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Abstract

Influenza pandemics in the last century were characterized by successive waves and differences in impact and timing
between different regions, for reasons not clearly understood. The 2009 H1N1 pandemic showed rapid global spread, but
with substantial heterogeneity in timing within each hemisphere. Even within Europe substantial variation was observed,
with the UK being unique in experiencing a major first wave of transmission in early summer and all other countries having
a single major epidemic in the autumn/winter, with a West to East pattern of spread. Here we show that a microsimulation
model, parameterised using data about H1N1pdm collected by the beginning of June 2009, explains the occurrence of two
waves in UK and a single wave in the rest of Europe as a consequence of timing of H1N1pdm spread, fluxes of travels from
US and Mexico, and timing of school vacations. The model provides a description of pandemic spread through Europe,
depending on intra-European mobility patterns and socio-demographic structure of the European populations, which is in
broad agreement with observed timing of the pandemic in different countries. Attack rates are predicted to depend on the
socio-demographic structure, with age dependent attack rates broadly agreeing with available serological data. Results
suggest that the observed heterogeneity can be partly explained by the between country differences in Europe: marked
differences in school calendars, mobility patterns and sociodemographic structures. Moreover, higher susceptibility of
children to infection played a key role in determining the epidemiology of the 2009 pandemic. Our work shows that it
would have been possible to obtain a broad-brush prediction of timing of the European pandemic well before the autumn
of 2009, much more difficult to achieve with simpler models or pre-pandemic parameterisation. This supports the use of
models accounting for the structure of complex modern societies for giving insight to policy makers.
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Introduction

In March 2009 H1N1pdm influenza emerged in Mexico and

started spreading across the globe. Despite the rapidity in which

the virus has reached a large number of countries in the world [1],

transmission initially only became sustained in a subset of those

countries seeded with infection from Mexico, notably the US and

Southern hemisphere temperate countries. A relevant heteroge-

neity in the pattern of pandemic spread has been seen also within

Europe: in that region, the UK has experienced a substantial first

wave of transmission in the early summer, followed by a second

one in the autumn, while all other European countries had only a

limited transmission before the summer and a single wave in the

autumn/winter [2–5]. Moreover, a clear West to East pattern of

spread was observed for the 2009 pandemic [6], similar to that

sometimes seen for seasonal flu [7].

Climatic differences (especially between northern and south-

ern hemispheres) may be partly responsible for spatial

heterogeneity in epidemic progression [8]. Human mobility

patterns can also affect the spatiotemporal dynamics of an

epidemic [9,10] as well as heterogeneity in the population itself -

sociodemographic structure can affect the susceptibility and

contact patterns [10,11]. For the 2009 H1N1 pandemic, the

timing and length of summer school holidays [12,13], given the

emergence time, may have also affected the timing of pandemic

spread in Europe.

By employing an individual-based stochastic simulation model,

structurally similar to those already developed for predicting the

spatiotemporal spread of a flu pandemic in different geographic

areas [10,14–22], we analyse here which factors are most

responsible for the observed geographical differences, and to

which extent the pattern was predictable on the basis of the first

available data on the spread of H1N1pdm in Mexico [23], the US

and the UK [24]. Thus, we do not fit the model to the observed

pattern of spread (which is possible only after the pandemic);

rather, we use parameter values estimated from the first published

analyses and examine the extent to which the model predicted

spread agrees with the pattern of spread seen in the Europe in the
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summer and autumn of 2009. We employ extensive sensitivity

analysis to assess the uncertainty in prediction, as well as the extent

to which the predictions could have been improved by better

parameterisation or greater detail. This allows us to also evaluate

the predictability of the patterns seen and to discuss implications

for the control of future pandemics.

Methods

Our analysis makes use of an individual-based stochastic

simulation model structurally similar to a model previously

developed for Europe [10]. The simulation is a spatially-explicit

discrete-time SEIR model with force of infection decreasing with

the geographical distance which explicitly models transmission in

households, schools and workplaces. Country-specific sociodemo-

graphic data from Eurostat [25] were used to parameterise the

distribution of individuals in households, schools and workplaces.

Infection spread between countries is modelled through cross-

border diffusion and long-distance travel, making use of European

air and railway transportation data.

Previous work using this model [10] did not specifically aim to

model the 2009 H1N1 pandemic, but rather examined the impact of

human mobility patterns and demographic heterogeneity on the

expected spread of a ‘generic’ influenza pandemic, parameterised to

reproduce the transmissibility of the pandemics seen in the last

century. The version of the model used in that work [10] lacked some

key features required to realistically capture the epidemiology of the

2009 pandemic.

For this paper, we enhanced the simulation framework in a

number of ways. First, rather than modelling the importation of

cases through a simple compartmental model describing the

spread of a pandemic outside the EU, here we explicitly model

importation of cases from Mexico and US into EU countries.

Since it is apparent that many features of pandemic spread in

Europe depend on the timing of its emergence, the simulation in

this study is synchronized to match the time of the first recorded

cases across Europe. Specifically, the epidemic is seeded using

country-specific data on travel-related cases in the early phase of

the epidemic (up to June 3, 2009) [26]. Second, instead of

assuming adults and children are equally susceptible to infection

[10,14–20], here we model children as being twice as susceptible

to infection as adults, based on early analyses of the pandemic in

Mexico [23] and the UK [24]. Third, the key role children played

in the transmission of the 2009 pandemic meant that we

incorporated the timing of school holidays in different EU

countries, and the impact of those holidays on transmission.

Fourth, the model of long-distance travel was refined to take

account of the duration of stays abroad in estimating transmission

risk between travellers and host populations. Last, the parameter-

isation of transmission rates in households, schools and workplaces

was refined to match available data [12,17,27].

Beyond the socio-demographic information used [10], we

parameterised the model using information available up to June

2009 on the generation time of the pandemic virus, Tg, and on the

value of the reproduction number, R0 [23,24]. Overall, the model

has five transmission parameters: the transmission rate in

households, in schools, in workplaces, in the general community

and during long-distance travel. These are assumed to be identical

for all European countries. For a given choice of Tg, once the

transmission parameters are fixed, one can estimate a value of R0

for the model from the growth rate of the simulated epidemic. R0

will differ between countries because of the sociodemographic

differences even keeping transmission parameters constant; our

reference value for comparison with data is that obtained from

simulations of the pandemic in the UK, R0
UK.

We assigned the value of the five transmission parameters in

such a way that R0
UK matched early estimates of R0 from UK data

(achieved by applying an overall scaling to all transmission

coefficients), and so that the proportion of transmission in different

social contexts matched that estimated in past work [12,17]: after

adding the effect of age-dependent susceptibility, this results in

36% of cases being transmitted in schools, 31% in households, 9%

in workplaces and 24% in the general community. During school

holidays, no transmission is assumed to occur in schools, while

community transmission is increased by a factor of 1.4 [12], to

account for increased non-school contacts among students. The

model predicts, using data on the number of nights spent by

European citizens in EU countries outside their own member

state, that the percentage of infections during long-distance travel

is slightly lower than 0.5%.

By the end of June 2009, the most reliable estimates of epidemic

growth rate for the H1N1pdm pandemic were those obtained from

the comprehensive (.25% population coverage) Qsurveillance

sentinel surveillance system for influenza-like-illness operating in

England [28]. Fitting an exponential model with non-zero intercept

to data from the Qsurveillance network data available to July 1 [29]

the estimated real-time exponential growth rate is 0.141/day (95%

CI: 0.127–0.156), corresponding to a doubling time of 4.9 days

(95% CI: 4.4–5.5 days). Such epidemic growth rates can be

translated into estimates of the reproduction number, R0, given

estimates of the generation time distribution [30]. For instance,

assuming exponentially distributed latent and infectious periods (as

the simulation model used here does) with means of 1.5 days and 1.6

days respectively, the corresponding reproduction number estimate

is 1.48 (95% CI: 1.43–1.54). Similar estimates (see supporting Text

S1) are obtained using the H1N1pdm case estimates generated by

the UK Health Protection Agency (HPA) which are derived from

ILI data weighted by the proportion of ILI cases each week testing

positive for H1N1pdm via virological surveillance, albeit the

confidence bounds are wider due to the relatively small numbers

of samples which were virologically tested.

Author Summary

The 2009 H1N1pdm influenza pandemic spread rapidly
but heterogeneously. A notable pattern occurred in
Europe, with the UK exhibiting a first wave in early
summer and a second wave in autumn, while all other
European countries experienced a single wave in autumn/
winter, resulting in a clear West to East pattern of spread.
Our study asks which factors were most responsible for
this variation, and to what extent the pattern of spread
was predictable from data available in the first two months
of the pandemic. Providing reliable answers to these
questions would reduce uncertainty and improve situa-
tional awareness for policy-makers in the future, giving
clearer expectations as to the likely impact and timing of a
future pandemic and the potential effectiveness of
mitigation measures. We found that that heterogeneity
seen in 2009 can largely be explained by marked
differences in school calendars, human mobility and
demography across Europe. We also conclude that much
of the variation in timing of the pandemic in Europe would
have been predictable on the basis of data available in
early June 2009. Our work supports the use of models
accounting for the structure of complex modern societies
for giving insight to policy makers in future pandemics.

Determinants of the 2009 H1N1 Pandemic in Europe
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We therefore choose to illustrate the qualitative predictions of

the model with default values of R0 = 1.48 and Tg = 3.1 days

(parameters in Table 1). This choice of generation time is a little

longer than the modal estimate derived from (mostly household

based) contact tracing data in the early UK epidemic [24], but lies

between lower and higher past estimates of the generation time of

influenza [15–17,31]. A sensitivity analysis is presented which

demonstrates relative insensitivity of the ability of the model to

predict timing of the epidemic across Europe to variation in R0

and Tg, so long as the epidemic doubling time observed in the UK

in June is reproduced.

Details on the model structure and its parameterisation are

given in the supporting Text S1.

Results

Most trips from the US and Mexico to the EU are to Western

European countries and especially to the UK (about one third of

the trips, see supporting Text S1). We found that the date of the

first case in each European country [32] correlates significantly

with the number of travellers to the country from Mexico and US,

both in the data and in model output (see Table 2) and with

longitude (a West to East pattern is observed; see Table 2).

The overall pattern of infection spread is summarised in Fig. 1A,

where the distribution (as predicted by the model) of the

proportion of expected cases before the end of the summer

among the total case is shown for each country, together with the

predicted infection level (average of all simulations) for each

country and each week. From the picture, one sees that a sizeable

proportion of all cases was to be expected before the end of the

summer in UK (the predicted value is above 20% in all

simulations). As for other countries, one sees that in the large

majority of simulations only a small proportion of cases would

have been expected before the end of the summer (,3% in 75% of

simulations), while in few simulations a more substantial summer

wave (due to the rapid build-up of cases) occurs in a few countries

(mainly Germany, France, Netherlands and Spain). As it is shown

in the inset of Fig. 1A, incidence rates in early summer would only

have been expected to be high in the UK. Fig. 1B shows the

distribution of predicted spring-summer peak incidence from

multiple runs of the model for a few selected countries; again it is

seen that a substantial summer wave in UK is predicted as almost

certain, while only a low probability of a minor peak is predicted

for the other countries.

The analysis of the first 711 laboratory-confirmed cases of

H1N1pdm influenza in Europe available at June 3 indicated that

452 (64%) were probably infected overseas [26]. However, a key

part of the protocol adopted in most European countries for

Table 1. Epidemiological parameters used in the baseline
simulations (R0 = 1.48, Tg = 3.1 days).

Parameter Value

Transmission rate in households 0.711 days21

Transmission rate in schools 0.840 days21

Transmission rate in workplaces 0.408 days21

Transmission rate in the general community 0.319 days21

Transmission rate during long-distance travel 4.252610215 days21

Transmission rate for modelling importation of cases 0.832 days21

Latent period 1.5 days

Infectious period 1.6 days

Relative susceptibility to infection of adults with
respect to children

0.5

doi:10.1371/journal.pcbi.1002205.t001

Table 2. Correlation of population variables and epidemic statistics as observed or predicted by the model in the different
European countries.

Epidemic statistic Population variable
Correlation as
observed in the data

Correlation as
predicted by the model

Day of the first caseh US-MX travellers a r= 20.875 p,0.001 r= 20.807 P,0.001

Day of the first caseh Longitude b r= 0.618 p,0.001 r= 0.373 p = 0.02

Day of the first caseh GDP c r= 20.548 p = 0.002 r= 20.255 p = 0.12

Peak weeki Inter-EU passengers d r= 20.519 p = 0.01 r= 20.685 p,0.001

Peak weeki Longitude b r= 0.584 p = 0.002 r= 0.743 p,0.001

Peak weeki GDP c r= 20.585 p = 0.002 r= 20.745 p,0.001

Cumulative attack rate Household size e r= 0.702 p,0.001

Cumulative attack rate Average age f r= 20.861 p,0.001

Cumulative attack rate Fraction of children g r= 0.785 p,0.001

Peak weekly attack rate Household size e r= 0.734 p,0.001

Peak weekly attack rate Average age f r= 20.863 p,0.001

Peak weekly attack rate Fraction of children g r= 0.725 p,0.001

aUS-MX travellers: the yearly number of travellers entering the country from US and Mexico as resulting from the analysis of air travel data [25].
bLongitude: the longitude of the capital city of the country.
cGDP: per capita gross domestic product of the country [25].
dInter-EU passengers: the yearly number of travellers entering the country from other European countries as resulting from the analysis of air travel data [25].
eHousehold size: the average number of members of households in the country [25].
fAverage age: the average age (in years) of the population of the country [25].
gFraction of children: the fraction of individuals aged less than 15 years old in the population of the country [25].
hDay of the first case: obtained from the analysis of the WHO daily situation updates for pandemic (H1N1) 2009 [32].
iPeak week: obtained from the analysis of the WHO situation update from week 40/2009 to week 07/2010 [6].
doi:10.1371/journal.pcbi.1002205.t002

Determinants of the 2009 H1N1 Pandemic in Europe
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testing people for H1N1 infection was travel links to known

affected countries. Therefore it is perhaps unsurprising that a high

fraction of reported confirmed cases by July were in travellers.

What has previously been unknown is the number of undetected

cases occurring in the early stages of the European pandemic.

Comparing the proportion of reported confirmed cases which

were imported with our model predictions, we estimate that 8%

(95%CI: 1%–22%) of indigenously transmitted cases were being

detected in Europe up to June 3rd.

Fig. 1C compares the model-predicted week of autumn peak

incidence with that observed from ILI surveillance data for the

countries for which data was available from the World Health

Organisation (WHO) [6]. The correspondence between predicted

and observed appears quite good for almost all countries

(Spearman’s correlation coefficient between data and predictions

0.53, p = 0.006), considering that no data fitting has been

employed. From the subpanel in Fig. 1C, one can see that the

error is below 2.5 weeks for 50% of countries, while the average

error is computed to be around 2.2 weeks. The autumn peak week

in each European country correlates significantly with the number

of travellers to the country from other European countries, both in

the data and in model output (see Table 2). Significant correlations

with longitude (a West to East pattern is observed) and gross

domestic product are also seen (Table 2).

Model predictions aim at tracking the epidemic trajectory (and

not only peak timing) and estimating the community burden of

infection over time. One (albeit imperfect) measure of infection

rates is provided by ILI data; however it should be noted that as

this only measures those seeking healthcare, ILI incidence

represents a (largely unknown) fraction of true infection incidence.

In addition, ILI is a non-specific measure, as multiple other

pathogens can cause ILI-like symptoms. We therefore focus on

comparing incidence rates at different times in the pandemic,

rather than attempting to model the absolute magnitude of ILI

incidence. UK data is of particular relevance therefore, due to the

availability of serological data [33,34] that allow for some absolute

quantification of infection rates.

Simulations for UK (see Fig. 2A) show two waves of comparable

size, roughly in agreement with the profile of observed ILI

incidence, though recently available serological data [34] suggest

that the autumn wave was considerably larger than the summer

wave; from Fig. 2A one can see that a summer wave was almost

certain (credible interval for peak week incidence between 8 and

53 per 1,000) while the peak of the autumn wave could be all the

way between minimal and 35 per 1,000; depending on the

simulation, either wave could be the largest: it is clear that the

prior prediction of the magnitude of both waves would always

have been challenging. The timing of the peaks of the two waves is

strongly determined by the dates of summer and autumn school

holidays.

Simulations for Italy (see Fig. 2B), a country with only one clear

wave in autumn, are similar to observed ILIs [35], except for a 2

week delay (virological data [36] suggest that the increase in

incidence in January 2010 was due to B-type viruses). Finally, we

show simulations for France (see Fig. 2C), the country with the

largest difference (6 weeks) between predicted and observed peak

week (Fig. 1C); simulations show a big peak at week 43 followed by

a sudden drop due to school holidays in weeks 44 and 45 with a

possible minor increase after school re-opening, while data show a

major increase in ILIs only after school re-opening [37]. However

Fig. 2D shows that small variations in the assumed value of Ro can

cause large differences in the predicted peak week for France, due

to the timing and unusual length (2 weeks) of autumn school

holidays in that country.

A typical European pandemic simulation is shown in Fig. 2E:

the epidemic develops early in the UK, because of the large

number of travellers and the late date of school closure for summer

holidays in England and Wales. When schools close in England

and Wales the incidence there decreases sharply, and remains very

low in all European countries until the autumn when an epidemic

wave occurs in all countries with a general West to East trend

depending on mobility patterns and economic factors (Table 2).

Such a trend has been observed for seasonal flu [7] as well as the

2009 pandemic [6].

The model yields also quantitative predictions about cumulative

infection attack rate, peak incidence, and the age distribution of

cases for all European countries. Most interestingly, the model

predicts substantial variation in cumulative attack rate across

Figure 1. Timing of the pandemic (R0
UK = 1.48 Tg = 3.1 days). (A) Distribution of the fraction of predicted attack rate (2.5%, 25%, 50%, 75% and

97.5% percentiles) by the end of August (week 35) in the different countries. In the inset, mean incidence per week in the different European
countries in colour scale, from dark green (less than 5 per 1,000) to dark red (above 50 per 1,000). (B) Probability of observing a summer wave with
peak incidence in a given range, in UK (blue), Germany (cyan), Netherlands (orange), Ireland (green) and Spain (red). (C) Observed peak week plotted
versus predicted peak week (vertical bars represent 95% confidence intervals of the predictions) for European countries covered by the WHO/Europe
weekly influenza surveillance system; only the autumn wave is considered for UK. In the inset minimum, 25%, 50%, 75% percentiles and maximum of
observed minus predicted peak week. A total of 100 simulations were undertaken to produce the results shown.
doi:10.1371/journal.pcbi.1002205.g001
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Europe, with values from 19.8% (95% CI 18–20.3) in Germany to

36.4% (95% CI 35.8–36.9) in Cyprus (see Fig. 3A) with an average

(over Europe) of 24.8% (95% CI 24.1–25.3). The standard

deviations around these estimates are small, except for the

countries with small populations or a summer wave.

Recently available data [34] on antibody prevalence in England

allow for a comparison with model predictions for the UK (see

Fig. 3C); except for the age group 25–44, where the model slightly

underestimates the number of cases, the agreement is excellent,

considering that no parameter fitting has been performed.

However, it should be noted that this comparison could be partly

affected by the confounding effects of vaccination – while UK

vaccination rates were low overall, the samples tested for these

serological studies were from hospital patients who may have had

a higher vaccination rate. Nonetheless, UK data are the only data

available to date allowing for such comparison. Further such

comparisons will be possible, once serological data collected from

other countries become available.

The predicted peak weekly incidence in the autumn ranged

from 1.5% (95% CI 0.1–3.6) in UK to 7.9% (95% CI 7.1–8.5) in

Cyprus (see Fig. 3B). The final size of the epidemic (i.e. the

cumulative infection attack rate) is strongly affected by demo-

graphic differences: cumulative attack rate is positively correlated

with the fraction of individuals aged less than 15 years (see Fig. 3A

and Table 2) and average household size (see Table 2). Note that

while predictions of the overall population attack rate are very

different among countries, age-specific attack rates are much more

uniform (see Fig. 3C).

Sensitivity analyses
An extensive analysis of the sensitivity of these results to model

assumptions is presented in the supporting Text S1; here we

summarise some results concerning the assumed reproduction

number R0 and generation time Tg, age-depending susceptibility,

inter-European mobility, demographic heterogeneities, school

calendar and seeding of infection into Europe.

Fig. 4A shows how the average deviation between predicted and

observed peak week depends on R0
UK and Tg. The three blue

points in the figure represent combinations of these parameters

which are compatible with the observed doubling time of the UK

summer epidemic (see Methods), namely R0
UK = 1.42, Tg = 2.7

days, R0
UK = 1.48, Tg = 3.1 days (the baseline values) and

R0
UK = 1.55, Tg = 3.5 days. It can be seen that they all lie in a

narrow strip leading to satisfactory predictions, both in terms of

the timing of autumn epidemic peak, and in the predicted

presence of a UK summer wave. In fact, for parameter values

which yield an adequate prediction of autumn peak week, the

expected number of countries with a summer wave above

Figure 2. Spatiotemporal spread of the European pandemic (R0
UK = 1.48 Tg = 3.1 days). (A) Comparison between average weekly incidence

in UK as predicted by the model (red) and weekly HPA case estimates (blue). Red shaded area represents 95% confidence intervals of the expected
weekly incidence over time. (B) Comparison between average weekly incidence in Italy as predicted by the model (red) and weekly ILI cases [35]
(blue). (C) Comparison between average weekly incidence in France as predicted by the model (red) and weekly ILI cases [37] (blue). (D) As (C) but
assuming R0

UK = 1.43. (E) Time sequence (in days) of a single simulation with the first European case in UK is shown. Colours from pink to dark red
indicate an increasing number of daily cases (dark red indicates more than 10,000 daily cases). A total of 100 simulations were undertaken to produce
the results shown.
doi:10.1371/journal.pcbi.1002205.g002
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threshold is approximately 1, i.e. the UK. Thus, model predictions

are not very sensitive to the values of R0
UK and Tg so long as we

consider simulations consistent with the doubling time observed in

the initial phase of the epidemic in UK.

Fig. 4B shows that (as expected) simulations with R0
UK = 1.42

and Tg = 2.7 days and with R0
UK = 1.55 and Tg = 2.5 days give rise

to slightly (approximately 1 week) slower or faster simulated

epidemics in autumn respectively with respect to the baseline

simulations. There are no substantial differences in the predicted

scale of summer spread between these parameter sets (Fig. 4C),

while, as expected, substantial differences emerge in terms of

cumulative attack rate by the end of the pandemic (Fig. 4D).

Fig. 4A also shows that values of R0
UK and Tg in the right

bottom corner (low R0
UK and long Tg), a summer wave would not

be expected in any country and the epidemic would have spread

much more slowly, thus delaying the epidemic peaks in autumn by

months; while with high R0
UK and short Tg, several countries

would have experienced a summer wave and epidemics would

have peaked earlier across Europe. Thus, the observed pattern of

spread might have been dramatically different, with much earlier

peaking of transmission, had the transmissibility of H1N1 been

comparable to that seen in previous pandemics such as 1957 and

1968.

The effect of the timing of school holidays on the magnitude of a

summer wave also proved to be substantial, as shown by

simulations where the same school calendar was given to all

countries, causing (according to the calendar chosen) a different

pattern of summer waves (Fig. 5A), and a lack of correlation

between predicted and observed week of peak incidence in the

autumn (Fig. 5B). By assuming the school calendar of Finland in

all European countries, it emerges that no country would have

experienced any summer wave. Moreover, a slight delay in the

autumn peak week would have been observed (especially in

countries less connected with US and Mexico) due to the lack of a

well established epidemic in the United Kingdom and other

countries in the Western part of Europe during the summer. The

opposite pattern is observed by assuming the school calendar of

the United Kingdom in all European countries. A summer wave

would have been likely in the great majority of countries (especially

in the Western part of Europe) and an anticipation of the autumn

peak week would have been observed, due to epidemics ongoing in

many Western countries and triggering the start of epidemics in

the Eastern part of Europe. Without school holidays, a relevant

single summer wave would have been observed in almost all

European countries. These results highlight the role of school

holidays in determining the epidemic timing, although an

additional impact of climatic factors cannot be ruled out.

By assuming no difference in susceptibility between adults and

children (but still calibrating the model on the epidemic growth

rates seen in the UK summer wave), the model predicts much

faster epidemics in autumn (Fig. 6A), because of the lower impact

on transmission of the closure of schools, with sizeable summer

waves in several countries (Fig. 6B). In addition, one would have

expected a much larger attack rate in adults and the elderly

(Fig. 6C). Increasing the difference in susceptibility to a factor of 4

between adults and children causes much lower attack rates in

adults (Fig. 6C) but also some delay in timing of peaks (Fig. 6A).

These results highlight how different the pattern of epidemic

spread might have been had adults been more susceptible to the

2009 virus. They also suggest that the susceptibility to infection of

children relative to adults is likely to have been closer to 2 than 4,

but that overall, capturing age differences in susceptibility to

infection (a feature not present in pandemic models developed

before the H1N1 pandemic) is necessary to capture the observed

pattern of spatiotemporal spread of H1N1pdm in Europe. This

highlights the need to obtain early estimates of differential

susceptibility with age in any future pandemic.

We also examined a model variant which assumes that all

countries have the same socio-demographic structure, thus

neglecting inter-European heterogeneities (see supporting Text

S1). The net effect on pandemic speed and attack rate is similar to

increasing or decreasing (depending on the country’s demography)

Figure 3. Variation in attack rates by age and country (R0
UK = 1.48 Tg = 3.1 days). (A) Average cumulative attack rate predicted by the model

in the different European countries (black bars represent 2.5% and 97.5% percentiles of the distribution). Colours represent the fraction of individuals
,15 year old in the population, increasing from yellow (13%) to red (22%). (B) Average peak weekly incidences predicted by the model in the
different countries for the summer (orange) and the autumn (cyan) waves; for each country and wave, 2.5% and 97.5% percentiles of the distribution
are shown (red and blue bars). (C) Post pandemic age-stratified attack rates. Estimates of post pandemic seroconvertion rates in England [34]
(precisely, differences between the percentage of post pandemic (2010) serum samples from England with HI 1:32 or more, and corresponding
percentages in serum samples obtained in 2008 in England) against cumulative attack rates by age in UK predicted by the model at the end of the
pandemic: red points represent the expected value of post pandemic seroconversion rates (vertical lines represent 95% confidence intervals), shaded
blue areas represent 95% confidence intervals of model simulations. Cumulative attack rates by age as predicted by the model at the end of epidemic
in different European countries are shown in the inset: shaded grey area represent 95% confidence interval at European level, while solid lines
represent the median for Italy (blue), Germany (red) and Ireland (green). A total of 100 simulations were undertaken to produce the results shown.
doi:10.1371/journal.pcbi.1002205.g003
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Figure 4. Sensitivity to assumed R0 and Tg. (A) Sensitivity analysis by varying R0
UK and Tg: level curves (and numbers) in black represent the

mean deviation between observed and predicted peek week (in weeks). Colours represent the expected number N of countries with peak of the
summer wave above 30 per 1000 individuals, ranging from dark green (N = 0) to dark red (N.30). Light green indicates 0.5,N, = 1.5, yellow
indicates 1.5,N, = 2.5 and light orange indicate 2.5,N, = 5. Blue points represent possible pairs (R0

UK, Tg) as resulting from the Qsurveillance data:
R0

UK = 1.42, Tg = 2.7 days; R0
UK = 1.48, Tg = 3.1 days; R0

UK = 1.55, Tg = 3.5 days. Blue vertical lines represent the uncertainty of R0
UK as resulting from the

uncertainty of the growth rate r of the Qsurveillance data. (B) Peak week for European countries covered by the WHO/Europe weekly influenza
surveillance system as observed (cyan bars), as predicted by simulations with R0

UK = 1.48 and Tg = 3.1 days (black squares), as predicted by simulations
with R0

UK = 1.42 and Tg = 2.7 days (green squares) and as predicted by simulations with R0
UK = 1.55 and Tg = 3.5 days (red squares). (C) As (B) but for

the fraction of the attack rate by end of August. (D) As (B) but for the cumulative attack rate. A total of 100 simulations were undertaken for each
parameter set to produce the results shown.
doi:10.1371/journal.pcbi.1002205.g004
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R0. The attack rates become identical in almost all countries

(slightly lower attack rates are estimated for countries which

experience a sizeable summer wave, due to the mitigating effect of

the summer closure of schools in reducing the final size of the

epidemic [12,38]), and the timing of the peak of the epidemic

depends only on school calendar and importation of cases from

US and Mexico, causing marked differences from the basic model,

in which the demography also plays a role: for instance, if all

countries had the same demographic structure as Germany, a

summer wave would be unlikely in any country (including UK); if

all countries were like Ireland, a sizeable summer wave would be

likely in several countries (most noticeably Germany).

Finally, the assumptions we used in modelling the seeding of

H1N1pdm infection into the EU was varied in several ways (see

supporting Text S1). For instance, assuming that importation of

cases is proportional to the number of travellers from US and

Mexico from air travel data (and not to country specific data on

observed imported cases, as in the baseline simulations), leads to

overestimates of the number of imported cases for some countries

with international airport hubs (e.g. the Netherlands and

Germany) and to underestimates of imported cases for Spain.

However, the overall pattern of summer waves and autumn peaks

does not change substantially.

Further sensitivity analyses are discussed in the supporting Text

S1.

Predictions of simpler models
Given the computational requirements of large scale simula-

tions, a relevant question is the extent to which such a model is

required to reproduce the epidemiological patterns seen in

pandemic spread across Europe. We therefore also considered

model variant which substitutes the individual based spatial

simulation of transmission within European countries with a

simple stochastic homogeneous mixing model, while retaining

other aspects of the original model; i.e. importation of cases from

United States and Mexico, inter country long-distance travel,

realistic school calendars, length of latent and infectious periods

(1.5 days and 1.6 days respectively), and R0 (1.48 in all countries).

Details are reported in the supporting Text S1. The relative

change of R0 during holidays (to simulate school closure) was

optimized to fit the autumn peak week in the different European

countries. As shown in Fig. 7A, predictions of the autumn peak

week in the different European countries are consistent with

observed data. However, some limitations of this approach are

revealed: firstly, predictions are very sensitive to the change in R0

during holidays, and the optimal value of this parameter was

difficult to predict before the end of the epidemic, thus making it

very difficult to use such a model for real-time prediction. In

addition, as shown in Fig. 7B, the relative change of R0 during

holidays which gives an optimal fit to the timing of the epidemics

in Europe is different from values suggested in the literature [39].

Figure 5. Effects of school holidays (R0
UK = 1.48 Tg = 3.1 days). (A) Fraction of all infections expected by end of August (week 35) as predicted

by baseline simulations (actual school calendars in all countries, including autumn holidays, black squares), by assuming no holidays (green circles),
by assuming the school calendar of Finland in all countries (schools close on 30 May, red circles) and by assuming the school calendar of UK in all
countries (schools close on 20 July, blue circles). (B) Peak week for European countries covered by the WHO/Europe weekly influenza surveillance
system as observed (cyan bars), as predicted by baseline simulations (black squares), by assuming no holidays (green circles), by assuming the school
calendar of Finland in all countries (red circles) and by assuming the school calendar of UK in all countries (blue circles). A total of 100 simulations for
each parameter set were undertaken to produce the results shown.
doi:10.1371/journal.pcbi.1002205.g005
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Moreover, Fig. 7C shows that the model fails to predict the

dynamics of the epidemic in UK (where a single very large

summer wave is predicted, with little or no autumn wave) and

other European countries: for instance, a summer wave is

consistently predicted in Germany, probably because of the lack

of demographic variation in the model; in fact, as shown above, it

is possible that the epidemic spread was delayed in Germany

during the summer because of its older population. Finally, Fig. 7D

shows that the model predicts cumulative attack rates of about

57% (except for countries, like UK, France and Germany, where

the effect of school closure on final size is larger) which is quite

unrealistic but is a known consequence of models with homoge-

neous mixing. More realistic results might be obtainable by

including heterogeneous mixing with age, but the resulting model

would then have comparable (or larger) numbers of transmission

parameters as our individual simulation.

Discussion

Our analysis has shown that a spatially explicit transmission

model gives a broadly realistic depiction of the spatiotemporal

spread of 2009 pandemic flu through Europe and insight into the

main factors explaining the geographical differences in transmis-

sion dynamics. Furthermore, we have shown that the model is

sufficiently robust that a parameterisation on the basis of

incomplete data collected up to the end of June suffices for the

model to predict patterns of spread broadly in agreement with

observations. However, the use of some pandemic-specific data in

model parameterisation was essential – most notably in calibrating

epidemic growth rates and representing variation of susceptibility

to infection with age.

In particular, we have demonstrated that the substantial

summer wave of transmission seen only in the UK only was not

a chance effect, or a phenomenon needing special explanation, but

emerges as an almost inevitable consequence of travel patterns

from US and Mexico to different European countries [23], of the

timing of virus emergence in Mexico, and of school calendars

across Europe. An interesting comparison is with Germany which

did not differ greatly from UK in terms of number of imported

cases in the initial phase of the epidemic and the timing of school

closure (though holiday timing is more variable within Germany).

However, while the baseline simulations of the model predict a

large summer wave in UK, only a few simulations show a relevant

summer wave in Germany while in the large majority of them very

little community transmission is predicted during the summer,

consistently with observed data [2]. This results partly from the

somewhat lower German import rate and earlier school holidays,

but is also due the fact that Germany has one of the oldest

populations in Europe and, as an effect of differential susceptibility

to infection, this reduces transmission rates (Fig. 3A).

Another prediction of the model is that the final infection attack

rate varied significantly from country to country as a consequence

of differences in sociodemographic structure explicitly accounted

for in the model; in particular, we found that the attack rate is

positively correlated with the average household size and

negatively with mean age of a population (Table 2). These

predictions can be tested, if data from serological surveys in several

countries become available. In Norway, for instance, recently

published data show that the frequency of protective antibodies

was particularly high in persons under 20 years of age (61.2%,

95% CI 53,6%–68,8%) while in people aged 20 years and older

the figures were substantially lower (37.8%, 95% CI 32.8%–

42.8%) [40]. However, in the case of Norway it is difficult to

discriminate effects of infection and vaccination (vaccination in

Norway started in mid-October 2009 and population vaccine

uptake probably exceeded 40%), and this has already been argued

as possibly explaining the relatively high seroconversion rates seen

in adults [40]. In a few countries a significant difference exists

between the observed and predicted week of peak incidence, most

notably for France, where the peak is predicted on average at week

43.6, while it actually occurred at week 49. As discussed above, the

timing of school holidays (weeks 44 and 45) in France was such

that small differences in parameter values could cause large

difference in peak week. There were also regional differences in

peak week (peak in the Paris region, the best connected to the rest

of the world, occurred at week 44). Several other factors not

Figure 6. Effects of age-dependent susceptibility to infection (R0
UK = 1.48 Tg = 3.1 days). (A) Peak week for European countries covered by

the WHO/Europe weekly influenza surveillance system as observed (cyan bars), as predicted by baseline simulations (susceptibility of children 2 fold
greater than that of adults, black), by assuming that susceptibility of children and adults was identical (red) and by assuming children were 4-fold
more susceptible than adults (green). (B) As (A) but showing the fraction of the attack rate by end of August. (C) As (A) but showing mean cumulative
attack rates by age in UK. The inset shows the distribution across simulations of the cumulative attack rates in UK in the three scenarios. A total of 100
simulations for each parameter set were undertaken to produce the results shown.
doi:10.1371/journal.pcbi.1002205.g006
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included in the model, may have influenced the dynamics in some

countries: reactive school closures (as occurred in a scattered

manner in France, while in the whole country for a couple of

weeks in Bulgaria), seasonality in travel, other viruses (e.g.

Rhinoviruses and RSV) potentially interfering with influenza

transmission or detection [41,42]; climate [8,43–45] (though no

obvious pattern is detectable, see supporting Text S1); and the

effect of coupling to neighbouring countries (for instance Ukraine

and Russia) where a sizeable epidemic was observed around the

same period.

Figure 7. Predictions of simpler models (R0 = 1.48 Tg = 3.1 days). (A) Observed peak week plotted versus predicted peak week (predictions
refer to the best model with coupling between European countries: R0 = 0.8 during holidays; vertical bars represent 95% confidence intervals of the
predictions) for European countries covered by the WHO/Europe weekly influenza surveillance system; only the Autumn wave is considered for UK.
(B) Prediction error (average of the absolute value of predicted minus observed peak week in European countries covered by the WHO/Europe
weekly influenza surveillance system) as a function of the relative change of R0 during the summer for models with (red points) and without (blue
points) coupling between European countries (i.e. long-distance travel). Vertical lines corresponds to the relative change of R0 during holidays in four
European countries as resulting from the analysis of the POLYMOD data [39]. (C) Probability of observing a summer wave with peak incidence in a
given range (predictions refer to the best model with coupling between European countries: R0 = 0.8 during holidays), in UK (blue), Germany (cyan),
Netherlands (orange), Ireland (green) and Spain (red). (D) Cumulative attack rate (2.5%, 25%, 50%, 75% and 97.5% percentiles of the distribution are
shown) in the different European countries (predictions refer to the best model with coupling between European countries: R0 = 0.8 during holidays).
A total of 100 simulations for each parameter set were undertaken to produce the results shown.
doi:10.1371/journal.pcbi.1002205.g007
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The model used has several other limitations; commuter travel

patterns within Europe were modelled from data available only

from few countries, while in reality heterogeneity in travel

behaviour is probably extensive. In addition, changes in contact

behaviour during school holidays are represented very simply [12].

It is to be expected that incorporating more information in the

model would improve its accuracy. For instance, large differences

in incidence were seen in the summer wave from region to region

in England [33]. Our simulation also predicted extensive spatial

heterogeneity within countries at that time: realisations corre-

sponding to the top of the prediction band of Fig. 2A give

widespread infection across the UK by July 20, while in

realisations contributing to the bottom of the prediction band of

Fig. 2A, foci of infection were present in some but not all large

cities within the UK by mid-July. Making more rigorous

comparisons of within-country variation was beyond the scope

of the current study, but we would expect it to be important to use

age-dependent country-specific mobility data (which was not

available for this work), and to account for within-country

demographic heterogeneity (both factors that likely affected the

within-country timing of spread) in order to accurately match

patterns of local spread.

However, as shown by the sensitivity analyses presented above

and in the SI, the main conclusions of our work seem to be robust.

So long as the model includes the timing of imported cases into

different countries, realistic school calendars and basic information

on mobility and demography, when R0 and Tg are in a (relatively

small) region consistent with UK epidemic growth rate estimates

available in June, the model predicts with high likelihood that a

summer wave would occur in UK only, and a timing of autumn

waves in different countries with good correspondence to the

observed pattern.

The model used may appear relatively complex, and leading

one to consider whether simpler models could yield similar

qualitative patterns. As shown by the comparisons in Fig. 7, a

simple compartmental SEIR model with spatial structure, if

appropriately parameterised, can reproduce the timing of autumn

epidemic peak almost as well as the model used in this study.

However, this requires careful fine-tuning of the assumed

reduction in transmission caused by school holidays, which would

be difficult to undertake early in a pandemic, given that the

optimal value we estimated for this parameter differs from

published values [39]. Furthermore, simpler models fail to

reproduce the observed distribution of sizes of the summer wave

in European countries, and predict high attack rates. It is possible

that, adding age-dependent contact rates and differential age

structure between countries, one could improve the overall fit, but

this would introduce multiple additional parameters.

The model under study has actually only 6 free epidemiological

parameters, namely the transmission coefficients in households,

schools, workplaces, the wider community and during long-

distance travel, and the susceptibility of adults relative to children.

Note that we assume these parameters are constant across Europe;

differences in country-specific value of R0 arise as a consequence of

the different sociodemographic structure of countries’ populations.

We actually only tuned 1 free parameter, a scale parameter

allowing simulating epidemics with different values of R0
UK, with

pre-pandemic estimates being used to parameterise transmission in

households, and estimates of variation of susceptibility with age

being derived from data available early in the 2009 pandemic

[23]. The underlying model structure just uses data on the natural

history of the virus (informing incubation period and generation

time estimates) and the social structure and demography of the

population without any post-hoc fitting to the 2009 data.

Thus while the state space of the model is high dimensional, the

parameter space is (like previous models of this type [16,17]) low

dimensional and certainly no more over-parameterised than a

traditional age-structured compartmental patch model with

coupling between the different countries. Of course, the structural

assumptions of the model – namely how space and social structure

are represented - are open to challenge (as for all models), but the

relative success the model achieves in matching the heterogeneous

spatiotemporal dynamics of the 2009 pandemic without the need

to fine tune large numbers of parameters offers a degree of comfort

that the assumptions made are reasonable.

By comparing model predictions with those of the pre-pandemic

model in ref. [10] it is readily apparent that the latter, by failing to

take account of differences in susceptibility between adults and

children, would have overestimated the final attack rate, especially

in adults, with the resulting predictions being similar to those

shown in Fig. 6. Moreover, by not considering the effects of school

holidays on transmission, most pre-pandemic models would have

failed to correctly predict two waves in UK and a single autumn/

winter wave in all other European countries. Overall, the

prediction of pandemic timing would have been even worse than

those shown in Fig. 5. This highlights the requirement for models

to be carefully re-parameterised using data collected in real-time in

an emerging epidemic.

A relevant question is whether the availability of these modelling

techniques might be helpful in designing and implementing

control policies in the face of a new flu pandemic. This work

shows that a model of this type, that takes into account

transmission in different social contexts, mobility patterns and

demographic information, may provide useful estimates of the

timing of infection spread, using limited epidemiological informa-

tion such as might be available early in a pandemic. A future

pandemic can be expected to have different transmission

characteristics from the 2009 virus, so that the model described

here would need to be reparameterised before application.

However, it has been shown here that a good estimate of

exponential growth rate in the countries that first experience the

infection, together with an assessment of the relative susceptibility

of different age classes, may suffice to provide a good prediction of

epidemic timing, independently of many other small details.

Our results show that another crucial requirement is obtaining

reliable estimates of the number of imported cases over time in the

different countries during the initial phase of the epidemic. It is

possible, however, that such data will be not readily available for

the next pandemic (e.g. the epidemic could spread much faster

than the 2009 H1N1 pandemic) and thus a simplified procedure

will be needed for estimating imported cases over time in the

different countries. Our results suggest (see SI) that using airline

data on passenger volumes would still give reasonable (though

slightly less accurate) results.

We have not considered the issue of clinical severity (e.g. case

fatality ratios) in this paper. As of June 2009 (when vaccine

purchasing decisions were being made by many countries), data on

severity was still very limited, with the upper bound on case fatality

estimates still being in the region of those estimated for the 1957

and 1968 pandemics [23,46]. Only once data became available

from the Southern Hemisphere countries after their initial

epidemics were over (late August 2009), were more accurate

estimates of severity able to be made [47]. Definitely, a key lesson

learnt from the 2009 pandemic is the necessity to improve tools for

obtaining early estimates of severity. The present paper does not

address this issue, but, if information on severity were obtained,

these could be incorporated into this (or similar) model to provide
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predictions quantified in terms of expected hospitalization rates,

intensive care unit admissions and mortality.

Estimates on the expected course and timing of country-specific

epidemics of the type resulting from the model presented here,

together to information about the likely time of availability of a

vaccine, would be helpful in optimising vaccination campaign

design. For instance, where vaccine was predicted to become

available well before the epidemic peaked, it might be targeted at

groups most responsible for transmission (e.g., school-age

children), while when vaccine was only predicted to be available

towards the peak of transmission (as was the case in, for instance

the UK in 2009), targeting groups at highest risk of severe clinical

outcomes might be preferred. In a more severe pandemic, one

could also examine whether deliberate school closure policies [48],

or aggressive antiviral prophylaxis, aiming at delaying the

epidemic peak, might be effective at delaying peak timing

sufficiently to allow vaccination to be undertaken.

More generally, we believe that, if these modelling results,

validated by some previous experience, had been available by

June-July 2009, they could have reduced uncertainty and

improved situational awareness for policy-makers across Europe,

and given rather clearer expectations as to the likely impact (albeit

not in terms of mortality) and timing of the pandemic. As such, we

believe that the work presented here supports the use of this type of

modelling for assessing in real time the likely effects of future flu

pandemics and for evaluating mitigation measures.

Supporting Information

Text S1 Supplementary methods and results.

(PDF)
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