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Abstract

One of the hallmarks of biological organisms is their ability to integrate disparate information sources to optimize their
behavior in complex environments. How this capability can be quantified and related to the functional complexity of an
organism remains a challenging problem, in particular since organismal functional complexity is not well-defined. We
present here several candidate measures that quantify information and integration, and study their dependence on fitness
as an artificial agent (‘‘animat’’) evolves over thousands of generations to solve a navigation task in a simple, simulated
environment. We compare the ability of these measures to predict high fitness with more conventional information-
theoretic processing measures. As the animat adapts by increasing its ‘‘fit’’ to the world, information integration and
processing increase commensurately along the evolutionary line of descent. We suggest that the correlation of fitness with
information integration and with processing measures implies that high fitness requires both information processing as well
as integration, but that information integration may be a better measure when the task requires memory. A correlation of
measures of information integration (but also information processing) and fitness strongly suggests that these measures
reflect the functional complexity of the animat, and that such measures can be used to quantify functional complexity even
in the absence of fitness data.
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Introduction

Complexity is visible in most scientific disciplines: mathemati-

cians, physicists, biologists, chemists, engineers and social scientists

all developed measures to characterize the complexity that they

perceive in their systems, borrowing tools from each other but rarely

if ever agreeing on a measure that could be used by all of them.

Because the objects that each of these disciplines are most concerned

with are so different, ranging from mathematical problems and

computer programs over physical, chemical, or biological structures,

to systems and networks of interacting agents, a convergence of

quantitative measures of complexity is perhaps not likely. However,

a universal framework that would be capable of adapting its notion

to the specific discipline it is applied to would be a welcome trend.

Complexity measures abound, but exhaustive reviews are few. A

good introduction to the dynamical systems approach to complexity

is Ref. [1], but it does not cover biological applications. The

overviews [2–4] focus on the complexity of biological sequences but

not on their structure, and mostly ignore the complexity of networks.

Neural complexity measures are reviewed in [5].

Among the different measures of complexity, some attempt to

quantify the structure [6–13], others the sequence giving rise to that

structure [14–19], and others again the function of the sequence or

system [20–22]. All these studies attempt to capture ‘‘that which

increases when self-organizing systems organize themselves’’ [23] (a

non-exhaustive list is presented in Ref. [24]). Increasingly, measures

based on information theory are being used to quantify the

complexity of living systems, because information provides its owner

an obvious fitness advantage compared to those without information

by conferring the ability to make predictions about the environment

they operate in [25–27]. In particular Rivoire and Leibler [27] study

statistical measures based in information theory that maximize the

fitness of agents that respond to variable environments, but they do

not study evolution. Information-theoretic measures of complexity

are reviewed in [28] and applications to graphs in [29].

Here, we study how information-theoretic measures of complex-

ity could be applied to capture the complexity of nervous systems

[5,30], or more generally speaking, any structure controlling a

perception-action cycle. In the absence of any well accepted

definition of complexity, we study the correlation of different
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measures to organismal fitness, following the intuition that a well-

defined measure of control structure complexity should increase

during adaptation [20]. Fitness is a quantitative measure that

predicts the long-term success of a lineage [31,32], and is given by

the expected number of offspring of an average representative with the

given genotype. Unfortunately, this is only a quantitative measure

for the simplest of organisms where the expected number of

offspring can be determined from the replication rate, or in direct

competition experiments (see, e.g., [33]). For more complex orga-

nisms, relative fitness can only be estimated in hindsight, and cannot

be used as a proxy for organism complexity. However, if we evolve

control structures in silico where complete fitness information is

available, we can use fitness (within a niche) as an independent

arbiter of putative information-based measures of complexity: any

measure that does not increase as the organism learns to exploit its

environment is unlikely to reflect complex information processing.

Because in this type of evolution experiment the number of off-

spring is directly proportional–on average–to the performance of the

organism in a task critical to its survival, we here study the

correlation of complexity directly with performance or function.

Note that because fitness necessarily refers to the environment

(it measures how well the organism ‘‘fits’’ its niche by exploiting

the niche’s attributes), fitness cannot be used to compare organism

complexity across niches (such as attempting to compare an

elephant and an ant in terms of their fitness), but it does reveal

functional differences between types that are due to efficiencies of

exploiting the same environment. For biological organisms that

occupy the same niche, that is, ‘‘make a living’’ in the same

manner, relative fitness should correlate with relative functional

complexity. Is it true that given a constant environment the more

complex organism is necessarily more fit? Answering this question

in the affirmative clearly biases our notion of complexity: only

useful characters are deemed complex, useless ones are not. While

such a bias may be restrictive for structural complexity, it is not so

for information-theoretic measures of complexity, as information

(if it can be used to reduce uncertainty) will always be useful: if it

were not, it should be called entropy instead [25,34].

Predictive information
Perhaps the best known information-based measure of functional

complexity is ‘‘predictive information’’ [35], which quantifies the

amount of information that can be extracted from sensorial data in

order to select actions that are useful to the organism. In this

manner, predictive information is able to separate out those features

of the sensorial data that are relevant for behavior, and quantifies

the amount of information processed by the organism. Predictive

information has also been proposed as a measure of complexity of

function [35].

If we describe a control network’s input variables (‘‘sensors’’, or

‘‘stimuli’’) at time t by the random variable St and the output

variables (‘‘motors’’, or ‘‘response’’) at that time by Rt, then the

shared information (used for prediction) is [35]

Ipred~I(St : Rtz1)~H(Rtz1){H(Rtz1jSt)~

X
s,r

p(st,rtz1) log
p(st,rtz1)

p(st)p(rtz1)
,

ð1Þ

where Pr(St~st):p(st) and Pr(Rt~rt):p(rt) are the probability

distributions of the sensor and response variables at time t,
respectively, and p(st,rtz1) is the joint probability distribution of

the sensor and response variables ‘‘in the future and the present’’

[35] (we use the binary logarithm throughout and assume that the

network evolves along discrete time steps). Ipred characterizes the

capacity of the control system to predict the future one time step

ahead, using the present sensorial information. Essentially, it

quantifies the correlation between inputs and outputs, and can be

thought of as the Kullback-Leibler divergence (or relative entropy)

between the full probability distribution p(st,rtz1) and the product

of the independent ones, p(st)p(rtz1).

Note that for Markov processes, the one-step shared entropy (1)

is equal to the shared entropy between the entire past and the

entire future (see [36], Appendix A.1), while this is not true for

processes that can use memory. Predictive information was

previously used to characterize the complexity of autonomous

robot behavior without memory in Ref. [36] (see also Text S1). If

the control structure is not purely reactive and uses information

encoded in internal nodes to integrate sensorial information

streams, we will need complexity measures that move beyond

predictive information [27].

Integrated information
A fundamental and unique design principle of nervous systems is

their extraordinary degree of integration among highly-specialized

modules [5,37,38]. Functional integration is achieved by an

extended network of intra- and inter-areal connections, and is

reflected in dynamically shifting patterns of synchronization. A

precise way to measure a system’s capacity to integrate information

was developed recently [39,40], and applied to small, simple

example networks. This measure, called W and measured in bits, is

based on the notion that information integration is achieved by

architectural designs that give rise to a single, functionally unified

complex (high integration) while ensuring that such a complex has a

very large repertoire of discriminable states (high information). W
captures to what extent, informationally, the whole is more than the

sum of its parts, and cannot therefore be reduced to those parts.

In this sense, W represents the synergy of the system. Before

introducing W proper, we define a few related quantities.

In order to study information integration, we have to define the

information processed by the entire network, not just the sensors

and motors as in Eq. (1). Let us represent the system as a joint

Author Summary

Intelligent behavior encompasses appropriate navigation
in complex environments that is achieved through the
integration of sensorial information and memory of past
events to create purposeful movement. This behavior is
often described as ‘‘complex’’, but universal ways to
quantify such a notion do not exist. Promising candidates
for measures of functional complexity are based on
information theory, but fail to take into account the
important role that memory plays in complex navigation.
Here, we study a different information-theoretic measure
called ‘‘integrated information’’, and investigate its ability
to reflect the complexity of navigation that uses both
sensory data and memory. We suggest that measures
based on the integrated-information concept correlate
better with fitness than other standard measures when
memory evolves as a key element in navigation strategy,
but perform as well as more standard information
processing measures if the robots navigate using a purely
reactive sensor-motor loop. We conclude that the integra-
tion of information that emanates from the sensorial data
stream with some (short-term) memory of past events is
crucial to complex and intelligent behavior and speculate
that integrated information–to the extent that it can be
measured and computed–might best reflect the complex-
ity of animal behavior, including that of humans.

Evolution of Integrated Information
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random variable X~X (1)X (2) � � �X (n), where the X (i) represent

the elements of the system (the nodes of a control structure, such as a

neuronal network). The random variable X evolves as the system

progresses forward in time, i.e., X (t~0):X0?X1?X2? � � �Xt,

and each variable Xt is described by a probability distribution

p(xt) to be found in states xt (here, we will restrict ourselves to

binary random variables). At the same time, each node i of the

system has a time progression X
(i)
0 ?X

(i)
t , and each variable X

(i)
t is

described by a probability distribution p(x
(i)
t ). In the following, we

formally define measures of information integration through t time

steps (from 0?t), but later focus on the computationally more

accessible integration through a single average step from t?tz1.

The amount of information that is processed by the entire system

through t time steps is given by

I(X0 : Xt)~
X
x0,xt

p(x0,xt) log
p(x0,xt)

p(x0)p(xt)
: ð2Þ

where p(x0) and p(xt) are the probability distributions of the

system at time t~0 and t respectively, and p(x0,xt) is their

joint distribution. This measure reduces to the predictive in-

formation Eq. (1) for Markov processes connecting only sensor and

response nodes, that is, if there are no internal (or hidden)

variables.

One way to measure information integration is to ask how much

information is processed by the system above and beyond what is

processed by the individual nodes or groups of nodes (modules).

To do this, we introduce a partition of the network into k parts,

P~fP(1),P(2), � � � ,P(k)g, where each P(i) is a part of the network:

a non-empty set of nodes with no overlap between parts that

completely tile the network. We can then define a quantity that

measures how much the information processed by the entire

network is more than the information processed by all the parts in

this particular partition as follows.

Let I(P
(i)
0 : P

(i)
t ) be the information processed by the ith part as

the system progresses from time 0 to time t. Then, the synergistic

information SI processed by the network X given a partition P
quantifies the extent to which the entire processed information is a

sum of the information processed by the system’s parts, and is

calculated as:

SI(X0?XtjP)~I(X0 : Xt){
Xk

i~1

I(P
(i)
0 : P

(i)
t ) : ð3Þ

From an information-theoretic point of view, the synergistic

information measures the excess amount of information that can

be encoded in a ‘‘multiple access’’ channel with correlated sources

and a joint decoder [41] over and above what each of the

individual channels (the parts of the partition P(i)) can encode

separately. A measure related to the synergistic information is the

‘‘effective information’’ EI :

EI(X0?XtjP)~
Xk

i~1

H(P
(i)
0 jP

(i)
t ){H(X0jXt) : ð4Þ

Here, H(P
(i)
0 jP

(i)
t ) is the conditional entropy of partition P

(i)
0 given

the state of that partition t time steps later, and H(X0jXt) is the

conditional entropy of the entire system X at time step t~0 given

the state of that system t steps later (see also Text S3). The quantity

(4) is the average over network states at time t (states xt) of the

quantity called the ‘‘effective information across a partition P’’ in Ref.

[40]. If the probability distribution governing X0 is uniform (maximum

entropy), the two measures agree: SI(X0?XtjP)~EI(X0?XtjP),
but they are different in general (see Text S3). Below, we will mostly

use Eq. (4).

In order to determine how a network integrates information, we

should look for a partition that minimizes (4), because it is easy to

find a high value of EI by assigning different parts to nodes that

are strongly correlated. In essence, looking for the partition that

minimizes EI is tantamount to searching for the groups of nodes

that are separated from other groups of nodes by a weak

informational link [40]. To find this partition, expression (4) needs

to be normalized because otherwise the partition that minimizes

(4) will almost always be the one that divides a network of N parts

into one with N{1 parts and a single other node [40]. We define

the ‘‘Minimum Information Partition’’ (or ‘MIP’) as that partition

that minimizes a normalized EI :

MIP0~ arg min
P

EI(X0?XtjP)

(k{1) mini Hmax(P
(i)
0 )

h i , ð5Þ

where Hmax(P
(i)
0 ) is the maximum entropy of the ith partition P

(i)
0 .

If the neurons are binary, then Hmax(P
(i)
0 ) is just the number of

neurons in partition i. Armed with this definition of the MIP, our

measure of information integration is:

W0~EI(X0?XtjP~MIP0) : ð6Þ

Note that W0 represents the average (over all possible final states of

the network) of the state-dependent quantity W(xt) defined

previously [40], and the subscript 0 reminds us that the integration

is measured from an initial probability distribution at time t~0
that is uniform.

The measure can be adapted to characterize the information

integration across a single time step simply by defining

W~EI(Xt?Xtz1jP~MIP) ð7Þ

with a commensurately defined MIP:

MIP~ arg min
P

EI(Xt?Xtz1jP)

(k{1) mini Hmax(P
(i)
t )

h i , ð8Þ

where Hmax(P
(i)
t ) is the maximum entropy of the ith partition at

time step t. Note that we have omitted an index t to W as defined

in Eq. (7) as we assume that for large t W becomes stationary:

Wt?W (t??). This MIP, just as the one defined by Balduzzi and

Tononi [40], divides the network into disjoint parts that are

maximally informationally disparate–those parts that are most

independent. As defined here, W is equivalent to the recently defined
~WWE [42], because EI(Xt?Xtz1jP~MIP) is based on the reduction

(at time step tz1) in the Shannon entropy based on the empirical

entropy at time step t, not on the reduction from the maximum

entropy at time step 0 as in [40]. Thus, our Eq. (7) is equivalent to

Eq. (29) in Ref. [42] (with char81 replaced with ~char81char81 ), except that

we search all partitions rather than just bi-partitions, and the

normalization factor of Barrett and Seth uses the largest of the

actual entropies of the parts. Because we will measure information

integration for time series generated by a moving animat, we will use

Eq. (7) to quantify the animat’s complexity in what follows.

Evolution of Integrated Information
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If networks are small, it is possible to find the MIP by brute-

force testing all possible partitions. The number of partitions

of n nodes is the nth Bell number, Bn [43]. Searching across all

partitions is exceedingly expensive and scales faster than exponen-

tial. For example, B3 = 5, B10 = 115,975, and B16&1:05|1010. For

networks of realistic size, search heuristics will be the only way to

find the MIP: for the nematode C. elegans, for example, n~302 [30],

and the number of partitions of this network is the absurdly large

number B302&4:8|10457. Here, the largest networks we analyze

have 12 nodes, but we have been able to calculate W for networks

with up to 18 nodes using a fast exact algorithm that does not store

all the partitions.

Main complex
A system composed of a large network together with a single

disconnected unit will always have W~0, because minimizing over

all partitions finds the informational disconnect between the

network and the disconnected node, and the minimum effective

information between these parts is zero [40]. A measure that

captures information processing that is synergistic without being

trivial can be obtained by defining the network’s computational

proper complex [44] as a subset S of (joint) random variables within

the system X (S [ X ) that maximizes W over all subsets and

supersets, that is:

If W(S) is defined as the W of subset S, then

S(X is a proper complex if
W(S)§W(R) V R5S

W(S)wW(T) V T 6S:

�
ð9Þ

Each network can have several (proper) complexes, with smaller

complexes of higher W embedded within larger complexes of lower

W. We define the proper main complex as the subset associated with

largest W values over all subsets of the entire system. We denote

the information integration in the proper main complex as WMC. A

simple network with MIP and main complex identified is shown in

Fig. 1.

Other integration measures
Among all possible partitions, the ‘‘atomic partition’’ that

partitions the network into its individual nodes, plays an important

role. For example, we can define the information processed by the

network above and beyond the information processed by the

individual nodes as

SIatom~I(Xt : Xtz1){
Xn

i~1

I(X
(i)
t : X

(i)
tz1), ð10Þ

where the first term is the total processed information Itotal,

defined as

Itotal~I(Xt : Xtz1)~H(Xt){H(XtjXtz1), ð11Þ

The negative Eq. (10) has previously been used to quantify the

redundancy of information processing of a neural network [45,46],

see also [47]. Incidentally, Barlow has long argued that reducing

redundancy (and thus compressing the sensorial information stream

maximally) is the main purpose of the structure of the sensorial

information-processing system [48], and we would then, if Itotal is

fixed, expect a maximization of fitness to go hand-in-hand with a

minimization of SIatom and therefore a maximization of redundancy.

Itotal measures the shared entropy between the system at

adjacent time points, and is a useful measure to determine whether

an increase in W is due solely to increased information process-

ing by the entire network (resulting in an increased Itotal) rather

than the effective integration of that information. Writing

I(X
(i)
t : X

(i)
tz1)~H(X

(i)
t ){H(X

(i)
t jX (i)

tz1) for each node i, we see that

SIatom~{H(XtjXtz1)z
Xn

i~0

H(X
(i)
t jX (i)

tz1){I , ð12Þ

where n is the number of individual nodes in the network and where

I~
Xn

i~1

H(X
(i)
t ){H(Xt): ð13Þ

This quantity has been called ‘‘multi-information’’ [47,49]), and was

used as a measure of brain complexity called ‘‘integration’’ in [50–52],

where the sum was over the components of a network rather than the

nodes. Thus, I is an ‘‘atomic’’ form of the Tononi-Sporns-Edelman

(TSE)-complexity [50]. Note that none of the measures discussed in

this section should depend on t if t is large enough because we assume

that at large times the probability distribution p(Xt) becomes

stationary.

The first part in Eq. (12) is nothing but the effective information

EI (4), but for the ‘‘atomic partition’’, that is, the partition where

each part is given by the individual nodes in the entire network

and for t?tz1. Thus,

SIatom~Watom{I , ð14Þ

Figure 1. Exemplar MIP and main complex. A: The logical units are
AND gates with multiple outputs (each output is the AND of the two
inputs). B: A network of seven such units (877 distinct possible
partitions). The MIP for the entire system (solid lines) is a bi-partition,
and the main complex (dashed line, shaded area) consists of five units.
We compute W~0:269 bits for the entire network, while WMC~1:327
bits.
doi:10.1371/journal.pcbi.1002236.g001

Evolution of Integrated Information
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where

Watom~EI(Xt?Xtz1jP~Patom)~

Xn

i~0

H(X
(i)
t jX (i)

tz1){H(XtjXtz1):
ð15Þ

Eq. (15) may be a particularly useful measure to approximate W
when a search for MIPs is computationally infeasible. It has

previously been introduced under the name ‘‘stochastic informa-

tion’’ by Ay [53–55]. However, it is neither an upper nor a lower

bound on W. Because of its construction (Watom~SIatomzI ), it

incorporates elements of information processing (the excess

information processed, in time, by the system above and beyond

the information processed by each of the nodes) as well as

integration. In other words, Watom encompasses both temporal and

spatial synergies of the network.

Results

In order to test how different measures of functional complexity

change as a system adapts to function in its world, we evolve

controllers for animats [56] that have to solve a task that requires

sensory-motor coordination as well as memory. Ay and coworkers

tested predictive information Eq. (1) as a measure of system

complexity when evolving a simulated autonomous robot to solve

a simple maze, and found that Ipred reflects the performance of the

robot [36]. Lungarella and coworkers used information-based

complexity measures to understand how appropriate motor action

of embodied agents shapes the signal structure perceived by the

agent’s sensors [51], and studied the information flow through the

control structures [52]. Klyubin and coworkers used mutual

information between an agent’s starting position and a represen-

tation of this information in the agent’s memory to evolve

sensorimotor control structures, and used measures of synergy to

study whether the positional information could be factorized

within the sensors [57].

Description of evolutionary system
Our animats are embodied controllers with six binary sensors

and two (binary) actuators, as well as four internal bits that can be

used for memory or processing (Fig. 2 and Methods).

The controllers are stochastic Markov networks (see, e.g., [58]),

that is, networks of random variables with the Markov property,

where edges between nodes encode arbitrary fuzzy logic gates. As

such, the edges could represent simple binary logic gates or more

complex computational units. Because these networks actually

encode decisions, strictly speaking they are encoding discrete-time

stochastic Markov decision processes (MDPs). Fundamentally, our

Markov networks are related to the hierarchical temporal memory

(HTM) model of neocortical function [59–61] and the HMAX

algorithm [62], except that the organization of our stochastic

Markov networks need not be strictly hierarchical because it is

determined via genetic evolution rather than top-down design (see

Methods).

In what follows, the edges connecting the random variables are

implemented as Hidden Markov Gates (HMGs). Each such gate is a

probabilistic finite state machine defined by its input/output

structure and state transition probabilities (see Fig. 3A). For example,

if ‘100’ was applied to the input state of the HMG in Fig. 3A, ‘11’ is

the output with probability p43 [P(100?11)~p43], while an input

‘111’ generates ‘01’ with probability p71 [P(111?01)~p71], and so

forth. Such a gate can also be represented as its dual graph, where

the signal lines become the nodes of the Markov network, and the

edges between them represent the computation performed by the

HMG (Fig. 3B). In this representation, arrows indicate causal

influence via an HMG, so in Fig. 3B for example, variable 4 is

influenced by variables 1,2, and 3 (as is variable 3), while variables 1

and 2 only have outgoing arrows: they only influence variables 3 and

4 but are not affected by any other variable.

The 2n|2m probabilities of an n-input and m-output state

transition table, as well as how each HMG is connected to other

gates, is encoded within a genome that, when read by an

interpreter, creates the network (see Methods, Text S2 and Figure

S1, as well as Ref. [63] for a similar structure). Populations of

genomes are evolved using a standard Genetic Algorithm (but

without crossover, see Methods). To calculate the fitness of each

genome, the controller generated from the sequence is transplant-

ed into the animat shown in Fig. 2 and tested on its ability to

traverse a maze that consists of repeated vertical walls at varying

distance to each other, with a single door placed at random

locations within the wall. Within each door, a ‘‘beacon’’ indicates

the direction to follow for the shortest path to the next door, but

this information is erased the moment the animat emerges from

the door. Thus, in order to use this information, it has to be stored

in memory for later usage. The actual maze has at least 26 walls to

traverse before the maze repeats. A section of a typical maze along

with an adapted animat’s trajectory as well as the states of the

memory and motor bits are shown in Fig. 4. Videos S1 to S3 show

several movies that depict the motion of the animat, at different

evolutionary stages, traveling through the maze.

In each of 64 independent evolution experiments, a population

of 300 initially random genomes (encoding random controllers, see

Text S2) was evolved for 50,000 generations each. We calculate

fitness (f ) and control fitness fctrl both for the highest fitness

animats at every generation and for genomes on the line of descent

(LOD) of the last common ancestor of the population that existed

at generation 50,000 (see Methods). The control fitness fctrl tests

the performance of the controller on ten randomly generated

Figure 2. Embodied virtual agent (animat) with six sensors, two
actuators, and four internal nodes. The complete animat is
described by 12 bits: three front sensors (red triangles; # 0,1 & 2),
two lateral collision detectors (blue triangles; # 4 & 5), and a single
‘‘door’’ sensor (magenta, #3) that relays the direction of the next
opening in the maze (but only while standing in the door). The
actuators (trapezoids; # 10 & 11) encode the actions ‘‘move left, move
right, move forward, do nothing’’. The internal nodes (circles; # 6–9)
can potentially store states used for internal processing.
doi:10.1371/journal.pcbi.1002236.g002
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mazes that the animat has never before encountered (see

Methods), in order to test whether the animat evolved the

navigation principles or simply adapted to a particular instance of

the problem.

The LOD recapitulates the evolutionary history of the

population, and allows a reconstruction of the path taken mutation

by mutation. Fig. 5 shows the evolution of fitness and control

fitness for one of 64 experiments [panel (A) shows the fitness on the

Figure 3. Hidden Markov Gate representation. A: An HMG with three binary input and two output Markov variables, where one of the outputs
is fed back into the HMG (a hidden variable). The state transition table has 23|22 entries that are determined by genetic evolution (see Methods and
Text S2). In the gate shown, bit three is a hidden state and can be used to implement a one-bit memory. In principle, the probabilities in the HMG
transition table can also be tuned via reinforcement learning using a signal from the environment (‘‘World Feedback’’). However, this capacity is not
utilized in the present work. B: The ‘‘dual’’ representation of this gate, where the Markov variables are nodes, and the gate connects these via edges.
This network is obtained by drawing a directed edge between bits that affect each other causally via the logic gate. Because bit 3 feeds back to itself,
for example, it is given the same identifier and there is a directed arrow from bit 3 to itself as well as bit 3 to bit 4. See Text S2 and Fig. S1 for details
on the genetic encoding and network visualization of HMGs.
doi:10.1371/journal.pcbi.1002236.g003

Figure 4. Maze structure and animat trajectory. Part of one of the test mazes, along with the trajectory of an adapted animat as well as a view
of the animat’s brain (the four internal nodes 6–9, top four pixels in each animat location) and the motor outputs (bottom two pixels). A bit set to ‘1’
is indicated in green, while blue indicates a bit set to ‘0’. The value of the sensory bits can be inferred from the animat’s location. The downward
pointing arrow inside a door reminds us that the animat would perceive a ‘1’ on its door sensor at that location (indicating that the next door will be
found to the right of the animat’s position). If the door is straight ahead or to the left, the door sensor will be set to ‘0’. The animat’s goal is to move as
far across the maze as possible (see Methods). Note that this representation does not show when the animat is stationary (waits) or retraces its path.
doi:10.1371/journal.pcbi.1002236.g004
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LOD, while panel (B) shows the corresponding fitness of the best in

the population of 300 individuals]. Notice that in Fig. 5B the

fitness of the fittest individual is almost always larger than the

control fitness for the same individual, while the fitness on the

LOD instead scatters around the control fitness, as seen in Fig. 5A.

There is a good reason for this difference: in any population, an

animat can be fit by chance through having correctly ‘‘guessed’’

the next door position repeatedly. The control fitness removes this

element of chance by testing the individual on ten randomly

generated mazes. The individuals on the LOD on the other hand

are there for a reason and not by chance: their genes have proven

themselves in later generations. In the run depicted in Fig. 5 (see

also the movies Video S1, S2, S3), the animat evolved a

sophisticated (but not perfect) algorithm to navigate the maze,

including the use of memory around generation 15,000 to store

the doorway bit until the animat reaches the next wall. The wiring

diagram of the animat at generation 49,000 is depicted in Fig. 6A.

The animat uses only internal node 9 as memory, whose

permanency is ensured using auto-feedback. The other nodes

are connected but have no fitness impact whatsoever at this time,

as determined by a knock-out analysis (see Methods, data not

shown), but may have been useful earlier on. The controller

contains a total of 17 HMGs, but only nine HMGs (including two

pairs of redundant HMGs) are responsible for this wiring. Of the

nine useful HMGs, five have three inputs and one output, the

other four HMGs are NOT gates. Note that if more than one

HMG output serves as input for another HMG, their values are

combined using an OR gate. The animat uses the information

from the 3-bit retina, the lateral sensors, as well as the conditional

information from the door beacon (sensor 3 in Fig. 6A) effectively

by integrating this information within the decision machinery for

navigation. The central hub is the network’s memory: internal bit

9 is set to 0 if the door beacon is detected in the ‘‘on’’ state (b3 = 1)

in a doorway, and to 1 if not. The value of bit 9 is maintained until

the animat reaches the next wall. (The value of the door bit itself is

erased from the sensor after the animat passes through the door,

and therefore cannot be accessed by simply re-reading that value.)

At that point the value of bit 9 determines if the animat goes left

Figure 5. Fitness evolution on the line of descent and in the population. A: Fitness (blue line) and control fitness (green line) for genotypes
on the LOD. B: Fitness and control fitness for the same run as shown in (A), but for the fittest individual in the population in each generation. Colors
as in (A).
doi:10.1371/journal.pcbi.1002236.g005

Figure 6. Two evolved HMG networks. The shapes represent the 9 Markov variables (bits) at time t~49,000 that are active in the network (bits 6,
7, and 8 are connected to the network, but are not functional at generation 49,000 and not rendered here). The central feed-forward circuit for
navigation is rendered in bold arrows. Color codes and numbering as in Fig. 2. A: The network evolved in our focus experiment that achieved 88% of
possible fitness. B: Another network that evolved in an independent run, and that implements a variant of the hierarchical temporary memory
algorithm that creates an expectation of future sensory signals. In contrast to the controller that evolved in panel (A), this one uses a feed-back
strategy between memory and motors. This controller achieves 74% of maximal fitness within a random maze environment.
doi:10.1371/journal.pcbi.1002236.g006
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(b9 = 1) or right (b9 = 0). Once the animat is moving along a wall,

bit 9 is set to 1 and the animat continues moving in the same

direction keeping in mind the value of the left motor (b11). In a

sense, the motor bit b11 is also used as memory here, as indicated

by the auto-feedback. If bit 5 indicates an obstacle to the right, bit

11 is set, which forces bit 10 off in turn. If bit 4 indicates an

obstacle to the left on the other hand, bit 9 is set to 0 which causes

bit 11 to turn off and bit 10 to turn on. Once the animat is in front

of the next doorway, it moves forward through the door. Thus, we

see that this animat effectively uses the integration of different

streams of information (door sensor, retina, lateral sensors, and

current state of motion) to compute behavior that is appropriate in

the given environment most of the time. Reaching 88% of

‘‘maximal’’ fitness is fairly remarkable, as a hand-written optimal

controller reaches only 93% of maximal fitness (data not shown)

because we force our controllers to be minimally stochastic.

In another run that achieved a fitness of 74%, a related but

fundamentally different algorithm evolved to achieve almost the

same functionality (wiring depicted in Fig. 6B). The central part of

this algorithm, which is a version of the ‘‘hierarchical temporal

memory algorithm’’ [59], is implemented by a feedback loop

between the motors 10 and 11 and internal bit 9 (bold arrows in

Fig. 6B), as opposed to the feed-forward loop seen in Fig. 6A.

Because the animat can read from its motor bits, it can keep track

of how it is currently moving, and make decisions based on this

state as well as the state of the internal variable bit 9. Temporal

memory is achieved by creating a basic expectation (bit 9 set to

one) of encountering a door beacon that will be pointing it to the

left (bit 3 = 0). If instead it encounters a door pointing to the right

(bit 3 = 1), it changes that expectation (bit 9 = 0) and maintains it in

memory until it moves in the correct (right) direction. Once this

happens, the expectation is changed back to anticipating a beacon

pointing it to the left, but the animat does not immediately react to

this expectation because bit 9 is ignored as long as the animat

moves to the right.

Let us now look at our information-theoretic constructions as a

function of evolutionary time. The quantity WMC is expensive to

calculate so they and other measures were calculated along the

LOD of each population every 500 generations up to generation

50,000. Each genome was evaluated by testing the controller it

spawns for 1,000 world-time steps in 10 control mazes (each tested

10 times, see Methods) in order to even out chance achievements

(animates can achieve high fitness by chance due to the stochastic

nature of their controllers). We show the evolution of three

information integration and three information processing mea-

sures over time (for the same run whose fitness evolution is

depicted in Fig. 5) in Fig. 7. As fitness increases, all measures we

plot here increase at first, but quickly become stagnant when

fitness flattens out (see Fig. 5). Important changes are apparent in

all measures when the capacity to use the door beacon for

navigation emerges around generation 15,000. To see differences

in the measure’s abilities to predict fitness, we need to analyze how

well these complexity proxies correlate with fitness across our set of

64 runs.

Statistics
In order to test whether fitness correlates with a complexity

proxy, we calculate the (nonparametric) Spearman rank correla-

tion coefficient of the ‘‘final’’ fitness (the fitness of the genome at

generation 49,000 on the LOD, see Methods) with the value of

that variable measured at generation 49,000. We chose generation

49,000 as final time because the organism from this generation is

guaranteed to represent the common line of descent of the 300

individuals in any particular run (see Methods). While we have

correlation data of fitness with each variable along the LOD every

500 generations for each run, these points are not independent,

and therefore cannot be used in order to assess the statistical

significance of the correlation. The correlation of final fitness

(across 64 independent samples) with each of the different

information-theoretical candidates for functional complexity is

shown in Fig. 8. Note that the highest control fitness achieved

across the 64 runs is fctrl~88:27+0:78, or almost 90% of perfect

performance (see Methods for our definition of fitness). That data

point (for the run shown in Fig. 5, giving rise to the controller

depicted in Fig. 6A) is indicated in red in Fig. 8. The run that

evolved the controller shown in Fig. 6B is colored green in Fig. 8.

For all measures, we observe positive and highly significant

correlations with fitness (Fig. 8 and Table 1). The best correlation is

achieved for the integrated information measure WMC (R~0:937),

followed by the information integration across the atomic partition

Watom (Spearman’s R~0:784), while the correlation with Ipred is

weaker (R~0:63). Likewise, Itotal, which does not attempt to

separate out the integration of different streams of information

correlates only weakly with fitness (R~0:335). The atomic

processed information SIatom [Eq. (12), R~0:553] and the

integration I both contribute to the strong correlation of Watom

with fitness, as Watom is a sum of I and SIatom as per Eq. (14). The

integration measures Watom, WMC, and I also correlate well with

Figure 7. Information-based measures of complexity. A: Three W related measures of information integration for genomes on the LOD of the
same run as shown in Fig. 5. Blue line: Watom defined in (15), green: I defined in (13) and red: WMC. B: Three information processing measures for the
same experiment as (A): Blue: total information Itotal (11), green: atomic information SIatom (12), and red: predictive information Ipred (1).
doi:10.1371/journal.pcbi.1002236.g007
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each other (data not shown). The difference in the correlation

coefficients for WMC and Ipred is highly significant (p~0 in a Fisher

r-to-z transformation test).

A clear separation between runs that achieved high (w70% of

maximal fitness) and low fitness (v&60%) is apparent in Fig. 8,

indicating the difference between controllers that can or cannot

access the information in the door beacon, which in turn requires

the evolution of at least a single bit of memory. However, while it

is not possible to achieve fitness in excess of 70% without using the

information from the door beacon, one run utilized this

information without exceeding 60% fitness, as determined via a

knock-out analysis of the Markov variables.

Discussion

We have characterized several different information-theoretic

measures in terms of their ability to reflect the complexity of

information processing and integration in discrete dynamical

systems. In order to discuss non-trivial examples of networks that

are functional, we evolved computational networks that control an

animat’s behavior in a maze, and tested whether an increase in

appropriate behavior is correlated with the putative proxies for

complexity. The ‘‘brains’’ we evolved capture the essence of what

it means to be successful in the maze environment: they can

navigate arbitrary mazes of the type they are confronted with, and

perform equally well with random versions of mazes that they

never encountered during their evolution. In particular, they

integrate the sensory information from several sources appropri-

ately, and when they evolve memory they are able to implement it

in a variety of ways, including a variant of the hierarchical

temporal memory paradigm [59]. We find that a standard

measure that has been used to characterize complex robot

behavior in the past [36], the predictive information Ipred, usually

correlates well with fitness but sometimes fails to do so. We found

examples where the failure to be predictive of fitness is associated

with the evolution of memory (for example, the run indicated in

green in Fig. 8), but also examples where this is not the case (e.g.,

the run that achieved the highest fitness, shown in red in Fig. 8).

We hypothesize that when memory emerges, the integration of

information from memory with the other signal streams is best

reflected by measures of information integration such as Watom,I ,

and WMC. Indeed, it is possible to show under fairly general

assumptions that measures like Ipred can maximize fitness under

the condition that no other information is used by an agent (such

as acquired or inherited information [27], see also Text S1). Thus,

while we expect that Ipred performs worse and worse as a predictor

of complex function as more and more memory is utilized for

navigation, in some cases Ipred turns out to perform very well

counter to this expectation. It is currently unclear what is at the

origin of this difference in predictive performance of Ipred.

That Ipred ultimately has to fail as a predictor of fitness when

memory is used can be seen in the limiting case of navigating

entirely by memory. In that case, any correlation between sensory

inputs and motor actions would be purely accidental, in particular

if the sensory data that ultimately predict appropriate motor

actions are not in the immediate past. However, a non-Markovian

version of Ipred that takes sensorial data from more distant time

steps into account could conceivably perform well even in this

case.

On the other hand, measures of information integration could

still be elevated even when navigating by memory, as the motor

units are driven by streams of information emanating from within,

rather than without. However, as sensorial information is not

integrated, measures of information integration should be lower

when navigating entirely by memory as opposed to navigating via

Figure 8. Correlation of information-based measures of complexity with fitness. WMC, I , Watom , Itotal, Ipred, and SIatom plotted against fctrl

(as a percentage of optimal fitness) using the final fitness (generation 49,000) on the LOD trajectory for 64 independent runs. R indicates Spearman’s
rank correlation coefficient.
doi:10.1371/journal.pcbi.1002236.g008

Table 1. Spearman’s rank correlation coefficients (R) and
significance (p-value) between different candidate measures
of functional complexity with ‘‘final fitness’’, using the values
achieved at generation 49K of the LOD (an approxiSmation of
the most recent common ancestor) for 64 independent runs.

WMC Watom II SIatom Itotal Ipred

R 0.937 0.784 0.776 0.553 0.335 0.63

p 4:1|10{30 1:8|10{14 4:8|10{14 2:1|10{6 6:8|10{3 2:4|10{8

doi:10.1371/journal.pcbi.1002236.t001
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sensors complemented by memory. At the same time, a brain that

dreams rather than acts has vanishing predictive information (as

the sensor inputs as well as the motor units have vanishing

entropy). Yet, integrated information could still be high, and

thus reflect complex information processing in the brain even in

the absence of behavior. In this respect, measures of integrated

information are a good candidate for a quantitative measure

of consciousness, as advocated earlier [39,40,44,50]. We note,

however, that evolving functional networks with high W is not easy.

For our 12-bit controllers, WMCv2 bits almost always, and the

main complex is significantly smaller than the network size, usually

only comprising sensor and motor variables, and occasionally the

memory bit when it is used.

Clearly, how useful W is as a measure of brain complexity let

alone consciousness rests on testing it on more complex networks

that enable complex behavior in simulated environments that are

both deep and broad. Evolving networks that rely heavily on

memory, and that have the capacity to observe their own state [64]

and integrate that information with the sensorial stream, would be

particularly useful in this respect. Ultimately, we expect that

measures of information integration can then turn into predictors

of fitness or function rather than the other way around. Indeed,

the functional complexity of biological organisms (measured in

terms of fitness) can only be estimated in the rarest of cases when

we have a full understanding of what makes an organism successful

in its particular niche.

In future work, we hope to evolve animats in more complex

environments that require more broad and versatile use of

memory, to thoroughly test the hypothesis that information

integration measures outperform pure processing measures such

as predictive information in complex tasks. Furthermore, we plan

to test whether animats evolve information matching [65], that is,

whether the integrated informational structure generated by an

adapted complex fits, or matches, the informational structure of its

environment. As it is possible to determine in detail how

information about the world is represented within the Markov

brains of these animats, the evolution of such creatures should

demonstrate that evolution can move beyond representation-free

AI [66] towards autonomous intelligence.

Methods

Agent embodiment
Of the six sensors shown in Fig. 2, three are obstacle detection

bits (binary sensors that indicate that an obstacle is in front of it

(bits 0–2 encode front, left-front, and right-front, respectively), as

well as a ‘‘door beacon’’ (bit 3) that indicates whether the next

opening will be to the right (bit 3 = ‘1’) or else in front or left (bit

3 = ‘0’) of the opening that the animat is currently passing through.

This bit can be used to navigate more successfully in the maze, by

keeping this bit in memory and integrating this information with

the other sensors. The next opening-direction information is not

available after the animat passes through the previous opening.

Because the animat cannot turn, it is important to detect whether

an animat has hit a lateral wall. Detectors 4 and 5 each return ‘1’ if

there is a wall to the left or right respectively.

For example, in Fig. 4, the opening-direction bit (bit 3 = ‘1’) in

the door just after the starting location indicates that the

subsequent opening is to the right. After reaching this door and

stepping through it, the sensor bit is set to bit 3 = ‘0’ indicating that

the next opening is to the left or in front (in this case, in front).

Therefore, efficiently navigating the maze requires memorizing

this bit when the animat is in an opening and acting on that

information until the animat can see the next opening. Two output

bits (motors) control each animat’s movement: the animat moves

right if only bit 10 is on, left if only bit 11 is on, and forward if both

are on. The animat has four internal bits (circles 6–9 in Fig. 2) that

it can use for information memorization and integration.

Hidden Markov gates
The table depicted within each HMG in Fig. 3 represents the

gate’s function in terms of a stochastic finite state machine. The

binary state of each HMG’s inputs corresponds to a row in its

probability table. These probabilities are encoded within the genes

that specify the network, as described in Text S2. To determine

how those probabilities generate an output from an input, first a

random number between 0 and the sum of the elements of that

row is generated. Comparing this random number to the

cumulative sum of the numbers in that row selects an element in

the row whose column index corresponds to the binary state of

that gate’s outputs. The OR operator is used to combine the

outputs from multiple gates which output to the same bit.

Genetic encoding of network structure
Networks are encoded within circular genomes that are given by

a sequence of unsigned characters [0,255]. Each gene encodes a

single HMG and its connection to other gates via the Markov

variables, as well as the state-transition probabilities that define the

gate. Details about the interpretation of the genome and its

translation into a network are given in Text S2. Each HMG can

have at most 4 inputs, and at most 3 outputs. If more than one

HMG writes into a single Markov variable, these outputs are

combined via an OR operation but we allow at most 3 write-

attempts into a single Markov variable. If in the sequential

interpretation of the genome an HMG requests to write to a

variable that already has three connections, that HMG’s connection

will instead be routed to the nearest available variable. The same

restrictions exist if an HMG tries to read from a variable that

already has 3 read connections.

Fitness calculation
The animat’s fitness in a maze m is determined by:

g(m)~
XT

t~0

D{dt

D
zLt

� �
ð16Þ

where T is the number of time steps (T~300), dt is the shortest

path distance to the last doorway in the maze from the animat’s

position at time t, D is the maximum shortest path from all

locations in the maze to the last doorway, and Lt is the number of

times the animat has passed the last doorway. The maze

environment is periodic so that if the animat goes past the end

of the maze, the environment is the same as the beginning of the

maze.

The stochastic nature of the controller implies that the g(m)
measured in one run through a single maze m may not be a

reliable estimate of the genome’s fitness because chance decisions

could lead to either too high or too low fitness. We therefore define

the animat’s selection fitness by:

f (m)~ P
10

i~1

g(i)(m)

gopt(m)

� � 1
10

ð17Þ

where g(i)(m) is the ith stochastic realization of the animat’s fitness

in maze m, and gopt(m) is the maximum fitness attainable in that

maze. The geometric mean of 10 evaluations helps to ensure the
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reproducibility of the animat’s fitness, and make it a better

predictor of the long-term success of the lineage it represents.

In order to ensure that the genomes have evolved the ability to

navigate through general mazes of this type (rather than adapting to

a single particular maze), a set of 10 control mazes are used to

calculate the control fitness:

fctrl~
1

100

X10

m~1

X10

i~1

g(i)(m)

gopt(m)
ð18Þ

The control fitness uses the arithmetic rather than the geometric

mean in order to better track performance. The geometric mean

in Eq. (17) allows for the elimination of controllers that ever

completely fail at a single instance (as fitness is then multiplied by

zero). The arithmetic mean in Eq. (18) is a better numerical

indicator for the power of the strategy, as a single failure does not

result in a vanishing control fitness.

Evolution and Genetic Algorithm
64 populations of 300 individuals were evolved for 50,000

generations. For the purpose of selection, a single maze was randomly

generated for each run, given a set of boundary conditions. Every 100

generations a new maze was generated for each run so that the

animats would not adapt to a specific instance of the problem. To

implement selection, the top three individuals from each generation

(the elite) were copied into the next generation without mutation,

unless their fitness was determined to be zero after re-testing. The

remaining places in the population were filled by roulette-wheel

selection with mutations [67]. This implies that the number of

offspring that any parent places into the next generation is

proportional to the relative fitness advantage (or disadvantage) it

holds with respect to the average population fitness. However, no

individual could place more than 10 offspring into the next generation.

The genomes (described in Text S2 and Fig. S1) were changed via a

variety of processes from generation to generation. Single loci were

copied with a probability of msitecopy~0:025, deleted with probability

msitedel~0:05, a random value inserted after a loci with probability

msiteins~0:025, replaced with a uniformly drawn random number

[ ½0,255� with probability of msiteuniform~0:05, or increased/

decreased by a random number [ ½{10,10� (restricted to the range

½0,255� if necessary) with probability of msite up=down~0:05. Whole

genes where duplicated with mGdup~0:005, deleted with

mGdel~0:01, and a random gene inserted with mGins~0:005.

Finally, all mutation rates were normalized such that the whole

genome mutation rate is equal to one change per genome per

generation on average. This has the consequence that the ‘‘expressed’’

genome fraction (fraction with functioning start codon giving rise to

HMGs connected to the main network) decreases with evolutionary

time. Around 50,000 generations, the amount of expressed genes is of

the order of 15% of the total genome size (on average about 200

of 3,000 loci are expressed in an evolved genotype).

Knock-out analysis
In order to determine the importance and role of individual

variables in the brain’s operation, we perform ‘‘knock-outs’’ on the

variables to test their effect on the Markov animat’s performance.

Four types of per-bit knockouts were used: replace the value that the

variable takes on by ‘always read 0’, ‘always read 1’, ‘always write 0’,

and ‘always write 1’. Some brains use variables with fixed values on

purpose, in order to select certain rows from the probability tables

with certainty. Such variables can be detected when only one of the

two read-knockouts (read-zero or read-one) reduce the fitness of the

controller. Variables that actually store and/or process information

will lead to reduced fitness by both knockouts. Motor variables that

are not read from are unaffected by the read knockouts but are

affected by the write knockouts. Similarly, write-knockouts from

sensor variables do not affect fitness, while read-knockouts do.

To determine the function of individual HMGs, first each

HMG was deleted from the controller to see if it changed the

fitness. This identified unique important HMGs, but sometimes

the results were masked by redundant HMGs. Then, each entry in

the probability table for each HMG was ‘‘knocked out’’ by

replacing the corresponding allele by zero or 255 [see Eq. (1) of

Text S2 for the effect of this replacement]. This data combined

with the input distribution for each HMG was used to determine

the role of any particular HMG in the brain, and how it worked

together with the other HMGs to control the animat.

Line of descent
For each run the line of descent (LOD) was obtained [68] by

tracing back the fittest organism in the population backwards

towards the randomly constructed ancestral sequence used to begin

each experiment (encoding on average 12 HMGs, see Text S2).

Seen from the point of view of the ancestral sequence, each

following generation creates a branching tree with some lines

eventually becoming extinct and other branches surviving. Because

we simulate an asexual population in a single niche, only a single

line of descent can ultimately remain because of competitive

exclusion between members of the same species [69]. This line can

be identified from following the lineage back from any of the 300

organism present in the final generation (generation 50,000) back to

the origins (300 individual lines of descent). Going back ten

generations, say, to 49,990, there will be fewer lines because some

lines coalesced going backwards (branched going forward). The

further backwards one moves on this ‘‘tree of descent’’, the more

lines coalesce until the last common ancestor (LCA) of the entire

population that was alive at generation 50,000 has been reached.

Because of the single-niche environment, the 300 lines coalesce very

quickly, and are virtually guaranteed to have coalesced to a single

line when going back to generation 49,000, which is the ‘‘final’’

generation we study in our simulations, and defines the ‘‘final

fitness’’. The organism at generation 49,000 of the LOD is not

guaranteed to be the LCA, but it is guaranteed to be the ancestor of

all organisms present in the final generation. Thus, the LOD

records the evolutionary history of the experiment mutation by

mutation, and allows us to reconstruct the evolutionary path that led

to the adapted type. Fitness as well as complexity measures were

calculated for organisms on the LOD every 500 generations.

Supporting Information

Figure S1 Genetic encoding of animat controllers. A: In this

example, two HMGs encoded by two genes can read from and

write to several of the 12 Markov variables, indexed 0–11. The top

row shows the Markov variables at time t that the HMGs can read

from while the row below shows how the HMGs write into those

variables to update their state at tz1. B: The genome is a circular

sequence of loci that carry unsigned integers allele [ ½0,255� and

encode the input output structure of each HMG as well as the

connectivity between them and the state transition tables that

determine each HMG’s function. Colors denote different

functional sections of the gene. C: Causal influence of the Markov

variables induced by the two HMGs. Presence of an arrow

between variables a and b implies that a may change the state of b
in a single time step. Absence of an arrow implies that the variables

cannot influence each other within a single time step.

(PDF)
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Text S1 Relationship between different forms of Ipred:

(PDF)

Text S2 Genetic encoding of network structure and function.

(PDF)

Text S3 Relationship between EI and SI .

(PDF)

Video S1 This movie shows the trajectory of an evolved animat

traveling through the maze after 2,000 generations of evolution in

the top panel, and the inner workings of its Markov network brain in

the lower panel. At this point in evolutionary history, the animat has

learned to move forward whenever it stands in front of an opening,

but otherwise performs a random walk. The fitness at this time point

is 15:8+0:6% of maximal. The animat in the maze is depicted with

a triangle, and the trail it leaves reflects the activation pattern of its

four internal nodes and its motor outputs, as described in Fig. 4. The

brain state (lower panel) shows all HMGs (U0–U10) and the

probabilities in the state-transition tables as percentages (colored in

shades of gray). Input bits (labeled iB) and output bits (labeled oB)

are green if true and blue if false. The red element in each table

indicates the element of the table selected at that time step based on

the values of the input bits and the probabilities in that row. In other

words, a table element turning red indicates which state of the

HMG was selected as a function of the input. This is akin to a

pattern of neuronal firings as a function of the inputs.

(MP4)

Video S2 The trajectory and brain states of an evolved animat at

generation 14,000. At this point, the animat has acquired the

capacity to maintain a direction of travel and move opposite to the

direction indicated by the lateral contact sensor. Its movement

with respect to the door opening is still random. The fitness at this

time point is 47:9+0:7% of maximal.

(MP4)

Video S3 The trajectory and brain states of an evolved animat at

generation 49,000. By this time, the animat has evolved the

capacity to use the information provided by the door beacon by

storing it in bit 9, and move purposefully in the indicated direction

after emerging from the previous door. Because of its high fitness,

the animat traverses the maze five times, but does not always take

the same trajectory every time, illustrating the stochasticity of its

decisions. The fitness at this time point is 88:2+0:7% of maximal.

(MP4)
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