OPEN 8 ACCESS Freely available online

PLOS COMPUTATIONAL BIOLOGY

Reinforcement Learning on Slow Features of
High-Dimensional Input Streams

Robert Legenstein’*, Niko Wilbert>3, Laurenz Wiskott*>*

1 Institute for Theoretical Computer Science, Graz University of Technology, Graz, Austria, 2 Institute for Theoretical Biology, Humboldt-Universitat zu Berlin, Berlin,

Germany, 3 Bernstein Center for Computational Neuroscience, Berlin, Germany, 4 Institut fir Neuroinformatik, Ruhr-Universitat Bochum, Bochum, Germany

Abstract

Humans and animals are able to learn complex behaviors based on a massive stream of sensory information from different
modalities. Early animal studies have identified learning mechanisms that are based on reward and punishment such that
animals tend to avoid actions that lead to punishment whereas rewarded actions are reinforced. However, most algorithms
for reward-based learning are only applicable if the dimensionality of the state-space is sufficiently small or its structure is
sufficiently simple. Therefore, the question arises how the problem of learning on high-dimensional data is solved in the
brain. In this article, we propose a biologically plausible generic two-stage learning system that can directly be applied to
raw high-dimensional input streams. The system is composed of a hierarchical slow feature analysis (SFA) network for
preprocessing and a simple neural network on top that is trained based on rewards. We demonstrate by computer
simulations that this generic architecture is able to learn quite demanding reinforcement learning tasks on high-
dimensional visual input streams in a time that is comparable to the time needed when an explicit highly informative low-
dimensional state-space representation is given instead of the high-dimensional visual input. The learning speed of the
proposed architecture in a task similar to the Morris water maze task is comparable to that found in experimental studies
with rats. This study thus supports the hypothesis that slowness learning is one important unsupervised learning principle

€1000894. doi:10.1371/journal.pcbi.1000894

Editor: Abigail Morrison, RIKEN Brain Science Institute, Japan

decision to publish, or preparation of the manuscript.

* E-mail: legi@igi.tugraz.at

utilized in the brain to form efficient state representations for behavioral learning.

Citation: Legenstein R, Wilbert N, Wiskott L (2010) Reinforcement Learning on Slow Features of High-Dimensional Input Streams. PLoS Comput Biol 6(8):

Received January 26, 2010; Accepted July 16, 2010; Published August 19, 2010

Copyright: © 2010 Legenstein et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by the Austrian Science Fund FWF [S9102-N13, to RL]. NW has been supported by the German Federal Ministry of Education
and Research through a grant to the Bernstein Center of Computational Neuroscience Berlin. The funders had no role in study design, data collection and analysis,

Competing Interests: The authors have declared that no competing interests exist.

Introduction

The nervous system of vertebrates continuously generates
decisions based on a massive stream of complex multimodal
sensory input. The strength of this system is based on its ability to
adapt and learn suitable decisions in novel situations. Early animal
studies have identified learning mechanisms that are based on
reward and punishment such that animals tend to avoid actions
that lead to punishment whereas rewarded actions are reinforced.
The study of such reward-based learning goes back to Thorndikes
law of effect [1]. Later, the mathematically well-founded theory of
reinforcement learning, which describes learning by reward, has
been developed [2,3].

In a general reinforcement learning problem, an agent senses
the environment at time ¢ via a state s(¢) € S, where S is the state
space of the problem. The agent then chooses an action a(f),
which leads to state s(¢+1) according to some (in general
probabilistic) state-transition relation. The agent also receives
some reward signal R(¢#4 1), which depends probabilistically on
the state s(#+1). By choosing an action a(f) the agent aims at
maximizing the expected discounted future reward

o0
E[> yR+i)|,

i=1

@ PLoS Computational Biology | www.ploscompbiol.org

where E[] denotes the expectation and 0<«<y <1 is some discount
rate. This general theory has a huge influence on psychology,
systems neuroscience, machine learning, and engineering and
numerous algorithms have been developed for the reinforcement
learning problem. By utilizing these algorithms, many impressive
control applications have been developed. Several experimental
studies connect the neural basis for reward-based learning in
animals to well-known reinforcement learning algorithms. It has
been shown that the activity of dopaminergic neurons in the
ventral tegmental area is related to the reward-prediction error
[4], a signal that is needed for parameter updates in temporal
difference learning [3]. These neurons in turn have dense diffuse
projections to several important areas including the striatum. In
the striatum it was shown that dopamine influences synaptic
plasticity [5]. Hence, the principal basis of reward-based learning
in this sub-system, although not well understood yet, could be
related to well-known reinforcement learning algorithms. How-
ever, the learning capabilities of animals such as rodents are still
far from reach with current reinforcement learning algorithms.
Since physiological experiments are consistent with quite
standard reward-based learning schemes, it is reasonable to
speculate that the superior learning capabilities of animals is to a
high degree based on the ability to autonomously extract relevant
features from the input stream such that subsequent reward-
based learning is highly simplified (We note that the distinction

August 2010 | Volume 6 | Issue 8 | e1000894

Author Summary

Humans and animals are able to learn complex behaviors
based on a massive stream of sensory information from
different modalities. Early animal studies have identified
learning mechanisms that are based on reward and
punishment such that animals tend to avoid actions that
lead to punishment whereas rewarded actions are
reinforced. It is an open question how sensory information
is processed by the brain in order to learn and perform
rewarding behaviors. In this article, we propose a learning
system that combines the autonomous extraction of
important information from the sensory input with
reward-based learning. The extraction of salient informa-
tion is learned by exploiting the temporal continuity of
real-world stimuli. A subsequent neural circuit then learns
rewarding behaviors based on this representation of the
sensory input. We demonstrate in two control tasks that
this system is capable of learning complex behaviors on
raw visual input.

between feature extraction and reward-based learning is most
likely not so strict in the brain. For example, acetylcholine is a
prominent neuromodulator in sensory cortical areas which could
be utilized for task-dependent feature extraction). In fact, one of
the most crucial design questions in the design of a reinforcement
learning system is the definition of the state space S. Most
reinforcement learning algorithms are only applicable if the state
space of the problem is sufficiently small. Thus, if the sensory
input to a controller is complex and high-dimensional, the first
task of the designer is to extract from this high-dimensional input
stream a highly compressed representation that encodes the
current state of the environment in a suitable way such that the
agent can learn to solve the task. In contrast, the nervous system
is able to learn good decisions from high-dimensional visual,
auditory, tactile, olfactory, and other sensory inputs autonomous-
ly. The autonomous extraction of relevant features in the nervous
system is commonly attributed to neocortex. The way how
neocortex extracts features from the sensory input is still
unknown and a matter of debate. Several principles with
biologically plausible neural implementations have been postu-
lated. Possible candidates are for example principal component
analysis (PCA) [6,7], independent component analysis [8-10],
and information bottleneck optimization [10,11]. One learning
algorithm that exploits slowness information is slow feature
analysis (SFA) [12]. SFA extracts the most slowly varying features
in the input stream (see below). One important property of SFA is
that it can be applied in a hierarchical fashion, first extracting
local features on the raw input data which are then integrated to
more and more global and abstract features. This hierarchical
organization is similar to cortical organization for example in the
visual system (we note however that the characteristic recurrent
organization of cortex where multiple loops provide feedback
from higher-level to lower-level processing is not yet exploited in
hierarchical SFA architectures). Furthermore, the features that
emerge from SFA have been shown to resemble the stimulus
tunings of neurons both at low and high levels of sensory
representation such as various types of complex cells in the visual
system [13] as well as hippocampal place cells, head-direction
cells, and spatial-view cells [14].

These features have been extracted from visual input. This hints
at the usefulness of SFA for autonomous learning on high-
dimensional input streams. In fact, it was shown in [15] that
important stimulus features such as object category, the position of

@ PLoS Computational Biology | www.ploscompbiol.org

Reinforcement Learning on Slow Features

objects, or their orientation can be easily extracted by supervised
training with high precision from the slow features of a high-
dimensional visual input stream. It should be noted that the SFA
algorithm is only one particular implementation of learning based
on slowness, and there have been various earlier approaches, e.g.,
[16-19]. Slowness has previously been used in some hierarchical
models as well [20-22].

Unsupervised learning based on the slowness principle (i.e.,
learning that exploits temporal continuity of real-world stimuli) has
recently attracted the attention of experimentalists [23,24]. It was
shown in monkey experiments, that features in monkey infero
temporal cortex are adapted in a way that is consistent with the
slowness principle [23].

In this article, we propose a learning system where the state
space representation is constituted autonomously by SFA. A
subsequent neural circuit is then trained by a reward-based
synaptic learning rule that is related to policy gradient methods or
Q-learning in classical reinforcement learning. We apply this
system to two closed-loop control tasks where the input to the
system 1s high-dimensional raw pixel data and the output are
motor commands. We thus show in this article for two control
tasks on high-dimensional visual input streams that the represen-
tation of the SFA output is well suited to serve as a state-
representation for reward-based learning in a subsequent neural
circuit.

Methods

The learning system considered in this article consists of two
components, a hierarchical SFA network and a subsequent control
network, see Figure 1. The SFA network reduces the dimension-
ality of the state-space from 24025 to a small number 7 that was
chosen to be 64 or less in this article. The decisions of the
subsequent control network are based solely on the features
extracted by the SFA network.

The environment

We tested this learning system on two different control tasks
where an agent (a fish) navigates in a 2D environment with
analog state- and action-space: a task similar to the Morris
water-maze task [25] and a variable-targets task, see section
“Tasks”. The state of the universe at time ¢ (see below for
details) was used to render a 155 x 155 dimensional 2D visual
scene that showed the agent (a fish; for one of the tasks two fish-
types with different visual appearance were used) at a position
p(ne[-1, 1]2 and potentially other objects, see Figure 2. This
visual scene constituted the input to the learning system. These
tasks are to be seen as generic control tasks of reasonable
complexity. The bird’s eye perspective used here is of course not
realistic for animal agents. As demonstrated in [14] our model
should also be able to deal with a first-person perspective,
especially in the Morris water-maze. For the variable-targets
task this would introduce some complications like the target not
being in the field of view or being hidden behind the distractor.
On the other hand it would simplify the task, since the agent
would not need to know its own position and angle (it could
simply center its field of view on the target).

For the training of the system, we distinguish two different
phases. In a first phase the SFA network is trained. In this phase,
the fish, the target, and the distractor are floating slowly over the
2D space of the environment. The type of fish is changed from
time to time (see section “Training stimuli of the hierarchical
network”).

August 2010 | Volume 6 | Issue 8 | e1000894

4

control variables

- | | N

n slowest
features

Slow Feature Analysis

(. J
high-dimensional
= pixel image,
G . visualizing the
universe
Universe

i

Figure 1. The learning system and the simulation setup. The
learning system (gray box) consists of a hierarchical slow-feature
analysis network, which reduces the dimensionality of the high-
dimensional visual input. This reduction is trained in an unsupervised
manner. The extracted features from the SFA network serve as inputs
for a small neural network that produces the control commands. This
network is trained by simple reward-modulated learning. We tested the
learning system in a closed-loop setup. The system controlled an agent
in an environment (universe). The state of the environment was
accessible to the learning system via a visual sensory stream of
dimension 155x 155. A reward signal was made accessible to the
control network for learning.

doi:10.1371/journal.pcbi.1000894.g001

In a second phase the control circuit is trained. This phase
consists of several learning episodes, an episode being one trial to
reach a defined target from the initial fish-position. An episode
ends when the target is reached or when a maximum number of
Timax time-steps is exceeded.

Slow feature analysis

The hierarchical network described in the next section is based
on the Slow Feature Analysis Algorithm (SFA) [26,27]. SFA solves
the following learning task: Given a multidimensional input signal
we want to find instantaneous scalar input-output functions that
generate output signals that vary as slowly as possible but still carry
significant information. To ensure the latter we require the output
signals to be uncorrelated and have unit variance. In mathematical
terms, this can be stated as follows:

Optimization problem: Gien a function space F and an I-
dimensional input signal X(t) find a set of J real-valued input-output functions
g;(X) € F such that the output signals y;(t) : = g;(x(1))

minimize A(y;) : = <j/jg>, (1)

@ PLoS Computational Biology | www.ploscompbiol.org

Reinforcement Learning on Slow Features

under the constraints

i>=0 (zero mean), (2)
<y%>, =1 (unit variance), (3)
Vi<j:<yiyj»,=0 (decorrelation and order), 4)

with {*); and ¥ indicating temporal averaging and the derivative of y,
respectively.

Equation (1) introduces the A-value, which is a measure of the
temporal slowness (or rather fastness) of the signal p(¢). It is
given by the mean square of the signal’s temporal derivative, so
that small A-values indicate slowly varying signals. The
constraints (2) and (3) avoid the trivial constant solution and
constraint (4) ensures that different functions g; code for
different aspects of the input. Because of constraint (4) the g;
are also ordered according to their slowness, with g; having the
smallest A.

It is important to note that although the objective is slowness,
the functions g; are instantaneous functions of the input, so that
slowness cannot be achieved by low-pass filtering. Slow output
signals can only be obtained if the input signal contains slowly
varying features that can be extracted instantaneously by the
functions g;. Note also that for the same reason, once trained, the
system works fast, not slowly.

In the computationally relevant case where F is finite-
dimensional the solution to the optimization problem can be
found by means of Slow Feature Analysis (SFA) [26,27]. This
algorithm, which is based on an eigenvector approach, is
guaranteed to find the global optimum. Biologically more plausible
learning rules for the optimization problem exist [28,29].

Hierarchical network model

The visual system is, to a first approximation, structured in a
hierarchical fashion, first extracting local features which are
then integrated to more and more global and abstract features.
We apply SFA in a similar hierarchical manner to the raw
visual input data. First, the slow features of small local image
patches are extracted. The integration of spatially local
information exploits the local correlation structure of visual
data. A second layer extracts slow features of these features
(again integrating spatially local patches), and so on. Such
hierarchical architecture is promising because SFA has been
applied successfully to visual data in a hierarchical fashion
previously [15,30]. A hierarchical organization also turns out to
be crucial for the applicability of the approach for computa-
tional reasons. The application of non-linear SFA on the whole
high-dimensional input would be computationally infeasible.
Efficient use of resources is also an issue in biological neural
circuits. It has been suggested that connectivity is the main
constraint there [31,32]. Since a hierarchical organization
requires nearly exclusively local communication, it avoids
extensive connectivity.

The hierarchical network consists of a converging hierarchy of
layers of SFA nodes, and the network structure is identical to that
used in [30] (there this part of our model is also discussed in
greater length). All required building blocks for the hierarchical
network are available in the “Modular toolkit for Data Processing”

(MDP) library [33].

August 2010 | Volume 6 | Issue 8 | e1000894

Reinforcement Learning on Slow Features

/ o«

@@, agent

* target

. distractor

Figure 2. Examples for the visual input to the learning system for the variable-targets task. The scene consists of three objects, the agent
(fish), an object that indicates the location of the target, and a second object that acts as a distractor. As indicated in the figure the target object
depends on the fish identity. For the fish identity shown in the upper panels the target is always the disk, whereas the for the other fish identity, the
target is the cross. In the visual input for the water-maze task the target and the distractor are not present, and the agent representation is the non-

rotated image of the fish-type shown in the upper panels.
doi:10.1371/journal.pcbi.1000894.9002

The detailed network structure is shown
in Figure 3. It consists of four layers of SFA nodes, connected
topographically in a feed-forward manner. We first describe the
internal organization of each individual SFA node before we give a
detailed description of the connection architecture below. In each
SFA node, first additive Gaussian white noise (with a variance of
1079 is introduced for numerical reasons, to avoid possible
singularities in the subsequent SFA step. Then a linear SFA is
performed for a first reduction of the input dimensionality. In a
subsequent quadratic expansion, the incoming data xi, ..., X, 13
mapped with a basis of the space of polynomials with degree up to
two. So in addition to the original data, all quadratic combinations
like (x1)2 or XX, are concatenated to the data block. Another
linear SFA stage is applied on the expanded data. The solutions of
linear SFA on this expanded data is equivalent to those of SFA in
the space of polynomials up to degree two. After the second SFA

Network structure.

stage we apply a clipping at +4. This clipping removes extreme
values that can occur on test data due to the divergence of the
quadratic functions for larger values. However, both the additive
noise and the clipping are mostly just technical safeguards and
have typically no effect on the network performance.

The number of SFA components used from the first linear SFA
stage in each node depends on the layer in which the SFA node is
situated. The first linear SFA stage in each node reduces the
dimensionality to 32 in the first two layers, 42 in the third layer,
and 52 in the fourth layer (the increase in dimensionality across
layers leads to a small performance increase). Accordingly, the
quadratic expansion then increases dimensionality to 560, 560,

@ PLoS Computational Biology | www.ploscompbiol.org

945 and 1430, in the first, second, third, and fourth layer
respectively. The second linear SFA stage reduces the dimension-
ality of the expanded signal to 32, except for the top layer, where
the output is reduced to 64 dimensions. One can then choose how
many of these outputs are actually used in the reinforcement
learning (for the variable-targets task the 32 slowest outputs were
used).

We now describe how the nodes are connected (see Figure 4).
We use a layered feed-forward architecture, i.e., the nodes in the
first layer receive inputs only from the input image and nodes in
higher layers receive inputs exclusively from the previous layer.
Additionally, connections are topographically structured such
that a node receives inputs from neighboring nodes in the
previous layer. In the following, the part of the input image that
influences a node’s output is denoted as its receptive field. On
the lowest layer, the receptive field of each node consists of an
image patch of 10 by 10 grayscale pixels. The receptive fields
jointly cover the input image of 155 by 155 pixels. The nodes
form a regular (i.e., non-foveated) 30 by 30 grid with partially
overlapping receptive fields, resulting in an overlap of five pixels
in each direction. The second layer contains 14 by 14 nodes,
each receiving input from 4 by 4 layer 1 nodes with neighboring
receptive fields, resembling a retinotopic layout (the overlap is
two nodes in each direction). The third layer contains 6 by 6
nodes, each receiving input from 4 by 4 layer 2 nodes with
neighboring receptive fields, again in a retinotopic layout (with 2
nodes overlap in each direction, as shown in Figure 4). All 6 by
6 layer 3 outputs converge onto a single node in layer 4, whose

August 2010 | Volume 6 | Issue 8 | e1000894

reinforcement
learning

e

input image

Reinforcement Learning on Slow Features

linear regression,
classifier
for testing

output to
layer N+1
64 outputs 4
clipping
6x6 x 32 outputs
linear SFA
’ [1
14x14|x 32 outputs \ quadratic
™ expansion

30x30 x 32 outputs linear SFA

additive noise

-
e

155x155 pixels
input from
layer N-1

Figure 3. Model architecture and stimuli. An input image is fed into the hierarchical network. The circles in each layer symbolize the overlapping
receptive fields, which converge towards the top layer. The same set of steps is applied on each layer, which is visualized on the right hand side.

doi:10.1371/journal.pcbi.1000894.g003

output we call SFA-output. This organization is summarized in
Table 1.

Thus, the hierarchical organization of the model captures two
important aspects of cortical visual processing: increasing receptive
field sizes and accumulating computational power at higher layers.
The latter i1s due to the quadratic expansion in each layer, so that
each layer computes a subset of higher polynomials than its
predecessor. The SFA-outputs at the top layer compute subsets of
polynomials of degree 24 =16.

Network training. For each of the two tasks discussed in this
paper (Morris water-maze and variable-targets) we trained a
dedicated hierarchical network. The number of training samples
and the training itself was done in the same way for both tasks,
only the content of the training samples was different (this is
described in the next section).

The network layers were trained sequentially from bottom to
top. We used 50,000 time points for the training of the two lower
layers and 200,000 for the two top layers. These training
sequences were generated with a random walk procedure, which
is described in the next section. The random walk parameters of

layer 3
(6 x 6 nodes)

input for for node
in layer 3

layer 2
(14 x 14 nodes)

field size ~—"2is

field cw'erla;;\'h

Figure 4. Receptive field of nodes in layer 3. Each dot represents
the 32 dimensional SFA output from one node. The field overlap is 2
nodes and the borders of the receptive fields are represented by the
black lines between the dots.

doi:10.1371/journal.pcbi.1000894.9004

@ PLoS Computational Biology | www.ploscompbiol.org

the training data were identical for all layers. The larger training
set for the top layers is motivated by the smaller multiplicative
effect of the weight-sharing and by the slower time scales towards
the top (though one has to combine this factor with the complexity
of the data structure).

For computational efficiency, we train only one node with
stimuli from all node locations in its layer and replicate this node
throughout the layer. For example this means that the node in the
lowest layer sees 30 x 30 =900 times as much data as if it was only
trained at a single location. This mechanism effectively increases
the number of training samples and implements a weight-sharing
constraint. However, the system performance does not depend on
this mechanism. The statistics of the training data are approxi-
mately identical for all receptive fields, so individually learned
nodes would lead to the same results (but at higher computational
cost). While the weight-sharing does ease the emergence of
translation invariance it is not at all sufficient.

The simulated views are generated from their configuration
(position, angles, and object identity) with floating point precision
and are not artificially discretized.

Training stimuli of the hierarchical network. The
training sequences for the two tasks were created with the same

Table 1. Overview of the network architecture.

Number Input area Overlap per SFA outputs
Layer of nodes of node direction per node
0 (Image) 155 x 155 - - (1 pixel)
1 3030 10x 10 5 32
2 14x 14 4x4 2 32
3 6x6 4x4 2 32
4 1 6x6 B 64

Layer 0 denotes the input image, a node corresponds to a pixel in that image.
The input area denotes the number of nodes in the previous layer from which a
node receives input, this is also called the receptive field. An example for layer 3
is visualized in Figure 4.

doi:10.1371/journal.pcbi.1000894.t001

August 2010 | Volume 6 | Issue 8 | e1000894

random walk procedure that was used in [30]. The configuration
of the objects shown (i.e. the agent in the water-maze task, and for
the variable-targets task also target and distractor) was updated in
each timestep. Such an update consists of adding a random term
to the current spatial velocities of the objects and to the in-plane
angular velocity for the agent object (the fish). The velocities are
then used to calculate the new positions of the objects, which are in
the interval [—1, 1], and the new angle of the agent. The velocity
distribution was the same for all objects (max. velocity of 0.06 and
a max. update of 0.01). For the in-plane angle of the agent the
max. velocity was 0.04 with a max. update of 0.01 (in radiant
measure).

For the variable-targets task training the objects were given a
radius so that they bounce off each other. The radii were chosen
such that there could be only a small visible overlap between any
two objects (radius of 0.4 for the agent, 0.2 for target and
distractor). In each time step the agent identity was switched with a
probability of 0.002.

Neural circuits for reward-based learning

We employed neural implementations of two reinforcement
learning algorithms, one is based on Q-learning and one is a
policy-gradient method.

Neural versions of Q-learning have been used in various
previous works on biological reward-based learning, see e.g.
[34,35]. The popularity of Q-learning stems from the finding that
the activity of dopaminergic neurons in the ventral tegmental area
1s related to the reward-prediction error [4,36,37], a signal that is
needed in Q-learning [35]. In Q-learning, decisions are based on a
so-called Q-function that maps state-action pairs (s, @) onto values
that represent the current estimate of the expected total discounted
reward given that action a is executed at state 5. For a given state,
the action with highest associated Q-value is preferred by the
agent. However, to ensure exploration, a random action may be
chosen with some probability. We implemented the neural version
of Q-learning from [35] where the Q-function is represented by a
small ensemble of neurons and parametrized by the connection
weights from the inputs to these neurons. The system learns by
adaptation of the Q-function via the network weights. In the
implementation used in this article, this is achieved by a local
synaptic learning rule at the synapses of the neurons in the neuron
ensemble. The global signal that modulates local learning is the
temporal difference error (I'D-error). We do not address in this
article the question how this signal is computed by a neuronal
network. Several possible mechanisms have been suggested in the
literature [37-39].

The Q-function was represented by a set of N=360 lincar
neurons that receive information about the current state from the
output x(#) of the SFA circuit. The output y;(¢) of neuron i is
hence given by yi(x(7)) = Zj wiix;(1).

Each neuron i€{0, ..., 359} has a dedicated preferred
direction 0i=%. The Q-value Q(x, @) of a movement in
direction 28 for the given state X 1is hence given by
o(x, @) =;(x). The activities of these neurons imply a proposed
action for the agent which is a movement in the direction given by
the population vector 0. Here, 0 is the angle of the vector

N—1
Z Yi(x)0;, (5)
i=0

where the vector ®;=(cos (0;), sin(0;))7 is the unit vector in
direction 6;.

@ PLoS Computational Biology | www.ploscompbiol.org

Reinforcement Learning on Slow Features

The Q-function is parametrized by the weight values w;; and it
is learned by adapting these weights according to the Q-learning
algorithm (see [35]):

1. For time step ¢, compute the Q-values Q(X, M)=y,-(x).

2. Let a*(¢) be a movement in direction of the population vector
0(2)

3. Choose the next action a(?) to be a*(¢) with probability 1 —¢ or
a movement in a random direction with probability e.

4. A Gaussian profile around the chosen action a is enforced in
the neural ensemble resulting in 7; = exp (—(0—0,)/20?).

5. The eligibility trace is updated according to e;(f)=
aei(t— 1) +3i(1)x;(2).

6. Action a is executed and time is updated t=1¢+1.

7. The reward prediction error is calculated as 6(7) = R(¢) +7yQ(x(?),
a’(t)—ox(t—1), a(z—1)).

8. Update the weights of the neuron population according to
Awii(1) =n(t)0(t)e;(t— 1) with n(f)>0 being a small decaying
learning rate.

See Supporting Text S1 for parameter settings.

The second learning algorithm employed was a policy gradient
method. In this case, the action is directly given by the output of a
neural network. Hence, the network (which receives as input the
state-representation from the SFA network) represents a policy
(i.e., a mapping from a state to an action). Most theoretical studies
of such biologically plausible policy-gradient learning algorithms
are based on point-neuron models where synaptic inputs are
weighted by the synaptic efficacies to obtain the membrane
voltage. The output p;(f) of the neuron i is then essentially
obtained by the application of a nonlinear function to the
membrane voltage. A particularly simple example of such a
neuron model is a simple pseudo-linear rate-based model where a
nonlinear activation function f : R—>R (commonly sigmoidal) is
applied to the weighted sum of inputs x1(?), ..., x,(£) eR:

yi=f Z wiix;(£) 4+ wio + ﬁf(l)> . (6)
j=1

Here, wj; denotes the synaptic e