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Abstract

Humans and animals are able to learn complex behaviors based on a massive stream of sensory information from different
modalities. Early animal studies have identified learning mechanisms that are based on reward and punishment such that
animals tend to avoid actions that lead to punishment whereas rewarded actions are reinforced. However, most algorithms
for reward-based learning are only applicable if the dimensionality of the state-space is sufficiently small or its structure is
sufficiently simple. Therefore, the question arises how the problem of learning on high-dimensional data is solved in the
brain. In this article, we propose a biologically plausible generic two-stage learning system that can directly be applied to
raw high-dimensional input streams. The system is composed of a hierarchical slow feature analysis (SFA) network for
preprocessing and a simple neural network on top that is trained based on rewards. We demonstrate by computer
simulations that this generic architecture is able to learn quite demanding reinforcement learning tasks on high-
dimensional visual input streams in a time that is comparable to the time needed when an explicit highly informative low-
dimensional state-space representation is given instead of the high-dimensional visual input. The learning speed of the
proposed architecture in a task similar to the Morris water maze task is comparable to that found in experimental studies
with rats. This study thus supports the hypothesis that slowness learning is one important unsupervised learning principle
utilized in the brain to form efficient state representations for behavioral learning.
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Introduction

The nervous system of vertebrates continuously generates

decisions based on a massive stream of complex multimodal

sensory input. The strength of this system is based on its ability to

adapt and learn suitable decisions in novel situations. Early animal

studies have identified learning mechanisms that are based on

reward and punishment such that animals tend to avoid actions

that lead to punishment whereas rewarded actions are reinforced.

The study of such reward-based learning goes back to Thorndikes

law of effect [1]. Later, the mathematically well-founded theory of

reinforcement learning, which describes learning by reward, has

been developed [2,3].

In a general reinforcement learning problem, an agent senses

the environment at time t via a state s(t) [ S, where S is the state

space of the problem. The agent then chooses an action a(t),
which leads to state s(tz1) according to some (in general

probabilistic) state-transition relation. The agent also receives

some reward signal R(tz1), which depends probabilistically on

the state s(tz1). By choosing an action a(t) the agent aims at

maximizing the expected discounted future reward

E
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ciR(tzi)

" #
,

where E½:� denotes the expectation and 0%cv1 is some discount

rate. This general theory has a huge influence on psychology,

systems neuroscience, machine learning, and engineering and

numerous algorithms have been developed for the reinforcement

learning problem. By utilizing these algorithms, many impressive

control applications have been developed. Several experimental

studies connect the neural basis for reward-based learning in

animals to well-known reinforcement learning algorithms. It has

been shown that the activity of dopaminergic neurons in the

ventral tegmental area is related to the reward-prediction error

[4], a signal that is needed for parameter updates in temporal

difference learning [3]. These neurons in turn have dense diffuse

projections to several important areas including the striatum. In

the striatum it was shown that dopamine influences synaptic

plasticity [5]. Hence, the principal basis of reward-based learning

in this sub-system, although not well understood yet, could be

related to well-known reinforcement learning algorithms. How-

ever, the learning capabilities of animals such as rodents are still

far from reach with current reinforcement learning algorithms.

Since physiological experiments are consistent with quite

standard reward-based learning schemes, it is reasonable to

speculate that the superior learning capabilities of animals is to a

high degree based on the ability to autonomously extract relevant

features from the input stream such that subsequent reward-

based learning is highly simplified (We note that the distinction
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between feature extraction and reward-based learning is most

likely not so strict in the brain. For example, acetylcholine is a

prominent neuromodulator in sensory cortical areas which could

be utilized for task-dependent feature extraction). In fact, one of

the most crucial design questions in the design of a reinforcement

learning system is the definition of the state space S. Most

reinforcement learning algorithms are only applicable if the state

space of the problem is sufficiently small. Thus, if the sensory

input to a controller is complex and high-dimensional, the first

task of the designer is to extract from this high-dimensional input

stream a highly compressed representation that encodes the

current state of the environment in a suitable way such that the

agent can learn to solve the task. In contrast, the nervous system

is able to learn good decisions from high-dimensional visual,

auditory, tactile, olfactory, and other sensory inputs autonomous-

ly. The autonomous extraction of relevant features in the nervous

system is commonly attributed to neocortex. The way how

neocortex extracts features from the sensory input is still

unknown and a matter of debate. Several principles with

biologically plausible neural implementations have been postu-

lated. Possible candidates are for example principal component

analysis (PCA) [6,7], independent component analysis [8–10],

and information bottleneck optimization [10,11]. One learning

algorithm that exploits slowness information is slow feature

analysis (SFA) [12]. SFA extracts the most slowly varying features

in the input stream (see below). One important property of SFA is

that it can be applied in a hierarchical fashion, first extracting

local features on the raw input data which are then integrated to

more and more global and abstract features. This hierarchical

organization is similar to cortical organization for example in the

visual system (we note however that the characteristic recurrent

organization of cortex where multiple loops provide feedback

from higher-level to lower-level processing is not yet exploited in

hierarchical SFA architectures). Furthermore, the features that

emerge from SFA have been shown to resemble the stimulus

tunings of neurons both at low and high levels of sensory

representation such as various types of complex cells in the visual

system [13] as well as hippocampal place cells, head-direction

cells, and spatial-view cells [14].

These features have been extracted from visual input. This hints

at the usefulness of SFA for autonomous learning on high-

dimensional input streams. In fact, it was shown in [15] that

important stimulus features such as object category, the position of

objects, or their orientation can be easily extracted by supervised

training with high precision from the slow features of a high-

dimensional visual input stream. It should be noted that the SFA

algorithm is only one particular implementation of learning based

on slowness, and there have been various earlier approaches, e.g.,

[16–19]. Slowness has previously been used in some hierarchical

models as well [20–22].

Unsupervised learning based on the slowness principle (i.e.,

learning that exploits temporal continuity of real-world stimuli) has

recently attracted the attention of experimentalists [23,24]. It was

shown in monkey experiments, that features in monkey infero

temporal cortex are adapted in a way that is consistent with the

slowness principle [23].

In this article, we propose a learning system where the state

space representation is constituted autonomously by SFA. A

subsequent neural circuit is then trained by a reward-based

synaptic learning rule that is related to policy gradient methods or

Q-learning in classical reinforcement learning. We apply this

system to two closed-loop control tasks where the input to the

system is high-dimensional raw pixel data and the output are

motor commands. We thus show in this article for two control

tasks on high-dimensional visual input streams that the represen-

tation of the SFA output is well suited to serve as a state-

representation for reward-based learning in a subsequent neural

circuit.

Methods

The learning system considered in this article consists of two

components, a hierarchical SFA network and a subsequent control

network, see Figure 1. The SFA network reduces the dimension-

ality of the state-space from 24025 to a small number n that was

chosen to be 64 or less in this article. The decisions of the

subsequent control network are based solely on the features

extracted by the SFA network.

The environment
We tested this learning system on two different control tasks

where an agent (a fish) navigates in a 2D environment with

analog state- and action-space: a task similar to the Morris

water-maze task [25] and a variable-targets task, see section

‘‘Tasks’’. The state of the universe at time t (see below for

details) was used to render a 155 | 155 dimensional 2D visual

scene that showed the agent (a fish; for one of the tasks two fish-

types with different visual appearance were used) at a position

p(t) [ ½{1, 1�2 and potentially other objects, see Figure 2. This

visual scene constituted the input to the learning system. These

tasks are to be seen as generic control tasks of reasonable

complexity. The bird’s eye perspective used here is of course not

realistic for animal agents. As demonstrated in [14] our model

should also be able to deal with a first-person perspective,

especially in the Morris water-maze. For the variable-targets

task this would introduce some complications like the target not

being in the field of view or being hidden behind the distractor.

On the other hand it would simplify the task, since the agent

would not need to know its own position and angle (it could

simply center its field of view on the target).

For the training of the system, we distinguish two different

phases. In a first phase the SFA network is trained. In this phase,

the fish, the target, and the distractor are floating slowly over the

2D space of the environment. The type of fish is changed from

time to time (see section ‘‘Training stimuli of the hierarchical

network’’).

Author Summary

Humans and animals are able to learn complex behaviors
based on a massive stream of sensory information from
different modalities. Early animal studies have identified
learning mechanisms that are based on reward and
punishment such that animals tend to avoid actions that
lead to punishment whereas rewarded actions are
reinforced. It is an open question how sensory information
is processed by the brain in order to learn and perform
rewarding behaviors. In this article, we propose a learning
system that combines the autonomous extraction of
important information from the sensory input with
reward-based learning. The extraction of salient informa-
tion is learned by exploiting the temporal continuity of
real-world stimuli. A subsequent neural circuit then learns
rewarding behaviors based on this representation of the
sensory input. We demonstrate in two control tasks that
this system is capable of learning complex behaviors on
raw visual input.

Reinforcement Learning on Slow Features
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In a second phase the control circuit is trained. This phase

consists of several learning episodes, an episode being one trial to

reach a defined target from the initial fish-position. An episode

ends when the target is reached or when a maximum number of

T�m�a�x time-steps is exceeded.

Slow feature analysis
The hierarchical network described in the next section is based

on the Slow Feature Analysis Algorithm (SFA) [26,27]. SFA solves

the following learning task: Given a multidimensional input signal

we want to find instantaneous scalar input-output functions that

generate output signals that vary as slowly as possible but still carry

significant information. To ensure the latter we require the output

signals to be uncorrelated and have unit variance. In mathematical

terms, this can be stated as follows:

Optimization problem: Given a function space F and an I-

dimensional input signal x(t) find a set of J real-valued input-output functions

gj(x) [ F such that the output signals yj(t) : ~gj(x(t))

minimize D(yj) : ~S _yy2
j Tt ð1Þ

under the constraints

SyjTt~0 (zero mean), ð2Þ

Sy2
j Tt~1 (unit variance), ð3Þ

Vivj : SyiyjTt~0 (decorrelation and order), ð4Þ

with S:Tt and _yy indicating temporal averaging and the derivative of y,

respectively.

Equation (1) introduces the D-value, which is a measure of the

temporal slowness (or rather fastness) of the signal y(t). It is

given by the mean square of the signal’s temporal derivative, so

that small D-values indicate slowly varying signals. The

constraints (2) and (3) avoid the trivial constant solution and

constraint (4) ensures that different functions gj code for

different aspects of the input. Because of constraint (4) the gj

are also ordered according to their slowness, with g1 having the

smallest D.

It is important to note that although the objective is slowness,

the functions gj are instantaneous functions of the input, so that

slowness cannot be achieved by low-pass filtering. Slow output

signals can only be obtained if the input signal contains slowly

varying features that can be extracted instantaneously by the

functions gj . Note also that for the same reason, once trained, the

system works fast, not slowly.

In the computationally relevant case where F is finite-

dimensional the solution to the optimization problem can be

found by means of Slow Feature Analysis (SFA) [26,27]. This

algorithm, which is based on an eigenvector approach, is

guaranteed to find the global optimum. Biologically more plausible

learning rules for the optimization problem exist [28,29].

Hierarchical network model
The visual system is, to a first approximation, structured in a

hierarchical fashion, first extracting local features which are

then integrated to more and more global and abstract features.

We apply SFA in a similar hierarchical manner to the raw

visual input data. First, the slow features of small local image

patches are extracted. The integration of spatially local

information exploits the local correlation structure of visual

data. A second layer extracts slow features of these features

(again integrating spatially local patches), and so on. Such

hierarchical architecture is promising because SFA has been

applied successfully to visual data in a hierarchical fashion

previously [15,30]. A hierarchical organization also turns out to

be crucial for the applicability of the approach for computa-

tional reasons. The application of non-linear SFA on the whole

high-dimensional input would be computationally infeasible.

Efficient use of resources is also an issue in biological neural

circuits. It has been suggested that connectivity is the main

constraint there [31,32]. Since a hierarchical organization

requires nearly exclusively local communication, it avoids

extensive connectivity.

The hierarchical network consists of a converging hierarchy of

layers of SFA nodes, and the network structure is identical to that

used in [30] (there this part of our model is also discussed in

greater length). All required building blocks for the hierarchical

network are available in the ‘‘Modular toolkit for Data Processing’’

(MDP) library [33].

Figure 1. The learning system and the simulation setup. The
learning system (gray box) consists of a hierarchical slow-feature
analysis network, which reduces the dimensionality of the high-
dimensional visual input. This reduction is trained in an unsupervised
manner. The extracted features from the SFA network serve as inputs
for a small neural network that produces the control commands. This
network is trained by simple reward-modulated learning. We tested the
learning system in a closed-loop setup. The system controlled an agent
in an environment (universe). The state of the environment was
accessible to the learning system via a visual sensory stream of
dimension 155|155. A reward signal was made accessible to the
control network for learning.
doi:10.1371/journal.pcbi.1000894.g001

Reinforcement Learning on Slow Features
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Network structure. The detailed network structure is shown

in Figure 3. It consists of four layers of SFA nodes, connected

topographically in a feed-forward manner. We first describe the

internal organization of each individual SFA node before we give a

detailed description of the connection architecture below. In each

SFA node, first additive Gaussian white noise (with a variance of

10{6) is introduced for numerical reasons, to avoid possible

singularities in the subsequent SFA step. Then a linear SFA is

performed for a first reduction of the input dimensionality. In a

subsequent quadratic expansion, the incoming data x1, . . . , xn is

mapped with a basis of the space of polynomials with degree up to

two. So in addition to the original data, all quadratic combinations

like (x1)2 or x1x2 are concatenated to the data block. Another

linear SFA stage is applied on the expanded data. The solutions of

linear SFA on this expanded data is equivalent to those of SFA in

the space of polynomials up to degree two. After the second SFA

stage we apply a clipping at +4. This clipping removes extreme

values that can occur on test data due to the divergence of the

quadratic functions for larger values. However, both the additive

noise and the clipping are mostly just technical safeguards and

have typically no effect on the network performance.

The number of SFA components used from the first linear SFA

stage in each node depends on the layer in which the SFA node is

situated. The first linear SFA stage in each node reduces the

dimensionality to 32 in the first two layers, 42 in the third layer,

and 52 in the fourth layer (the increase in dimensionality across

layers leads to a small performance increase). Accordingly, the

quadratic expansion then increases dimensionality to 560, 560,

945 and 1430, in the first, second, third, and fourth layer

respectively. The second linear SFA stage reduces the dimension-

ality of the expanded signal to 32, except for the top layer, where

the output is reduced to 64 dimensions. One can then choose how

many of these outputs are actually used in the reinforcement

learning (for the variable-targets task the 32 slowest outputs were

used).

We now describe how the nodes are connected (see Figure 4).

We use a layered feed-forward architecture, i.e., the nodes in the

first layer receive inputs only from the input image and nodes in

higher layers receive inputs exclusively from the previous layer.

Additionally, connections are topographically structured such

that a node receives inputs from neighboring nodes in the

previous layer. In the following, the part of the input image that

influences a node’s output is denoted as its receptive field. On

the lowest layer, the receptive field of each node consists of an

image patch of 10 by 10 grayscale pixels. The receptive fields

jointly cover the input image of 155 by 155 pixels. The nodes

form a regular (i.e., non-foveated) 30 by 30 grid with partially

overlapping receptive fields, resulting in an overlap of five pixels

in each direction. The second layer contains 14 by 14 nodes,

each receiving input from 4 by 4 layer 1 nodes with neighboring

receptive fields, resembling a retinotopic layout (the overlap is

two nodes in each direction). The third layer contains 6 by 6

nodes, each receiving input from 4 by 4 layer 2 nodes with

neighboring receptive fields, again in a retinotopic layout (with 2

nodes overlap in each direction, as shown in Figure 4). All 6 by

6 layer 3 outputs converge onto a single node in layer 4, whose

Figure 2. Examples for the visual input to the learning system for the variable-targets task. The scene consists of three objects, the agent
(fish), an object that indicates the location of the target, and a second object that acts as a distractor. As indicated in the figure the target object
depends on the fish identity. For the fish identity shown in the upper panels the target is always the disk, whereas the for the other fish identity, the
target is the cross. In the visual input for the water-maze task the target and the distractor are not present, and the agent representation is the non-
rotated image of the fish-type shown in the upper panels.
doi:10.1371/journal.pcbi.1000894.g002

Reinforcement Learning on Slow Features
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output we call SFA-output. This organization is summarized in

Table 1.

Thus, the hierarchical organization of the model captures two

important aspects of cortical visual processing: increasing receptive

field sizes and accumulating computational power at higher layers.

The latter is due to the quadratic expansion in each layer, so that

each layer computes a subset of higher polynomials than its

predecessor. The SFA-outputs at the top layer compute subsets of

polynomials of degree 24~16.

Network training. For each of the two tasks discussed in this

paper (Morris water-maze and variable-targets) we trained a

dedicated hierarchical network. The number of training samples

and the training itself was done in the same way for both tasks,

only the content of the training samples was different (this is

described in the next section).

The network layers were trained sequentially from bottom to

top. We used 50,000 time points for the training of the two lower

layers and 200,000 for the two top layers. These training

sequences were generated with a random walk procedure, which

is described in the next section. The random walk parameters of

the training data were identical for all layers. The larger training

set for the top layers is motivated by the smaller multiplicative

effect of the weight-sharing and by the slower time scales towards

the top (though one has to combine this factor with the complexity

of the data structure).

For computational efficiency, we train only one node with

stimuli from all node locations in its layer and replicate this node

throughout the layer. For example this means that the node in the

lowest layer sees 30|30~900 times as much data as if it was only

trained at a single location. This mechanism effectively increases

the number of training samples and implements a weight-sharing

constraint. However, the system performance does not depend on

this mechanism. The statistics of the training data are approxi-

mately identical for all receptive fields, so individually learned

nodes would lead to the same results (but at higher computational

cost). While the weight-sharing does ease the emergence of

translation invariance it is not at all sufficient.

The simulated views are generated from their configuration

(position, angles, and object identity) with floating point precision

and are not artificially discretized.

Training stimuli of the hierarchical network. The

training sequences for the two tasks were created with the same

Figure 3. Model architecture and stimuli. An input image is fed into the hierarchical network. The circles in each layer symbolize the overlapping
receptive fields, which converge towards the top layer. The same set of steps is applied on each layer, which is visualized on the right hand side.
doi:10.1371/journal.pcbi.1000894.g003

Figure 4. Receptive field of nodes in layer 3. Each dot represents
the 32 dimensional SFA output from one node. The field overlap is 2
nodes and the borders of the receptive fields are represented by the
black lines between the dots.
doi:10.1371/journal.pcbi.1000894.g004

Table 1. Overview of the network architecture.

Layer
Number
of nodes

Input area
of node

Overlap per
direction

SFA outputs
per node

0 (Image) 155|155 - - (1 pixel)

1 30|30 10|10 5 32

2 14|14 4|4 2 32

3 6|6 4|4 2 32

4 1 6|6 - 64

Layer 0 denotes the input image, a node corresponds to a pixel in that image.
The input area denotes the number of nodes in the previous layer from which a
node receives input, this is also called the receptive field. An example for layer 3
is visualized in Figure 4.
doi:10.1371/journal.pcbi.1000894.t001
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random walk procedure that was used in [30]. The configuration

of the objects shown (i.e. the agent in the water-maze task, and for

the variable-targets task also target and distractor) was updated in

each timestep. Such an update consists of adding a random term

to the current spatial velocities of the objects and to the in-plane

angular velocity for the agent object (the fish). The velocities are

then used to calculate the new positions of the objects, which are in

the interval ½{1, 1�, and the new angle of the agent. The velocity

distribution was the same for all objects (max. velocity of 0.06 and

a max. update of 0.01). For the in-plane angle of the agent the

max. velocity was 0.04 with a max. update of 0.01 (in radiant

measure).

For the variable-targets task training the objects were given a

radius so that they bounce off each other. The radii were chosen

such that there could be only a small visible overlap between any

two objects (radius of 0.4 for the agent, 0.2 for target and

distractor). In each time step the agent identity was switched with a

probability of 0.002.

Neural circuits for reward-based learning
We employed neural implementations of two reinforcement

learning algorithms, one is based on Q-learning and one is a

policy-gradient method.

Neural versions of Q-learning have been used in various

previous works on biological reward-based learning, see e.g.

[34,35]. The popularity of Q-learning stems from the finding that

the activity of dopaminergic neurons in the ventral tegmental area

is related to the reward-prediction error [4,36,37], a signal that is

needed in Q-learning [35]. In Q-learning, decisions are based on a

so-called Q-function that maps state-action pairs (s, a) onto values

that represent the current estimate of the expected total discounted

reward given that action a is executed at state s. For a given state,

the action with highest associated Q-value is preferred by the

agent. However, to ensure exploration, a random action may be

chosen with some probability. We implemented the neural version

of Q-learning from [35] where the Q-function is represented by a

small ensemble of neurons and parametrized by the connection

weights from the inputs to these neurons. The system learns by

adaptation of the Q-function via the network weights. In the

implementation used in this article, this is achieved by a local

synaptic learning rule at the synapses of the neurons in the neuron

ensemble. The global signal that modulates local learning is the

temporal difference error (TD-error). We do not address in this

article the question how this signal is computed by a neuronal

network. Several possible mechanisms have been suggested in the

literature [37–39].

The Q-function was represented by a set of N~360 linear

neurons that receive information about the current state from the

output x(t) of the SFA circuit. The output yi(t) of neuron i is

hence given by yi(x(t))~
P

j wijxj(t).

Each neuron i[f0, . . . , 359g has a dedicated preferred

direction hi~
2pi
N

. The Q-value Q(x, 2pi
N

) of a movement in

direction 2pi
N

for the given state x is hence given by

Q(x, 2pi
N

)~yi(x). The activities of these neurons imply a proposed

action for the agent which is a movement in the direction given by

the population vector h. Here, h is the angle of the vector

XN{1

i~0

yi(x)Hi, ð5Þ

where the vector Hi~( cos (hi), sin (hi))
T is the unit vector in

direction hi.

The Q-function is parametrized by the weight values wij and it

is learned by adapting these weights according to the Q-learning

algorithm (see [35]):

1. For time step t, compute the Q-values Q(x, 2pi
N

)~yi(x).

2. Let a�(t) be a movement in direction of the population vector

h(t)

3. Choose the next action a(t) to be a�(t) with probability 1{e or

a movement in a random direction with probability e.

4. A Gaussian profile around the chosen action a is enforced in

the neural ensemble resulting in ~yyi~ exp ({(h{hi)=2s2).

5. The eligibility trace is updated according to eij(t)~
aeij(t{1)z~yyi(t)xj(t).

6. Action a is executed and time is updated t~tz1.

7. The reward prediction error is calculated as d(t)~R(t)zcQ(x(t),
a�(t){Q(x(t{1), a(t{1)).

8. Update the weights of the neuron population according to

Dwij(t)~g(t)d(t)eij(t{1) with g(t)w0 being a small decaying

learning rate.

See Supporting Text S1 for parameter settings.

The second learning algorithm employed was a policy gradient

method. In this case, the action is directly given by the output of a

neural network. Hence, the network (which receives as input the

state-representation from the SFA network) represents a policy

(i.e., a mapping from a state to an action). Most theoretical studies

of such biologically plausible policy-gradient learning algorithms

are based on point-neuron models where synaptic inputs are

weighted by the synaptic efficacies to obtain the membrane

voltage. The output yi(t) of the neuron i is then essentially

obtained by the application of a nonlinear function to the

membrane voltage. A particularly simple example of such a

neuron model is a simple pseudo-linear rate-based model where a

nonlinear activation function f : R?R (commonly sigmoidal) is

applied to the weighted sum of inputs x1(t), . . . , xn(t) [R:

yi(t)~f
Xn

j~1

wijxj(t)zwi0zji(t)

 !
: ð6Þ

Here, wij denotes the synaptic efficacy (weight) of synapse ij that

projects from neuron j to neuron i, wi0 is a bias, and ji(t) denotes

some noise signal. We assume that a reward signal R(t) indicates

the amount of reward that the system receives at time t. Good

actions will be rewarded, which will lead to weight changes that in

turn make such actions more probable. Reinforcement learning

demands exploration of the agent, i.e., the agent has to explore

new actions. Thus, any neural system that is subject to reward-

based learning needs some kind of stochasticity for exploration. In

neuron model (6) exploration is implemented via the noise term

ji(t). Reward-based learning rules for this model can easily be

obtained by changing the weights in the direction of the gradient

of R

Dwij(t)~gji(t)xj(t) R(t){�RR(t)½ �, ð7Þ

where �RR(t) denotes the low-pass filtered version of R with an

exponential kernel, and gw0 is a small learning rate. In our

simulations we used �RR(t)~0:8�RR(t{1)z0:2R(t) for the filtered

reward. The update equations for the bias is analogous with

x0(t):1.

A single neuron of type (6) turns out to be too weak for some of

the control tasks considered in this article. The standard way to
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increase the expressive power is to use networks of such neurons.

The learning rule for the network is then unchanged, each neuron

tries to optimize the reward independently from the others [40],

but see [41]. It can be shown that such a greedy strategy still

performs gradient ascent on the reward signal. However, the time

needed to converge to a good solution is often too long for

practical applications as shown in Results. We therefore propose a

learning rule that is based on a more complex neuron model with

nonlinear dendritic interactions within neurons [42] and the

possibility to adapt dendritic conductance properties [43].

In this model, the total somatic input ai(t) to neuron i is

modeled as a noisy weighted linear sum of signals from dendritic

branches

ai(t)~
XK

k~1

uikbik(t)zui0zji(t),

ji(t) drawn from distribution D,

ð8Þ

where uik describes the coupling strength between branch k and

the soma and ui0 is a bias. Again, ji(t) models exploratory noise.

At each time step, an independent sample from the zero mean

distribution D is drawn as the exploratory signal ji(t). In our

simulations, D is the uniform distribution over the interval

½{0:5, 0:5�. The output yi(t) of neuron i at time t is modeled as

a nonlinear function of the total somatic input:

yi(t)~fout ai(t)ð Þ: ð9Þ

Each dendritic branches k itself sums weighted synaptic inputs

followed by a sigmoidal nonlinearity fik

bik(t)~fik

X
j

wijkxj(t)zwij0

 !
, ð10Þ

where wijk denotes the synaptic weight from input j to the

dendritic branch k of neuron i. Update equations that perform

gradient ascent on a reward-signal R are derived in Supporting

Text S2. The derived update rules for the parameters are

Duik(t)~guji(t)bik(t) R(t){�RR(t)½ � ð11Þ

Dwijk(t)~gwji(t) _ff ik(t)uik(t)xj(t) R(t){�RR(t)½ �, ð12Þ

where and gu, gww0 are small learning rates. The update rules

can be extended to use eligibility traces that collect the information

about recent pre-and postsynaptic states at the synapse in a single

scalar value. In this way, previous states of the synapse can be

incorporated in the weight change at time t, which is driven by the

momentary reward signal R(t). In this article however, we rely on

the update rules (11) and (12) without eligibility traces. See [41] for

an alternative rule of similar flavor.

In our simulations, we needed two control variables, one to

control the speed v(t) of the agent and one for its angular velocity

va(t). Each control variable was computed by a single neuron of

this type where each neuron had K~100 branches. The

nonlinearity in the branches was the tangens hyperbolicus function

tanh : R?({1, 1). Also a logistic sigmoidal was tested which is a

scaled version of the tangens hyperbolicus to the image set (0, 1).
Results were similar with a slight increase in learning time. The

nonlinearity at the soma was the tangens hyperbolicus for the

angular velocity va(t) and a logistic sigmoid logsig : R?(0, 1) for

the speed v(t). The noise signal ji(t) was drawn independently for

each neuron and at each time step from a uniform distribution in

½{0:5, 0:5�. Detailed parameter settings used for the simulations

can be found in Supporting Text S1.

Tasks
We tested the system on two different control tasks: a task

similar to the Morris water-maze task and a variable-targets task.

Morris water maze task. In the experimental setup of a

Morris water maze task [25], a rat swims in a milky liquid with a

hidden platform underneath the liquid surface. Because the rodent

tries to avoid swimming in the liquid, it searches for the platform.

This task has been modeled several times [34,35,44,45].

In order to be able to compare the results to previous studies, we

modeled the Morris water maze task in our standard setup in the

following way: We used only a single fish type and a fixed target

position at (0, 0)T . Only the fish but not the target was visible in

the visual input to the learning system. There was only one control

signal which controlled the direction of the next movement. At

each time step, the fish was moved by 0:1 length units in the

direction given by the controller. The position of the fish was hard-

bounded by {1 from below and 1 from above after each update

such that it stayed within ½{1, 1�. In this setup, the fish was always

oriented in same direction (facing to the right), i. e., the fish was

not rotated in the visual input. The target was reached by the

agent if it was within a radius of 0:2 of the target position.

The reward signal was defined such that reaching the target at

time t resulted in a positive reward R(t)~1, hitting the wall at

time t resulted in a negative reward R(t)~{0:1, and the reward

signal was 0 at other times. Hence this is a setup with sparse

rewards. An episode ended when the target was reached or after

Tmax~450 time-steps have evolved (this is consistent with [44]

where a simulation time step was interpreted as a 200 msec time

interval).

Variable-targets task. In order to explore the general

applicability of the system we investigated a more demanding

task with several objects in the visual input and two different types

of fish of varying orientation.

In this task, the state of the agent at time t was defined by its

identity I(t)[f0, 1g (this corresponds to two types of fish, each

with a unique visual appearance in the visual input stream), its

position p(t)[ ½{1, 1�2, and its orientation O(t)[ ½0, 2p). Addi-

tionally to the agent, there were two objects in the universe, one of

them acting as the target and the other as a distractor. One object

had appeared as a ‘‘cross’’ in the visual scene and the other object

as a ‘‘disk’’ (see Figure 2). The state of object i was defined by its

position ti [ ½{1, 1�2. The current state of the universe at time t

was given by the collection of these variables.

The output of the learning system were two control variables to

control the agent in the environment, a speed signal v(t)[ (0, 1)
and a signal va(t)[ ({1, 1) for angular velocity. These signals were

used to update the orientation O(t) and position p(t)~(p1(t),
p2(t))T of the fish

O(t)~½O(t{1)zkava(t)� mod 2p, ð13Þ

p1(t)~p1(t{1)zkvv(t) cos O(t), ð14Þ

p2(t)~p2(t{1)zkvv(t) sin O(t), ð15Þ
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where ka~0:5 and kv~0:1 are scaling constants. When the agent

hit the boundaries of the environment (i.e., when p1(t) or p2(t)
were below {1 or above 1), the movement was mirrored. For

each training episode, object positions, fish orientation, and fish

identity were initially chosen randomly from the uniform

distribution in their range. However, when an object was less

than 0:2 away from the other object or the fish (which likely

produced a visual overlap), a new initial state was drawn. The

object positions were then fixed. Each fish identity had a different

object serving as the target, such that the fish of type A was

associated with the ‘‘cross’’ whereas fish-type B was associated with

the ‘‘disk’’. The task was to navigate the fish to the target object for

the given fish identity. The current episode ended when the fish

reached the target location within some predefined radius

(rhit~0:4) or after a maximum of Tmax~100 time steps were

exceeded). Although the other object did not influence the

outcome of the task, it was still visible as a distracting stimulus.

The reward signal indicated whether the last action was

successful in bringing the agent closer to the target:

R(t)~
1

kv

X
i

dI(t){i DDp(t{1){ti(t{1)DD{DDp(t){ti(t)DDð Þ, ð16Þ

where DD:DD denotes the Euclidean norm and dx~1 if x~0 and 0
otherwise. This is a relatively informative reward signal (see

Discussion).

Results

Morris water maze task
We implemented this task with our learning system where the

decision circuit consisted of the Q-learning circuit described

above. In this task, the n~16 slowest components as extracted by

the hierarchical SFA network were used by the subsequent

decision network. The results of training are shown in Figure 5.

The performance of the system was measured by the time needed

to reach the target (escape latency). The system learns quite fast

with convergence after about 40 training episodes. The results are

comparable to previously obtained simulation results [34,35,44]

that were based on a state representation by neurons with place-

cell-like behavior. Figure 5B shows the direction the system

chooses with high probability at various positions in the water

maze (navigation map) after training. Using only the 16 slowest

SFA components for reinforcement learning, the system has

rapidly learned a near-optimal strategy in this task. This result

shows that the use of SFA as preprocessing makes it possible to

apply reinforcement learning to raw image data in the Morris

water maze task.

Variable-targets task
The Morris water maze task is relatively simple and does not

provide rich visual input. We therefore tested the learning system

on the variable-targets task described above, a control task where

two types of fish navigate in a 2D environment. In the

environment, two object positions were marked by a cross and a

disk, and these positions were different in each learning episode. A

target object was defined for each fish type and the task was to

navigate the current fish to its target by controlling the forward

speed and the change in movement direction (angular velocity).

The control of angular velocity, the arbitrary target position, and

the dependence of the target object on the fish identity complicates

the control task such that the Q-learning algorithm used in the

water-maze task as well as a simple linear decision neuron like the

one of equation (6) would not succeed in this task. We therefore

trained the leaning system with the more powerful policy gradient

algorithm described above on the slowest 32 components

extracted by the hierarchical SFA network.

In order to compute the SFA output fast, we had to perform the

training of the control network in batches of 100 parallel traces in

this task (i.e., 100 training episodes with different initial conditions

are simulated in parallel with a given weight vector. After the

simulation of a single time step in all 100 episodes, weight changes

over these 100 traces are averaged and implemented. Then, the

next time step in each of the 100 traces is simulated and weights

are updated). When the agent in one of the traces arrived at the

target, a new learning episode was initiated in this trace while

other traces simply continued. As will be shown below, the training

in batches has no significant influence on the learning dynamics.

Results are shown in Figure 6A,B. The reward converges to a

mean reward above 0:75 which means that the agent nearly

always takes the best step towards the target despite the high

amount of noise in the control neurons. Figure 7 shows that the

trajectories after training were very good. Interestingly, the

network does not learn the optimal strategy with respect to the

forward speed output. Although it would be beneficial to reduce

the forward speed when the agent is directed away from the target,

Figure 5. Performance of the learning system in the Morris water maze task with Q-learning. A) Mean escape latency (in simulation time
steps) as a function of learning episodes for 10 independent sets of episodes (full thick line). The thin dashed line indicates the standard deviation. B)
The navigation map of the system after training. The vectors indicate the movement directions the system would most likely choose at the given
positions in the water maze. An episode ended successfully when the center of the fish reached the area indicated by the gray disk.
doi:10.1371/journal.pcbi.1000894.g005
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first rotate the agent, and only then move forward, the output of

the speed neuron is nearly always close to the maximum value. A

possible reason for this is that the agent is directed towards the

target most of the time. Thus, the gain in reward is very small and

a relatively small fraction of training examples demands low speed.

We compared the results to a learning system with the same

control circuit, but with SFA replaced by a vector which directly

encoded the state-space in a straight-forward way. For this task

with two fish identities and two objects, we encoded the state-space

by a vector

s(t)~(p1(t), p2(t), sin O(t), cos O(t),

dI(t),0, dI(t),1, tx,1, ty,1, tx,2, ty,2)T ,
ð17Þ

where p(t)~(p1(t), p2(t))T is the position of the agent, O(t) is its

orientation, I(t) is its identity, and ti(t)~(tx,i(t), ty,i(t)) is the

position of the ith object. Figure 6C,D shows the results when the

control network was trained with identical parameters but with

this state-vector as input. The Performance with the SFA network

is comparable to the performance of the system with a highly

informative and precise state encoding.

For efficiency reasons, we had to perform the training of the

control network in batches of 100 traces (see above). Because no

SFA is needed in the setup with the direct state-vector as input, we

can compare learning performance of the control network to

performance without batches. The result is shown in in

Figure 6C,D (gray dashed lines). The use of small batches does

not influence the learning dynamics significantly.

In the environment considered, movement is mirrored if the agent

hits a boundary. Since this helps to avoid getting stuck in corners we

performed control experiments where the movement in the

direction of the boundary is simply cut off but no reflection happens

(i.e., the dynamics of the position p(t)~(p1(t), p2(t))T of the fish is

given by p1(t)~ maxf{1, minf1, p1(t{1)zkvv(t) cos O(t)gg
and p2(t)~ maxf{1, minf1, p2(t{1)zkvv(t) sin O(t)gg, com-

pare to equations (14),(15)). Results are shown in Figure S1. As

expected, the system starts with lower performance and convergence

takes about twice as long compared to the environment with mirrored

movements at boundaries. Interestingly, in this slightly more

demanding environment, the SFA network is converging faster than

the system with a highly informative and precise state encoding.

In another series of experiments we tested how the performance

depends on the number of outputs from the SFA network that are

used as input for the reinforcement learning. Since the outputs of

the SFA network are naturally ordered by their slowness one can

pick only the first n outputs and train the reinforcement learning

network on those. For the variable-targets task we tested the

performance for 16, 22, 28, 32, and 64 outputs. For 16 outputs the

average reward value always stayed below 0:6 and rose much

slower than in the case of 32 outputs. For 28 outputs the

performance was already very close to that of the 32 outputs.

Going from 32 outputs to 64 did not change the average reward,

but in the case of 64 outputs the trajectories of the agent

occasionally showed some errors (e.g., the agent initially chose a

wrong direction and took therefore longer to reach the target).

We compared performance of the system to a system where the

control network is a two-layer feed-forward network of simpler

Figure 6. Rewards and escape latencies during training of the control task with target and distractor. A) Evolution of reward during
training. A simulation step for all 100 parallel traces corresponds to 100 time-steps at the x-axis. The plotted values are averages over consecutive
20,000 time steps. B) Evolution of escape latencies (measured in time steps) during training. The number of episodes on the x-axis is the number of
completed traces. The plotted values are averages over 1,200 consecutive episodes. C,D) Same as panels A and B, but learning was performed on a
highly condensed and precise state-encoding instead of the SFA network output. Shown is the performance for learning on 100 parallel traces (black,
full line) and without parallel traces (gray, dashed line). Convergence is comparable to learning on SFA outputs. The results without parallel traces are
very similar to the results with parallel traces.
doi:10.1371/journal.pcbi.1000894.g006
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neurons without dendritic branches, see Equation (6). We used two

networks with identical architecture, one for each control variable.

Each network consisted of 50 neurons in the first layer connected

to one output neuron (increasing the number of neurons in the first

layer to 100 did not change the results). Every neuron in the first

layer received input from all SFA outputs. The learning rates of all

neurons were identical. See Supporting Text S1 for details on

parameters and their determination. Results are shown in Figure

S2. The network of simple neurons can solve the problem in

principle, but it converges much slower.

We also compared performance of the system with SFA to

systems where the dimensionality of the visual input was reduced

by PCA. In one experiment the SFA nodes in the hierarchical

network were simply replaced by PCA nodes. We then used 64

outputs from the network for the standard reinforcement learning

training. As shown in Figure 8 the control network was hardly able

to learn the control task. This is also evident in the test trajectories,

which generally look erratic.

In another experiment we used PCA on the whole images.

Because of the high dimensionality we first had to downsample the

Figure 7. Three representative trajectories after training of the control task with target and distractor. Each row summarizes one
representative learning trial. Shown is the visual input at start position (left column), the visual input when the goal was reached (middle column),
and the whole trajectory (right column). In the trajectory, fish positions (small black discs), target region (large circle), and distractor location (gray
rectangle) are shown.
doi:10.1371/journal.pcbi.1000894.g007
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image data by averaging over two by two pixels (reducing the

dimensionality by a factor of four) before using linear PCA. The

performance was very similar to the hierarchical PCA experiment

(the average reward hovered below 0:16). A direct analysis of the

PCA output with linear regression [15] indicates that except for

the agent identity, no important features such as position of the

agent or the targets can be extracted in a linear way from the

reduced state representation. For hierarchical SFA, such an

extraction is often possible [15]. This hints at the possibility that

the state representation given by PCA cannot be exploited by the

control network because the implicit encoding of relevant variables

is either too complex or too much important information has been

discarded.

Discussion

Several theoretical studies have investigated biologically plausible

reward-based learning rules [46–55]. On the synaptic level, such rules

are commonly of the reward-modulated Hebbian type, also called

three-factor rules. In traditional Hebbian learning rules, changes of

synaptic plasticity at time t are based on the history of the presynaptic

and the postsynaptic activity, such that the weight change Dwij(t) of a

synapse from a presynaptic neuron j to a postsynaptic neuron i is the

product between some function of the presynaptic activity history and

some function of the postsynaptic activity history. A third signal R(t)
that models the local concentration of some neuromodulator which in

turn signals some reward, is in many models modulating these

Hebbian updates. Such update rules are either purely phenomeno-

logical [53,55] or derived from a reward-maximization principle [47–

51]. From the viewpoint of classical reinforcement learning, the latter

approach is related to policy-gradient methods. Since the learning

algorithms in these previous works are based on simple neuron

models, they are too weak for the variable-targets task considered in

this article. The policy-gradient method used in this article extends

the classical single-neuron based policy-gradient approach in the

sense that it is based on a more expressive neuron model with

nonlinear branches. In this model, both, synaptic weights and branch

strengths are adapted through learning. Our approach is motivated

by recent experimental findings where it has been shown that not

only synaptic efficacies but also the strengths of individual dendritic

branches are plastic [43]. Furthermore, it was shown that this type of

plasticity is dependent on neuromodulatory signals. Our results

(compare Figure 6 to Figure S2) indicate that the neuron model with

nonlinear branches can be trained much faster than networks of

point-neuron models. This hints at a possible role of nonlinear

branches in the context of reward-based learning.

The Morris water-maze task has been modeled before. In [45],

a network of spiking neurons was trained on a relatively small

discrete state-space that explicitly coded the current position of the

agent on a two-dimensional grid. The authors used a neural

implementation of temporal difference learning. In contrast to the

algorithms used in this article, their approach demands a discrete

state space. This algorithm is therefore not directly applicable to

the continuous state-space representation that is achieved through

SFA. In [34] and [44] the input to the reinforcement learning

network was explicitly coded similar to the response of

hippocampal place-cells. In [35], the state-representation was also

governed by place-cell-like response that were learned from the

input data. This approach was however tailored to the problem at

hand, whereas we claim that SFA can be used in a much broader

application domain since it is not restricted to visual input.

Furthermore, in this article SFA was not only used to extract

position of an agent in space but also for position of other objects,

for object identity, and for orientation. We thus claim that the

learning architecture presented is very general only relying on

temporal continuity of important state variables.

Although the variable-targets task considered above is quite

demanding, the learning system gets immediate feedback of its

performance via the reward signal defined by equation (16). By

postulating such a reward signal one has to assume that some

system can evaluate that ‘‘getting closer to the target’’ is good.

Such prior knowledge could have been acquired by earlier

learning or it could be encoded genetically. An example of a

learning system that probably involves such a circuitry (the

critique) is the song-learning system in the songbird. In this system,

it is believed that a critique can evaluate similarity between the

own song and a memory copy of a tutor song [56]. However, there

is no evidence that such higher-level critique is involved for

example in navigational learning of rodents. Instead, it is more

natural to assume that an internal reward signal is produced for

example when some food-reward is delivered to the animal. One

experimental setup with sparse rewards is the Morris water maze

task [25] considered above. In principle, this sparse reward

situation could also be learned if the learning rules (11), (12) are

amended with eligibility traces [48]. However, the learning would

probably take much longer.

Given the high-dimensional visual encoding of the state-space

accessible to the learning system, it is practically impossible that

any direct reinforcement learning approach is able to solve the

variable-targets task directly on the visually-induced state-space.

Additionally, in order to scale down the visual input to viable sizes,

a hierarchical approach is most promising. Here, hierarchical SFA

Figure 8. Performance of a PCA based hierarchical network. Rewards (A) and escape latencies (B) in the variable-targets control experiment
with a PCA based hierarchical network. The control network is not able to learn the task based on this state representation. Note the larger scaling
factor for the time-axis in panel A.
doi:10.1371/journal.pcbi.1000894.g008
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is one of the few approaches that have been proven to work well.

Linear unsupervised techniques such as principal component

analysis (PCA) or independent component analysis (ICA) are less

suited to be applied hierarchically. To understand the results, it is

important to note that SFA is quite different from PCA or other

more elaborate dimensionality reduction techniques [57,58].

Dimensionality reduction in general tries to produce a faithful

low-dimensional representation of the data. The aim of SFA is not

to produce a faithful representation in the sense that the original

data can be reconstructed with small error. Instead, it tries to

extract slow features by taking the temporal dimension of the data

into account (this dimension is not exploited by PCA) and

disregards many details of the input. Although it is in general not

guaranteed that slowly varying features are also important for the

control task, slowly varying features such as object identities and

positions are important in many tasks. In fact, the removal of

details may underlie the success of the generic architecture, since it

allows the subsequent decision circuit to concentrate on a few

important features of the input. This may also explain the failure

of PCA. The encoding of the visual input produced by PCA can be

used to reconstruct a ‘‘blurred’’ version of the input image.

However, it is very hard to extract from this information the

relevant state variables such as object identity or position. But this

information can easily be extracted from the SFA output, see [15].

We compared the preprocessing with SFA to PCA preprocess-

ing but not to more elaborate techniques [57,58] since the focus of

this paper is on simple techniques for which some biological

evidence exists. Another candidate for sensory preprocessing

instead of SFA is ICA. However, ICA does not provide a natural

ordering of extracted components. It is thus not clear which

components to disregard in order to reduce the dimensionality of

the sensory input stream. One interesting possibility would be to

order the ICA components by kurtosis in order to extract those

components which are most non-Gaussian. Another interesting

possibility not pursued in this paper would be to sparsify the SFA

output by ICA. This has led to place-cell like behavior in [14] and

might be beneficial for subsequent reward-based learning.

Information bottleneck optimization (IB) is another candidate

learning mechanism for cortical feature extraction. However, IB is

not unsupervised, it needs a relevance signal. It would be

interesting to investigate whether a useful relevance signal could

be constructed for example from the reward signal. Finally, the

problem of state space reduction has also been considered in the

reinforcement learning literature. There, the main approach is

either to reduce the size of a discrete state space or to discretize a

continuous state-space [59,60]. In contrast, SFA preserves the

continuous nature of the state-space by representing it with a few

highly informative continuous variables. This circumvents many

problems of state-space discretization such as the question of state-

space granularity. Thus, there are multiple benefits of SFA in the

problem studied: It can be trained in a fully unsupervised manner

(as compared to IB). By taking the temporal dimension into

account, it is able to compress the state-space significantly without

the need to discretize the continuous state-space (as compared to

[59,60]). It provides a highly abstract representation that can be

utilized by simple subsequent reward-based learning (compare to

the discussion of PCA). The possibility to apply SFA in a

hierarchical fashion renders it computationally efficient even on

high-dimensional input streams, both in conventional computers

and in biological neural circuits where it allows for mainly local

communication and thus avoids extensive connectivity [31,32].

The natural ordering of features based on their slowness implies a

simple criterion on the basis of which information can be

discarded in each node of the hierarchical network (compare to

ICA), resulting in a significant reduction of information that has to

be processed by higher-level circuits. Finally, SFA is relatively

simple, its complexity is comparable to PCA and it is considerably

simpler than other approaches for state-space reduction [57–60].

Accordingly, biologically plausible implementations of SFA exist

[28,29]. Together with the fact that experimental evidence for

slowness learning exists in the visual system [23], this renders SFA

an important candidate mechanism for unsupervised feature

extraction in sensory cortex.

In this article, we provided a proof of concept that a learning

system with an unsupervised preprocessing and subsequent simple

biologically realistic reward-based learning can learn quite

complex control tasks on high-dimension visual input streams

without the need for hand-design of a reduced state-space. We

applied the proposed learning system to two control tasks. In the

Morris water maze task, we showed that the system can find an

optimal strategy in a number of learning episodes that is

comparable to experimental results with rats [25]. The application

of the learning system to the variable targets task shows that also

much more complex tasks with rich visual inputs can be solved by

the system. We propose in this article that slowness-learning in

combination with reward-based learning may provide a generic

(although not exclusive) principle for behavioral learning in the

brain. This hypothesis predicts that slowness learning should be a

major unsupervised learning mechanism in sensory cortices of any

modality. Currently, such evidence exists for the visual pathway

only [23]. We showed that learning performance of the system in

this task is comparable to a system where the state-representation

extracted by SFA is replaced by a highly compressed and precise

hand-crafted state-space. Finally, our simulation results suggest

that performance of the system is quite insensitive to the number of

SFA components that is chosen for further processing by the

reinforcement learning network as long as enough informative

features are chosen.

Altogether this study provides, on the one hand, further support

that slowness learning could be one important (but not necessarily

exclusive) unsupervised learning principle utilized in the brain to

form efficient state representations of the environment. On the

other hand, this work shows that autonomous learning of state-

representations with SFA should be further pursued in the search

for autonomous learning systems that do not - or much less - have

to rely on expensive tuning by human experts.

Supporting Information

Figure S1 Rewards and escape latencies during training of the

control task with target and distractor without mirrored move-

ments at boundaries. A) Evolution of reward during training. A

simulation step for all 100 parallel traces corresponds to 100 time-

steps at the x-axis. The plotted values are averages over

consecutive 50,000 time steps. B) Evolution of escape latencies

(measured in time steps) during training. The number of episodes

on the x-axis is the number of completed traces. The plotted values

are averages over 3,000 consecutive episodes. C,D) Same as panels

A and B, but learning was performed on a highly condensed and

precise state-encoding instead of the SFA network output. Shown

is the performance for learning on 100 parallel traces (black, full

line) and without parallel traces (gray, dashed line). Convergence is

slower compared to learning on SFA outputs.

Found at: doi:10.1371/journal.pcbi.1000894.s001 (0.02 MB PDF)

Figure S2 Rewards and escape latencies during training of a

feed-forward network of simple neurons on the control task with

target and distractor. A) Evolution of reward during training. A

simulation step for all 100 parallel traces corresponds to 100 time-
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steps at the x-axis. The plotted values are averages over

consecutive 150,000 time steps. B) Evolution of escape latencies

(measured in time steps) during training. The number of episodes

on the x-axis is the number of completed traces. The plotted values

are averages over 8,000 consecutive episodes.

Found at: doi:10.1371/journal.pcbi.1000894.s002 (0.02 MB PDF)

Text S1 Detailed parameters for reward-based learning.

Found at: doi:10.1371/journal.pcbi.1000894.s003 (0.02 MB PDF)

Text S2 Derivation of the policy-gradient update rule.

Found at: doi:10.1371/journal.pcbi.1000894.s004 (0.02 MB PDF)
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44. Vasilaki E, Frémaux N, Urbanczik R, Senn W, Gerstner W (2009) Spike-based

reinforcement learning in continuous state and action space: When policy

gradient methods fail. PLoS Comput Biol 5: e1000586.
45. Potjans W, Morrison A, Diesmann M (2009) A spiking neural network model of

an actor-critic learning agent. Neural Comp 21: 1–39.
46. Mazzoni P, Andersen RA, Jordan MI (1991) A more biologically plausible

learning rule for neural networks. P Natl Acad Sci USA 88: 4433–4437.
47. Baxter J, Bartlett PL (1999) Direct gradient-based reinforcement learning: I.

gradient estimation algorithms. Technical report, Research School of Informa-

tion Sciences and Engineering, Australian National University.
48. Xie X, Seung HS (2004) Learning in neural networks by reinforcement of

irregular spiking. Phys Rev E 69.
49. Pfister JP, Toyoizumi T, Barber D, Gerstner W (2006) Optimal spike-timing-

dependent plasticity for precise action potential firing in supervised learning.

Neural Comput 18: 1318–1348.
50. Fiete IR, Seung HS (2006) Gradient learning in spiking neural networks by

dynamic perturbation of conductances. Phys Rev Lett 97: 048104-1–048104-4.
51. Florian RV (2007) Reinforcement learning through modulation of spike-timing-

dependent synaptic plasticity. Neural Comput 19: 1468–1502.
52. Farries MA, Fairhall AL (2007) Reinforcement learning with modulated spike

timing-dependent synaptic plasticity. J Neurophysiol 98: 3648–3665.

53. Izhikevich EM (2007) Solving the distal reward problem through linkage of
STDP and dopamine signaling. Cereb Cortex 17: 2443–2452.

54. Baras D, Meir R (2007) Reinforcement learning, spike-time-dependent
plasticity, and the BCM rule. Neural Comput 19: 2245–2279.

55. Legenstein R, Pecevski D, Maass W (2008) A learning theory for reward-

modulated spike-timing-dependent plasticity with application to biofeedback.
PLoS Comput Biol 4: 1–27.

56. Troyer TW, Doupe AJ (2000) An associational model of birdsong sensorimotor
learning ii. temporal hierarchies and the learning of song sequence.

J Neurophysiol 84: 1224–1239.
57. Antoulas AC, Sorensen DC (2001) Approximation of large-scale dynamical

systems: An overview. Int J Appl Math Comp 11: 1093–1121.

58. Tenenbaum JB, de Silva V, Langford JC (2000) A global geometric framework
for nonlinear dimensionality reduction. Science 290: 2319–2323.

59. Andrew Moore CA (1995) The parti-game algorithm for variable resolution
reinforcement learning in multidimensional state-spaces. Mach Learn 21.

60. Munos R, Moore A (2002) Variable resolution discretization in optimal control.

Mach Learn 49: 291–323.

Reinforcement Learning on Slow Features

PLoS Computational Biology | www.ploscompbiol.org 13 August 2010 | Volume 6 | Issue 8 | e1000894


