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Abstract

We report on the integration of pharmacological data and homology information for a large scale analysis of small molecule
binding to related targets. Differences in small molecule binding have been assessed for curated pairs of human to rat
orthologs and also for recently diverged human paralogs. Our analysis shows that in general, small molecule binding is
conserved for pairs of human to rat orthologs. Using statistical tests, we identified a small number of cases where small
molecule binding is different between human and rat, some of which had previously been reported in the literature.
Knowledge of species specific pharmacology can be advantageous for drug discovery, where rats are frequently used as a
model system. For human paralogs, we demonstrate a global correlation between sequence identity and the binding of
small molecules with equivalent affinity. Our findings provide an initial general model relating small molecule binding and
sequence divergence, containing the foundations for a general model to anticipate and predict within-target-family
selectivity.
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Introduction

The development of medicinal chemistry lead structures into

clinical candidates requires iterative testing in a variety of assays

systems and frequently across different mammalian species [1]. In

drug discovery, early screens are often performed with recombi-

nant proteins, or human cell-lines heterologously expressing the

desired target; later, candidate compounds are typically evaluated

in vivo in rats and other species for efficacy and safety

pharmacology. Entrance into the clinical stages of drug develop-

ment then requires a switch to tests in human patients.

Understanding the behavior when switching animal model species,

for both the desired target mechanism, selectivity, and also for

ADMET factors is crucially important. Clearly a more successful

drug discovery program will have translatable pharmacology

across mammalian taxa - we call this property pharmacological

robustness. Pharmacological robustness between different species

is limited by differences in the target protein sequence, absorption,

drug metabolism and the mode of drug action, which may not be

conserved between species or result in different endpoints at a

phenotypic [2] level. The underlying process of molecular

evolution adds stochastic noise to this transferability of function -

neutral drift between orthologs and selective pressures in the

evolution of functionally differentiated paralogs [3] create an

ensemble of differing binding sites between and within organisms.

Within organisms, the selectivity of a compound is determined by

its preferential binding to one member of a protein family over

other paralogs in that family. Since the process of drug discovery is

often organized conceptually around pharmacologically successful

gene families (such as nuclear receptors, rhodopsin-like GPCRs,

various ion-channel families, and most recently, protein kinases)

[4,5], leveraging known data to develop novel selective chemo-

types is of fundamental importance. Hence, understanding small

molecule binding in the context of orthologous and paralogous

relationships is an essential component for the systematic

categorizations of both the ligand and target binding space - this

field is typically now known by the term chemogenomics [6].

Chemogenomic studies have previously established a classification

of human G-protein-coupled receptors (GPCRs) based on the

chemical similarity of their ligands [7–9]. The specificity of kinase

inhibitors has been evaluated within and across families of protein

kinases [10–13] and case studies exist that examine the interplay of

evolutionary relationship and binding affinity e.g. for cytochrome

P450 [14] or the highly promiscuous kinase inhibitor staurospor-

ine [15]. This compound owes its large spectrum of susceptible

kinases to its interaction with the fundamentally invariant peptide

bond backbone of the active site rather than individual residues

therein.

The amount of publicly available small molecule bioactivity

data is increasing and semantically useful annotations of these data

are improving [16,17]. For the first time it is possible to attempt

the use of data integration techniques [18–20] for the study of

ligand binding at a global level among various protein families and

across species. The global perspective is challenging, the data

available for this type of analysis is heterogeneous and biased for

certain target classes, most prominently GPCRs and kinases. Here

we report on the integration of literature inhibition and related

data (Ki, IC50, EC50) measured against more than one hundred

and fifty different human proteins and their rat orthologs, obtained

from the ChEMBL data base. Differences in bioactivity were
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examined in relation to different types of evolutionary relationship

(orthology and paralogy) and by comparing protein sequences on

three distinct levels, sequence, known/presumed ligand-binding

domain and binding site (where known). This comparison is of

special importance for cases where selectivity within a gene family

is required, and where selectivity needs to be preserved across

model organisms (specifically rat-to-human).

Results

Robustness of small molecule binding across species
As a first step to estimate the robustness of small molecule

binding globally, we compared bioactivity data for compounds

that have been tested against a human target and its rat ortholog.

In principle, comparison with other species is possible but in

practice is limited by the availability of data. The data bias towards

rat reflects the ubiquitous use of rat as an in vivo model organism in

pharmacology studies [21]. From the ChEMBL database (version

10 [22]), we retrieved 2,782 instances of compounds tested against

both, the human target and its ortholog in rat. The human-to-rat

data is made up of 151 different orthologous pairs. The observed

bioactivities expressed as log transformed dissociation constants

pKi range from 4 to 12 (i.e. across a broad range from high mM to

single digit pM ). For our purposes, the data is also rich across the

concentration range known to be important for acceptable

clinically efficacious modulation of a target [23]. We calculated

the difference in bioactivity for each pair of orthologs and a given

ligand. The density distribution of differences in bioactivity has a

central peak at 0 and is non-normal as established by Anderson-

Darling test [24] (p,2e-16). This is in support of the trivial model

that small molecules bind, on average, a human target and its

orthologs in other species with the same affinity. An analysis using

Pearson’s correlation coefficient indicates a highly significant

linear relationship between bioactivities measured against human

and rat targets (r = 0.71, p,2e-16). As a measure of both

publication and abstraction errors within the ChEMBL database

and also for between-lab variability, and to estimate the deviations

introduced by inter-assay comparison of binding data, we

calculated the differences in bioactivity (expressed in terms of a

log pKi) between assays that measured the effect of identical

ligands on identical targets. To ensure the resulting distribution

was comparable to the distribution of differences in activity

between human-to-rat orthologs, this distribution was constructed

as a composite of 1.500 randomly picked inter-assay differences for

human targets and 1.500 randomly picked inter-assay differences

for rat targets. Thus, the number of values available for human-to-

rat orthologs (2.782) was approximately matched. For targets

having more than two assays, group averages were taken before

calculating the difference. The resulting distribution closely

resembles the distribution for orthologs, further supporting the

hypothesis that binding is globally conserved between orthologs. A

summary of the data is provided in Figure 1.

To identify human proteins that have significant inter-species

(here human-rat) differences in ligand binding, we carried out two-

sided Mann-Whitney U tests, comparing the distribution of

binding differences observed for a single pair of orthologs to the

control distribution of inter-assay differences. P-values were

corrected for multiple comparisons using Bonferroni adjustment.

Results with significant deviation from the distribution mean

(p,0.05) are reported in Table 1. To estimate the chemical

diversity, ligand sets for each target were clustered using a distance

matrix calculated from fingerprint similarities and numbers of

clusters are reported (see Methods section Compound Clustering).

This large-scale comparison of human versus rat orthologs shows

that some chemotypes have a systematic preference, or bias in

binding affinity, for one species over the other. For example, the

significant preference of pyrrolidine-containing Histamine H3

receptor (HRH3) antagonists for the human over the rat ortholog

has been previously reported in the medicinal chemistry literature

[25–30], but here is rediscovered using our unbiased and

automated analysis.

Two of the reported cases are problematic because the source

documents report functional in vivo assay data rather than emphin

vitro binding data. 43 of the 56 Urotensin II receptor antagonists

have been tested for their potency in a calcium-flux assay but by

an error of annotation, these were labelled as in vitro binding data.

A similar misannotation was detected for the neuronal acetylcho-

line receptor subunit a7. These findings were used to set curation

priorities for future releases of the ChEMBL.

Conservation of small molecule binding between
paralogs

Gene duplications produce two copies of the original gene

within one genome [31]. Duplicated genes, or paralogs, experi-

ence less selective pressure and typically one gene copy can

develop new divergent functions (if subsequently fixed in the

population). To examine the conservation of small molecule

binding among paralogs, we identified pairs of human paralogs

using a pre-calculated phylogenetic tree from Ensembl Compara

[32] and small molecule binding data was retrieved from the

ChEMBL. Activities of 20,309 compounds against 516 different

human targets were obtained and 651 pairs of human paralogs

identified, and differences in binding affinity were calculated for a

total of 41,733 combinations. These calculated differences were

randomly assigned with a positive or negative prefix (in order to

allow comparison with the data for the orthologous pairs). Thus,

we introduced an artificial binomial grouping of measured

differences, imitating the grouping by species for orthologs, and

facilitating the comparison of both sets. In contrast to orthologs,

observed differences in binding affinity were larger, and the

proportion of homologous pairs binding targets with the same

affinity smaller. A comparison of orthologs and paralogs is

presented in the next section.

Author Summary

Many drugs are small molecules that specifically bind to
proteins involved in disease related processes. In this way,
drugs modulate the function of a targeted protein and
ultimately the process causing the disease. The develop-
ment of drugs crucially relies on assays that measure the
potency of the effect a small molecule exerts on its protein
target. We compared the potencies of small molecules
measured for human proteins and the corresponding
(orthologous) protein in rat. Our results suggest that, after
subtraction of statistical noise, most human proteins are
equally susceptible to small molecule binding as their
orthologs in rats. However, we identified a small number
of exceptions to this rule, for example the histamine H3
receptor, a protein of the central nervous system. We also
compared the potency of small molecules measured
against a human protein and another member of the
same protein family. In drug development it is often
desired to target a protein selectively over other related
proteins. The observed differences were generally greater
than the statistical noise, indicating that most of the small
molecules in our study have some degree of selectivity
within protein families.

Trends in Small Molecule Binding Affinities
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Evolutionary relationship and small molecule binding
Paralogs arise from gene duplication events within a species

and, owing to their redundancy, often evolve to develop divergent

functions. The independent evolution of orthologs on the other

hand is the consequence of a speciation event [33]. Compared to

paralogs, mammalian orthologs have diverged relatively recently

[34]. This is reflected in the distribution of pair-wise sequence

identities observed between human paralogs and human-rat

orthologs (Figure 2). Most frequently, the sequence identity

between human paralogs in Ensembl Compara [32] is approxi-

mately 30% while human to rat orthologs are most frequently

observed with sequence identity of around 90%, as shown in

Figure 2. Of note, the distributions of pair-wise sequence identity

for targets in our analysis deviate from the genome-wide

distribution. Paralogs in this analysis set generally have higher

sequence identity compared to all human paralogs. This can be

explained by the bias from the rational identification and

anticipation of selectivity issues within a gene family, where

scientists are typically concerned about the most closely related

sequences for two reasons, overlapping signaling and presumed

higher likelihood of cross-reactivity of ligands. Within our data,

this is especially clear for the rhodopsin-like GPCR and kinase

families. Comparing differences in binding affinity between pairs

of paralogs and orthologs, we observed a higher conservation of

the binding affinity for given ligands between pairs of orthologs

compared to pairs of paralogs. An overlay of the distributions of

differences in binding affinity for both, human to rat orthologs and

human paralogs is shown in figure 2. Both distributions can be

approximately described by a Laplace distribution. Notably, the

scale parameter b, which describes the spread of the distribution, is

b = 0.7 for the paralogs and b = 1.3 for human-to-rat orthologs (as

expected by the differing selective pressures within these two sets).

The variance of measured binding affinities is significantly

different between orthologs and paralogs as established by

Levene’s test [35] (p,2.2e-16). Hence, pairs of paralogs are less

likely to bind ligands with the same affinity and the observed

differences in binding affinity are larger compared to human to rat

orthologs.

Sequence identity and conservation of binding
The observation that small molecule binding is less conserved in

paralogs compared to orthologs (and the distinct behavior of these

two sets) led us to enquire for the molecular mechanism by which

paralogs acquire different binding affinities for one ligand. It is

established that the vast majority of differences between pairs of

proteins have minimal functional effect [36] and it would be

expected that the same applies to the binding of small molecules.

To investigate this, we compared the entire sequences of paralogs.

Furthermore we compared sequences of the presumed structural

domain containing the ligand-binding site. The algorithm used to

Figure 1. Differences in small molecule binding for human to rat orthologs. (a) Summary scatter plot. Positions along axes report the
median binding affinity of all compounds against the human target (x-axis) and its ortholog in rat. Points are scaled according to the number of
different compounds tested against a pair of orthologs. (b) Scatter plot of individual compound binding affinities for the human targets (x-axis) and
their orthologs in rat (y-axis). (c) Scatter plot of the affinities observed when comparing results from different assays of the same compound and
target (1500 human targets and 1500 rat targets). (d) Distribution of differences in binding affinity between the human target and its ortholog in rat.
Positive values indicate higher affinity for the human target and vice versa. (e) Distribution of the differences observed when comparing binding
affinities for the same compound and target in different assays.
doi:10.1371/journal.pcbi.1002333.g001

Trends in Small Molecule Binding Affinities
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map binding sites to domains is described in Methods - Mapping

binding sites to Pfam domains and a summary selection of the 25

most frequent domains which account for more than 50% of all

observations in the ChEMBL target dictionary is shown in Table 2.

Results of the mapping are discussed in Text S1 (see also Figures

S1, S2). For two classes of targets, GPCRs and kinases, we also

compared targets based on alignments of the known/presumed

binding site. An analysis on each level showed a highly significant

but weak correlation between simple sequence identity and the

absolute difference in bioactivity on all levels of the comparison. It

is worth noting that the strength of the correlation increases with

the level of precision of the sequence comparison. Spearmans non-

parametric correlation coefficients were 20.082 (p,2.2e-16) on

the level of the full sequence, 20.10 (p,2.2e-16) on the level of the

domain predicted to contain the binding site and 20.21 (p,2.2e-

16) on the level of the binding site. We carried out the same

analysis for human-to-rat orthologs and did not detect a significant

correlation of whole protein sequence identity and differences in

small molecule binding (p = 0.34). This could be due to a smaller

sample size (2,782 for orthologs versus 41,733 for paralogs) but

more likely reflects the contrast between the functional conserva-

tion of orthologs and different degrees of diversification for

paralogs.

Figure 3 shows the relationship of sequence identity and

difference in bioactivity. The mean difference in binding affinity

for pairs of paralogs with sequence identity . = 80% is similar to

Table 1. Proposed pairs of human to rat orthologs with species specific pharmacology.

Name (Uniprot) D #cmpds #chemotype mapped Pfam

Histamine H3 receptor 0.59 325 30 7tm_1

� Neuronal ACh-receptor a7 22.33 49 3 Neur_chan_LBD

Serotonin transporter 20.42 309 27 SNF

Fructose-1,6-bisphosphatase 0.82 50 2 FBPase

NaV type X a-subunit 0.77 45 3 Ion_trans

Gonadotropin-releasing hormone receptor 0.54 118 10 7tm_1

D-amino-acid oxidase 1.68 14 2 DAO

Neurokinin 1 receptor 1.74 20 2 7tm_1

Adenosine A1 receptor 20.51 78 16 7tm_1

Adenosine A2a receptor 0.41 112 15 7tm_1

Androgen Receptor 0.90 25 3 Hormone_recep

Cathepsin S 2.02 9 1 Peptidase_C1

Glucagon receptor 1.26 12 2 not mapped

� Urotensin II receptor 20.49 56 4 7tm_1

Reported are target pairs where observed differences in binding affinity deviate significantly from the control distribution. D represents mean potency differences.
Positive values of D designate preferential binding to the human ortholog and negative values preferential binding to the rat ortholog. Asterisks mark values which are
artifacts of faulty annotation. The number of tested compounds is reported in the column #cmpds and #chemotypes reports the number of chemotypes determined
by hierarchical clustering.
doi:10.1371/journal.pcbi.1002333.t001

Figure 2. (a) Distributions of pairwise sequence identity between orthologs (red) and paralogs (blue). Distributions in the front
represent all pairs retrieved from Ensembl Compara and distributions in the back pairs of targets from our analysis. (b) Distributions of differences in
binding affinity between the human target and its rat ortholog (red curve) and distribution of differences in binding affinity between human paralogs
(blue curve). For comparison, the distribution of inter-assay differences is outlined (black curve).
doi:10.1371/journal.pcbi.1002333.g002

Trends in Small Molecule Binding Affinities

PLoS Computational Biology | www.ploscompbiol.org 4 January 2012 | Volume 8 | Issue 1 | e1002333



the observed inter-assay difference for human targets. On the

other hand, targets with sequence identity below 80% on average

have activity differences that are higher than the inter-assay

deviation. A prior study had shown that kinases statistically have

similar SAR properties above a sequence identity threshold of

60% [37]. On the level of the binding site containing domain it

appears that below a sequence identity of 80% pairs of paralogs

exhibit increasingly divergent binding towards the same target,

while binding is statistically conserved above this threshold. On the

level of the binding site, the average difference in binding

correlates strongest with sequence differences.

The magic methyl revisited
Medicinal chemistry experience shows that the addition of a

single methyl group to the structure of a lead compound can

change binding affinity by one order of magnitude [38–41].

Classically, this paradigm is associated with the small molecule

part of a binding interaction as the ligand is amenable to chemical

modification. In the light of evolutionary relationships, magic

methyls - or rather - magic residues, can occur when mutations in

the amino acid sequence (de)stabilize the complex of a

homologous target and artificial ligand. The expectation would

be that the binding of larger molecules is more likely to be affected

by a mutation in or near the binding site, as molecules of greater

size rely on a larger number of interactions with the target protein

[42]. Following this hypothesis, we examined differences in ligand

binding between paralogs in terms of molecular size (approximat-

ed here by molecular weight) of the ligand and divided all

compounds in our analysis into molecular weight bins. Adaptive

binning was used to obtain five groups containing equal numbers

of compounds. An analysis of variance (Anova) F test (F = 15.0,

p,2.8e-12) suggests that there are significant differences between

the groups and multiple testing was carried out to examine the

differences between individual groups (see Figure 4). Analogous to

the above, the data for human to rat orthologs was binned by

molecular weight of the ligand and an Anova F test (F = 5.6,

p,1.6e-4) suggest that there is a significant difference between

groups but sample sizes are smaller and multiple testing is less

conclusive (see Figure S9). The differences observed when

grouping ligands by molecular weight are in support of our magic

residue hypothesis according to which larger molecules would be

more likely to interact with residues in or near the binding site and

thus would sample otherwise neutral mutations. In this context, it

is difficult to distinguish between physiologically neutral substitu-

tions in orthologs and non-homologous changes in paralogs,

because a number of paralogs bind, like orthologs, their

endogenous ligand with equal affinity (eg. muscarinic acetylcholine

receptors, where different receptor subtypes exist) and thus behave

like pseudo-orthologs. Our findings also implies that increasing the

molecular size of a ligand can promote selectivity against targets

within the same family if substitutions are present near the binding

site. The correlation observed between the absolute difference in

binding affinity and molecular weight is small (Spearman’s Rho of

only 0.062) but highly significant, suggesting that only a small

subset of the pairs in our analysis have substitutions in or near the

binding site. We propose that differences in small molecule

binding between homologous targets arise from physiologically

neutral mutations that only by chance become relevant when

interacting with artificial ligands. These chances increase slightly

with lower sequence identity but ultimately depend on whether an

artificial ligand will sample mutations through direct or indirect

interactions. As an example, the distinct differences between the

rat and human ortholog of the histamine H3 receptor (HRH3)

depend on the chemotype of the ligand. Using hierarchical

clustering, we were able to show that pyrrolidine-containing

ligands of the HRH3 create differential responses between human

and rat HRH3s, whereas ligands based on an indole-core bind

both targets with similar affinity (see Text S1 and Figures S5, S6).

A homology model constructed from available GPCR structures

suggests that a substitution of Thr119 in the human for Ala 119 in

the rat receptor is within 2.7A of the modelled ligand Doxepin and

is likely the cause of species-specific pharmacology of these

otherwise very similar receptors (see Figures 5, S3, S4, Datasets S1,

S2 and Text S1). Another target with species-specific binding

affinities identified in this study is the serotonin transporter.

Clustering of the associated small molecules revealed that

compounds with an aminochroman-5-carboxamide core have a

preference for the rat ortholog (see Figures S7, S8 and Text S1).

Discussion

Our analysis shows that differences in ligand binding are

significantly larger and more frequent between pairs of paralogs

compared to pairs of orthologs. These findings are complementary to

a study by Peterson that observed that, at the same level of sequence

similarity, structural differences between paralogs are larger com-

pared to orthologs [43]. We confirm, on a global scale, a working

Table 2. The most frequent ligand binding domains in the
ChEMBL target dictionary.

Pfam accession #predicted % of all predicted

7tm_1 502 12.48

Pkinase 404 10.05

Pkinase_Tyr 146 3.63

Neur_chan_LBD 139 3.46

Ion_trans 114 2.84

Trypsin 93 2.31

Hormone_recep 82 2.04

p450 71 1.77

ANF_receptor 71 1.77

PDEase_I 49 1.22

Beta-lactamase 39 0.97

Carb_anhydrase 36 0.90

Peptidase_C1 35 0.87

Guanylate_cyc 34 0.85

HATPase_c 34 0.85

Hist_deacetyl 33 0.82

SNF 33 0.82

adh_short 33 0.82

Asp 31 0.77

Y_phosphatase 29 0.72

Peptidase_M10 28 0.70

Tubulin 28 0.70

DHFR_1 28 0.70

Phospholip_A2_1 26 0.65

Metallophos 24 0.60

The Pfam accessions of the 25 most frequent binding site containing domains
are listed together with the number of times a domain occurs in the ChEMBL
target dictionary (# predicted) and its proportion of all predicted binding sites
(% of all predicted).
doi:10.1371/journal.pcbi.1002333.t002
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hypothesis in the field of medicinal and biological chemistry,

intuitively based on the notion that orthologs fulfill the same function

in two species while duplicated genes within one species are free to

evolve to functional divergence. However, for the first time, we

demonstrate this truism with analysis of a large-scale pharmacolog-

ically relevant data set. Consistent with our data is that the

conservation of ligand binding depends to a large degree on few

but crucial mutations in the binding site more than overall sequence

identity. Our study demonstrates that the magic methyl paradigm

applies not only to ligands but equally to the binding site of a protein,

and that crucial substitutions override the underlying correlation of

sequence identity and ligand binding. Our study differs from prior

chemogenomic studies [44,45] in its scope, which is global and

integrates experimental results from different literature sources. The

heterogeneity of the data imposes unknown challenges and requires

new approaches to analyzing the data. Different measurement

techniques and report formats introduce drastic deviations between

single measurements. However, these smooth out from a global point

of view, due to the sheer bulk of heterogeneous data. We anticipate a

significant increase in the usefulness of global models as more

bioactivity becomes available in parseable formats.

Methods

Source data and preprocessing
All data was collected from the ChEMBL database (version 10

[22]). Activities were filtered to contain only data from binding

assays (assay-type: ‘B’) that could be mapped directly to a

Figure 3. Differences in small molecule binding for human paralogs. Sequence identity was measured on three levels: (a,d) Full sequence,
(b,e) sequence of the domain containing the binding site and (c,f) residues of GPCR and kinase binding sites. Scatter plots of binding affinities
measured against pairs of human paralogs are shown in the top row. Points represent median affinities of all compounds measured against a given
combination of targets. Box plots in the bottom row represent the distribution of measured differences in binding affinity for pairs of targets having
0–20%, 20–40%, 40–60%, 60–80% and 80–100% identity. The level of significance of differences between bins are indicated with one (pv5 � 10{2),
two (pv5 � 10{5) or three asterisks (pv5 � 10{10). The dashed horizontal line indicates the mean inter-assay difference for human targets.
doi:10.1371/journal.pcbi.1002333.g003

Figure 4. Molecular weight and absolute differences in binding
affinity. Box plots show distributions of differences in binding affinity
for small molecules grouped by equally sized molecular weight bins for
paralogs. Each bin contains the same number of values and lower bin
limits are shown below each box. Anova type multiple testing was
carried out to assess the significance of differences between
neighbouring groups and levels of significance are indicated with one
(pv5 � 10{2), two (pv5 � 10{5) or three asterisks (pv5 � 10{10).
doi:10.1371/journal.pcbi.1002333.g004

Trends in Small Molecule Binding Affinities

PLoS Computational Biology | www.ploscompbiol.org 6 January 2012 | Volume 8 | Issue 1 | e1002333



molecular target, in other words the mapping to targets was

unambiguous. Permitted into the analysis were assays with results

reported in either of the following units: Ki, IC50, EC50, pA2,

pKi. Units were converted where necessary to be comparable to

pKi values and duplicates excluded. Tables containing source data

for comparisons of inter-assay data, human to rat ortholog data

and paralog data are included as Tables S1, S2 and S3.

Similarity metrics
For global sequence comparisons we used precalculated

alignments from Ensembl Compara [32]. Sequence identity was

determined as the fraction of residues that are identical between

the overlapping regions of paralogous sequences. Binding site-

containing domains were identified using a heuristic prediction

algorithm described below. As an underlying domain classification

system, we used Pfam [46,47]. Domains containing the binding-

site of paralogous proteins were aligned and sequence identity

determined. Comparisons of binding sites were carried out for two

target classes, Kinases and non-olfactory GPCRs. The positions of

residues interacting with a given ligand were adopted from

Surgand [7] for GPCRs and from Kinase SARfari [48] for kinases.

Statistical analysis
All statistical analysis was carried out using the statistical

analysis program R [49]. Used functions are specified in Table S4.

Mapping binding sites to Pfam domains
Binding sites were mapped to Pfam domains using a simple,

heuristic algorithm. In a first step, Pfam domain annotations were

retrieved from the Pfam database. Most targets in ChEMBL

contain only a single domain (Figure S1) and for those it is

reasonable to assume that in a vast majority of cases the binding

site is contained within that domain. A dictionary of binding-site

containing domains was thus created and subsequently matched to

ChEMBL targets. Binding-sites of targets matching only one

domain are immediately mapped to this domain. All targets

having more than one domain are matched against the domains

extracted in the first step and if one of these domains is present in

the target, the ligand binding site is mapped to this domain. If a

target sequence matches two or more domains identified in the

first step, the binding site is mapped to the domain with the highest

count of occurrence among single domain targets. A discussion of

the results of this mapping is provided in Text S1.

Compound clustering
LINGO fingerprints have been previously described as a

reliable fingerprint descriptor that is easy to calculate [50]. We

used the OpenEye [51] software to calculate LINGO fingerprints

for all ligands and calculated pairwise Tanimoto coefficients. A

distance matrix was constructed and hierarchical clustering carried

out using the complete linkage algorithm. Clusters were then

determined using a Tanimoto cut-off of 0.75. This value was

chosen to separate different chemical series. Table S5 is a record of

database identifiers and cluster associations of all investigated

compounds.

Supporting Information

Dataset S1 PDB file for the homology model of the
human HRH3. The model was constructed from template

structures of the Histamine H1 receptor (3rze), as well as the

dopamine D3 receptor (3pbl), the human beta 2 adrenergic (2rh1,

3d4s, 3ny8, 3nya) and the turkey beta 1 adrenergic receptor (2vt4).

(TXT)

Dataset S2 PDB file for the homology model of the rat
HRH3. The model was constructed from template structures of

the Histamine H1 receptor (3rze), as well as the dopamine D3

receptor (3pbl), the human beta 2 adrenergic (2rh1, 3d4s, 3ny8,

3nya) and the turkey beta 1 adrenergic receptor (2vt4).

(TXT)

Figure S1 Histogram of the number of unique Pfam
domains occurring in each protein in the ChEMBL
target dictionary.

(EPS)

Figure 5. Species specific binding of small molecules for the HRH3. (a) Exemplary compounds from two clusters are shown. (b) Distributions
of differences observed for compounds from the two respective clusters. Pyrrolidine containing componds bind the human target with higher
affinity, while most compounds with an indole scaffold bind the human and rat HRH3 with equal affinity. (c) The substitution Thr119Ala is
represented by a grey threonine side chain in the human receptor. The displayed ligand is the HRH1 antagonist Doxepin (5EH) and the nearest
distance to Thr119 is 2.7A.
doi:10.1371/journal.pcbi.1002333.g005
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Figure S2 Cumulative log-log plot showing on the x-Axis
the frequency of predicted binding-site containing
domains among target proteins and on the y-Axis the
number of domains with frequency.x. Over a large range

of values the distribution can be approximated by a straight line,

which is indicative of a power-law distribution. The fitted curve

corresponds to a power-law function p(x)~Cx{a where C is the

number of domains (531) and a is 2.12.

(EPS)

Figure S3 Model structure of the human Histamine H3
recepor. Thr119 (which is substituted to Ala119 in the rat

ortholog) is represented by a ball and stick model of the threonine

side chain in the human receptor. Displayed ligands were adopted

from the template structures.

(EPS)

Figure S4 Model structure of the human Histamine H3
receptor. Close-up view of the THR119 residue and measured

distance to one of the template ligands, Doxepin (2.69A).

(EPS)

Figure S5 Hierachical clustering of HRH3 ligands.
Cluster 24 is by far the largest cluster representing mainly

pyrrolidine-containing antagonists while cluster 10 represents

imidazole-containing antagonists.

(EPS)

Figure S6 Cluster specific distributions of differences
in binding affinity. Most of the indole based antagonists of

cluster 17 bind the rat ortholog with equal affinity, while the

pyrrolidine-containing antagonists (contained in cluster 24) have a

marked preference for the human receptor.

(EPS)

Figure S7 Hierachical clustering of Serotonin transporter
ligands. The two largest clusters contain 121 and 42 compounds

respectively.

(EPS)

Figure S8 (a) Cluster specific distributions of differenc-
es in binding affinity for the Serotonin transporter. The

majority of compounds in cluster 22 have ten-fold higher potency

against the rat ortholog. Cluster 26 and the majority of the remaining

compounds (singletons) have a slight preference for the rat ortholog.

(b) 2D representation of an exemplary compound from cluster 22.

(EPS)

Figure S9 Molecular weight and absolute differences in
binding affinity. Box plots show distributions of differences in

binding affinity for small molecules grouped by equally sized

molecular weight bins for orthologs. Each bin contains the same

number of values and lower bin limits are shown below each box.

Anova type multiple testing was carried out to assess the

significance of differences between neighbouring groups and levels

of significance are indicated with one (pv5 � 10{2), two

(pv5 � 10{5) or three asterisks (pv5 � 10{10). For orthologs,

the only significant difference is between the group of compounds

with molecular weight 375.5–422.6 Da and the group of

compounds with molecular weight .483.3 Da.

(EPS)

Table S1 Inter-assay variation of measured binding
affinities. This tab-delimited table summarizes the data

underlying the inter-assay analysis. The column ‘prefName’

provides the canonical name of the target, ‘tid’ the database

identifier of the human ortholog, ‘Afnty1/2’ the pKi measured in

each group of assays, ‘molregno’ the database identifier of the

small molecule, ‘measured’ the number of measurements and ‘diff’

the difference in binding affinity.

(TXT)

Table S2 Human-to-rat orthologs. This tab-delimited table

summarizes the data underlying the analysis of human-to-rat

orthologs. The column ‘prefName’ provides the canonical name of

the target, ‘Uniprot1/2’ the identifier of the human/rat ortholog,

‘Afnty1/2’ the pKi against the human/rat ortholog, ‘molregno’

the database identifier of the small molecule.

(TXT)

Table S3 Human paralogs. This tab-delimited table summa-

rizes the data underlying the analysis of human paralogs. ‘Accession1/

2’ give the Uniprot identifiers of the targets compared, ‘seqId’ the

sequence identity between these targets, ‘molregno’ the database

identifier of the small molecule, ‘Afnty1/2’ the measured affinities.

(TXT)

Table S4 R functions. This tab-delimited table summarizes

the R functions used for statistical analysis in this article.

(TXT)

Table S5 Clustered ligands. This tab-delimited table lists all

ligands and cluster associations for 15 protein targets with

differences in small molecule binding.

(TXT)

Text S1 This document provides additional data and
analysis in support of the main text. In the first section,

results of the mapping of small molecule binding to structural

domains is discussed. The second and third section describe the

species specific pharmacology of the histamine H3 receptor and

the serotonin transporter.

(PDF)
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