ exp{abh(I) , ð10Þ

px(a)~ expad(x)h(I) d(x{1)h(I)

ða

0

expd(x)h(I)s px{1(s)ds: ð11Þ

Furthermore, approximating d(x) using a Taylor series expansion

around 0 leads to specific quantitative definitions of the stochastic

process X (a). For example, if d’(0)w0 or if d’(0)~0, the one-step

transition probability mass function (pmf) of X (a) adopts the

negative binomial and Poisson forms respectively [37]. The

Negative Binomial transition pmf would bring into the picture

over-dispersion (higher variance to mean ratio) as a key qualitative

property of the moments of the pure birth process describing the

evolution of the number of successful transmission encounters. In

any case however, the probability that one infected individual

successfully passes on the infection is

1{p0(a)~1{ exp{abh(I) :

This expression is readily interpretable: for a fixed value of h(I),
the probability of successfully passing on the infection converges to

1 as the product ab grows large. Therefore, in this expression we

are recovering the model property that the probability of

successfully passing on the infection increases with the realized

disease dispersion effort a. Each individual’s realized dispersion is

in turn related to the individual’s ‘effort’ to transmit the infection.

In a given population, the magnitude of the realized disease

dispersion for each infected individual can be expected to vary

widely. Accounting for this demographic source of heterogeneity

could be achieved by assuming that each individual’s dispersion

ability is drawn from a given probability distribution. That is, we

would be modeling the variation in disease dispersion per infected

individual with a random variable L whose pdf fL(l) has support

on (0,?). Without loss of generality, here we model randomness

in the product l~ab instead of just in the realized disease

dispersion a. Then, the probability that an infected individual

chosen at random from the population realizes more than one

successful secondary infection is found by averaging 1{ exp{Lh(I)

over all the possible realizations of L. That is,

P(X (a)§1)~

ð?
0

1{ exp{lh(I)
� �

fL(l)dl:

A suitable probabilistic model for L with empirical and theoretical

support can be difficult to find (see for instance the models in [39]).

A flexible positive, continuous distribution such as the gamma

distribution could therefore be used. Here, we assume that the

magnitude of the disease dispersion brought about by an infected

individual is distributed according to a special case of the gamma

pdf, the exponential distribution. Accordingly, letting

fL(l)~a exp{la , 0vlv? we get that the probability of

successfully transmitting the infection is

P(X (a)§1)~

ð?
0

1{ exp{lh(I)
� �

a exp{la dl~
h(I)

h(I)za
: ð12Þ

As mentioned before, various biological hypotheses pertaining the

behavior of the transmission as a function of the abundance of

infected individuals have been advanced to justify various

functional forms of h(I). Suitable candidates for h(I) should

satisfy the conditions

1: h(0)~0,

2: h’(I)§0 and,

3: h’’(I)ƒ0:

These conditions guarantee the basic requirement that the

probability of a new infective encounter (eq. 9) is null in the

absence of infected individuals and that the overall chance that a

new infection occurs increases proportionally with I when I is

small. Furthermore, if h’’(I)v0 such proportionality decreases in

magnitude as I grows large (that is, h(I) is concave down).

Consider the following two functional forms:

i) h(I)~I=(IzI0), where I0 is a constant. This model whose

second derivative is negative, was first proposed by Capasso

and Serio [22] to account for saturation of infected

individuals. Substituting this functional form in eq. (12) we

get that

P(X (a)§1)!
I

Iza’
, where a’~

aI0

1za
:

Note that here, the biological hypothesis of saturation is

translated into a model using a phenomenological argument:

the functional form of the model mimics a hypothesized

pattern instead of modeling the biological process generating

the pattern.

ii) h(I)~I . This function is the simplest way to satisfy the three

conditions above without introducing an extra parameter

and/or a phenomenological modeling approach. However

simple, when substituted in eq. (12) we still recover the same

functional form for the probability of at least one successful

transmission encounter, that is

P(X (a)§1)~
I

Iza
:

The exponential distribution parameter a takes here an

important meaning: it is the density of infected individuals at

which the probability of successfully transmitting the infection

is
1

2
. It also follows from this argument that the incidence rate

function can be modeled as a constant times the probability of

picking an infected individual at random in the population

Modeling Incidence Rates in Seasonal Epidemics
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times the probability that an infected individual successfully

passes on the infection times the total number of available

susceptibles in the population. That is,

C(I ,N)
I

N
S~b

I

Iza

I

N
S,

which is Liu’s and Hethcote and van den Driessche’s model

with p~2 and q~1. This incidence rate function explicitly

states that the transmission rate is proportional to the number

of available susceptible individuals S and that the constant of

proportionality is a function of the number of infected

individuals. Also, we would like to stress that, by taking into

account the per-individual variability in dispersion abilities, this

formulation of the incidence rate function goes from individual-

based processes to population-wide patterns in disease

transmission. The effect of different hypotheses pertaining

individual-based contagion processes into the population-level

disease transmission processes could be tested by proposing

different -biologically meaningful- probability distributions of

the infected individuals potential to disperse the disease.

Many other functional forms h(I ,S) for the incidence rate could

be derived using the above arguments. If for instance other heavy-

tailed distributions are used instead of the exponential distribution,

other incidence rate functional forms will arise and this could

certainly be the topic of further research. However, in this work we

limit ourselves to the exploration of the reaches of using the LHD

model because it explicitly incorporates heterogeneity in trans-

mission potential, because of its bi-stability properties (see

‘‘qualitative analysis of the SIRS models’’ section) and to formally

test if it arises as a better explanation for bi-annual epidemic

patterns using data from different localities and diseases. Thus,

from this point on, in this work we will only consider the LHD

incidence rate function and the classical incidence rate b(I=N)S.

In his seminal paper, Hethcote [1] also mentions that the LHD

general incidence rate function could be eventually coupled with

any seasonal forcing function. Motivated by this comment, in the

results section we explore the reaches of doing so.

Materials and methods
RSV data analysis. The parameters for the SIRS model with

two different incidence rate functions were estimated via maximum

likelihood [40] using time series data from two localities in Gambia

and in Finland (Figure 1, data kindly provided by Prof. A. Weber,

see also [9]). For each geographical locality, the data consists of the

pairs f(y0,t0),(y1,t1), . . . ,(yq,tq)g, where yj denote the reported

number of cases (i.e. incidence) at time tj , for a total of q time steps.

In both localities the size of the time step is a month. Because the

data of infected individuals consists of counts, a natural and simple

statistical sampling model is the Poisson distribution [17,41–43].

Heterogeneity in sampling effort or other sources of heterogeneity

in the sampling scheme could be accounted for using the negative

binomial distribution, but we consider that the Poisson model is a

fairly robust description of the situation faced with this data sets

(see [42], sub-section ‘‘Observation error models’’ in the ‘‘Discus-

sion’’). Therefore, we assumed that the observations yj , j~0, . . . ,q
are independent realizations of a Poisson distribution Yj whose

mean changes according to the deterministic model predictions.

Let I j(h) be the predicted number of new cases between times

j{1 and j by a SIRS model evaluated at the vector of parameters

h, that is::

I j(h)~

ðtj

tj{1

b(t)
I

N
Sdt

for the classic SIRS model and

Figure 1. Observed time series of infected individuals in Gambia and Finland. Plotted are the monthly number of reported syncytial virus
cases in two cities: Banjul in Gambia (from October 1991 to September 1994) and Turku in Finland (from October 1981 to March 1990). Plotted also is
the mean monthly temperature range for both localities, for the same time spans.
doi:10.1371/journal.pcbi.1001079.g001

Modeling Incidence Rates in Seasonal Epidemics
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I j(h)~

ðtj

tj{1

b(t)
I

Iza

I

N
Sdt

for the LHD SIRS model. For the SEIR model with either

incidence rate functions, the model predicted number of new cases

was computed as
Ð tj

tj{1
sEdt. To carry the numerical integrations,

we used Romberg’s method (see [44] and links to programs in

Supporting Information). We assumed that the first observation Y0

arose from the process at stationarity, that is, once the limit cycles

predicted by both models had been reached. The biological reasoning

behind this assumption is the fact that the infectious process of interest

is a well-established disease that has evolved a stable dynamics and is

under the influence of a stationary climatic process. The above

assumptions allow us to adopt the Poisson sampling model

Yj*Poisson(cI j(h)),

where the constant of proportionality c involves the infected

individuals’ detection probability (see [45] p. 10).

Assuming that the observations are independent between them,

the joint distribution of the observed infected individual abun-

dances Y~½Y0,Y1, . . . ,Yq�’ is a good approximation to the

likelihood function L(h) [46], which would simply be defined by

the product of the individual pdf’s of the observations:

L(h)!fY~ P
q

j~0
fYj

~ P
q

j~0

e
{cI j (q)(cI j(h))yj

yj !
: ð13Þ

The maximum likelihood (ML) parameter estimates for h, denotedbhh are the values of h that jointly maximize L(h). That is, the ML

estimates are the solution to

LL(h)

Lh
~0,

which is equivalent to solving
1

L(h)

LL(h)

Lh
~

LlnL(h)

Lh
~0. Accord-

ingly, the parameter values that minimized the negative log-

likelihood

{ ln L(h)!{
Xq

j~0

ln
e
{cI j (h)(cI j(h))yj

yj !

" #

!
Xq

j~0

(cI j(h){yj ln (cI j(h)))

were taken to be the ML parameter estimates. The minimization

was carried using the L-BFGS algorithm of Zhu et al [47]. The

computer code written in Python 2.6.1 used in this work can be

found as a supplement under the title ‘‘Dataset S1’’.

Additional information about the weather was also incorporated

in the parameter estimation process. In particular, the mean

monthly temperature range data available at http : ==www7:
ncdc:noaa:gov=CDO=cdo, meteorologic stations STN 29720
dates 01=01=1981{31=03=1989 and STN 617010 dates 19=01=
1991{30=09=1994 were used as weather covariates to find the

ML estimates of the models parameters. This weather variable has

a strikingly strong sinusoidal pattern that has the same periodicity

than the time series of infected individuals. Also, as shown in

Figure 1 the mean monthly temperature range (hereafter simply

referred to as ‘‘the weather covariate’’) and the time series of

infected individuals appear to be exactly out of phase: a lower

mean monthly temperature range is accompanied by a high

reported number of infected cases for the same month. Therefore,

to include the weather data in the parameter estimation and

modeling processes, we assume that the cosine function (8) denotes

the effect of the mean monthly temperature range in the number

of infected individuals for the same months. The data to be used

for parameter estimation when both, the weather and the weather

effects are modeled is composed of the triplets f(y0,w0,t0),
(y1,w1,t1), . . . ,(yq,wq,tq)g, where wi denotes the observed mean

monthly temperature range for month i. Denote with b(t) the

mean of the cosine incidence rate function (8) and with �vv the

average of the mean monthly temperature range stationary time

series. We assume that the incidence rate b(t) can be modeled with

a deterministic linear function of the true weather covariate vt:

b(t)~f (vt)~kv|vtzk0, ð14Þ

where kv is a factor transforming temperature in incidence rates

and k0 is a reference incidence rate at zero temperature. Solving

for vt in the above eq. (14) yields

vt~
b0{k0

kv
z

b0

kw

1zb1cos
2pt

T

� �� �
~

�vvz
b0

kv
1zb1cos

2pt

T

� �� �
,

ð15Þ

where the RHS is derived by noting that by construction, the

independent term
b0{k0

kv
is the average monthly temperature �vv.

Also, we remark that using the empirical assumption that incidence

rates and temperature are exactly out of phase implies that kvv0.

To connect the time series of observed weather values

wj ,j~0, . . ., to the model above, we adopt a Normal statistical

sampling model. In particular, we assume that these observations

are Normal deviates with mean given by vt (eq. 15) and constant

variance s2. Let vtj
denote the weather model prediction from

eq.15 corresponding to the j{th weather observation

wj ,j~0, . . . ,q. The negative log-likelihood function derived from

such statistical sampling model then becomes the score function

that is minimized using a numerical algorithm. The likelihood

function for the weather data is

L(hv)~ P
q

j~0

1ffiffiffiffiffiffi
2p
p

s
exp {

(wj{vtj
)2

2s2

( )
:

Maximizing this likelihood function to find the ML parameter

estimates for the vector hv~½�ww,b0,b1,w�’ is equivalent to minimize
the sum of squares

SSQ(h)v~
Xq

j~0

(wj{vtj
)2:

The ML estimate of s2 is found in turn by plugging the ML
estimates of hv in the likelihood function and solving

L ln L(chvhv)

Ls2
~0:
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Accordingly, we find that

bs2s2~
SSQ(chvhv)

(qz1)
:

More complex stochastic continuous models that not only model

the sampling error (under and over reporting for instance) but also

the stochasticity inherent to the weather process will be treated in a

future paper. Because information about b0,b1 and w is also

conveyed by the time series of infected cases, we maximized the

joint likelihood of the time series of infected cases and of the

weather data which, from independent sampling is taken to be the

product of the individual likelihoods L(h)L(hv). We maximized

this likelihood which amounted to jointly minimize the sums of

squares SSQ(h)v and the negative log-likelihood { ln L(h) (see

eq. 13). The results of the parameter estimation process with and

without covariates are reported in the results section.

Finally, previous information about the value of the model

parameters c, n and m was available in Weber et al. [9]. We fixed

these parameters at the values 1:8, 36, 0:013 for Finland and

1:8, 36, 0:041 for Gambia. Also, the total population sizes was

taken to be 2420 in Finland and 736 in Gambia. This population

sizes are the scaling factors reported in the unit based model of

Weber et al. [9]. Once the ML estimates for the two SIRS models

and the two localities were found, we proceeded to carry a model

selection process using Akaike’s information criterion [48]. This

procedure allowed us to select amongst the two models at hand

(the SIRS model with classical and LHD incidence rate functions)

which one appeared to represent a better explanation of the

epidemic patterns seen in the time series data. The use of AIC for

model selection has a strong theoretical rooting in information

theory. For a given data set, the AIC gives an estimate of the

expected, relative, directed distance between the fitted models and

the unknown true mechanism that generated the data [49]. Thus,

the decision rule for model selection is to choose the model with

the lowest AIC. Let L̂Li denote the likelihood function for model i
evaluated at the ML estimates and let pi denote the number of

parameters used by model i. Then, the AIC statistic of model i is

simply:

AICi~{2| ln L̂Liz2pi:

Often, model selection exercises are carried using two or more

information criteria. Here, we relied on AIC and on the Bayesian

information Criterion (BIC) [50] to simultaneously assess the

quality of each model to explain the data at hand. We note that

Schwarz [50] showed for a large lass of models that if the true

model is among the suite of competing explanations, then the BIC

will choose the true model in the limit, as sample size increases,

with probability approaching 1 (that is, the BIC is statistically

consistent if the true model is in the candidate pool). In real

situations, the BIC will select the model in the pool that best

approximates the true model. The BIC is calculated with:

BICi~{2| ln L̂Lizpiln(K),

where K is the total number of data points used in the

parameter estimation process. When we used the weather time

series besides the time series of infected individuals for

parameter estimation we took K~2(qz1). For the models

fitted using the simple Poisson likelihood we used K~qz1.

The resulting AIC and BIC values for each model and each

locality is shown in the results section. A disagreement between

the two statistics would indicate that there is not enough

evidence in the data to support the best model, and a decision

would have to be taken after investigating the type I error rates

of each model using extensive simulations.

Measles data analysis Two time-series from the UK data

set (http://www.zoo.cam.ac.uk/zoostaff/grenfell/measles.htm) were

chosen: the data for London and Birmingham. According to previous

research efforts [10], these UK cities have a population size well

above the critical community size, the effects of demographic

stochasticity are not expected to be large and the disease was endemic

from 1944 to 1966. Further, it has been established that measles in the

UK reveals a well defined biennial pattern of major and minor

epidemics after the baby boom of 1947 and before the national

immunization program started in 1968 [51]. We estimated the

parameters of the SEIR model with two different incidence rates with

data from London and Birmingham from 1950 to 1959. While

analyzing these measles data, other authors have included as seasonal

forcing the effect of school terms by means of a term-time forcing

function [30,52]. Although we are aware that this approach leads to

more realistic predictions, we constrain ourselves to a simple

sinusoidal function since it constitutes a low dimensional

approximation amenable to bifurcation analysis.

For each city, the data consists of pairs f(y0,t0),
(y1,t1),:::,(yq,tq)g, where yj denote the number of reported cases

at time tj , for a total of q time steps. In both localities the size of the

time step is two weeks. To connect the time series data with the

SEIR model we used the same approach as with the RSV data set:

we assumed that the true infectious process is deterministic and

that the observed deviations from the model predictions were due

to Poisson sampling error. The minimization of the negative log-

likelihood function eq. (13) was again carried using the L-BFGS

algorithm. We note that not all the model parameters were

estimated. The values for the mean latent and infectious periods

were taken to be 1=s~8 days and 1=c~5 days respectively

[30].

Assessing the effects of environmental stochasticity A

common way to investigate the range of possible dynamic

behaviors exhibited by a model is by means of bifurcation

diagrams. Kuznetsov [53] and Earn et al [30] for instance,

illustrate how varying the value of the seasonality and/or the mean

contact rate gives rise to saddle-node and period doubling

bifurcations. A trajectory that switches between multiple basins

of attraction can result from the interaction between stochasticity

and complex deterministic dynamics [54]. To assess the effects of

environmental stochasticity in the SIRS and SEIR models’

dynamics we simulated stochastic dynamics from the associated

Poincaré map in the following way [27]:

Consider the discrete map that results from recording the

same day every year the solution of the continuous SEIR or

SIRS models. Denote this discrete map by xn~f (xn{1), where

xn is the vector denoting the recorded solution at year n. The

discrete map was perturbed with environmental noise by

multiplying f (xn{1) by iid normal random variables Ei,n, where

i~1,2,3 for the SIRS model and i~1, . . . ,4 for the SEIR

model. With such a perturbation, the growth rate Rn of the

discrete map becomes

Rn~ ln
xn

xn{1

� �
~ ln f (xn{1)z ln E{ ln xn{1:

It is well known that a discrete map with environmental and

demographic stochasticity is characterized by a growth rate

Modeling Incidence Rates in Seasonal Epidemics

PLoS Computational Biology | www.ploscompbiol.org 7 February 2011 | Volume 7 | Issue 2 | e1001079



whose variance is
s2

d

x
zs2

e , where s2
d and s2

e are constants. The

signature of environmental noise is that its variance is

independent of the size of the state variables [54]. In this case,

including the environmental noise according to [27] results in a

perturbation in the growth rate Rn with mean 0 and a variance

approximately equal to s2
e .

Results

Parameter estimation and model selection
The two different SIRS models were fitted to time-course data

of reported cases of syncytial virus infections. The data come from

Gambia and Finland (Figure 1). Two ML formulations were used.

The first one consisted of a Poisson likelihood that only required

the available observed counts of infected individuals (eq. 13). The

second formulation consisted of the joint likelihood of the counts

and of the observed weather covariate and thus used information

present on the time series of reported cases and on the

corresponding time series of mean monthly temperature range

for both locations. The ML estimates according to the first

formulation for each model and data set combination are

displayed in Table 1. Both information criteria used indicate that

for Finland, the best model was the SIRS model with LHD

incidence rate function. For Gambia, both information criteria for

the SIRS model with classic incidence rate function are lower by

three points approximately. This implies that given the data and

the two information criteria ways of penalizing the likelihood

score, both models are nearly indistinguishable for any practical

purpose [49]. In Gambia, the extra parameter introduced by the

LHD model is penalized: given the data set at hand, incorporating

one extra parameter does not lead to a clear improvement In

Figure 2 we plotted the model predicted number of infected

individuals versus the observed values for the classical and the

LHD SIRS model respectively. Note that, even though the best

model is deterministic, the dynamics displayed by the data (small

epidemics followed by a big epidemic peak) is very well

recapitulated by the predicted solutions.

The results of the second ML formulation are qualitatively

identical to the results with the Poisson likelihood (see table in the

Text S1). For Finland, the BIC statistic for the classical model was

10376.2000 and for the LHD model 9893.5780. For Gambia, the

BIC for the classical model was 729.1133 whereas the LHD model

had a BIC of 733.2750. Hence, here again, for Finland the LHD is

the best model whereas for Gambia, the classic model is better.

Because the BIC can be used only to compare models for which

the numerical values of the dependent variable are identical for all

estimates being compared, it cannot be used to select between the

two ML formulations. Indeed, in the second likelihood formula-

tion the data fitted consist not only of the time series of infected

counts but also of the monthly temperature range, thus it uses

twice as much data for parameter estimation. Zeng et al [55]

mention that an indication of which likelihood formulation is

better can be obtained by comparing the per datum BIC score. Take

for instance the BIC for the LHD model for Finland, 9893.5780.

Dividing that BIC by the total number of data points used (~204),
we get a per datum BIC of 48.4979. Now, the BIC for the LHD

model for the Poisson likelihood formulation is (Table 1)

3196.9330. Dividing that number by the number of data points

used (~102) we get 31.34248. Thus, the Poisson likelihood

formulation yields a better per datum BIC for Finland. For Gambia,

the Poisson likelihood formulation seems to be better than the

Poisson-Normal sampling model: for the classic model with

Poisson likelihood this statistic is 296:7303=102~2:909121,

whereas for the classic model with Poisson-Normal likelihood it

is 729:1133=204~3:5741.

The SEIR model with classic and LHD incidence rate were

fitted to measles time series data from London and Birmingham.

Figure 2. Predicted vs. observed time series of infected individuals. Using the ML estimates in Table 1, the predicted infected dynamics of
the classical SIRS model was compared against number of infected individuals reported in Gambia and in Finland. Panels A and B show the
predictions for the Classical SIRS model and panels C and D show the predictions for the LHD SIRS model.
doi:10.1371/journal.pcbi.1001079.g002
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In both cities, the SEIR-LHD model was selected as best (see

Table 2). Notably, the difference in AIC and BIC is at least

2000 points in each case. The predictions for each model and city

combination are shown in Figure 3. We remark that assessing and

comparing the quality of the model predictions visually may be

misleading. Indeed, according to our likelihood formulation, the

parameter estimation process does not weight equally a deviation

from the model prediction at low and high infected counts. In fact,

the variance of the Poisson sampling error varies according to the

mean predictions bIjIj(bhh).

Qualitative analysis of the SIRS models
In this section we discuss the differences in the qualitative

behavior of the SIRS model (1)–(3) with both classical b(I=N)S and

LHD b(I=(Iza))(I=N)S incidence rates with and without

seasonal forcing. We refer the interested reader to the Text S1 for

proofs of the following claims. By construction, the set

T~f(S,I ,R)j0ƒS,0ƒI ,0ƒR,SzIzR~Ng is a positively in-

variant set of the SIRS model (1)–(3). If we set the coefficients

constant, the Dulac criterion guarantees that the SIRS model with

neither the classic nor the LHD incidence rate function has periodic

solutions in T . Regarding the classical incidence rate, the SIRS

model has two stationary solutions: a disease free equilibrium (DFE)

and an endemic equilibrium (EE). It is well known that R0~1 is a

threshold for this model: If R0w1 the disease remains endemic,

while R0v1 implies that the disease dies out. On the other hand,

the SIRS model with LHD incidence rate has one disease free

equilibrium DFE and two endemic equilibria EE1 and EE2. The

DFE is unconditionally a local attractor. However, only one of the

endemic equilibria denoted as EE1, lies inside the positively

invariant set T . If R0w1 the endemic point EE1 is locally an

attractor. Thus, when R0w1 the LHD model exhibits bi-stability.

Table 2. Measles SEIR model parameter estimates and model selection using a Poisson sampling model.

London

Model P { ln bLL AIC BIC cS0S0
bI0I0

bb0b0
bb1b1 baa

Classic 3 49881.59 99769.18 99779.85 1.4741e+05 1.1777e+02 1.5964e+03 5.0210e202 NA

LHD 4 48102.60 96213.20 96227.43 1.5246e+05 1.5334e+02 1.5416e+03
(+1.1340E206)

4.8037e202
(+1.2461E204)

1.5225e205

Birmingham

Model P { ln bLL AIC BIC cS0S0
bI0I0

bb0b0
bb1b1 baa

Classic 3 181216.8 362439.6 362450.3 5.8121e+04 6.2292e+01 1.3307e+03 1.5033e201 NA

LHD 4 167295.2 334598.4 334612.6 6.2144e+04 9.1709e+01 1.2536e+03
(+1.5311E209)

1.4559e201
(+2.897E207)

1.5741e208

Maximum likelihood (ML) parameter estimates for both models and two time series of the number of reported measles cases in two different cities: London and
Birmingham. The sampling model for the observation error of the counts is the Poisson distribution. The letter p denotes the number of model parameters in each case.
{ ln L̂L denotes the value negative log-likelihood function evaluated at the ML estimates. The AIC and BIC scores for each model vs. data set combination are also
reported. The model selection decision rule is to pick the model with lowest information criterion value. Accordingly, the LHD model seems to be the best choice in
both data sets. Confidence intervals for b̂b0 and b̂b1 are shown in parentheses for the best model for each locality.
doi:10.1371/journal.pcbi.1001079.t002

Table 1. RSV-SIRS model parameter estimates and model selection using a Poisson sampling model.

Finland

Model P { ln bLL AIC BIC cS0S0
bI0I0

bb0b0
bb1b1 baa

Classic 3 21647.400 3300.8000 3308.9290 2.1948e+03 8.6808e+01 4.2847e+01 2.9136e201 NA

LHD 4 21589.048 3186.0950 3196.9330 2.1858e+03 9.4965e+01 4.2878e+01
(64.5816E211)

2.7076e201
(63.2131E210)

5.8830e203

Gambia

Model P { ln bLL AIC BIC cS0S0
bI0I0

bb0b0
bb1b1 baa

Classic 3 2141.1981 288.3962 293.1468 2.7562e+02 2.8980e+01 6.7300e+01
(62.3425E203)

2.0207e201
(69.9497E203)

NA

LHD 4 2141.1981 290.3962 296.7303 2.7556e+02 2.8971e+01 6.7304e+01 2.0213e201 7.3600e207

Maximum likelihood (ML) parameter estimates for both models and two time series of the number of reported syncytial virus cases in two different localities: Gambia
and Finland. The statistical model for the observation error is the Poisson distribution. The letter p denotes the number of model parameters in each case. { ln L̂L

denotes the value negative log-likelihood function evaluated at the ML estimates. The AIC and BIC scores for each model vs. data set combination are also reported. The
model selection decision rule is to pick the model with lowest information criterion value. Accordingly, the LHD model seems to be the best choice in Finland whereas
the Classical model seems to be a sufficient explanation for the observed time series patterns in Gambia. Confidence intervals for b̂b0 and b̂b1 are shown in parentheses for
the best model for each locality.
doi:10.1371/journal.pcbi.1001079.t001
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Figure 3. Predicted vs. observed time series of infected individuals. Using the ML estimates in Table 2, the predicted infected dynamics of
the SEIR model was plotted against the number of infected individuals reported in London and Birmingham. Panels A and B show the predictions for
the classical SEIR model and panels C and D show the predictions for the LHD SEIR model.
doi:10.1371/journal.pcbi.1001079.g003

Figure 4. Predicted model dynamics by the classical SIRS model. Using the ML estimates in Table 1, the predicted dynamics of the classical
SIRS model was plotted without seasonal forcing for both localities, Gambia and Finland (subplots A and B respectively). When seasonal forcing is
added (subplots C and D), a limit cycle arises and the endemic equilibrium EE becomes a function of time (see ‘‘Qualitative analysis of the fitted SIRS
models’’). If the strength of seasonality b1 is large enough as it is the case in Finland, the limit cycle undergoes a period doubling bifurcation creating
a small loop in the phase plane. This loop corresponds to the alternating small epidemic outbreaks observed in the predicted and recorded time
series of infected individuals for Finland.
doi:10.1371/journal.pcbi.1001079.g004
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Introducing seasonal forcing has the following effects on the

SIRS dynamics with classic incidence: first, it is well known that by

letting the contact rate to be a periodic function of the form (8)

where b1 is small, the SIRS model with classical incidence rate has

a periodic solution with period 1. This behavior is shown in

Figure 4 A and B. Also, when seasonal forcing is introduced, the

basic reproductive number R0 becomes a periodic function of

time, R0(t), that oscillates between the values R{
0 ~

b0(1{b1)

nzm
and

Rz
0 ~

b0(1zb1)

nzm
. The endemic point also becomes a periodic

function of time EE(t) that bounces back and forth between two

extreme points, EE{ and EEz. The expressions for EE{ and

EEz are given in the Text S1. The associated limit cycle of the

model’s solution inherits the stability behavior of the endemic

point: if R0(t)w1, then the limit cycle is asymptotically stable. A

stable limit cycle is displayed in Figure 4 C. Because the function

R0(t) can cross the boundary of 1 periodically depending on the

value of b1, the dynamic behavior of the model’s trajectory with

respect to the nature of the endemic point EE(t) (stable/unstable)

can be described with a race analogy: The model’s solution can be

thought of as a hopeless ‘pursuer’ engaged in a race against the

endemic solution EE(t) who plays the role of the fast ‘leader’ that

cannot be caught upon. Just as in a cycling race, as soon as the

leader changes its strategy, so does the pursuer behind the leader.

In that way, if b1 is such that R{
0 v1vRz

0 and only while

R0(t)w1, the leader (EE(t)) is deemed as stable and the solution’s

trajectory pursues the endemic point EE(t). As soon as R0(t)
becomes less than 1, the leader ‘changes its strategy’ and is deemed

unstable whereas the DFE becomes stable. At that moment, the

trajectory switches its objective and pursues the DFE and keeps

doing so while R0(t)v1. That sudden change of objective gives

rise to a period doubling bifurcation of the limit cycle as seen in

Figure 4 D. This change of objective (period doubling bifurcation)

happens as b1 grows large. We remark that at least one route to

chaos in the associated Poincaré map of this model when b1 is

taken as the bifurcation parameter has been shown [53,56,57].

Finally, in the SIRS model with LHD incidence rate (see

Figure 5 A and B), if we let the contact rate to be a periodic

function of the form (8), a limit cycle also arises (see Figure 5 C).

Here again, as b1 increases, the trajectory engages in the same

pursuer/leader dynamics and the limit cycle undergoes a period

doubling bifurcation (Figure 5 D). However, contrary to what

happens in the classical SIRS model with seasonal forcing,

periodicity or extinction of the epidemics depends also on the

initial conditions: if the initial proportion of infected individuals is

too high, the disease will die from a subsequent depletion of the

susceptible pool of individuals. Only if the epidemic begins with a

small number of individuals will it slowly work its way up and

attain a persisting limit cycle.

Discussion

Multiple lines of evidence show that the forced SIRS and SEIR

models with LHD incidence rate function constitute a better

explanation of the seasonal epidemic patterns than the corre-

sponding classical models with seasonal forcing, for the data sets

and cases explored here. The first line of evidence is statistical in

nature: when confronted with different time series of seasonal

epidemics, the LHD model was selected as best in three out of four

cases and in the fourth case, the LHD model was nearly

indistinguishable from the classic model. By formulating the fitting

and the model selection problems using likelihood-based inference

Figure 5. Predicted model dynamics by the nonlinear LHD SIRS model. Using the ML estimates in Table 1, the predicted dynamics of the
nonlinear SIRS model with the LHD incidence rate function was plotted without seasonal forcing for both localities, Gambia and Finland (subplots A
and B respectively). When seasonal forcing is added (subplots C and D), a limit cycle arises and the endemic equilibrium EE becomes a function of
time (see ‘‘Qualitative analysis of the fitted SIRS models’’). If the strength of seasonality b1 is large enough as it is the case in Finland, the limit cycle
undergoes a period doubling bifurcation creating a small loop in the phase plane. This loop corresponds to the small alternating epidemic outbreaks
observed in the predicted and recorded time series of infected individuals for Finland.
doi:10.1371/journal.pcbi.1001079.g005
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and information theoretic model selection criteria we were able to

conclude that given the data and the models at hand our model

embodies the most likely explanation of how the observed data

arose. Our model’s nonlinear incidence rate takes into account

heterogeneity in the ability to transmit the infection while

modeling the infectious process as a pure birth stochastic process

and hence, it is a more realistic model formulation. This new level

of model complexity was achieved by incorporating only one extra

parameter. The emphasis we give to a first principles derivation

that hinges on interpretability and simplicity is not always sought

in other SIR-type model formulations and modeling exercises

[6,17,18,24,58]. Hence, our results show that a careful exploration

of other incidence rate functions before resorting to mathemati-

cally more complex, high-dimensional models may bring new

insights into the current understanding of the functioning of

epidemics.

Another line of evidence in favor of the LHD model comes from

its qualitative predictions. The classical SIRS model without the

seasonal forcing predicts somewhat artificially that regardless of

the initial proportion of infected and susceptible individuals,

provided R0w1, the endemic equilibrium will be reached [28].

On the other hand, the LHD model without seasonal forcing

predicts that the disease-free equilibrium is always an attractor,

thus exhibiting bi-stability (see qualitative analysis section). Hence,

if the initial proportion of infected individuals is too high, the

disease will die from a subsequent depletion of the susceptible pool

of individuals, contrary to what the classical model predicts. For

the disease to persist in the population, the initial proportion of

infected individuals has to be very low. Only then the infection

process will proceed steadily to the endemic solution. This

qualitative prediction matches the virus transmission strategy that

the syncytial virus seems to have evolved: recall that in our model

the extra parameter a is the density of infected individuals at which

the probability of successfully transmitting the infection is
1

2
. In

every locality, the ML estimates of a were in the order of 10{8 to

10{3, thus indicating that a very low density of infected individuals

is needed in order to maximize the transmission rate of the measles

and RSV diseases.

Incorporating weather covariates to our nonlinear SIRS model

further improves the biological insights that can be concluded from

the parameter estimation and model analysis exercises. A simple

look at the strong auto-covariation patterns and at the pure weather

trends, in particular for Gambia (Figure 1) indicate that modeling

weather and weather effects with a sinusoidal function seems a

natural add-on to the classic SIRS model, for this data set. For

Gambia, the fact that the per datum BIC for the LHD model with the

joint Poisson-Normal likelihood is very similar to the per datum BIC

for the classic model indicates that the weather can indeed be

viewed as a simple rotation and translation (eq. 15) of the weather

effects (eq. 8). Thus eq. 15 may not always be viewed only as a

phenomenological artifact [18]. For Finland, however, this was not

the case. The per datum BIC favors much more clearly the Poisson

likelihood formulation. Hence, we consider that in Finland the

weather effects model (eq.8) would be better expressed as some

unknown nonlinear transformation of the weather. In other words,

in this country with more extreme weather, a change in the

temperature range of a certain size is not translated as an equivalent

change in the weather effects in the transmission rate. Also

embedded within our weather effects model formulation (eq.8) is

the hypothesis that weather affects incidence rates in a nonlinear

fashion. In particular, when the strength of seasonality b1 is high

enough, the limit cycles predicted by both weather forced models

undergo a period doubling bifurcation such that relatively small

epidemic outbreaks are followed by big ones. Notably, these effects

of the strength of seasonality were detected in Finland, the locality

where the amplitude of the relative weather oscillation is larger.

The model selection exercise should by no means be the ending

point of the analysis. Instead, if appropriateness of one model vs.

the other cannot be resolved, a near-tie in a model selection

situation should lead to the search and reformulation of each

model’s scientific predictions in a way that can be clearly tested in

further experiments. Hence, the model selection results presented

here should be rather viewed as the starting point of further

analyses (see [59]).

Even for simple deterministic models, parameter estimation for

dynamic data can be non-trivial. Dynamic models often present

multimodal likelihoods thus complicating the parameter estimation

process [42]. In these cases, the type of inferences possible is limited

due to the presence of wide confidence sets that include parameter

values with different qualitative predictions. If for instance the ML

estimate of a bifurcation parameter is in a 2 limit-cycles region but

its confidence interval includes parameter values for which these

cycles do not appear, then there is not enough evidence in the data

at hand to properly infer something about the size of the parameter

of interest and hence, about the dynamic properties displayed by the

data. In our case however, the precision of our parameter estimates

and in particular, of the bifurcating parameter b1 (Tables 1 and 2) is

enough to identify the bifurcation region where the strength of

seasonality lies for the data at hand.

Although in the two models studied here a period doubling

bifurcation appears in the limit cycle, the LHD incidence rate

model still provides very different qualitative predictions. In the

classical model, the value of the basic reproduction number as a

function of time R0(t) acts as a stability switch for the DFE, so that

any trajectory that begins with biologically realistic initial

conditions will eventually enter the limit cycle. This is not the

case for the LHD model, for which the periodicity or extinction of

the epidemics depends very naturally on the initial conditions.

Other studies have incorporated seasonal forcing in SIRS-type

models [17,60,61], but since all have used the classical incidence

rate function, they constrain their disease persistence and

epidemics predictions to whether the basic reproductive number

can or cannot be periodically above 1.

Nonlinear incidence rate forms derived from first principles

constitute a promising starting point to review the interaction

between demographic and environmental stochasticity and

nonlinear seasonal effects. Indeed, recent studies have consid-

ered including in the classic SIRS model stochasticity in the

seasonal process, besides sampling and/or observation error

[17]. After showing that a simple pure observation error fit of

our LHD model brings about a considerable fit improvement,

we explored the qualitative differences between the models by

coupling the deterministic skeletons with environmental noise. In

Figure 6, the depicted stochastic trajectories show that in the

classical model increasing the environmental noise results in

transient visits to the disease free equilibrium stable submanifold

(panel c)), whereas in the LHD model, with a large enough

perturbation the trajectory visits the disease free equilibrium

basin of attraction and remains there. Hence, the fact that

regardless of the value of the basic reproduction number the

DFE is always an attractor opens the door to stochastic

phenomena whereby the trajectory exits the endemic solution

basin of attraction and hits just by chance the DFE basin of

attraction, only when the LHD incidence rate is used. By the

same token, the trajectory periodically wanders in the direction

of the DFE stable submanifold (similar to the ‘‘saddle fly-by’’

reported by Cushing et al [54]).
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The results presented here are not by any means an exhaustive

exploration of the interplay between nonlinear dynamics and

stochasticity, both critical factors shaping seasonal epidemic

patterns. However, our results may be viewed as the starting point

of multiple research avenues. Three such research topics could be:

first-principles derivation of non-linear incidence rate functions, the

role of bi-stability and demographic stochasticity for disease

persistence and the simulation of environmental and demographic

stochasticity in the Poincaré map.
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57. Diallo O, Koné Y (2007) Melnikov analysis of chaos in a general epidemiological

model. Nonlinear Anal Real World Appl 8: 20–26.

58. Alexander M, Moghadas S (2004) Periodicity in an epidemic model with a

generalized non-linear incidence. Math Biosci 189: 75–96.

59. Tarantola A (2006) Popper, Bayes and the inverse problem. Nat Phys 2:

492–494.

60. Capistrán M, Moreles M, Lara B (2009) Parameter Estimation of Some

Epidemic Models. The Case of Recurrent Epidemics Caused by Respiratory

Syncytial Virus. Bull Math Biol 71: 1890–1901.

61. Weber M, Mulholland E, Greenwood B (1998) Respiratory syncytial virus

infection in tropical and developing countries. Trop Med Int Health 3: 268–280.

Modeling Incidence Rates in Seasonal Epidemics

PLoS Computational Biology | www.ploscompbiol.org 14 February 2011 | Volume 7 | Issue 2 | e1001079


