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Chapter 6: Structural Variation and Medical Genomics
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Abstract: Differences between in-
dividual human genomes, or be-
tween human and cancer genomes,
range in scale from single nucleotide
variants (SNVs) through intermediate
and large-scale duplications, dele-
tions, and rearrangements of geno-
mic segments. The latter class, called
structural variants (SVs), have re-
ceived considerable attention in the
past several years as they are a
previously under appreciated source
of variation in human genomes.
Much of this recent attention is the
result of the availability of higher-
resolution technologies for measur-
ing these variants, including both
microarray-based techniques, and
more recently, high-throughput
DNA sequencing. We describe the
genomic technologies and computa-
tional techniques currently used to
measure SVs, focusing on applica-
tions in human and cancer genomics.

This article is part of the ‘‘Transla-

tional Bioinformatics’’ collection for

PLOS Computational Biology.

1. Introduction

The decade since the assembly of the

human genome has witnessed dramatic

advances in understanding the genetic

differences that distinguish individual hu-

mans and that are responsible for specific

traits. Genome-wide association studies

(GWAS) in humans have identified com-

mon germline, or inherited, DNA variants

that are associated with various common

human diseases, including diabetes, heart

disease, etc. At the same time, cancer

genome sequencing studies have cataloged

numerous somatic mutations that arise

during the lifetime of an individual and

that drive cancer progression. These

successes are ushering in the era of

personalized medicine, where treatment

for a disease is tailored to the genetic

characteristics of the individual.

Despite this progress, significant hurdles

remain in achieving a comprehensive

understanding of the genetic basis of

human traits and disease. The germline

variants discovered by GWAS thus far

explain only a small fraction of the

heritability of many traits, and this ‘‘miss-

ing heritability’’ gap [1] is a major

bottleneck for future GWAS. The somatic

mutations measured in cancer genomes

are very heterogeneous, with relatively few

mutations that are shared by large num-

bers of cancer patients, even those with the

same (sub)type of cancer. This mutational

heterogeneity complicates efforts to distin-

guish functional mutations that drive

cancer development from random passen-

ger mutations [2].

Comprehensive studies of the genetic

basis of disease require the measurement

of all variants that distinguish individual

genomes. Until recently, GWAS focused

on the measurement of single nucleotide

polymorphisms (SNPs), or single nucleo-

tide differences between individual ge-

nomes. In the past few years, it has

become clear that germline variants occu-

py a continuum of scales ranging from

SNPs to larger structural variants (SVs) –

duplications, deletions, inversions, and

translocations of large (w100 nucleotides)

blocks of DNA sequence. Moreover, until

recently GWAS focused attention on

common SNPs, those whose frequency in

the population was at least 5%. This

restriction was part of the ‘‘common

disease, common variant’’ hypothesis

which posits that an appreciable fraction

of susceptibility to common diseases results

from germline variants that are common

in the population. However, this restric-

tion was also dictated by technological

limitations, as it was not cost effective to

measure all genetic variants in the large

number of individual genomes that are

necessary to perform a GWAS.

In the past five years, next-generation

DNA sequencing technologies became

commercially available from companies

such as 454, Illumina, Life Technologies,

and Complete Genomics. These and other

sequencing technologies continue to ad-

vance at a breathtaking pace, and conse-

quently the cost of DNA sequencing has

declined by several orders of magnitude in

the past decade. These technologies pro-

vide an unprecedented opportunity to

measure all variants; germline and somat-

ic; SNPs and SVs, in both normal and

cancer genomes.

In this chapter, we discuss the applica-

tion of these sequencing technologies in

medical genomics, and specifically on the

characterization of structural variation.

2. Germline and Somatic
Structural Variation

Structural variants are important con-

tributors to genome variation and consid-

eration of these variants is necessary for

disease association and cancer genetics

studies. In this section, we briefly review

current knowledge about structural varia-

tion in human and cancer genomes.

2.1 Germline Structural Variation
Characterizing the DNA sequence dif-

ferences that distinguish individuals is a

major challenge in human genetics. Until

a few years ago, the primary focus was to

identify single nucleotide polymorphisms

(SNPs), and projects such as HapMap [3]

provide catalogs of common SNPs in

several human populations. Recent
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whole-genome sequencing and microar-

ray measurements have shown that struc-

tural variation, including duplications,

deletions, and inversions of large blocks

of DNA sequence, is common in the

human genome [4]. SVs include both

copy number variants – duplications and

deletions – that change the number of

copies of a segment of the genome, and

balanced rearrangements – such as inver-

sions and translocations – that do not

alter the copy number of the genome.

The Database of Genomic Variants [5]

currently (winter 2011) lists apprroxi-

mately 66 thousand copy number variants

and approximately 900 inversion variants

in the human genome, and this number

continues to increase. Some of these

entries are multiple reports of the same

variant due to problems in merging SV

predictions across different platforms/

technologies (see Section 5 below). Nev-

ertheless, SVs are extensive in human

populations.

Germline SVs account for a greater

share of the total nucleotide differences

between two individual human genomes

than SNPs [6]. Copy number variants

alone account for approximately 18% of

genetic variation in gene expression,

having little overlap with variation associ-

ated to SNPs [7], and can affect the

expression of genes up to 300 kb away

from the variant [8]. Both common and

rare SVs have recently been linked to

several human diseases including autism

[9] and schizophrenia [10]. In addition to

SVs that cause disease, SVs segregating in

a population perturb patterns of linkage

disequilibrium and haplotype structure

[11]. Thus, it is essential to catalog SVs

in order to understand their consequences

for human population genetics. Incorrect

identification of SVs in samples can lead to

spurious genetic associations resulting

from the undetected SVs, erroneous

merging of distinct variants in different

samples, and failure to recognize hetero-

zygosity at a locus.

Finally, structural variants are also

present in model organisms such as mouse

and fruit fly. Identifying these variants is

important for animal models of human

diseases.

2.2 Somatic Structural Variation and
Cancer

Cancer is a disease driven by somatic

mutations that accumulate during the

lifetime of an individual. The inheritance

of mutations by daughter cells during

mitosis and selection for advantageous

mutations make cancer a ‘‘microevolu-

tionary process’’ [12,13] within a popula-

tion of cells. Decades of cytogenetic studies

have shown that somatic structural vari-

ants are a feature of many cancer

genomes. These early studies, particularly

in leukemias and lymphoma, identified a

number of recurrent chromosomal rear-

rangements that are present in many

patients with the same type of cancer.

For example, a significant fraction of

patients with chronic myelogenous leuke-

mia (CML) exhibit a translocation be-

tween chromosomes 9 and 22. The break-

points of this translocation lie in two genes,

BCR and ABL, and the translocation

results in the BCR-ABL fusion gene that

is directly implicated in the development

of this cancer. In addition to fusion genes,

somatic SVs can also lead to altered

expression of oncogenes and tumor sup-

pressor genes due to both genetic and

epigenetic mechanisms [14]. For example,

in Burkitt’s lymphoma, a translocation

activates the MYC oncogene by fusing it

with a strong promoter.

In solid tumors, the situation is more

complicated. Many solid tumors have

genomes that are extensively rearranged

compared to the normal healthy genome

from which they were derived [14]. These

highly rearranged genomes are thought to

be a product of genome instability result-

ing from mutations in the DNA repair

machinery. This complex organization of

cancer genomes obscures functional driver

SVs in a background of passenger muta-

tions. However, with the availability of

higher-resolution genomics technologies,

recurrent fusion genes are also being

found in solid tumors, such as prostate

[15] and lung cancers [16]. These results

suggest that additional events remain to be

discovered [17]. Next-generation DNA

sequencing technologies provide the op-

portunity to reconstruct the organization

of cancer genomes at single nucleotide

resolution [18,19]. Projects including The

Cancer Genome Atlas (TCGA) (http://

cancergenome.nih.gov) and International

Cancer Genome Consortium (ICGC) are

using these technologies to measure so-

matic mutations in thousands of cancer

genomes [20].

2.3 Mechanisms of Structural
Variation

As additional genetic and somatic

structural variants are characterized, there

is increasing opportunity to characterize

the mechanisms that produce these vari-

ants. A distinguishing feature of the

different mechanisms is the amount of

sequence similarity, or homology, at the

breakpoints of the structural variant. One

extreme is little or no sequence similarity.

These variants are thought to result from

random (or near random) double-stranded

breaks in DNA. These breaks might occur

due to exposure to external DNA damag-

ing agents. For example, ultraviolet radi-

ation or various chemotherapy drugs

produce double-stranded breaks. Aberrant

repair of these breaks result in structural

variants. This mechanism is termed non-

homologous end-joining (NHEJ) [21,22].

The opposite extreme is high sequence

similarity at the breakpoints. This mech-

anism is termed non-allelic homologous

recombination (NAHR). This mechanism

is similar to the normal biological process

of homologous recombination that occurs

during meiosis and exchanges DNA be-

tween two homologous chromosomes. But

as the name states, NAHR is a rearrange-

ment that occurs between homologous

sequences that are not the same allele on

homologous chromosomes. Rather

NAHR occurs between repetitive sequenc-

es on the genome (Figure 1) [23–25]. The

human genome contains numerous repet-

itive sequences ranging from Alu elements

of 300 bp to segmental duplications, also

called low copy repeats, of tens to

hundreds of kbp [26]. Thus, there are

numerous substrates for NAHR in the

human genome, and not surprisingly

numerous reported structural variants that

result from NAHR. For example, the 1000

Genomes Project, a large NIH project to

survey all classes of variation – SNPs

through SV – in 1000 human genomes

recently reported that approximately 23%

of deletions were a result of NAHR [27].

Importantly, due to technical limitations in

discovering NAHR-mediated SVs (see

What to Learn in This Chapter

N Current knowledge about the prevalence of structural variation in human and
cancer genomes.

N Strategies for using microarray and high-throughput DNA sequencing
technologies to measure structural variation.

N Computational techniques to detect structural variants from DNA sequencing
data.
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below), this percentage may be an under-

estimate.

There are other mechanisms for the

formation of SVs. The division between

homology mediated and non-homologous

mechanisms may not be so strict. NHEJ

events sometimes have some degree of

microhomology (e.g. 2–25 bp of similarity)

at their breakpoints. Other mechanisms

such as fork stalling and template switch-

ing (FoSTeS) have also been proposed.

Some of these are reviewed in [28].

Finally, the relative contribution of each

of these mechanisms in generating germ-

line SVs versus somatic SVs remains an

active area of investigation, with conflict-

ing reports about the importance of

repetitive sequences in somatic structural

variants found in cancer genomes

[21,22,24,25,29].

3. Technologies for
Measurement of Structural
Variation

Structural variants vary widely in size

and complexity, ranging from insertions/

deletions of hundreds of nucleotides to

large scale chromosomal rearrangements.

Large structural variants can be visualized

directly on chromosomes, through cytoge-

netic techniques such as chromosome

painting, spectral karyotyping (SKY), or

fluorescent in situ hybridization (FISH). In

fact, Sturtevant and Dobzhansky studied

inversion polymorphisms in Drosophila in

the 1920’s – well before the modern

genomics era. However, SVs that are too

small to be directly observed on chromo-

somes are generally more difficult to detect

and to characterize than single nucleotide

polymorphisms (SNPs). Much of the

recent excitement surrounding structural

variation stems from improvements in

genomics technologies that allow more

complete measurements of SVs of all

types. These include microarrays and

more recently next-generation DNA se-

quencing technologies. In this section, we

briefly describe these technologies.

3.1 Microarrays
The first genome-wide surveys of SVs in

the human genome in 2004 utilized

microarray-based techniques such as array

comparative genomic hybridization

(aCGH). In aCGH, differentially fluores-

cently labeled DNA from an individual, or

test, genome and a reference genome are

hybridized to an array of genomic probes

derived from the reference genome. Mea-

surements of test:reference fluorescence

ratio, called the copy number ratio, at

each probe identifies locations of the test

genome that are present in higher or lower

copy in the reference genome. Microar-

rays containing hundreds of thousands of

probes are available, and thus one obtains

copy number ratios at hundreds of thou-

sands of locations. Since individual copy

number ratios are subject to various types

of experimental error, computational tech-

niques are needed to analyze aCGH data.

For further details about aCGH and

aCGH analysis, see [30].

aCGH is equally applicable for mea-

surement of germline SVs in normal

genomes and somatic SVs in cancer

genomes. In fact, aCGH was originally

developed for cancer genomics applica-

tions. aCGH is now very affordable

making it possible to detect copy number

variants in large numbers of genomes at

reasonable cost. However, aCGH has two

important limitations. First, because

aCGH measures only differences in the

number of copies of a genomic region

between a test and reference genome,

aCGH detects only copy number variants.

Thus, aCGH is blind to copy-neutral, or

balanced, variants such as inversions, or

reciprocal translocations. Moreover,

aCGH requires that the genomic probes

from the reference genome lie in non-

repetitive regions, making it difficult to

detect SVs with breakpoints in repetitive

regions, such as NAHR events or the

insertion/deletion of repetitive sequences.

3.2 Next-generation DNA
Sequencing Technologies

DNA sequencing technology has ad-

vanced dramatically in recent years, and

several ‘‘next-generation’’ DNA sequenc-

ing technologies from companies such as

Illumina, ABI, and 454 have significantly

lowered the cost of sequencing DNA.

However, these technologies, and the

Sanger sequencing technique they are

replacing, are severely limited in the

length of a DNA molecule that can be

sequenced. Present sequencing technolo-

gies produce short sequences of DNA,

called reads, that range from 25–1000

nucleotides, or base pairs (bp), with the

upper end of this range requiring technol-

ogies (e.g. Sanger and 454) that are

considerably more expensive. Much of

the recent excitement in DNA sequencing

has been in short read DNA sequencers

(e.g.llumina Genome Analyzer, Life Tech-

nologies SOLiD and Ion Torrent) that

yield reads of only 25–150 nucleotides.

These reads are much shorter than the

one to two hundred million bp of a typical

human chromosome. However, the large

Figure 1. An inversion resulting from non-allelic homologous recombination (NAHR) between two nearly identical segmental
duplications (blue boxes) with opposite orientations (arrows). The inversion flips the orientation of the subsequence, or block, B in one
genome relative to the other genome.
doi:10.1371/journal.pcbi.1002821.g001
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number of reads that are produced

(hundreds of millions), results in a cost

per nucleotide that is several orders of

magnitude lower than Sanger sequencing.

Many DNA sequencing technologies

employ a paired end, or mate pair,

sequencing protocol to increase the effec-

tive read length. In this protocol two reads

are generated from opposite ends of a

longer DNA fragment, or insert. With

earlier Sanger sequencing protocols, the

sizes of these DNA fragments were

dictated by the cloning vector that was

used. Fragment, or insert, sizes of 2 kb–

150 kb could be obtained by cloning into

bacterial plasmids or bacterial artificial

chromosomes (BACs). With next-genera-

tion technologies, a variety of techniques

have been employed to generate paired

reads. At present, the most efficient and

effective techniques produce paired reads

from fragments of only a few hundred bp,

although fragments of 2–3 kb are avail-

able. Thus, next-generation sequencing

technologies have both limited read

lengths and limited insert sizes compared

to Sanger sequencing.

There are two approaches to detecting

SVs from next-generation DNA sequenc-

ing data (Figure 2). The first is de novo

assembly. In this approach, sophisticated

algorithms are used to reconstruct the

genome sequence from overlaps between

reads. The assembled genome sequence is

then compared to the reference genome,

or the assembled genomes of other

individuals, to identify all types of variants.

If the genome sequence is successfully

assembled, this approach is the best for

characterization of SVs. Unfortunately,

assembling a human genome de novo –

i.e. with no prior information – of

sufficient quality for structural variation

studies remains difficult with limited read

lengths. Currently, human genome assem-

blies are highly fragmented, consisting of

tens-hundreds of thousands of contigs,

intermediate sized sequences of thousands

to tens of thousands of nucleotides.

Moreover, the associations between some

structural variants and repetitive sequenc-

es implies that assemblies of finished (not

draft quality) are necessary for comprehen-

sive coverage of structural variation.

Improving de novo assembly is a very active

research area (see [31]), but human

genome assemblies of high enough quality

for SV studies remain out of reach for

inexpensive short-read technologies.

The second approach to detect SVs in

next-generation DNA sequencing data is a

‘‘resequencing’’ approach that leverages

the extensive finishing efforts undertaken

in the Human Genome Project. In a

resequencing approach, one finds differ-

ences between an individual genome and a

closely related reference genome whose

sequence is known by aligning reads from

the individual genome to the reference

genome. Differences (variants) between

the genomes correspond to differences

between the aligned reads and the refer-

ence sequence. In the next section, we

describe how to predict SVs using a

resequencing approach.

3.3 New DNA Sequencing
Technologies

Many of the challenges in reliable

measurement of SVs described above are

related to limitations in sequencing tech-

Figure 2. Two major approaches to detect structural variants in an individual genome from next-generation sequencing data are de
novo assembly and resequencing. In de novo assembly, the individual genome sequence is constructed by examining overlaps between reads. In
resequencing approaches, reads from the individual genome are aligned to a closely related reference genome. Examination of the resulting
alignments reveals differences between the individual genome and the reference genome.
doi:10.1371/journal.pcbi.1002821.g002
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nologies. In particular, SVs with break-

points in highly-repetitive sequences are

beyond the abilities of current technolo-

gies. New ‘‘third-generation’’ and single-

molecule technologies promise additional

advantages for structural variation discov-

ery. These advantages include longer read

lengths, easier sample preparation, lower

input DNA requirements, and higher

throughput. For example, Pacific Biosci-

ences recently released their Single-Mole-

cule Real Time (SMRT) sequencing, a

technology that measures in real time the

incorporation of nucleotides by a single

DNA polymerase molecule immobilized in

a nanopore [32].

One application of this technology is

strobe sequencing. A strobe read, or strobe,

consists of multiple subreads from a single

contiguous molecule of DNA. These sub-

reads are separated by a number of ‘‘dark’’

nucleotides (called advances), whose iden-

tity is unknown (Figure 3). Thus far,

Pacific Biosciences has demonstrated

strobes of lengths up to 20 kb with 2–4

subreads each of 50–400 bp. Additional

improvements are expected as technology

matures. Strobes generalize the concept of

paired reads by including more than two

reads from a single DNA fragment.

Strobes provide long-range sequence in-

formation with low input DNA require-

ments, a feature missing from current

sequencing technologies. This additional

information is useful for detection and de

novo assembly of complex SV that lie in

highly repetitive regions, or contain mul-

tiple breakpoints in a small region. How-

ever, the advantages of strobes are reduced

by higher single-nucleotide error rates.

Thus, realizing the advantages of strobes

requires new algorithms that exploit infor-

mation from multiple, spaced subreads to

overcome high single-nucleotide error

rates [33].

Sequencing technologies continues its

rapid development. Improvements in the

chemistry, imaging, and manufacture of

existing technologies are increasing their

read lengths, insert lengths, and through-

put. Additional sequencing technologies

are under active development. Nanopore-

based technologies that directly read the

nucleotides of long molecules of DNA hold

promise for a dramatic shift in DNA

sequencing where extremely long reads

(tens of kb) are generated, making both de

novo assembly and variant detection by

resequencing straightforward problems.

4. Resequencing Strategies for
Structural Variation

A resequencing strategy predicts SVs by

alignments of sequence reads to the

reference genome. There are two main

steps in any resequencing strategy: (1)

alignments of reads; (2) prediction of SVs

from alignments. Resequencing approach-

es are straightforward in principle, but in

practice sensitive and specific detection of

structural variation in human genomes is

notoriously difficult [34,35]. While some

types of SVs are easy to detect with next-

generation sequencing technologies, other

complex SVs are refractory to detection.

This is due to both technological limita-

tions and biological features of SVs. DNA

sequencing technologies produce reads

with sequencing errors, have limited read

lengths and insert sizes, and have other

sampling biases (e.g. in GC-rich regions).

Biologically, human SVs are: (i) enriched

for repetitive sequences near their break-

points [23]; (ii) may overlap, have multiple

states or complex architectures; and (iii)

recurrent (but not identical) variants may

exist at the same locus [36,37]. These

properties mean that the alignment of

reads to the reference genome and the

prediction of SVs from these alignments is

not always an easy task. Algorithms are

required to make highly sensitive and specific

predictions of SVs.

In this section we review the main issues

in predicting SVs using a resequencing

approach. We begin with read alignment.

Then we describe the three major ap-

proaches that are used to identify struc-

tural variants from aligned reads: (i) split

reads; (ii) depth of coverage analysis; and

(iii) paired-end mapping.

4.1 Read Alignment
Alignment of reads to a reference

genome is a special case of sequence

alignment, one of the most researched

problems in bioinformatics. However, the

specialized task of aligning millions-billions

of individual short reads led to the

development of new software programs

tailored to this task, such as Maq, BWA,

Bowtie/Bowtie2, BFAST, mrsFAST, etc.

[38–43]. A key decision in read alignment

for SV detection is whether to consider

only reads with a single, best alignment to

the reference genome, or to also include

reads with multiple high-quality align-

ments. Some read alignment programs

will output only a single alignment for

each read, in some cases choosing an

alignment randomly if there are multiple

alignments of equal score. If one uses only

reads with a unique alignment, then there

is limited power to detect SVs whose

breakpoints lie in repetitive regions, such

as SVs resulting from NAHR. On the

other hand, if one allows reads whose

alignment is ambiguous, then the problem

of SV prediction requires an algorithm to

distinguish among the multiple possible

alignments for each read. Many SV

prediction algorithms analyze only unique

alignments, although several recent algo-

rithms use ambiguous alignments. A few of

these are noted below.

4.2 Split Reads
A direct approach to detect structural

variants from aligned reads is to identify

reads whose alignments to the reference

genome are in two parts. These so called

split reads contain the breakpoint of the

structural variant (Figure 4). To reduce

false positive predictions of structural

variants, one requires the presence of

multiple split reads sharing the same

breakpoint. Because the two parts of a

split read align independently to the

reference genome, these alignments must

be long enough to be aligned uniquely (or

with little ambiguity) to the reference.

Thus, split read analysis is a feasible

strategy only when the reads are suffi-

ciently long. For example, if one has a

36 bp read containing the breakpoint of

an SV at its midpoint, one must align the

two 18 bp halves of the read to the

reference genome. Finding unique align-

ments of an 18 bp sequence is often not

possible. There are no reports of successful

prediction of structural variants from split

Figure 3. A strobe with 3 subreads.
doi:10.1371/journal.pcbi.1002821.g003
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reads alone using next generation DNA

sequencing reads less that 50 bp in length.

Instead, split read methods have been

proposed that use paired reads, and

require that one read in the pair has a

full length alignment to the reference. This

alignment of the read from one end of the

fragment is used to anchor the search for

alignments of the other split read of the

fragment [44–46].

4.3 Depth of Coverage
Depth of coverage (also called read

depth) analysis detects differences in the

number of reads that align to intervals in

the reference genome. Assuming that reads

are sampled uniformly from the genome

sequence, the number of reads that contain

a given nucleotide of the reference is, on

average, c~
NL

G
, where N is the number of

reads, L is the length of each read, and G is

the length of the genome. This is the

Lander-Waterman model, and the param-

eter c, called the coverage, is a key

parameter in a sequencing experience.

For example, recent cancer sequencing

projects with Illumina technology have

used ‘‘30X coverage’’ which means that

the number of reads and length of reads are

chosen such that c~30.

Now, if the individual genome con-

tained a deletion of a segment of the

human reference genome, the coverage of

this segment would be reduced by half – if

the deletion was heterozygous – or re-

duced to zero – if the deletion was

homozygous (Figure 4). Similarly, if an

interval of the reference genome was

duplicated, or amplified, in the individual

genome, the coverage of this interval

would increase in proportion to the

number of copies. Thus, the observed

coverage of an interval of the reference

genome, the depth of coverage, gives an

indication of the number of copies of this

interval in the individual genome. Of

course, there are numerous additional

factors to consider beyond this simple

analysis. For example, since reads are

sampled at random from the genome,

coverage is not constant, but rather follows

a distribution with mean c. A Poisson

distribution is typically used as an approx-

imation to this distribution, although other

distributions sometimes provide a better fit

to the data. In addition, repetitive se-

quences in the reference genome and

biases in sequencing (e.g. different cover-

age of GC-rich regions) also affect depth of

coverage calculations. Nevertheless, there

are several computational methods for

depth of coverage analysis [47,48]. Many

of these are largely similar to those used to

analyze microarray copy number data.

4.4 Paired-end Sequencing and
Mapping

The most common approach for rese-

quencing SVs is paired-end mapping

(PEM) (Figure 5). Paired-end mapping

was used to identify somatic SVs in cancer

Figure 4. Identification of a deletion in an individual genome by split read analysis (middle), and by depth of coverage analysis
(bottom).
doi:10.1371/journal.pcbi.1002821.g004
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genomes [49,50] and the same idea has

been applied to identify germline structur-

al variants [51,52]. While the early paired-

end mapping studies used older clone-

based sequencing, paired-end mapping is

now possible using various next-generation

sequencing technologies.

In PEM, a paired-end sequencing

protocol is used to obtain paired reads

from opposite ends of a larger DNA

fragment, or clone, from a individual genome.

These paired reads are then aligned to a

reference genome. Most paired reads

result in concordant pairs where the

distance between aligned reads is equal

to the fragment length. In contrast,

discordant pairs have alignments with

abnormal distance or that lie on different

chromosomes. These suggest the presence

of an SV or a sequencing error. For

example, a discordant pair whose distance

between alignments is too long suggests a

deletion in the individual genome

(Figure 5), while a discordant pair whose

alignments are on different chromosomes

suggests a translocation. Other types of

discordant pairs identify inversions, trans-

positions, or duplications that distinguish

the individual genome from the reference

genome. Note that in general the length of

any particular sequenced fragment is not

known. Rather, during the preparation of

genomic DNA for sequencing, the DNA is

fragmented and fragments are size-select-

ed to an appropriate target length. It is

desirable for this size selection to be as

strict as possible, so that only fragments

near the target length are sequenced.

However, in practice the size selection

procedure produces fragments whose

lengths vary around the target length.

Typically, the distribution of fragment

lengths is obtained empirically by exam-

ining the distances between all aligned

paired reads, as most fragments will

correspond to a concordant pair (Figure 5).

To distinguish real SVs from sequenc-

ing errors, one looks for clusters of

discordant pairs that indicate the same

SV. Numerous algorithms have been

developed to predict SVs by finding

clusters of discordant pairs. Early algo-

rithms used only those paired reads whose

alignments to the reference genome were

non-ambiguous; i.e. there was only a single

‘‘best alignment’’ [53–55]. More sophisti-

cated algorithms use paired reads with

multiple ambiguous alignments to the

reference genome and use a variety of

combinatorial and statistical techniques to

select among these alignments [56–58].

Finally, some approaches model the fact

that the human genome is diploid to avoid

making inconsistent structural variant

predictions [59].

All of the approaches above rely on

predicting structural variants that are

supported by multiple paired reads. Some,

but not all, of them are careful when

determining whether a group of paired

reads genuinely support the same variant.

We illustrate the issue here using the

Geometric Analysis of Structural Variants

(GASV) method of [55]. A key feature of

GASV is that it records both the informa-

tion that the paired reads reveal about the

boundaries (breakpoints) of the structural

variant and the uncertainty associated with this

measurement. Most types of SV, including

deletions, inversions, and translocations

have two breakpoints a and b where the

reference genome is cut. The segments

adjacent to these coordinates are then

pasted together in a way that is particular

to the type of SV. For example, a deletion

is defined by coordinates a and b in the

reference genome such that the nucleotide

at position a is joined to the nucleotide at

position b in the individual genome

(Figure 6). Note that this is a simplification

of the underlying biology, as there are

sometimes small insertions or deletions at

breakpoints, but these small changes have

limited effect on the analysis of larger

structural variants.

Now the discordant pairs that indicate

an SV have the property that the locations

of the read alignments are near the

breakpoints a and b. However, a paired

read does not give independent informa-

tion about the breakpoint a and the

breakpoint b. Rather, the breakpoints a

and b are related by a linear inequality

that defines a polygon in 2D genome space

called the breakpoint region (Figure 6).

For example, suppose that the pair of

reads from a single fragment align to the

same chromosome of the reference ge-

nome such that the read with lower

coordinate starts at position x in the

reference and the read with higher coor-

dinate ends at position y in the reference.

(For simplicity, we ignore the fact that the

sequence of a read can align to either

strand (forward or reverse) of the reference

genome. The strand of an alignment gives

additional information about the location

of the breakpoint. See [55] for further

details.) If the sequenced fragment has

length L then the breakpoints a and b
satisfy the equation (a{x)z(y{b)~L.

As described above, the size of any

particular fragment is typically unknown.

Rather, one defines a minimum size Lmin

and maximum size Lmax of a sequenced

fragment, perhaps according to the em-

pirical fragment length distribution. Thus,

we have the inequality

Lminƒ(a{x)z(y{b)ƒLmax:

This equation defines the unknown break-

points a and b in terms of the known

Figure 5. Paired end mapping (PEM). Fragments from an individual genome are sequenced from both ends and the resulting paired reads are
aligned to a reference genome. Most paired reads correspond to concordant pairs, where the distance between the alignment of each read agrees
with the distribution of fragment lengths (right). The remaining discordant pairs suggest structural variants (here a deletion) that distinguish the
individual and reference genomes.
doi:10.1371/journal.pcbi.1002821.g005
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coordinates x and y of the aligned reads

and the length of sequenced fragments.

The pairs of breakpoints (a,b) that satisfy

this equation form a polygon (specifically a

trapezoid) in two-dimensional genome

space. We define the breakpoint region B

of discordant pair (x,y) to be the break-

points (a,b) satisfying the above equation.

This geometric representation provides

a principled way to combine information

across multiple paired-reads: multiple

paired-reads indicate the same variant if

their corresponding breakpoint regions

intersect. The geometric representation

also provides precise breakpoint localiza-

tion by multiple paired reads; separates

multiple measurements of the same vari-

ant from measurements of nearby or

overlapping variants; and facilitates robust

comparisons across multiple samples and

measurement technologies. Finally, the

approach is computationally efficient as it

relies on computational geometry algo-

rithms for polygon intersection. These

scale to millions of discordant pairs that

result from next-generation sequencing

platforms.

While the algorithms above consider

many of the issues in prediction of

structural variants, there remains room

for improvement. Most notably, many

algorithms still use only one of the possible

signals of structural variants: read depth,

split reads, or paired reads. Improvements

in specificity are likely possible by inte-

grating these multiple signals into a single

prediction algorithm [60].

5. Representation of Structural
Variants

Next generation DNA sequencing tech-

nologies are dramatically reducing the cost

of sequence-based surveys of structural

variants, while oligonucleotide aCGH

techniques are now used in studies profil-

ing tens of thousands of genomes. Large

projects like the 1000 Genomes Project

and The Cancer Genome Atlas (TCGA)

are performing paired-end sequencing and

aCGH of many human genomes, and

matched tumor and normal genomes,

respectively. At the same time, smaller or

single investigator projects are using a

variety of paired-end sequencing ap-

proaches and/or microarray-based tech-

niques with different trade-offs in cost-per-

sample vs. measurement resolution. Thus,

in the near future there will be an

enormous number of measurements of

SVs, but using a wide range of technolo-

gies of varying resolution, sensitivity, and

specificity. This diversity of approaches

will likely continue for some time as

investigators explore tradeoffs between

the cost of measuring variants in one

Figure 6. (Top) A discordant pair (arc) indicates a deletion with unknown breakpoints a and b located in orange blocks. Positions x, y and the
minimum Lmin and maximum Lmax length of end-sequenced fragments constrain breakpoints (a,b) to lie within the indicated orange blocks, and are
governed by the indicated linear inequalities. (Bottom) A polygon in 2D genome space expresses the linear dependency between breakpoints a and
b and records the uncertainty in the location of the breakpoints.
doi:10.1371/journal.pcbi.1002821.g006
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sample with high confidence versus sur-

veying variants in many samples with

lower confidence per sample. For exam-

ple, in cancer genome studies the goal of

finding recurrent mutations demands the

survey of many genomes and thus large

sample sizes might be preferred over high

coverage sequencing of one sample.

The problem of comparing variants

across samples and/or measurement plat-

forms is less studied than the problem of

detecting variants in a single sample.

Standard practice remains to use heuristics

that merge predicted structural variants

into the same variant in they overlap by a

significant fraction (e.g. 50–70%) on the

reference genome. For example, the Data-

base of Genomic Variations (DGV) [5],

arguably the most comprehensive reposito-

ry of measured human structural variants,

merges structural variant predictions whose

coordinates overlap by §70% on the

reference genome. Such heuristics are

typically the only approach available to

databases of human structural variants

because many early studies did not report

information on the uncertainty (i.e. ‘‘error

bars’’) in the boundaries (breakpoints) of the

variant. This situation makes it difficult to

explicitly separate multiple measurements

of the same variant from measurements of

nearby variants or overlapping variants.

This situation is now improving, and more

recent software records both the informa-

tion that the measurement reveals about

the breakpoints of the structural variant

and the uncertainty associated with this

measurement. Software that uses this

uncertainty to classify and compare SVs

across samples and measurement platforms

is also now available [55]. Such precision

provides increased confidence in associa-

tions between a structural variant and a

disease, helps separate germline from

somatic structural variants in cancer ge-

nome sequencing projects, and aids in the

study of rare recurrent variants that might

occur on a variety of genetic backgrounds.

6. Challenges for Cancer
Genomics Studies

The study of somatic structural variation

in cancer genomes presents additional

challenges beyond those described above

for generic resequencing approaches. First,

most cancer genomes are aneuploid, mean-

ing that the number of copies of regions of

the genome are variable, due to duplica-

tions and deletions of segments of the

normal genome. High-resolution recon-

structions of cancer genomes by paired

read sequencing showed that many rear-

rangements were too small to be detected

by cytogenetics, and identified highly

rearranged genomic loci that encompass a

complex intertwining of rearrangement

and duplication [21,29,49,50,61–63]. Such

highly rearranged loci are hypothesized to

result from genome instability caused by

defective DNA repair in cancer cells, or

from external DNA damage. An extreme

example is the phenomenon of chromo-

thripsis that results from massive, simulta-

neous breakage and aberrant repair of

many genomic loci [64]. Identifying all of

the SVs and thereby reconstructing the

organization of cancer genomes can suggest

that certain regions of the genome are

selected for their pathogenetic properties,

and also lend insight into the mechanisms

of genome instability in tumors [14].

A second challenge is that cancer tissues

are a heterogeneous mixture of cells with

possibly different numbers of mutations.

This heterogeneity includes admixture

between normal and cancer cells, as well

as subpopulations of tumor cells. Some of

these subpopulations might contain impor-

tant driver mutations, or drug resistance

mutations. Because of the amount of DNA

required for current sequencing technolo-

gies, most cancer genome sequencing

studies do not sequence single tumor cells

but rather sequence a mixture of cells

(Figure 7). Since the signal for detecting

variants is proportional to the number of

cells in the mixture that contain the variant,

presence of normal cells will reduce the

power to detect somatic mutations. Fur-

ther, the ability to detect mutations that are

rare in the tumor cell population will be

even lower. Eventually, whole genome

sequencing of single cells will provide

fascinating datasets to study cancer genome

evolution, with some recent hints of the

discoveries to come in [65].

7. Future Prospects

This chapter described the challenges in

identification and characterization of

structural variants. With further improve-

ments in sequencing technologies and

algorithms over the next few years, it will

be possible to systematically measure

nearly all but the most complex variants

in an individual genome. The most

difficult cases, such as variants mediated

by homologous recombination between

nearly identical sequences, might remain

inaccesible until significantly different

types of DNA sequencing technologies

become available. Nevertheless, the fact

that systematic identification of nearly all

germline and somatic structural variants in

Figure 7. Mutation, selection, and clonal expansion in tumor development leads to
genomic heterogeneity between cells in a tumor. Current DNA sequencing approaches
sequence DNA from many cells and thus result in a heterogenous mixture of mutations, with
varying numbers of both passenger mutations (black) and driver mutations (red).
doi:10.1371/journal.pcbi.1002821.g007

PLOS Computational Biology | www.ploscompbiol.org 9 December 2012 | Volume 8 | Issue 12 | e1002821



an individual genome is now possible will

enable further progress in human and

cancer genetics.

For genetic association studies, having

complete lists of germline variants from

many individuals means that unexplained

heritability for a trait cannot readily be

blamed on lack of measurement of genetic

information. Unfortunately, this does not

necessarily imply that finding the genetic

basis for specifc traits will become easy.

There remain other challenges, including

the possiblity that combinations of vari-

ants, interactions between genetic and

environmental factors, or other epigenetic

mechanisms, may contribute to pheno-

type. See [66] in this collection for further

discussion of these issues. Finally, translat-

ing genetic information about susceptibil-

ity to a disease or efficacy of particular

treatments into improved medical out-

comes will require additional work.

The opportunities and challenges are

similar in cancer genetics. Systematic mea-

surement of all somatic mutations will yield

information that might guide treatments,

and eventually lead to personalized oncol-

ogy. Current cancer treatments are limited

by the non-specificity of most cancer drugs

and by the fact that cancer cells can evolve

resistance to single drug treatments. Tailor-

ing of treatment to the particular genetic

mutations in a tumor promises to revolu-

tionize cancer therapy. There are already

several examples of such personalized

treatments including the drug Gleevec that

targets the BCR-ABL fusion gene in chronic

myelogenous leukemia (CML) and Iressa

that targets the EGFR gene in lung cancer.

Discovery of additional cancer-specific drug

targets requires not only technologies to

globally survey somatic mutations in cancer

genomes, but also techniques (experimental

and/or computational) to classify the subset

of variants that are functional, and then the

further subset of these functional variants

that are druggable.

The sequencing technologies and algo-

rithms described in this chapter are laying

the foundation for personalized medicine,

but much work remains to translate the

information revealed by genome sequenc-

ing into improved clinical practice.

8. Exercises

(1) Consider the chromosomal inversion

in Figure 1. What signals in next-

generation sequencing data can be

used to detect a chromosomal inver-

sion?

(2) The human genome is diploid with

two copies, maternal and paternal, of

each chromosome. What constraints

does this place on prediction of

germline structural variants?

Answers to the Exercises can be found

in Text S1.

Supporting Information

Text S1 Answers to Exercises.

(PDF)
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