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Abstract

We address the problem of homology identification in complex multidomain families with varied domain architectures. The
challenge is to distinguish sequence pairs that share common ancestry from pairs that share an inserted domain but are
otherwise unrelated. This distinction is essential for accuracy in gene annotation, function prediction, and comparative
genomics. There are two major obstacles to multidomain homology identification: lack of a formal definition and lack of
curated benchmarks for evaluating the performance of new methods. We offer preliminary solutions to both problems: 1)
an extension of the traditional model of homology to include domain insertions; and 2) a manually curated benchmark of
well-studied families in mouse and human. We further present Neighborhood Correlation, a novel method that exploits the
local structure of the sequence similarity network to identify homologs with great accuracy based on the observation that
gene duplication and domain shuffling leave distinct patterns in the sequence similarity network. In a rigorous, empirical
comparison using our curated data, Neighborhood Correlation outperforms sequence similarity, alignment length, and
domain architecture comparison. Neighborhood Correlation is well suited for automated, genome-scale analyses. It is easy
to compute, does not require explicit knowledge of domain architecture, and classifies both single and multidomain
homologs with high accuracy. Homolog predictions obtained with our method, as well as our manually curated benchmark
and a web-based visualization tool for exploratory analysis of the network neighborhood structure, are available at http://
www.neighborhoodcorrelation.org. Our work represents a departure from the prevailing view that the concept of
homology cannot be applied to genes that have undergone domain shuffling. In contrast to current approaches that either
focus on the homology of individual domains or consider only families with identical domain architectures, we show that
homology can be rationally defined for multidomain families with diverse architectures by considering the genomic context
of the genes that encode them. Our study demonstrates the utility of mining network structure for evolutionary
information, suggesting this is a fertile approach for investigating evolutionary processes in the post-genomic era.
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Introduction

Accurate identification of homologs, sequences that share

common ancestry, is essential for accuracy in function prediction

and comparative genomics. Homology identification is integral to

the annotation of novel genes [1] and prediction of gene function

by various methods, including phylogenetic clustering [2], gene

fusion analysis [3,4], phylogenomic inference [5], and genomic

context [6,7]. Homologous genes are used as markers to identify

homologous chromosomal regions for comparative mapping [8,9],

analysis of whole genome duplication [10,11], phylogenetic

footprinting [12], and operon prediction [13–15]. Pairwise

homology detection is also an integral component of clustering

approaches to protein family classification ([1,16], and work cited

therein).

All of these applications exploit one or both of the following

properties of homologous sequences: genes that share common

ancestry tend (1) to have similar structure and function, and (2) be

located in homologous chromosomal regions, making them

suitable markers for comparative genomics. Because of their

prevalence and importance, it is desirable to incorporate

multidomain sequences in such analyses: Multidomain proteins

represent 40% of the metazoan proteome, with functional roles in

signal transduction, cellular adhesion, tissue repair, and immune

response [17]. However, multidomain sequences, especially those

with promiscuous domains that occur in many contexts, are

frequently excluded from genomic analyses due to lack of a

theoretical framework and practical methods for detecting

multidomain homologs. In this paper, we extend the traditional

definition of homology [18] to multidomain sequences that share a

common ancestral gene, providing a formalism suitable for

modeling multidomain family evolution, design and validation of

multidomain homology identification methods, and incorporation

of multidomain sequences in genomic analyses.

The original definition of molecular homology [18] does not

capture multidomain evolution. Homology traditionally refers to

evolution from a common ancestor by vertical descent (e.g., gene

duplication and speciation), but multidomain proteins evolve via
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both vertical descent and domain insertion. For example, Figure 1

depicts two genes, a and b, which share not only a homologous

domain but also a common ancestral gene. In contrast, b and c are

a domain-only match, a pair of sequences that share similarity due to

insertion of the same domain into both sequences but are

otherwise unrelated.

Beta platelet-derived growth factor receptor (PDGFRB) and

cGMP-dependent protein kinase 1, beta (PRKG1B), in Figure 2A,

are enzymes involved in protein amino acid phosphorylation and

Figure 1. The evolution of a hypothetical multidomain family by gene duplication and domain insertion. Genes in the a and b
subfamilies share a common ancestor but do not have identical domain composition. Gene c shares a homologous domain with genes in the b
subfamily, but there is no gene that is ancestral to both b and c.
doi:10.1371/journal.pcbi.1000063.g001

PDGFRB IG PkinaseIG

PRKG1B CNMP_binding CNMP_binding Pkinase

PDGFRB IG PkinaseIG

NCAM2 FN3IGIGIGIGIG FN3

A

B

Figure 2. Domain models of a pair of multidomain homologs
and a pair of sequences with a domain-only match. (A) Domain
architectures of the multidomain homologs PDGFRB and PRKG1B. These
sequences share a Pkinase domain, but have different auxiliary
domains. (B) Domain architectures of PDGFRB and NCAM2, which have
significant sequence similarity due to shared Ig domains, but do not
share common ancestry.
doi:10.1371/journal.pcbi.1000063.g002

Author Summary

New genes evolve through the duplication and modifica-
tion of existing genes. As a result, genes that share
common ancestry tend to have similar structure and
function. Computational methods that use common
ancestry have been extraordinarily successful in inferring
function. The practice of discerning evolutionary relation-
ships is stymied, however, by modular sequences made up
of two or more domains. When two genes share some
domains but not others, it is difficult to distinguish a case
of common ancestry from insertion of the same domain
into both genes. We present a formal framework to define
how multidomain genes are related, and propose a novel
method for rapid, robust characterization of evolutionary
relationships. In an empirical comparison with the current
state of the art, we demonstrate superior performance of
our method using a large hand-curated set of sequences
known to share common ancestry. The success of our
method derives from its unique ability to infer evolutionary
history from local topology in the sequence similarity
network. This represents a departure from the view that
protein family classification must be restricted to families
with conserved architecture. By exploiting the structure of
the sequence similarity network, our approach surmounts
this limitation and opens the door to studies of the role of
modularity in protein evolution.

Similarity Network Reveals Common Ancestry
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provide a concrete example of this situation. Phylogenomic and

structural evidence [19–22], as well as the promiscuity of the Ig

and cNMP-binding domains, supports the common ancestry of

this pair (see Methods). They have a statistically significant

alignment with an E-value of 2.4e28 that covers 13% of the

average of their lengths. While they share a common domain

(Pkinase), the Ig domains are unique to PDGFRB and the cNMP-

binding domains are unique to PRKG1B. An example of a domain-

only match is shown in Figure 2B. Neural cell adhesion molecule 2

(NCAM2) and PDGFRB share two Ig domains, resulting in a

significant alignment, also with an E-value of 2.4e28, and alignment

coverage of 24%. However, the genes that encode them are not

homologous and they perform different functions: NCAM2 is

involved in cell-cell adhesion with no enzymatic function.

The ability to distinguish multidomain homologs from unrelated

pairs that share a domain is essential to genomic analysis. The

evolutionary relationship between a and b in Figure 1 supports

inferences about genome evolution, organization, and function.

The same inferences would not necessarily be justified by the

evolutionary relationship between b and c. For example,

chromosomal regions enriched with homologous gene pairs are

likely to be homologous themselves. In contrast, enrichment with

homologous domains does not support the inference that a pair of

chromosomal regions is homologous. Heuristics based on

similarity and alignment coverage (the fraction of the mean sequence

length covered by the optimal local alignment) have been

proposed to screen out domain insertions. Recently, approaches

based on domain architecture comparison have also been

proposed [23–26]. To our knowledge, despite the prevalence of

methods based on sequence similarity and alignment coverage

[27–37], the accuracy of these heuristics has never been

systematically tested. However, the examples in Figure 2 raise

doubt about the general effectiveness of these methods. Both pairs

have weak sequence similarity, short alignments, and a similar

combination of shared and unique domains. Setting a significance

threshold to eliminate NCAM2 would also eliminate roughly 240

sequences that are related to PDGFRB, since more than a quarter

of the Kinases that match PDGFRB have E-values less significant

than 2.4e28. Alignment coverage would not help distinguish these

two cases: the homologous pair has a shorter alignment than the

unrelated pair. Nor could we separate this case by comparing

domain content, since PDGFRB and PRKG1B share one domain,

while PDGFRB and NCAM2 share two. For this example, sequence

similarity, the length of the shared region, and domain

architecture comparison all fail to distinguish the homologous

pair from the domain-only match.

To determine the extent of this problem, here we evaluate

sequence similarity, alignment coverage, and domain architecture

comparison on a hand-curated benchmark of 853,465 known

homologous pairs. Our results show that these heuristics are all

insufficient for consistent, reliable identification of multidomain

homologs. Surprisingly, given its widespread use, even a modest

alignment coverage requirement dramatically increased the

number of mis-assigned homologs in our study. These results

challenge two unstated, but widely accepted hypotheses: (1)

homologous sequences share similarity along the bulk of their

length and (2) the local alignment between homologous sequences

usually covers a greater fraction of their mean length than the local

alignments of sequences that only share a domain.

These observations suggest to us that sequences alone may not

consistently contain enough information to differentiate homology

from domain-only matches. We introduce a novel method, called

Neighborhood Correlation, that leverages additional information

contained in the weighted sequence similarity network to

distinguish homologs from domain-only matches. In this network,

each vertex corresponds to a sequence. Vertices whose corre-

sponding sequences have significant similarity are connected by an

edge with weight proportional to that similarity. The neighborhood of

a sequence is the set of vertices adjacent to it; that is, the set of all

sequences that match it above a predefined significance threshold.

(In this work, ‘‘sequence neighborhood’’ refers to the local context

of the sequence in the network and not to the region immediately

surrounding it in the genome.) Our analysis demonstrates that the

neighborhood structure of gene pairs related through shared

domain insertions is characteristically different from that of pairs

related through duplication or speciation. These differences in

neighborhood organization are detectable and can be exploited to

distinguish homology from domain sharing.

A homology detection method for genomic analysis must meet

the following criteria: It should correctly predict homologous pairs

and reject unrelated pairs, including those that share domains.

With a single set of parameter values, it should perform reliably on

sequences with a broad range of attributes, including single

domain families, multidomain families, families with short regions

of conservation, and families with weak sequence homology.

Finally, it should be easy to use and fast enough for datasets

comprising hundreds of millions of sequence pairs.

In an empirical evaluation, we demonstrate that Neighborhood

Correlation meets these criteria. It is highly effective in classifying

multidomain homologs and achieves superior performance in

comparisons with sequence similarity (BLAST and PSI-BLAST),

alignment coverage, and domain architecture comparison. To

evaluate performance, we hand-curated a benchmark of 853,465

known homologous pairs of mouse and human sequences, drawn

from twenty well-studied families. Our test set includes single-

domain families, as well as multidomain families with promiscuous

domains that are at risk for domain-only matches. Although

comprehensive datasets are available for testing methods for

predicting homology of individual domains [38,39], we are unaware

of any other gold-standard dataset of known multidomain families

with variable domain architectures. We offer this validation

dataset, which is based on published evidence by experts on each

of the families, as a resource for future studies.

As a validation of our approach, we applied Neighborhood

Correlation to all complete, mouse and human sequences in

SwissProt 50.9 to predict homologs. A comparison of our

predictions with the euKaryotic Clusters of Orthologous Groups

(KOGs) database [40] showed that the set of protein sequences

with highly correlated neighborhoods includes the vast majority of

pairs that share an orthologous group (i.e., have the same KOG

annotation). This is consistent with the fact that orthology is a

more restrictive criterion than homology. We also show that most

pairs in our set of predictions share at least one domain, according

to the Pfam database [41], but many sequence pairs that share a

domain are excluded. This is consistent with our goal of

identifying gene homology rather than domain homology.

Results

Homology has traditionally been defined in terms of families

that evolve by vertical descent [18,42]; that is, by speciation and

gene duplication. However, multidomain sequences evolve by

speciation, gene duplication, and acquistion of domains from

outside the family [43] (Figure 1). The traditional definition of

homology does not apply in this case, as previous authors have

pointed out [42,44]. In the words of Walter Fitch [42], ‘‘We must

recognize that not all parts of a gene have the same history and

thus, in such cases, that the gene is not the unit to which the terms

Similarity Network Reveals Common Ancestry
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orthology, paralogy, et cetera, apply.’’ It has been proposed that

sub-genic sequence fragments should be the units of interest

[44,45]. However, there are many applications, such as ortholog

detection, comparative mapping, and phylogenetic footprinting,

for which it is essential to work with a definition of homology

where the gene is the basic unit. Moreover, in order to study the

evolution of multidomain gene families, it is necessary to focus on

genes. The gene is the unit of selection. While domains confer

modular function on genes, ultimately it is the functionality of

those genes drives their retention.

A Model of Multidomain Homology
Here, we propose a model of multidomain homology based on

vertical descent and insertion of a sequence fragment into an

existing gene. In our model, two sequences are homologous if they

are encoded by genes that share an ancestral locus. The rationale

for this definition is illustrated in Figure 3, which shows the

evolution of genes through vertical descent and domain insertion

in the context of the chromosomes in which they reside. When

genomic context is taken into account, it is clear that genes g2 and

g29 are homologous, despite the fact that g2 contains a domain not

present in g29 and vice-versa. In contrast, genes g2 and g39 are not

homologous, despite the fact that they share a homologous

domain, since g2 and g39 are not located in chromosomal regions

that share common ancestry. For comparative mapping applica-

tions, where homologous genes are used as markers for identifying

chromosomal regions, this distinction is crucial. For example,

phylogenetic footprinting [12] predicts transcription factor binding
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Figure 3. Evolutionary history of multidomain sequences in genomic context. (A) A hypothetical genome with two chromosomes. (B) Both
chromosomes are copied through duplication or speciation, resulting in two identical copies. (C) Following sequence divergence, similarity is only
retained in coding regions. (D) Two instances of the orange domain are inserted in g2 and g3’, respectively. A yellow domain is inserted in g2’. (E)
Conserved genomic context shows that genes g2 are g2’ are homologous genes, although they contain unrelated domains. Similarly, genes g2 and g3’
contain homologous domains, but are not homologous genes.
doi:10.1371/journal.pcbi.1000063.g003
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sites by identifying homologous genes and then searching their

flanking chromosomal regions for conserved sequence motifs. In

Figure 3, the regions upstream of g2 and g29 have an elevated

probability of sharing conserved motifs since they share common

ancestry. However, there is no reason to expect an enrichment of

motifs shared between the flanking regions of g2 and g39.

Our model is applicable to families that evolved through

acquisition of a new domain by an existing gene. This can occur

through insertion of sequence fragments into the gene or by

recruitment of adjacent exons. Formation of a new gene

architecture by domain loss is also consistent with our model.

Several lines of evidence suggest that acquisition of an auxiliary

domain by an existing gene is a relatively common mode of

domain shuffling. First, a substantial number of metazoan,

chordate, and vertebrate families have been identified that evolved

through a pattern of duplication, insertion of domains, and further

duplication, a pattern consistent with this model [46,47]. Second,

the existence of promiscuous domains that lend themselves to

insertion in new chromosomal environments [48,49] supports an

insertion model. Third, domain insertion is more likely to be

successful when a domain is inserted into an existing functional

environment, e.g., into the intron of an existing gene. In this case,

all regulatory and termination signals required for successful

transcription are already present. A fourth line of evidence stems

from analyses of the flanking DNA of genes that arose very

recently, where traces of the particular domain shuffling

mechanism that occurred can still be observed. A number of

recently evolved metazoan genes have been discovered that arose

through duplication of an existing gene, followed by acquisition of

one or more domains by unequal crossing over or by

retrotransposition [50–54]. Finally, a number of studies have

inferred relative rates of various domain shuffling events by

applying parsimony models to abstract domain architectures.

Their results suggest that the most common domain shuffling

scenario involves insertion or deletion of a single domain into an

existing multidomain architecture [24,55,56].

Our model is not applicable to the case where a new domain

architecture is assembled de novo from several unrelated building

blocks and subsequently acquires a regulatory region. We consider

such a novel architecture to be the progenitor of a new family,

since it is not clear that the ancestry of any one constituent is

preferred. Similarly, our model does not capture formation of new

architectures through fragmentation of more complex ones.

However, recent evidence suggests that both of these scenarios

occur rarely [24,55,57].

Neighborhood Correlation
Homology detection is the problem of distinguishing between

sequence pairs with different types of evolutionary histories:

evolution via gene duplication or via domain insertion. Sequence

similarity, alignment coverage, and domain architecture compar-

ison have all been considered for this purpose. However, none of

these distinguish the homologous pair from the domain-only

match given in Figure 2. The empirical results in the following

sections confirm that this is not an isolated example. Accurate

classification of multidomain homologs requires additional infor-

mation from another source.

The structure of the sequence similarity network provides a

basis for distinguishing pairs related through vertical descent from

other pairs. The local network neighborhoods of homologs and

domain-only matches differ in both topology and edge weights. In

particular, for homologous pairs, the shared neighborhood (i.e.,

the set of vertices adjacent to both members of the pair) tends to

have more vertices and stronger edge weights than their unique

neighborhoods (i.e., vertices adjacent to one pair but not the

other). This is not true for domain-only matches. We express this

distinction quantitatively by the Neighborhood Correlation score

of two sequences, defined to be the correlation coefficient of their

respective neighborhoods:

NC x,yð Þ~
P

i[N S x,ið Þ{S xð Þ
� �

S y,ið Þ{S yð Þ
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
i[N S x,ið Þ{S xð Þ
� �2P

i[N S y,ið Þ{S yð Þ
� �2

q ð1Þ

where S(x,i) is the normalized bit score [58] of the optimal local

alignment of query sequence x and database sequence i, N is the

number of sequences in the database, and S xð Þ is the mean of

S(x,i) over all sequences (see Methods). Note that NC(x,y) increases

with the number, weight, and correlation of edges in the shared

neighborhoods of x and y and decreases with the number and

weight of edges in their unique neighborhoods.

The Neighborhood Correlation score captures properties of the

sequence similarity network that are strongly influenced by the

evolutionary processes of interest. The number of edges in the shared

and unique neighborhoods is influenced by the rates of gene

duplication and domain insertion, while edge weights depend on

sequence divergence. Immediately following a gene duplication, the

two resulting paralogs have identical neighborhoods. The Neigh-

borhood Correlation score of this new pair is initially one and

decreases as the sequences diverge. Additional gene duplications in

the same family further increase the size of the shared neighborhood

and, hence, the Neighborhood Correlation score. In contrast, if a

domain is inserted into a single member of the pair, the number of

edges in its unique neighborhood increases and the Neighborhood

Correlation score decreases. The increase in the number of unique

edges is directly related to the promiscuity of the inserted domain,

while the weights of these new edges are proportional to the degree

of sequence conservation in the domain superfamily. In practice, the

impact of insertion of a domain into a single member on the

Neighborhood Correlation score is typically small because promis-

cuity and sequence conservation within domain superfamilies are

inversely related. For example, Pfam domains exhibit a highly

significant, negative correlation between domain promiscuity (see

Methods) and sequence identity (r = 20.21, p = 2.08e230, Spearman

test). This can be understood by observing that when a domain is

inserted into a new context, it is likely to experience new selective

pressures leading to rapid mutational change.

To see how these principles play out in practice, we consider the

neighborhoods of PDGFRB, PRKG1B, and NCAM2 in the sequence

similarity network derived from our test dataset (Figures 2 and 4).

Although the homologous pair, PDGFRB and PRKG1B, and the

domain sharers, PDGFRB and NCAM2, have pairwise alignments

with similar properties (E-value, alignment length, number of

shared domains), their neighborhoods in the weighted sequence

similarity network are very different. The shared neighborhood of

the Kinase homologs PDGFRB and PRKG1B is substantially larger

(779 sequences) than their unique neighborhoods (183 and 142

sequences, respectively). The shared neighborhood consists almost

entirely of Kinases. The unique neighborhoods are dominated by

domain-only matches, due to Ig in the case of PDGFRB and the

cNMP-binding domain in the case of PRKG1B. Sequence

similarities within these unique neighborhoods are weak; the

Pfam models for the Ig and cNMP-binding domains have average

sequence identities of 20% and 18%, respectively. Thus, the edge

weights (not shown) in the shared neighborhood are strong and

well correlated, while the edge weights in the unique neighbor-

hoods are weak, yielding a Neighborhood Correlation score of

NC = 0.65.

Similarity Network Reveals Common Ancestry
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Conversely, PDGFRB and NCAM2 are related through domain

insertion and have significant sequence similarity due to a shared

Ig domain. Their shared neighborhood is relatively small (242

sequences) and comprised primarily of Ig-based matches. These

contribute little to the Neighborhood Correlation score of this pair

due to low sequence conservation within the Ig superfamily. In

contrast, the unique neighborhood of PDGFRB is large (630 se-

quences), with strong edge weights. For these reasons, PDGFRB

and NCAM2 have a Neighborhood Correlation score of 0.29,

distinctly smaller than the score for PDGFRB and PRKG1B. Unlike

sequence comparison, this clear difference in neighborhood

structure can be used to recognize multidomain homology.

A Benchmark Dataset for Multidomain Homology
Evaluation of classification performance requires a trusted set of

positive examples (known homologous pairs) and negative

examples (pairs known not to share common ancestry). Although

benchmarks are available for detection of remote homology (e.g.,

SCOP [38], CATH [39]), functional similarity (e.g., the Gene

Ontology (GO) [59]), orthology (e.g, COGs [40]), and structural

genomics ([16,45,60], and work cited therein), we are unaware of

any gold-standard validation dataset for multidomain homology.

Our benchmark is designed to be suitable for testing two

classification goals: good overall performance on a large set of

sequence pairs and consistent performance on individual families

Figure 4. Differences in neighborhood structure of the sequence similarity network reflect differences in evolutionary history.
Network neighborhoods in which nodes represent sequences. Edges connect pairs with significant sequence similarity. Edge weights reflecting
degree of sequence similarity are not shown. (A) The neighborhoods of the homologous pair, PDGFRB and PRKG1B. PDGFRB and PRKG1B share 779
neighbors, mostly Kinases (turquoise nodes). These are strong matches due to a shared kinase domain. PDGFRB has 183 unique neighbors, mostly
due to weak matches with Ig domains (green nodes). PRKG1B has 142 unique neighbors due to weak matches with the cNMP-binding domain (red
nodes). Other matching sequences are shown in yellow. (B) PDGFRB and NCAM2, a domain-only match, have 232 matches in common. PDGFRB has
730 unique neighbors and NCAM2 has 240, mostly due to Fn3 domains (dark blue nodes).
doi:10.1371/journal.pcbi.1000063.g004
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with varying properties. To satisfy these needs, we constructed a

test set of 1577 sequences from 20 families of known evolutionary

origin (Table 1). The families encompass a broad range of

functional categories, summarized in Table 2. The full curation

procedure is described in Methods and Text S1.

For each family, we identified two sets of sequence pairs: family

(FF) pairs, where both members of the pair are in the family, and

non-family (FO) pairs, where only one of the two sequences is in

the family. Given a family of size k, we obtain k2 FF pairs (the

positive examples) and k(N2k) FO pairs (the negative examples).

Individual families, which cover a range of functional properties

and domain architecture complexity, can be used for family

specific tests. In addition, we constructed a test set (ALL) for

general performance evaluation by merging all sets of FF and,

respectively, FO pairs, yielding 853,465 positive and 40,459,204

negative examples. Performance measurements obtained with this

set could be biased by the Kinase family, which is much larger

than the other families. We therefore also considered the set of all

sequences excluding the Kinases (ALL-Kin), resulting in 32,629

positive and 17,545,558 negative examples.

Our goal is a method that can correctly identify homologs in

multidomain families without degrading performance in other

types of families. We therefore devised a benchmark to test a range

of homology detection challenges, involving single domain as well

as multidomain families. Families with complex and varied

domain architectures represent the primary challenge undertaken

in this study. Such families result from duplication, domain

accretion, and further duplication. Some of these families are

defined by a single domain that is unique to the family (e.g.,

Kinase), while others are characterized by a particular combina-

tion of domains (e.g., ADAM) or by a conserved set of domains

with variations in domain copy number (e.g. Laminin). Modularity

in both single and multidomain families can also arise through the

presence of sequence motifs, such as subcellular localization

signals, transactivation sequences (e.g., Tbox), and functional

components that confer substrate specificity (e.g. USP). These

motifs can result in matches to unrelated sequences. In addition,

promiscuous domains challenge homology identification because

they can result in significant sequence similarity but carry little

information about gene homology. Promiscuity can confound

reliable detection of homologs even in families with conserved

domain architectures.

Remote homology detection is a serious challenge that has

received widespread attention. In our dataset, this challenge is

represented set by FGF, TNF, TNFR, and USP, families that

exhibit low sequence conservation. Finally, we considered

homologous pairs with short conserved regions. A minimum

alignment coverage criterion is frequently imposed to eliminate

domain-only matches, reflecting a widely held, but untested belief

that homologous pairs have regions of similarity that cover a

substantial fraction of their length. To test the robustness of

homology detection methods with respect to alignment length, we

included single domain families with short conserved regions such

as the Tbox family.

Our selection of test families was limited to those for which it

was possible to obtain evidence concerning their evolutionary

history. Evolutionary evidence was obtained from published

articles and/or curation by a nomenclature committee. In the

best cases, direct syntenic evidence of vertical descent can be

found. In other cases, indirect evidence such as conserved intron/

Table 1. Test family statistics.

Family k

ALL 1577

ALL-Kin 671

Single domain families

ACSL 10

FGF 44

FOX 81

Tbox 31

TNF 32

USP 77

WNT 38

Multidomain families: conserved architecture

DVL 7

GATA 12

Notch 8

KIR 14

TRAF 12

Multidomain families: variable architecture

ADAM 44

Kinase 906

Kinesin 56

Laminin 22

Myosin 46

PDE 44

SEMA 38

TNFR 55

k: the number of sequences.
doi:10.1371/journal.pcbi.1000063.t001

Table 2. Functional properties of the 20 test families.

Functional category Family

Biological
process

Neural development SEMA, Notch

Immune response TNF, TNFR, KIR

Development and homeostatic
regulation

ADAM, FGF, WNT

Cell-cell/cell-matrix interaction ADAM, Laminin, Notch

Molecular
function

Transcription factor FOX, GATA, Tbx

Intracellular signal transducer Kinase, DVL, TRAF

Enzyme ACSL, ADAM, Kinase, USP, PDE

Motor Myosin, Kinesin

Structural molecule Laminin

Ligand FGF, SEMA, TNF, WNT

Receptor TNFR, KIR, Notch

Cellular
location

Extracellular ADAM, FGF, Laminin, SEMA,
WNT

Transmembrane ADAM, SEMA, KIR, Kinase,
Notch, TNF, TNFR

Intracellular ACSL, DVL, FOX, GATA,
Myosin, Kinesin, PDE, Tbx,
Kinase, TRAF,USP

doi:10.1371/journal.pcbi.1000063.t002
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exon structure is used. Phylogenetic evidence can confirm vertical

descent, for example, if all domains in a family have consistent

phylogenies. However, phylogenetic disagreement between core

and auxiliary domains does not rule out homology according to

our model. For each, the evidence used is described in Text S1.

Accuracy of Homolog Identification
We evaluated Neighborhood Correlation using our benchmark,

and compared its performance with other methods currently in

use. We considered performance on multidomain homology

identification, as well as overall performance on diverse,

heterogeneous datasets. We also used Neighborhood Correlation

to predict novel homologous relationships.

Methods Compared
We compared the performance of Neighborhood Correlation

with BLAST [61], alignment coverage [27], and PSI-BLAST [58],

methods commonly used for assessing homology, as well as

Domain Architecture Comparison (DAC), a recently introduced

approach that compares sequences by considering their constitu-

ent domains [23–26,55].

BLAST gives a measure of sequence similarity based on the

optimal local alignment between two sequences. BLAST does not

capture gene structure (e.g., domain organization), nor does it

reflect additional information that might be derived from

suboptimal local alignments. BLAST is widely used, its behavior

is well understood, and its scores are easily compared with those

from other studies. A great deal of attention has been devoted to

tuning BLAST performance and to developing accurate statistical

tests. It represents an attractive balance between rigor and speed.

A significant BLAST score is evidence of similarity greater than

that expected by chance, but cannot distinguish whether that

similarity stems from vertical descent or domain insertion. In order

to eliminate domain-only matches, many analyses combine

sequence similarity with alignment coverage to identify homologs

[28–37]. To be considered homologous, sequence pairs must then

satisfy a second criterion in addition to significant sequence

similarity: the fraction of the sequence length covered by the

optimal local alignment must meet a pre-specified threshold. To

our knowledge, alignment coverage criteria have never been

empirically evaluated. In this work, we demonstrate that such a

requirement is highly detrimental to performance overall, and in

nearly all tested families.

In the presence of high sequence divergence, BLAST is limited by

the amount of information that can be derived from pairwise

comparison. To address this problem, approaches based on multiple

sequence alignments (MSAs) have been used to increase sensitivity.

PSI-BLAST, one of the most widely used examples of this approach,

constructs a Position Specific Scoring Matrix (PSSM) through

iterative search and has been shown to dramatically improve

sensitivity [62]. MSA-based methods are designed to detect remote

homology, not multidomain homology. Since sequences with

different architectures cannot be aligned, MSA-based methods are

not a natural choice for multidomain homology detection. We

included PSI-BLAST in our study because it is widely used as a

standard for remote homology detection.

In addition to sequence based methods, we considered direct

comparison of domain architectures for multidomain homology

detection. Each sequence was represented by a linear sequence of

Pfam domains. Linker sequences between domains were ignored,

as was sequence variation between instances of a given Pfam

domain family. The resulting domain architectures were com-

pared based on their domain composition. In a previous study, we

proposed and evaluated 21 different methods for comparing

domain architectures [23]. These methods considered properties

such as the number of shared domains, domain copy number, total

number of domains in a protein, domain order, and domain

promiscuity. We included the domain architecture comparison

strategy that exhibited the best performance from that study in our

current study. This method assigns a score to each pair based on

the number of shared domains (see Methods), following the

rationale that homologous pairs will have more domains in

common than pairs related through domain insertion. In assessing

similarity, each domain is assigned a weight inversely proportional

to its promiscuity. This reflects the assumption that rare domains

convey more information about homology than promiscuous

domains.

Evaluation Procedure
The performance of each method was assessed via the ROC-n

score (Table 3), which represents both false positives and false

negatives (see Methods). ROC-n is the area under the Receiver

Operating Characteristic (ROC) curve comprised of the top ranking

pairs up to the first n false positives. We used n = 100k, where k is

family size, corresponding to 100 false positives per query.

In evaluating homology identification methods, we consider two

user models. Genome-scale analyses require all-against-all compar-

ison of a large and heterogeneous set of sequences. In order to be

suitable for automated, genomic analyses, a method must be robust

enough for use without human intervention, deliver consistent

behavior on different types of domain architectures, and be fast and

easy to use. In this case, the goal is to maximize the total number of

homolog pairs that are correctly predicted. A second application is

analysis of individual families, where the goal is to obtain good per-

family prediction scores over a wide range of families.

To evaluate performance for both user models, we report ROC-

100k scores for all pairs (ALL and ALL-Kin), as well as ROC-100k

scores for each family. To show how the methods tested behave on

proteins with various attributes, we also report the average ROC-

100k score per family for single domain families, multidomain

families with conserved architectures, and multidomain families

with variable architectures.

As a visualization tool, we generated rank plots, which show the

scores of all matches to a given query sequence in rank order.

Rank plots provide a visual representation of the organizational

structure of the network neighborhood of the query sequence, as

well as organizational substructure within the family. For example,

Figure 5 shows a rank plot for the query sequence PDGFRB, a

protein tyrosine kinase. The break in the curve in Figure 5B at

NC<0.8 corresponds to the first match to a Serine/Threonine

Kinase, the inflection point at NC<0.75 corresponds to the first

match to a Dual-Specificity Kinase, and the downward plunge at

NC<0.59 corresponds to the first Casein Kinase. Rank plots for

each of the 26,197 sequences in our dataset are provided at

http://www.neighborhoodcorrelation.org.

Neighborhood Correlation Performance
When all considered classifiers are applied to the aggregate set

of sequence pairs (ALL), Neighborhood Correlation dramatically

outperforms the other three methods (Table 3, Figures S1 and S2).

In the ALL-Kin dataset, Neighborhood Correlation yields better

performance than BLAST and PSI-BLAST, but performs slightly

worse than DAC. The superior performance of Neighborhood

Correlation on the ALL and ALL-Kin datasets demonstrates that its

optimal classification threshold is less sensitive to family specific

properties than those of BLAST or PSI-BLAST.

When performance on individual families is considered,

Neighborhood Correlation is generally more robust than the
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other three methods. It perfectly classifies twelve families, more

than any other method. In addition, in 16 of 20 families, the

discriminatory performance of Neighborhood Correlation is better

than or equal to that of all other methods. In particular,

Neighborhood Correlation obtains the highest average score for

both conserved and variable architectures and performs much

better on individual multidomain families except for Myosin and

Kinesin. For families with high sequence divergence, including

FGF, TNF, and USP, Neighborhood Correlation performs better

than BLAST, indicating that neighborhood structure can

compensate for a low signal to noise ratio in pairwise comparisons

of remote homologs. PSI-BLAST also performs well in such cases.

To demonstrate why Neighborhood Correlation is more

effective for complex families, we consider its performance on

the Kinase family. Figure 5 shows a rank plot of the results of a

query with the Kinase PDGFRB. A robust method is expected to

rank all Kinase family members before non-Kinase matches. In

particular, we examine pairing between the Kinase PRKG1B and

the non-Kinase NCAM2, the genes depicted in Figure 2.

Neighborhood Correlation exhibits no difficulty separating these

pairs. The match with PRKG1B scores substantially higher than

NCAM2 (indicated by magenta and green circles, repectively, in

Figure 5). In contrast, the BLAST scores for these sequences are

indistinguishable, and the PSI-BLAST scores for these sequences

are reversed: The match to NCAM2 obtains h = 3.65e240, while the

match to PRKG1B is much less significant (h = 1.26e225). How

typical are these examples? As shown in Figure 6, the sequence

similarity distributions of FF and FO pairs overlap completely for

BLAST and partially for PSI-BLAST. In contrast, the Neighbor-

hood Correlation score distributions for family and non-family

matches are largely distinct, with only a limited overlap in the tails

of the distributions.

Neighborhood Correlation also delivers robust performance when

sensitivity (Sn) and specificity (Sp) are considered independently. For

example, when matches to the query sequence PDGFRB are ranked

by Neighborhood Correlation score (Figure 5A), a cutoff of NC = 0.3

results in three false positives with only ten false negatives. In

contrast, a BLAST threshold of E,3e210 results in three false

positives and 630 false negatives (Figure 5B). The number of false

negatives obtained with PSI-BLAST at this specificity is even greater

(Figure 5C). More generally, the ROC-n curves for the Kinase family

in Figure 7 demonstrate that Neighborhood Correlation achieves

both higher sensitivity and higher specificity than BLAST, except at

very high specificity, and always outperforms PSI-BLAST by both

Table 3. ROC-100k scores for Neighborhood Correlation, BLAST, PSI-BLAST, and Domain Architecture Comparison for all families.

NC BLAST p-value PSI-BLAST p-value DAC p-value

ALL 0.8148 0.5838 0 0.7080 0 0.4431 0

ALL-Kin 0.8353 0.7505 0 0.7375 0 0.8960 0

Single domain families

ACSL 1.0000 1.0000 - 1.0000 - 0.8184 0

FGF 1.0000 0.9920 0 1.0000 - 1.0000 –

FOX 1.0000 0.9996 0 0.9985 1.3e-04 0.9756 0

Tbox 1.0000 1.0000 - 1.0000 - 0.9376 0

TNF 0.3992 0.3631 0 0.6764 0 1.0000 0

USP 0.9236 0.8666 0 0.9856 0 0.9395 0

WNT 1.0000 1.0000 - 1.0000 - 1.0000 –

Mean 0.9033 0.8888 0.9515 0.9530

Multidomain families: conserved architecture

DVL 1.0000 1.0000 - 1.0000 - 1.0000 –

GATA 1.0000 1.0000 - 1.0000 - 0.9675 –

Notch 1.0000 1.0000 - 1.0000 - 1.0000 –

KIR 1.0000 0.9971 2.0e-15 0.9876 4.4e-16 1.0000 –

TRAF 1.0000 1.0000 - 1.0000 - 0.9843 2.2e-16

Mean 1.0000 0.9994 0.9975 0.9904

Multidomain families: variable architecture

ADAM 1.0000 0.9830 0 0.9061 0 0.9552 0

Kinase 0.8362 0.6164 0 0.7238 0 0.3789 0

Kinesin 0.9757 0.9806 - 0.9866 8.5e-12 0.9640 0

Laminin 0.9592 0.9245 0 0.8028 0 0.9055 0

Myosin 0.8046 0.9870 0 0.9796 0 0.8435 4.4e-16

PDE 0.7565 0.7565 - 0.7562 0 0.7174 0

SEMA 1.0000 0.9983 1.1e-06 0.9986 1.3e-04 1.0000 –

TNFR 0.6909 0.5607 0 0.6278 0 0.5390 0

Mean 0.8779 0.8509 0.8477 0.7879

The maximum value in each row is shown in bold. The significance of the difference of the ROC-100k score for each method compared with that of Neighborhood
Correlation is expressed as a p-value. Dashes indicate ROC-100k scores that are not significantly different at the 0.001 level.
doi:10.1371/journal.pcbi.1000063.t003
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measures. Neighborhood Correlation simultaneously achieves

Sn<0.85 and Sp$0.999. At this specificity, Sn<0.7 for PSI-BLAST

and Sn<0.55 for BLAST.

While the other methods considered have strengths specific to

particular challenges, Neighborhood Correlation delivers the most

reliable and consistent performance on large, heterogeneous

datasets. Neighborhood Correlation is, therefore, particularly well

suited to automated genome-scale analyses, which require that a

single classification threshold be suitable for the vast majority of

sequence pairs in a genomic dataset. Moreover, Neighborhood

Correlation is robust. The distribution of Neighborhood Corre-

lation scores for all sequence pairs in our dataset (Figure S3) has a

flat trough ranging from 0.4 to 0.8. Within this range, the

prediction quality will be relatively insensitive to the choice of

threshold. A putative set of mouse and human homologs imposed

by a threshold of NC$0.6 on all sequence pairs in our dataset is

available at http://www.neighborhoodcorrelation.org.

Figure 6. Distribution of scores for all family and non-family
pairs in the Kinase family. Family and non-family matches are
shown in blue and red, respectively. (A) Neighborhood Correlation
scores, (B) BLAST scores, and (C) PSI-BLAST scores.
doi:10.1371/journal.pcbi.1000063.g006

Figure 5. Rank plots for the query sequence PDGFRB. Family and
non-family matches are shown in blue and red, respectively. Matches with
the Kinase PRKG1B and the non-Kinase NCAM2 are indicated by magenta
and green circles. Scores of matching sequences ranked by (A)
Neighborhood Correlation score, (B) BLAST score, and (C) PSI-BLAST score.
doi:10.1371/journal.pcbi.1000063.g005
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PSI-BLAST
As expected, PSI-BLAST excels at families with low sequence

conservation, such as TNF and USP, and generally performs well

on single domain families. However, PSI-BLAST falters on

complex multidomain families and on sequences with promiscuous

domains. PSI-BLAST’s average ROC-100k scores for both

conserved and variable multidomain families are inferior to those

of both Neighborhood Correlation and BLAST. This is exempli-

fied by PSI-BLAST’s poor performance (Figure 5B) when

querying with PDGFRB, which has two copies of the highly

promiscuous Ig domain. PSI-BLAST’s iterative profile construc-

tion algorithm incorporates matches to the highly promiscuous Ig

domain in the growing alignment, even when a very stringent

inclusion threshold (E,10213) is used. As a result, unrelated

sequences that contain Ig domains match the resulting profile with

better scores than Kinases without Ig. PSI-BLAST performs better

on the Kinase family as a whole than it does on PDGFRB (Table 3)

because many Kinases are single domain proteins.

When classification of heterogeneous data is considered, PSI-

BLAST’s performance is inferior to Neighborhood Correlation on

the ALL dataset and to both Neighborhood Correlation and BLAST

on the ALL-Kin dataset. This demonstrates that no single PSI-

BLAST cutoff is suitable for all families. Indeed, inspection of PSI-

BLAST output on individual queries (data not shown) indicates that

PSI-BLAST scores tend to vary widely from family to family. PSI-

BLAST introduces a clear tradeoff between sensitivity and

generality, to the particular detriment of large-scale studies.

Moreover, PSI-BLAST is characterized by greater instability and

running time than BLAST or Neighborhood Correlation.

Domain Architecture Comparison
Domain architecture comparison performs well on single

domain families and on multidomain families with conserved

domain architectures (e.g., DVL, Notch, Laminin, and WNT).

Like PSI-BLAST, DAC can recognize distant homology because

domain architectures are recognized by MSA-based models. The

performance of DAC on other families is mixed, however, because

it faces a number of challenges that do not arise with the other

classification methods.

First, all domain architecture comparison methods are substan-

tially restricted by the limitations of domain detection. In our

dataset, 12.7% of sequences do not have domain annotations,

resulting in low ROC-100k scores for many families. This explains

why single domain families, such as Tbox, which have identical

domain architectures, do not achieve perfect ROC-100k scores,

contrary to expectations. An additional shortcoming is that

domain architecture comparison methods do not capture

information in linker sequences or sequence variation within a

domain family. Therefore, domain architecture comparison tends

to assign the same score to pairs that actually differ in sequence

divergence. This explains the long plateaus in the ROC curve for

DAC in Figure 7.

A particularly challenging problem for domain architecture

comparison is how to effectively distinguish domains that

proliferated through gene duplication from promiscuous domains

that proliferated through domain shuffling. The number of domain

partners, used here, is a typical measure of promiscuity, based on

the assumption that this measure reflects the frequency of domain

insertion [48]. This measure of promiscuity will inappropriately

down-weight a domain that characterizes a family, if the domain

happens to be the target of insertions of many other domains.

Consider, for example, a sequence with a single domain A that

sustains repeated duplication, followed by insertion of different

domains into the resulting copies, yielding AB, AC, AD, and so on.

Domain A will have a high promiscuity score, although it is never

inserted into new contexts. As a concrete example, the Pkinase

domain partners with more than 100 different domains. However,

the resulting high promiscuity score may be inappropriate since

Pkinase lacks many of the other characteristics of promiscuous

domains, such as small size and 1-1 phase [17], and is important in

defining the Kinase family. This explains why domain architecture

comparison performs poorly on the Kinase family.

Alignment Coverage
To assess the effectiveness of alignment coverage in eliminating

domain-only matches, we compared ROC-100k scores for

sequence similarity alone and combined with alignment coverage

(a, see Methods). We considered three alignment coverage

thresholds, a$0.3, a$0.6, and a$0.8, that span the range of

length cutoffs used in the literature (e.g. [32,34]). The results

(Table 4) show that the addition of an alignment coverage criterion

does not improve the performance of sequence similarity. For

example, a cutoff of a$0.3 reduces the ROC-100k score by 25% in

the ALL dataset and 23% in the ALL-Kin dataset. When families

are considered individually, a cutoff of a$0.3 decreases the ROC-

100k score by at least 10% in one-third of the families. Increasing

the cutoff to a$0.6 or a$0.8 does not increase performance in any

family. Note that although the ROC-100k score for KIR when

a$0.6 is higher than the score for sequence similarity alone, this

difference is not significant (p = 0.69).

Alignment coverage is based on the assumption that non-

homologous pairs have shorter regions of similarity than

homologous pairs, yet Table 4 suggests this is not universally

true. To assess the extent to which the region of similarity in

homologous pairs extends over the bulk of their length, we

calculated Precision and Recall (see Methods) for a$0.3, a$0.6,

and a$0.8. The results, shown in Tables 5 and Table S1, suggest

that full length alignments are not a characteristic property of

homologous families, at least in our dataset. In the ALL-Kin

dataset, a cutoff of a$0.3 eliminates 40% of true positives,

specifying a$0.6 eliminates 70% of true positives, and a$0.8

eliminates 83% true positives. The loss in Recall is even more

extreme in the ALL dataset.

To better understand these results, we plotted histograms of a
for individual families (Figures 8, S4). While some families do have

Figure 7. ROC-100k curves for the Kinase family for all
classification methods tested. ROC-100k curves of Neighborhood
Correlation (blue), BLAST (red), PSI-BLAST (magenta), DAC (purple) and
alignment coverage (a$0.3: green, a$0.6: yellow, a $0.8: orange).
doi:10.1371/journal.pcbi.1000063.g007
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long regions of similarity, long conserved regions are not a

persistent characteristic of most families in our dataset. Several

different trends in domain organization can cause this. Some

families are characterized by a short, conserved domain, such as

the DNA binding domain in the FOX family, and little

conservation elsewhere (Figure 8A). Multidomain families exhibit

a range of alignment lengths for a variety of reasons. In families

characterized by a single defining domain partnered with a variety

of auxiliary domains, alignment lengths depend upon the number

of domains a given pair has in common. For example, the

histogram for the PDE family (Figure 8B) has a small peak near

a = 1.0, corresponding to pairs with identical domain architec-

tures, and a much larger peak between a = 0.2 and a = 0.7 that

represents pairs of family members with different auxiliary

domains. Families can also demonstrate wide variation in due to

Table 5. Precision and recall for predictions using optimal
and combined alignments.

a$0.3 a$0.6 a$0.8

Precision Recall Precision Recall Precision Recall

Optimal alignment

ALL 0.8810 0.4675 0.9556 0.0772 0.9893 0.0217

ALL-Kin 0.3775 0.6072 0.7853 0.2904 0.9758 0.1732

Combined alignments

ALL 0.8776 0.4777 0.9549 0.0787 0.9889 0.0220

ALL-Kin 0.3807 0.6528 0.7861 0.2999 0.9750 0.1771

doi:10.1371/journal.pcbi.1000063.t005

Table 4. ROC-100k scores for BLAST alone, and combined
with alignment coverage at thresholds of a$0.3, a$0.6, and
a$0.8.

BLAST a$0.3 a$0.6 a$0.8

ALL 0.5838 0.4295 0.0784 0.0236

ALL-Kin 0.7505 0.5756 0.2902 0.1747

Single domain families

ACSL 1.0000 1.0000 1.0000 1.0000

FGF 0.9920 0.9757 0.6002 0.1403

FOX 0.9996 0.3172 0.0635 0.0310

Tbox 1.0000 0.9740 0.1883 0.1136

TNF 0.3631 0.3588 0.2090 0.0814

USP 0.8666 0.3312 0.1230 0.0609

WNT 1.0000 1.0000 1.0000 1.0000

Mean 0.8888 0.7081 0.4549 0.3467

Multidomain families: conserved architecture

DVL 1.0000 1.0000 0.7755 0.2653

GATA 1.0000 0.8679 0.4097 0.3125

Notch 1.0000 1.0000 1.0000 1.0000

KIR 0.9971 0.9971 0.9973 0.7597

TRAF 1.0000 1.0000 0.8401 0.8403

Mean 0.9994 0.9730 0.8045 0.6356

Multidomain families: variable architecture

ADAM 0.9830 0.9372 0.8772 0.4744

Kinase 0.6164 0.4384 0.0704 0.0176

Kinesin 0.9806 0.7644 0.1582 0.0842

Laminin 0.9245 0.5681 0.2836 0.1640

Myosin 0.9870 0.8804 0.4482 0.2682

PDE 0.7565 0.7311 0.1960 0.1424

SEMA 0.9983 0.9998 0.6409 0.3493

TNFR 0.5607 0.3927 0.0703 0.0453

Mean 0.8509 0.7140 0.3431 0.1932

doi:10.1371/journal.pcbi.1000063.t004

Figure 8. Alignment coverage distributions for representative
families. Histograms calculated with the optimal alignment length
only (FF: blue, FO: red) and with combined non-conflicting alignments
(FF: turquoise, FO: brown) (A) FOX, (B) PDE, and (C) Laminin.
doi:10.1371/journal.pcbi.1000063.g008
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differences in copy number (e.g., Laminin, Figure 8C). Finally, a

broad a distribution can be caused by variation in sequence length

within the family. Even when the length of the conserved region is

constant, alignment coverage, expressed as a fraction of total

length, may vary widely, confounding homology prediction

methods based upon alignment coverage.

Given the widespread use of alignment coverage criteria, we

were surprised by this poor performance. We examined the

possibility that our failure to observe a consistent pattern of long

alignments was due to the fact that we considered the length of the

optimal alignment, only. To investigate whether including sub-

optimal alignments would result in different conclusions, we

implemented a simple heuristic (see Methods) that identifies and

combines a consistent set of high-scoring local alignments; i.e.,

alignments that appear in the same order in both sequences and

do not overlap. Surprisingly, including suboptimal alignments in

the alignment coverage calculation has little impact on our results.

The distributions of the combined alignment lengths, shown in

turquoise and brown in Figures 8 and S4, differ little from the

distribution of optimal alignment length distributions (shown in

blue and red). Nor do the values of Precision and Recall obtained

with combined alignments differ greatly from those obtained with

the optimal alignment (see Table 5 and Table S2). In summary,

analysis with combined alignments confirms that full length

similarity is not a general characteristic of homologous families.

Discussion

Protein modularity allows the evolution of diverse function

through combinatorial rearrangement of functional building

blocks. This versatile evolutionary mechanism played a transfor-

mative role in key evolutionary transitions, including the

emergence of multicellular animals and the vertebrate immune

system. Identification of multidomain homologs is essential to

studying the evolution of modular families, as well as to many

genomic applications that exploit evolutionary information.

Two obstacles have impeded research on multidomain homol-

ogy: the absence of formal models and a lack of curated datasets of

multidomain homologs for evaluation of proposed methods. In the

current paper, we offer preliminary solutions to both problems: We

propose an evolutionary model and an associated definition of

homology suitable for multidomain proteins. We further provide a

curated test set of homologous mouse and human sequence pairs

from twenty well-studied families for which there is unambiguous

evidence that member sequences are derived from a common

ancestor. Our benchmark encompasses various challenges for

homology identification methods, including both conserved and

variable multidomain architectures, promiscuous domains, single

domain families with short regions of conservation, and families

with weak sequence conservation. It differs from other available

benchmarks in that it seeks to represent evolutionary, rather than

structural (e.g., SCOP [38]) or functional (e.g., GO [59])

information. This benchmark is available to the community

through the Neighborhood Correlation website.

Using our curated benchmark, we demonstrate that the most

widely used homology identification methods, BLAST, PSI-

BLAST, domain architecture comparison, and alignment cover-

age, all face serious limitations in their ability to recognize

multidomain homologs. In response, we introduce Neighborhood

Correlation, a method that uses a fundamentally different

approach to homology identification by deriving evolutionary

signal from the local structure of the sequence similarity network.

Following a discussion of our model within the historical

framework of models of homology, we place our results in the

perspective of similar problems and approaches. We discuss

Neighborhood Correlation in relation to other evolutionary

classifications, the needs of genomic applications and multiple

sequence alignment methods, and conclude by reviewing the

potential of networks in molecular evolution.

Model
Although models of gene family evolution have been proposed

and debated for more than three decades [18], models of

multidomain evolution are in their infancy. Gene homology is a

yes/no question: genes either share common ancestry or they do

not. With this in mind, Fitch [42] argued that when subsequences

of genes have distinct evolutionary histories, it is not possible to

determine gene homology. Rost and colleagues [45,63] further

proposed that ‘‘dissecting proteins into structural domain-like

fragments’’ [45] is the only reasonable way to study relationships

in such proteins. We suggest an alternative: By considering the

genomic context of genes that encode multidomain proteins, it is

possible to define homology for multidomain sequences without

violating the tenet that homology is an indivisible property.

We propose a model of multidomain evolution in which the set

of events by which sequences diverge is expanded to include

domain insertion and deletion as well as mutation. Recent

evidence from studies of young genes [50–53], as well as indirect

evidence of sequence shuffling [17,24,49,55,56], suggests that our

model is consistent with a significant fraction of metazoan

multidomain families. This model permits discrimination between

genes related by vertical descent and those related by domain

insertion alone, which is the basis for our definition of

multidomain homology. This in turn enlarges the scope of inquiry

from domain family homology to gene family homology, providing

a broader context in which to study the evolutionary processes by

which modular families are formed. Our model does not describe

families that evolved through other domain shuffling processes

such as gene fission, the fusion of adjacent genes resulting from

read-through errors, or de novo formation of novel architectures

through independent insertions in intergenic regions. Extending

the model to capture a broader range of domain shuffling

scenarios and testing it on other datasets and applications are

important directions for future work.

Comparison with Other Evolutionary Classifications
Evidence supporting the validity of our model can be obtained

by comparing Neighborhood Correlation with related classifica-

tions, such as orthology and domain homology. The success of

Neighborhood Correlation in recapitulating homologous relation-

ships in our benchmark empirically supports Neighborhood

Correlation as a predictor of homologous genes; that is, sequences

derived from a common ancestor by vertical descent, whether by

duplication or speciation. Since orthologs, sequences that diverged

by speciation in their most recent common ancestor, are by

definition homologs, our model predicts that known mouse and

human orthologs will have high Neighborhood Correlation scores.

To test this prediction, we compared Neighborhood Correlation

with KOGs [40]. As expected, 90% of sequences in our dataset

with the same KOG annotation have a Neighborhood Correlation

Score greater than 0.6 (Figure 9A). However, only 12% of pairs

with NC$0.6 share the same KOG annotation. This is consistent

with the observation that gene homology is a necessary but not

sufficient condition to establish orthology.

Domain homology, on the other hand, is a less stringent

criterion than gene homology. Homologous genes, by definition,

share at least one homologous domain. Of pairs with Neighbor-

hood Correlation scores above 0.6, 88% of pairs share at least one

Similarity Network Reveals Common Ancestry
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Pfam [41] code (Figure 9B), consistent with the assertion that gene

homology is a more stringent requirement than domain homology.

That the remaining 12% do not share a domain is primarily due to

missing annotations. Recall that 12.7% of sequences in our dataset

do not contain a recognizable Pfam domain.

Since only some sequences that share a domain are encoded by

homologous genes, our model predicts that a significant fraction of

sequence pairs that share homologous domains will not have high

Neighborhood Correlation scores. In fact, with NC$0.6, only half

of sequence pairs in our dataset share a Pfam domain. These

results are consistent with the expectation that gene homology is a

less restrictive condition than orthology but more restrictive than

domain homology. This analysis provides additional evidence,

independent of our curated dataset, that Neighborhood Correla-

tion can predict homologous genes according to our model.

Empirical Evaluation for Genome-Scale Analyses
Insight into the evolutionary processes responsible for the

development of novel function are of greatest value when

considered in the context of entire genomes. To accommodate

studies of such scale, a method must be suitable for robust,

automated analyses. For the current application, this requires

speed, ease of use, and consistent behavior across varied domain

architectures.

Neighborhood Correlation displays excellent performance

across an array of families with a range of sequence patterns

and evolutionary histories. Neighborhood Correlation is able to

correctly classify complex families, while maintaining accuracy

on simpler families. Further, it displays a classification threshold

that is robust with respect to family, yielding good performance

on individual families as well as on aggregate datasets in which

families may not be known or readily discernible. Since

Neighborhood Correlation can be computed easily with existing

computing resources and data stores, it is easy to add to a

computational workflow. These qualities demonstrate that

Neighborhood Correlation is well suited to large-scale genomic

analysis.

Empirical evaluation of existing homology detection methods

revealed limitations in their applicability, often contrary to

common expectations. Meticulous tests of BLAST and PSI-

BLAST performance have been carried out on well-characterized

datasets [58,62,64], but, to our knowledge, performance on

multidomain proteins with promiscuous domains and low

complexity regions has not been considered empirically. Our tests

on datasets with multidomain sequences, promiscuous domains,

and low complexity regions show that while BLAST represents an

attractive balance between speed and accuracy on conserved,

single-domain families, additional screening is needed for correct

multidomain classification.

Since Huynen and Bork [27] proposed that alignment length

could be used to reduce false positives in ortholog prediction, the

practice of pre-screening using an alignment coverage criterion

has become widespread in genomic analyses [28–37]. To

determine the effectiveness of this approach, we investigated the

two hypotheses underlying the use of alignment coverage:

1. The region of similarity in homologous sequence pairs covers a

significant fraction of their length.

2. The fraction of sequence length covered by the aligned region

is typically larger in homologous pairs than in unrelated

sequence pairs that share an inserted domain.

Surprisingly, the imposition of an alignment coverage require-

ment, in addition to sequence similarity, actually decreased the

accuracy of homology identification, suggesting that the above

hypotheses are not generally true. To our knowledge, this is the

first rigorous evaluation of alignment coverage.

Our study suggests that PSI-BLAST, while first-rate for detecting

remote homology, is ill-suited to large scale automated analyses on

datasets with complex multidomain architectures, promiscuous

domains, and low complexity sequences due to its running time,

instability, and family dependent score thresholds. The same

iterative strategy that confers PSI-BLAST’s increased sensitivity

leads to a lack of robust behavior when PSI-BLAST is run in an

automated manner. Even at extremely stringent inclusion thresholds,

false positives are incorporated in during model construction when

the query sequence contains promiscuous domains or low

complexity regions. Once a false positive is included, PSI-BLAST

rapidly degrades the MSA used in subsequent iterations, leading to

both incorrect results and excessively long running times. PSI-

Figure 9. Comparison of Neighborhood Correlation with other
classifications. (A) Venn diagram representing pairs with NC$0.6 that
share a KOG annotation (turquoise), pairs with NC$0.6 that do not
share a KOG annotation (blue), and pairs with NC,0.6 that share a KOG
annotation (yellow). (B) Pairs with NC$0.6 that share a Pfam domain
(turquoise), pairs with NC$0.6 that do not share a Pfam domain (blue),
and pairs with NC,0.6 that share a Pfam domain (green).
doi:10.1371/journal.pcbi.1000063.g009
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BLAST required 208 CPU days for our dataset, a 300-fold increase

in time over basic BLAST. This slowdown is associated with the

large fraction of promiscuous, multidomain, and low complexity

sequences in our dataset. When PSI-BLAST is used interactively, the

user can eliminate potentially troublesome matches by inspection;

however, human intervention is not possible for genome-scale

studies. The additional computational cost of calculating Neighbor-

hood Correlation scores once a BLAST search has been performed

is negligible. Though PSI-BLAST does offer accuracy improvement

over Neighborhood Correlation on families with conserved domain

architectures, these issues suggest that PSI-BLAST is impractical for

this or larger genomic studies.

Domain architecture comparison performs well on families with

low sequence conservation due to the discrimintatory power of

multiple alignment based domain models, yet our empirical

evaluation of DAC reveals several areas for improvement. Domain

architecture comparison can be compromised by faulty or

incomplete domain annotation. Failure to capture sequence

variation within domain and linker sequences results in an

inability to resolve family substructure. A model of promiscuity

that better captures domain mobility is needed to correctly classify

families defined by a single domain with many partners. Because

the sequence similarity network reflects both domain architecture

and sequence variation, Neighborhood Correlation avoids many

of these difficulties, including unresolved family substructure and

sensitivity to domain annotation. Neighborhood Correlation

captures modular organization on a range of scales, including

sequence motifs as well as structural domains, regardless of

whether these subunits are encoded in a database. In addition,

Neighborhood Correlation’s success on kinase classification,

relative to DAC, suggests that it may be possible to derive

accurate promiscuity measures from the network.

Neighborhood Correlation and Multiple Sequence
Alignment

Neighborhood Correlation differs fundamentally in both goals

and approach from Position Specific Scoring Matrices, Profile

hidden Markov models, PSI-BLAST, and similar methods that

exploit multiple alignments to detect distant homology. MSA-based

approaches are not suitable for detecting multidomain homologs

with varied architectures. These rely upon full length alignments that

are not possible with multidomain sequences. The objective of

multiple alignment methods is to identify related sequence motifs

when the signal to noise ratio is low. In contrast, the goal of

Neighborhood Correlation is to identify homologs that have

sustained domain insertions and deletions since their divergence.

Neighborhood Correlation also differs from methods based on

multiple alignment in its computational approach. Although both

approaches derive information from neighboring sequences, only

Neighborhood Correlation exploits the topology of the network.

MSA-based methods synthesize a model from a set of neighbors in

the sequence similarity network and then use the resulting

composite model in pairwise comparisons. Such models reflect

aggregate properties of the network neighborhood, but not the

underlying topological structure of the network. In contrast,

Neighborhood Correlation compares the edge weights for each

pair of shared neighbors separately, capturing not only neighbor-

hood membership, but also specific information about how

individual sequences in the neighborhood are related. Finally,

Neighborhood Correlation derives information from neighbor-

hood difference as well as from neighborhood similarity, taking

advantage of the fact that sequences that match one member of

the pair and not the other are informative.

Evolutionary Information in Similarity Networks
Neighborhood Correlation complements a recent set of studies

relating multidomain evolution to the global topological properties

of the domain similarity network [65–69]. Unlike these methods

we focus on local network structure as evidence of the evolutionary

history of specific sequence pairs and families. In an early use of

local network structure, Koonin and colleagues [40] argued that

orthologous groups correspond to cliques in the sequence

similarity network. In a similar vein, Przytycka and colleagues

[70,71] used a different aspect of local structure (chordality) to test

whether domain insertion and intron acquisition are evolving in a

parsimonious manner in a given family. In a recent study of

protein families in prokaryotes, Medini et al. [72] consider local

network structure, but do not relate it to evolutionary processes. In

their study, they developed a scoring system based on sets of

nearest neighbors in an unweighted network and used these

pairwise scores to identify core sets of proteins associated with

secretion systems in prokaryotes.

Neighborhood Correlation links local network structure to both

domain architecture and evolutionary process. The similarities and

differences in domain architecture are reflected in the neighborhoods

of adjacent sequences. The number and weights of edges in the

shared neighborhood is influenced by the number and conservation

of their shared domains. Their unique neighborhoods are similarly

influenced by their unique domains. The Neighborhood Correlation

score, therefore, is an implicit measure of both sequence similarity

and domain architecture comparison.

The history of gene duplication and domain insertion in gene

family evolution is also recorded in network topology. Neighbor-

hood Correlation is able to elucidate multidomain homology

because it can decipher the traces of this history in the network. In

particular, Neighborhood Correlation relies on the hypothesis that

the neighborhoods of genes related through duplication are more

similar to each other than the neighborhoods of genes related

through domain insertion. This hypothesis in turn assumes that

1. gene duplication occurs more frequently than domain

insertion, and

2. the promiscuity and sequence conservation of domain

superfamilies are inversely related.

There is concrete evidence to support the latter assertion as

indicated by the negative correlation between the promiscuity and

sequence identity of Pfam domains, discussed in Results. We are

not aware of any studies predicting the relative rates of gene

duplication and domain insertion. However, the success of

Neighborhood Correlation in classifying multidomain homologs

provides indirect evidence that the assertion is true, at least in the

dataset studied here. If, contrary to this hypothesis, domain

insertions occurred as or more frequently than gene duplications,

the Neighborhood Correlation scores of multidomain homologs

would not be distinctly higher than those of domain-only matches.

More generally, the success of Neighborhood Correlation has

demonstrated that information about the interplay of the processes

of gene duplication, domain shuffling, and sequence divergence

lies hidden in the local structure of the sequence similarity

network. This success suggests that mining network structures is a

promising direction for extending bioinformatics methodology, as

well as for asking basic questions about evolutionary processes. For

example, it has been argued that the increased complexity of

multidomain families in metazoans is directly related to the advent

of multicellular animals. Multicellularity has evolved several times

([73] and work cited therein). In each case, Nature has had to

evolve novel solutions to the problems of coordinated cellular
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communication and control. It is an intriguing question whether

the same patterns of gene duplication and domain insertion that

prompted the evolution of metazoan signal transduction families

also dominate in other lineages. Future work will determine

whether we can further exploit local organization of the sequence

similarity network to investigate such questions.

Methods

Data
We extracted all complete mouse and human protein sequences

from SwissProt Version 50.9 [74], yielding 11,553 mouse protein

sequences and 14,644 human protein sequences. Sequence

fragments were excluded from this set of sequences by rejecting

sequences annotated with a description field containing ‘‘(fragment’’.

We chose SwissProt, a high quality, curated protein sequence

database, as opposed to GenBank, which would have resulted in a

larger, but less reliable, dataset. KOG annotations were obtained

from the Clusters of Orthologous Groups database [40], available

from ftp://ftp.ncbi.nih.gov/pub/COG/KOG/. KOG annotations

were mapped to SwissProt identifiers by exact matching of KOG

FASTA protein sequences with those in SwissProt.

The analysis was carried out on the combined set of mouse and

human sequences. In a preliminary study, we compared the

performance of Neighborhood Correlation on a smaller, com-

bined set of mouse and human sequences with its performance on

separate sets of mouse and human sequences [75] to determine

whether Neighborhood Correlation performs differently on

comparisons within and across genomes. The mouse-only and

human-only data test the ability to classify paralogs within a single

mammalian species, as opposed to the combination of orthologs

and paralogs seen in the combined dataset. The basic trends in the

mouse-only and human-only datasets were the same as the

combined dataset for all tests performed. This suggests that

Neighborhood Correlation performance is not highly sensitive to

the degree of sequence divergence, since paralogous and

orthologous sequences in these species exhibit different patterns

of divergence.

Family Identification
For each family, we derived a list of designated gene symbols,

Pfam [41] and/or InterPro [76] codes from publications by family

experts, and reports from the Human Genome Nomenclature

Committee (http://www.gene.ucl.ac.uk/nomenclature/genefamily.

html). These lists were used to generate a preliminary roster for each

family, then confirmed by referring to recent analyses of gene family

evolution in the literature. A detailed account of the curation

procedure for each family with specific identification criteria and

references is given in Text S1. SwissProt accession numbers for all

sequences in the twenty families are provided in Dataset S1.

Sequence Comparison
We conducted all-against-all BLAST (Version 2.2.15) [61] and

PSI-BLAST (Version 2.2.16) [58] searches for the sequences in

our dataset, using the BLOSUM 62 matrix, an affine gap penalty

of 2(11+k) for a gap of length k, and low complexity filtering. For

both searches, the size of the search space was set to Y = n2 and the

significance threshold to E = 10N, where n is the size of the

database in residues and N is the number of sequences in the

dataset.

The combined dataset has N = 26,197 sequences, 11,553 mouse

and 14,644 human sequences, corresponding to a total of

n = 14,073,417 residues. For PSI-BLAST, four passes were

executed with an inclusion threshold of E,10213 for inclusion

in the multiple alignment used to search in the next pass. Although

this cutoff is much more stringent than the default, we found it

essential to obtain correct results with sequences containing low

complexity regions. Less stringent thresholds resulted in the

inclusion of unrelated sequences in the intermediate PSSM.

Asymmetries (i.e., E(x,y)?E(y,x)) that occur due to low complexity

filtering [77], which is applied only to the query sequence but not

to database sequences, were corrected by assigning the better of

the two values to both matrix entries. The resulting dataset had

4,864,226 significant BLAST pairs and 10,854,626 significant PSI-

BLAST pairs.

The parameter values used in this study embody the view that

an all-against-all BLAST search is a single experiment. This

approach is roughly equivalent to conducting N single query

BLAST searches with E = 10 and Y = mx n, where mx is the length

of query sequence x. Treating the all-against-all BLAST

comparison as a single experiment results in symmetric E-values

in the absence of low complexity filtering. We define h(x,y) =

E(x,y)/10N to be the expected number of chance hits per sequence

in the dataset with a score equivalent to, or better than, that of the

alignment of query sequence x with matching sequence y. The

significance threshold of E = 10N corresponds to h = 10 chance hits

per sequence, in expectation.

Neighborhood Correlation Score Calculation
We calculated the Neighborhood Correlation scores for all

sequence pairs in our dataset from Equation 1 using the similarity

score,

S x,ið Þ~ log10

zmin if h x,ið Þ§10

z x,ið Þ otherwise:

�
ð2Þ

where z(x,i) is the normalized bit score [58] of the alignment of x

and i and zmin(x,i) = log2(n2/10N)*0.95 = 28.019, which is 5% less

than the bit score corresponding to h = 10 for a dataset of the size

used in this study.

The effectiveness of Neighborhood Correlation depends strongly

on how the similarity score, S(x, i), is defined. We considered three

measures of similarity: S(x,i) = log z(x,i), S(x,i) = z(x,i) and an

unweighted comparison of neighborhood membership defined as

S(x,i) = 1 if there is a significant match between x and i, and zero

otherwise. Although the other two measures performed well on

some families, only S(x,i) = log z(x,i) gave consistent, good perfor-

mance on a wide range of families. This suggests two factors that

may be important to Neighborhood Correlation performance.

First, the relatively poor performance of the unweighted score

indicates that it is necessary to capture differences in the degree of

similarity to sequences in the neighborhood to capture complete

evolutionary information. Second, the improved performance

obtained with S(x,i) = log z(x,i) can be understood by recalling that

the correlation coefficient captures only linear associations. The use

of the logarithm compresses the range of z(.,.), resulting in scores

that more closely approximate linearity.

The choice of zmin, the score assigned to pairs without significant

similarity, may influence Neighborhood Correlation performance

in homology identification. We experimented with values of zmin

corresponding to significance thresholds ranging over two orders

of magnitude. The results (data not shown) suggest that varying

zmin has little impact on Neighborhood Correlation.

Promiscuity and Sequence Identity
Promiscuity refers to the tendency of domains to be inserted into

many different contexts. Typically, promiscuity of a domain is
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defined as the number of distinct partners associated with it, where

two domains are partners if they co-occur in at least one sequence

[3]. We obtained the set of Pfam codes associated with all

sequences in our dataset from the SwissProt database. For each

Pfam domain, we determined the number of distinct Pfam codes

that co-occur with it in any of the 26,197 sequences in our dataset.

We further obtained percent sequence identity for each Pfam

identifier from the Pfam website. The Spearman ranked

correlation coefficient of domain promiscuity and sequence

identity was calculated to evaluate whether promiscuity and

sequence identity were related.

Domain Architecture Comparison
We conducted an all-against-all domain architecture compar-

ison using the Pfam identifiers provided by SwissProt. Similarity of

each pair of sequences, x and y were calculated as follows:

DAC x,yð Þ~
P

i w di,xð Þw di,yð ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
i w di,xð Þ2w di,yð Þ2

q ð3Þ

where w(di,x) is the weight of domain di in sequence x. Domains are

assigned weights inversely proportional to their promiscuity.

Promiscuous domains may occur in many unrelated sequences,

and so are less useful than relatively rare domains in determining

homology. The weight of a domain not contained in a given

sequence is zero. As a result, pairs of sequences which share no

domains are assigned a similarity of zero. This domain

architecture comparison function corrects for the bias of

proteins with many domains. Proteins with numerous domains

have an elevated probability of sharing a domain with other

proteins. Of the 21 domain architecture comparison methods we

evaluated in a previous study [23], this was shown to have the best

performance.

Alignment Coverage
For every pair of sequences, x and y, with significant similarity,

we calculated the alignment coverage, defined as a(x,y) =

2la/(lx+ly), where lx and ly are the length of sequences x and y,

and la is the length of the optimal local alignment, define to be the

number of columns needed to represent it; that is, it includes

gapped positions. The length of the optimal alignment between

query x and match y will not, in general, be the same as the length

of the optimal alignment between query y and match x. We forced

the alignment coverage to be symmetric by setting both a(x,y) and

a(y,x) to the maximum of the two values.

By considering only the optimal alignment, we risk underesti-

mating the extent of similarity between homologous sequences. To

take suboptimal alignments into account, we used a simple

heuristic method for selecting a set of high-scoring local alignments

that do not conflict. Two alignments conflict if they overlap or do

not appear in the same order in both sequences (see Text S1).

Validation
Classifier performance was evaluated using Receiver Operat-

ing Characteristic (ROC), which captures the tradeoff between

sensitivity (Sn) and specificity (Sp) as a function of the classifier

threshold. A ROC curve is a plot of Sn as a function of 12Sp,

where Sn = TP/(TP+FN) and Sp = TN/(TN+FP). TP, FP, TN, and

FN refer to the number of True Positives, False Positives, True

Negatives, and False Negatives, respectively. In the context of

our test, TP is the number of sequence pairs that have common

ancestry and have been correctly identified by the classifier. FP

represents the number of pairs that are classified as homologs,

but are not family pairs. TN and FN refer to the number of non-

homologous pairs that are correctly ruled out and incorrectly

included, respectively.

The area under the ROC curve provides a single measure of

classification accuracy, corresponding to the fraction of correctly

classified entities given the best possible choice of threshold. We

used the ROC-n score, defined to be the area under the ROC curve

truncated after the first n false positives or

Rn~
1

nT

Xn

i

ti ð4Þ

where ti is the number of FF pairs observed before the ith FO pair and

T is the total number of FF pairs in the dataset. When the number of

negative examples far exceeds the number of positive examples, as is

the case here, the ROC score approaches one, resulting in an

unjustifiably optimistic assessment of classifier performance. Rn is a

more sensitive figure of merit than the untruncated ROC score in this

case [78]. We selected n = 100k, where k is the number of FF pairs.

This is equivalent to 100 false positives per query. We found that

100k was sufficiently large so that few FF pairs were missed in most

tests but not so large so as to obscure the differences in performance

between classifiers.

The statistical significance of the difference between the ROC-n

scores obtained by Neighborhood Correlation and sequence

similarity was estimated using p-values calculated using the

method described in Schaffer et al. [62]. This method tests the

null hypothesis that the difference in ROC-n scores is due the

sampling process used to obtain the test data. Rejection of the null

hypothesis indicates that the difference in ROC-n scores represents

a true difference in the performance of the classifiers.

Precision and Recall are also used for evaluation. In the context of

our test, Recall denotes the fraction of homologous pairs retrieved

and is equivalent to sensitivity. Precision refers to the fraction of

protein pairs retrieved that are actually homologous pairs.

Supporting Information on Our Website
http://www.neighborhoodcorrelation.org

N FASTA sequences for all 26,197 human and mouse sequences

used in our study.

N The complete set of sequences in each family of our manually

curated benchmark.

N A list of Pfam annotations for each sequence used in our study.

N The complete set of NC scores for all sequence pairs.

N Novel predictions of mouse and human homologs using our

method (NC$0.6).

Accession Numbers
The accession numbers used in this paper are from Swiss Prot

(http://www.ebi.ac.uk/swissprot): human PDGFRG (P09619),

human PRKG1B (P14619), and mouse NCAM2 (O35136).

Accession numbers for all 1577 sequences in the twenty families

in our benchmark are given in Dataset S1.

Supporting Information

Figure S1 ROC-100k curves for all families. ROC-100k curves

of Neighborhood Correlation (blue), PSI-BLAST (magenta), DAC

(purple), and BLAST sequence similarity with alignment coverage

thresholds of a$0.0 (red), a$0.3 (green), a$0.6 (yellow), and

a$0.8 (orange) for all families.

Found at: doi:10.1371/journal.pcbi.1000063.s001 (0.15 MB PDF)
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Figure S2 Distributions of BLAST and NC scores for all

families. (FF: blue, FO: red).

Found at: doi:10.1371/journal.pcbi.1000063.s002 (0.04 MB PDF)

Figure S3 Distribution of Neighborhood Correlation scores for

all sequence pairs.

Found at: doi:10.1371/journal.pcbi.1000063.s003 (0.00 MB PDF)

Figure S4 Distributions of alignment coverage for all families.

Distributions of alignment coverage calculated with the optimal

alignment length only (FF: blue, FO: red) and with combined non-

conflicting alignments (FF: turquoise, FO: brown) for all families.

Found at: doi:10.1371/journal.pcbi.1000063.s004 (0.03 MB PDF)

Table S1 Precision and Recall for predictions using simple

alignment coverage thresholds of 0.3, 0.6, and 0.8 for all families.

Found at: doi:10.1371/journal.pcbi.1000063.s005 (0.07 MB

DOC)

Table S2 Precision and recall for predictions using combined

alignment coverage thresholds of 0.3, 0.6, and 0.8 for all families.

Found at: doi:10.1371/journal.pcbi.1000063.s006 (0.07 MB

DOC)

Dataset S1 Curated Benchmark.

Found at: doi:10.1371/journal.pcbi.1000063.s007 (0.02 MB TDS)

Text S1 Supporting Text.

Found at: doi:10.1371/journal.pcbi.1000063.s008 (0.09 MB

DOC)
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