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Abstract

The evolution of transcriptional regulatory networks has thus far mostly been studied at the level of cis-regulatory elements.
To gain a complete understanding of regulatory network evolution we must also study the evolutionary role of trans-
factors, such as transcription factors (TFs). Here, we systematically assess genomic and network-level determinants of TF
evolutionary rate in yeast, and how they compare to those of generic proteins, while carefully controlling for differences of
the TF protein set, such as expression level. We found significantly distinct trends relating TF evolutionary rate to mRNA
expression level, codon adaptation index, the evolutionary rate of physical interaction partners, and, confirming previous
reports, to protein-protein interaction degree and regulatory in-degree. We discovered that for TFs, the dominant
determinants of evolutionary rate lie in the structure of the regulatory network, such as the median evolutionary rate of
target genes and the fraction of species-specific target genes. Decomposing the regulatory network by edge sign, we found
that this modular evolution of TFs and their targets is limited to activating regulatory relationships. We show that fast
evolving TFs tend to regulate other TFs and niche-specific processes and that their targets show larger evolutionary
expression changes than targets of other TFs. We also show that the positive trend relating TF regulatory in-degree and
evolutionary rate is likely related to the species-specificity of the transcriptional regulation modules. Finally, we discuss likely
causes for TFs’ different evolutionary relationship to the physical interaction network, such as the prevalence of transient
interactions in the TF subnetwork. This work suggests that positive and negative regulatory networks follow very different
evolutionary rules, and that transcription factor evolution is best understood at a network- or systems-level.
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Introduction

The study of regulatory network evolution has so far mostly

concentrated on cis-regulatory variation, such as the loss or gain of

transcription factor (TF) binding sites in the promoter region of a

gene. But trans-level variations are known to account for a

significant amount of the expression variation between yeast

strains [1]. TFs are central to decision making in cells, with roles

ranging from environmental adaptation in unicellular organisms

to controlling cellular differentiation and endocrine response in

higher eukaryotes. TFs’ unique role might have been exploited by

evolution to modulate the activity of entire pathways or re-wiring

of the cellular network. An example of pathway activity

modulation is the shutdown of the flagellar pathway in non-motile

bacterial species through the deletion of the TF activating the

pathway [2]. An example of network rewiring through TF protein

evolution is how a mutation in Ubx, a Hox protein, led to the loss

of a subset of its targets, and is believed to have allowed the

transition to a hexapod body plan [3,4]. Attesting to the usefulness

of trans-level variation in evolutionary adaptation is the observation

that TFs underwent significantly more positive selection along the

human and chimp lineages than other genes [5] and significantly

more TFs had differential expression between the two species

[5,6].

The systematic mapping of molecular interactions between

pairs of proteins and between proteins and DNA has unveiled a

world of complexity not captured by a simple biological parts list.

A useful approach to better understand protein functions and

relations is to look at these networks through the lens of evolution.

Evolutionary rate, typically defined as the ratio of non-synony-

mous to synonymous substitution rates (Ka/Ks), represents the

level of tolerance to mutations of proteins across evolution and can

reveal additional information about these networks. For example a

strong trend was discovered relating protein-protein interaction

(PPI) degree to evolutionary rate [7,8], which suggests that

physical interactions lead to evolutionary constraints on the

protein sequence. Such genome-wide trends however ignore the

underlying diversity of the many subnetworks which constitute the

global network. Since genes have very distinct functions in the cell

and often act together as functional modules, we might expect that

the global trends not always hold for all subnetworks. Recent work

by Jovelin et al. and by Wang et al. showed that the TF subnetwork

evolved distinctly from the global network between closely related

yeast species [9,10]. More specifically, it was found that the

number of physical interactors or transcriptional regulators

correlates much more positively with evolutionary rate than is

expected from the genome-wide trend. These previous studies

established that subnetworks can display trends which differ
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significantly from those of the global network and specifically

highlighted TFs as a uniquely evolving gene set.

However, no study to date has looked at how TF evolution may

be influenced by other factors that are known to be important in

the evolution of generic proteins, such as expression level or the

evolutionary rate of network neighbors. In an effort to better

understand the unique evolutionary properties of TFs, we

conducted a systematic comparison of key determinants of protein

evolutionary rate between TFs and generic proteins. The recent

increase in the number of fully sequenced species allows us to study

short term evolution, before the regulatory network has had much

time to rewire. We looked at the coding sequence evolution

between S. cerevisiae and its closest sequenced relative, S. paradoxus.

For S. cerevisiae, an extensively studied model species, we have

access to genome-wide protein-protein and protein-DNA interac-

tion networks, as well as mRNA expression datasets.

Transcriptional networks display extensive evidence of modu-

larity at the functional level. For example, it is well known that

metabolic enzymes participating in a common pathway are often

regulated by a common TF [11,12]. In multicellular organisms,

TFs are used to regulate tissue-specific gene expression and

execute specific developmental or stimulus response programs.

This functional modularity may be detectable at the evolutionary

level. To test this hypothesis, we examined how TF evolutionary

rate relates to the regulatory network structure, in particular how

the evolutionary properties of target genes influence TF evolution.

The average evolutionary properties of proteins regulated by a

common TF could serve as a proxy for the amount of selective

constraint acting on a transcriptional module. Since the role of a

TF is defined through its transcriptional target genes and the way

it regulates them, the selective constraint on a TF is expected to be

proportional to the selective constraint on the transcriptional

module it regulates. This network-centric function of TFs could be

at the source of their distinct evolutionary trends. Since the

transcriptional network is made up of a combination of activating

and repressive regulatory relationships, which could have funda-

mentally different effects on the evolution of TFs and other genes,

we also explored the effects of regulatory sign on TF-target

evolutionary relationships.

Results

The Effect of PPI Network Degree on TF Evolution
Protein-protein interactions (PPIs), by imposing additional

functions on the structure and interface residues of interacting

proteins, often lead to increased selective constraints on these

proteins [13]. This largely explains the empirical observation that

proteins with more binding partners tend to evolve at a slower rate

[7]. The slope of the correlation between network degree and

protein evolutionary rate can be interpreted approximately as the

average evolutionary pressure on proteins contributed by one

network edge, or interaction interface. This effect has been shown to

be different within the TF subnetwork than within the global

network [10]. Here, we re-examined the statistical significance of

the previous result using an improved method, described in detail in

the Methods section, which avoids specific biases by controlling for

the different average degree and evolutionary rate of TFs as

compared to generic proteins. We used the ratio of the non-

synonymous substitution rate (Ka) over the synonymous substitution

rate (Ks), or Ka/Ks, between S. cerevisiae and its closest known cousin

S. paradoxus, as a measure of protein evolutionary rate. As a

normalization step, we transformed evolutionary rate and PPI

degree into genome-wide ranks for all yeast protein-coding genes.

We then calculated the slope for the 174 TFs (list taken from [10])

and compared it to a distribution of slopes obtained from random

protein samples with the same average degree and evolutionary rate

as TFs to within 1% root-mean-square deviation (RMSD). Figure

S1 shows how genome-wide ranks are preserved when calculating

the slope for the TF subset to allow the relative incline to be

compared between TFs and generic proteins. We found that the

average effect of PPIs on TF Ka/Ks was significantly less

pronounced than expected from the sampling procedure, with a

p-value of 0.0085. Replacing the evolutionary rate with codon

adaptation index (CAI), which allows us to control for the effect of

expression, results in a p-value of 0.26, suggesting that expression

differences are not driving the different evolutionary rate trend.

Repeating the comparison using edges reported in two or more

independent experiments, which we term confirmed edges (CE),

returns a p-value of 0.0026, confirming that TF evolution is

differentially affected by PPI degree as compared to generic

proteins. The fact that the number of interaction partners does

not influence TF evolutionary rate as strongly as it does for other

proteins is potentially explained by the TF subnetwork’s enrichment

in transient interactions reusing the same binding interfaces, and

depletion of stable complex formations requiring a different binding

interface for each partner. Supporting this hypothesis, we used a

chi-square test and the Gene Ontology (GO) [14] term ‘‘protein

kinase activity’’ and showed that, compared to other proteins, a

significantly greater fraction of TF PPIs involve kinases (2.1-fold

enrichment; p = 1.87610261), which are known to bind transiently.

Another contributing factor could be the fact that TFs, which are

often bound to DNA, tend to interact with proteins which are

themselves bound to DNA. The greater proximity induced by this

tethering reduces the entropy of the unbound state, allowing the

protein-protein interaction to be mediated by a relatively weaker

binding affinity and thereby relaxing the level of selective constraint

imposed by these PPI interfaces. As support for this hypothesis, we

showed that a significantly greater fraction of TF PPIs are with

DNA binding proteins (2.2-fold enrichment; p = 9.06102218), using

a chi-square test and the GO term ‘‘DNA binding’’.

The Effect of Regulatory In-Degree on TF Evolution
Similarly to PPI degree, but with a much weaker correlation,

generic proteins with more regulators (higher in-degree) tend to

Author Summary

Transcription factors (TFs) are proteins which regulate the
expression of genes by interacting with DNA. Mutations in
TF protein sequences can affect the expression levels of
regulated genes throughout evolution. In this study, we
look into the factors which cause the different TFs in
baker’s yeast to be more or less tolerant of mutations
during recent evolution. This tolerance is measured as the
evolutionary rate, defined for each protein as the relative
rate of protein-changing DNA mutations over other
mutations (Ka/Ks). We found that the typical determinants
of protein evolutionary rate, such as expression level and
network interactions have a very different influence on TF
evolutionary rate. We found that TF evolutionary rate is
most highly correlated to the evolutionary properties of
the genes which they regulate and specifically genes
which they activate. We also show that TF evolutionary
rate predicts actual evolutionary expression differences of
regulated genes and we discuss some of the features
unique to TFs which likely contribute to their different
evolutionary trends, such as the types of protein-protein
interactions prevalent in the TF subnetwork or TFs’
potential role in adaptive evolution.

Determinants of Transcription Factor Evolution
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evolve slower. In contrast, the effect of regulatory in-degree on TFs

has been shown to be opposite, with each additional regulator

contributing on average towards faster evolution of the TF [10].

Using our new method and a regulatory network based on a

collection of ChIP-chip studies [15], we confirmed the earlier

finding that the slope relating TFs’ regulatory in-degree and

evolutionary rate is significantly more positive than expected by

chance (p = 0.0093, CAI p = 0.042, CE p = 0.0041). The opposing

trends relating in-degree and Ka/Ks for all proteins and TFs are

shown in Figure 1A and Figure 1B, respectively. To understand

why high in-degree TFs tend to evolve at a faster rate, we decided

to look at the genes they regulate. Although the median

evolutionary rate of target genes is not significantly associated to

the in-degree of regulators, we found that TFs’ in-degree

significantly correlates with the fraction of target genes which

are missing an ortholog in the comparison species (r= 0.20

p = 0.016; CE r= 0.21 p = 0.041), S. paradoxus. These results

suggest that the regulatory in-degree of TFs is tied to the species

specificity of the transcriptional modules they regulate. High in-

degree TFs may be more likely to undergo reduced negative

selection than low in-degree TFs because the impairment of their

regulatory functions is less likely to disrupt core processes. At the

Figure 1. Distinct evolutionary trends of TFs. Unlike average proteins, TF Ka/Ks correlates positively with regulatory in-degree and very poorly
with CAI and the evolutionary rate of PPI network neighbors. Ka/Ks is displayed as a function of regulatory in-degree (A–B), CAI (C–D) and median Ka/
Ks of interacting proteins (E–F) for all proteins (A,C,E) and TFs (B,D,F). Numbers above the bars represent the number of TFs/proteins in the bin.
doi:10.1371/journal.pcbi.1002734.g001

Determinants of Transcription Factor Evolution
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same time, high in-degree TFs may be more likely to undergo

enhanced positive selection because they tend to regulate more

species-specific functions.

The Effects of Expression Level, CAI and PPI Network
Neighbors on TF Evolution

Since the trends relating TF evolutionary rate to network degree

are significantly distinct from the genome-wide average, we

decided to probe whether TF evolutionary rate is differentially

affected by other well-known correlates, such as mRNA expression

level or the evolutionary rate of protein interaction partners. Using

our method, we compared the slope of TFs relating Ka/Ks and

mRNA expression level from RNA-seq in rich media [16] to the

slopes produced from random protein sets of the same size,

matched for average expression level and evolutionary rate (see

Methods). The results show that the trend relating TF Ka/Ks to

expression level is too flat to be due to chance (p = 0.0025), even

accounting for TFs’ lower average expression level. TF Ka/Ks is

also much less correlated than expected to CAI (p#0.0001), a

commonly-used surrogate for expression level. This suggests that

expression level imposes weaker selective constraints on TFs than

on other genes. A similar lack of correlation is also apparent

between TF Ka/Ks and the median Ka/Ks of protein-protein

interaction (PPI) partners. TF Ka/Ks is too weakly correlated to

that of its PPI network neighbors to be the result of chance

(p#0.0001). This difference is probably related to the greater

fraction of TFs involved in transient interactions and thus less

likely to co-evolve with their interaction partners. These results

demonstrate yet again that TFs are subject to a unique set of

evolutionary pressures. Figure 1 shows some of the most striking

differences in TF evolutionary rate correlations. In addition to

other explanations, it is possible that TF evolutionary rate shows

weaker correlation to many features because of the dominant

influence of other determinants on TF evolution, such as their role

in the regulatory network.

The Effect of Target Gene Evolutionary Rate on TF
Evolution

To understand the evolutionary behavior of TFs, it is imperative

that we study the evolution of their target genes. The function of

TFs is inherently expressed through the regulation of their target

genes and this network-centric role of TFs might be what

distinguishes their evolution from that of other proteins. Using

the ChIP-chip based regulatory network and Spearman’s rank

correlation coefficient (r), we asked whether median target

evolutionary rate was predictive of TF evolutionary rate. As

shown in Figure 2A, we discovered that the evolutionary rate of

TFs significantly follows the median rate of its target genes

(r= 0.25, p = 0.0033), suggesting that TFs and their target genes

constitute co-evolving modules. Figure S2A shows that the

correlation holds using Ka/Ks values obtained from comparing

S. cerevisiae to its next closest sequenced cousin, S. mikatae (r= 0.23,

p = 0.0059). We also confirmed the significance of this effect using

the network of confirmed edges (r= 0.23, p = 0.020) and using an

alternative regulatory network based entirely on literature curation

of small-scale experimental studies [15] (r= 0.26, p = 0.0018),

henceforth referred to as the literature curated network. As shown

in Figure S3, Ka/Ks itself cannot be used to predict regulatory

interactions in general, but it does provide some predictive power

in the TF subnetwork (predicting TFs that regulate TFs).

Furthermore, we show that targets of the same TF in the network

of confirmed edges tend to have closer than expected evolutionary

rates (p = 0.011) and mRNA expression levels (p = 1.1361024),

using the Wilcoxon rank-sum test (see Methods for details) than

targets of different TFs. Although the co-evolution of co-regulated

genes is easily explained by their similar expression levels, the co-

evolution of TFs and their target genes indicates that TF evolution

is directly influenced by their position and role in the regulatory

network.

The Effect of Target Gene Loss or Gain on TF Evolution
Evolutionary rate is not the only evolutionary measure of

protein importance. We also looked at the fraction of target genes

missing an ortholog in the closest yeast species, S. paradoxus,

indicating the gene was either lost in S. paradoxus or gained in S.

cerevisiae. We discovered that the fraction of target genes missing in

S. paradoxus is correlated to TF evolutionary rate (r= 0.22,

p = 0.0091; Figure 2B). The correlation was confirmed using S.

mikatae as the comparison species (r= 0.23, p = 0.0081), as

displayed in Figure S2B. The result also holds using the network

of confirmed edges (r= 0.24, p = 0.021) and the alternative

literature curated network (r= 0.24, p = 0.0042). These results

suggest that the evolutionary rate of TFs is tied to the species

specificity of the transcriptional modules they regulate. TFs

regulating species-specific modules tend to evolve faster, as a

result of either relaxed negative selection or enhanced positive

selection.

The Relative Contribution of TF Evolutionary Rate
Correlates

In addition to separately assessing the genomic and network

correlates of TF evolutionary rate, it is important to compare their

Figure 2. TFs and their targets co-evolve as modules. Each data
point is based on a TF with 3 or more targets. (A) TF Ka/Ks as a function
of the median Ka/Ks of target genes. (B) TF Ka/Ks as a function of the
fraction of target genes missing an ortholog in S. paradoxus (lost in S.
paradoxus or gained in S. cerevisiae). Numbers above the bars represent
the number of TFs in the bin.
doi:10.1371/journal.pcbi.1002734.g002

Determinants of Transcription Factor Evolution

PLOS Computational Biology | www.ploscompbiol.org 4 October 2012 | Volume 8 | Issue 10 | e1002734



relative contributions to identify the most dominant determinants

of TF evolutionary rate, and whether they differ from those of

generic proteins. Figure 3 shows the Spearman’s rank correlation

coefficients (r) relating different genomic and network properties

to Ka/Ks for TFs and for all proteins. This figure clearly shows

how features like expression, CAI, which is tightly coupled to

expression [17], and PPI degree dominate the evolutionary rate

determinant landscape of average proteins. In contrast, median

target Ka/Ks dominates the TF landscape, with other regulatory

network properties playing an important role, such as in-degree,

median regulator Ka/Ks and the fraction of target genes missing in

S. paradoxus. This shows that the regulatory network structure is the

most important factor determining TF evolutionary rate, suggest-

ing that the function and evolution of TFs is primarily defined at

the network level. The dominance of this so far overlooked

relationship between TF and target evolution could also poten-

tially explain the eccentricity of other TF evolutionary trends. The

observation that TFs have significantly different evolutionary rate

determinants was confirmed individually for each variable earlier

in the Results section, using sampling of random proteins and

rigorous statistical tests as described in the Methods section.

In contrast to random samples, other functionally defined

subsets of proteins may also possess a different landscape of

evolutionary rate determinants. As case examples, Figure S4 shows

the same evolutionary rate determinant correlation coefficients for

the 240 proteins in the GO term ‘‘signal transduction’’ and for 540

metabolic enzymes taken from the YeastCyc database [18]. We

see that these functionally defined categories have similar overall

evolutionary rate determinant profiles to that of generic proteins in

Figure 3, with abundance and PPI degree dominating the

landscape, suggesting that TFs are unique in this regard among

functionally defined protein subsets. The only notable exception is

the lack of correlation between signal transduction protein Ka/Ks

and its median interactor Ka/Ks, which is consistent with our

theory that this effect in TFs may be related to the transience of

many interactions in the subnetwork.

   

 

 

 

 

      

 
   

                            

     
 

 

 

      

 

 

 
  

Figure 3. Comparison of different genomic and network features influencing TF and protein evolutionary rate. For each determinant,
absolute Spearman’s rank correlation coefficient (r) for TFs is displayed on the left and for all proteins, on the right, with the color of the box
representing the direction of the trend. The * indicates the most dominant correlation for each protein set. While CAI is the dominant correlate with
Ka/Ks for generic proteins, target gene Ka/Ks is the strongest correlate for TF Ka/Ks.
doi:10.1371/journal.pcbi.1002734.g003
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Controlling for Potential Relationships between Other TF
and Target Properties

Since target Ka/Ks is apparently the strongest determinant of TF

evolutionary rate, it is important to look for potential relationships

between key TF and target properties, such as mRNA expression

level and PPI degree, to rule out potential confounding effects.

Table S1 shows the Spearman’s rank correlation coefficients

relating different TF and target properties. We have repeated each

one of these correlations using the network of confirmed edges and

using the literature curated network [15], the results of which are

shown in Tables S2 and S3, respectively. This analysis reveals that

median target Ka/Ks remains the strongest predictor of TF Ka/Ks

over other important target properties.

Since TFs are often regulated post-translationally, target gene

expression has been used in studies to estimate the level of TF

activity [19,20]. Although consistently negative, the correlation

between target expression and TF Ka/Ks was only found to be

significant using the literature curated network. This result

suggests that TF activity as estimated from target gene expression

cannot be the only driving force behind the modularity of TF-

target evolution. Further studies are needed to investigate the role

of TF activity in determining TF evolutionary rate.

TF Evolution and Target Gene Function
Having found that TF evolutionary rate is related to the

evolutionary rate and species-specificity of target genes, we may

expect a similar relation between TF evolutionary rate and target

gene function. We looked for enrichments of large GO terms

(involving 50 or more target genes) in the targets of the 25% fastest

evolving TFs with targets, as compared to targets of other TFs

using Fisher’s exact test. Table 1 shows the enrichments with a p-

value below 0.05. Most GO terms that were significantly enriched

in targets of fast evolving TFs are indicative of niche-specific

functions, such as transporter activity, oxidation-reduction pro-

cesses, and localization to the extracellular region, plasma

membrane or cell periphery, as well as categories likely to show

niche-specific expression, like carbohydrate metabolism. Most

interestingly, we found that fast evolving TFs were also more likely

to regulate other TFs, suggesting that the hierarchical structure of the

regulatory network may be exploited by adaptive evolution. Table

S4 shows the enrichments found in targets of the other, slower

evolving, TFs for comparison. It features terms representing more

central and environment-independent functions, such as ribosomal

or RNA processing functions and intracellular, organellar or nuclear

localization. These results suggest that TF evolution potentially

serves as a mechanism for species-specific environmental adaptation

through its effect on the expression of multi-gene modules.

TF Evolution and the Evolution of Target Gene
Expression

The role of trans-regulatory gene evolution on gene expression is

inherently more difficult to study than cis-regulatory evolution

since the former requires knowledge of the regulatory network

structure. To confirm that the evolutionary rate of TFs is related to

measurable trans-regulatory changes in the gene expression of

target genes, we used previously published RNA-seq data from

both S. cerevisiae and S. paradoxus [21]. Using the network of

confirmed ChIP-chip edges, we found that targets of the top 25%

fastest evolving TFs had, on average, larger expression differences

between the two species than targets of other TFs, as shown in

Figure 4 (t-test p = 0.00013, see Methods for details). This result

confirms that TF evolutionary rate can serve to predict real trans-

regulatory expression changes of gene modules, which could in

turn lead to important phenotypic effects.

The Effect of Regulatory Sign on TF-Target Co-evolution
Regulatory networks are composed of two inherently distinct

edge types, activating (or positive) edges and repressive (or

Table 1. Go terms significantly enriched in targets of 25% fastest evolving TFs as compared to targets of other TFs.

Functional Term GO ID # of Genes Fold enrichment p-value

fungal-type cell wall GO:0009277 75 1.56 0.00014

cell wall GO:0005618 77 1.54 0.00022

external encapsulating structure GO:0030312 77 1.54 0.00022

cell periphery GO:0071944 313 1.19 0.0036

extracellular region GO:0005576 63 1.43 0.0061

plasma membrane GO:0005886 214 1.22 0.0078

oxidoreductase activity GO:0016491 172 1.24 0.012

carbohydrate metabolic process GO:0005975 156 1.25 0.017

transporter activity GO:0005215 213 1.20 0.018

transmembrane transporter activity GO:0022857 178 1.21 0.020

substrate-specific transmembrane transporter activity GO:0022891 162 1.22 0.021

transcription factors, as taken from [10] NA 102 1.28 0.024

substrate-specific transporter activity GO:0022892 190 1.19 0.026

ion transmembrane transporter activity GO:0015075 89 1.29 0.031

sequence-specific DNA binding GO:0043565 123 1.24 0.033

ion transmembrane transport GO:0034220 93 1.27 0.035

alcohol metabolic process GO:0006066 102 1.28 0.036

carbohydrate biosynthetic process GO:0016051 51 1.42 0.036

transmembrane transport GO:0055085 204 1.17 0.046

doi:10.1371/journal.pcbi.1002734.t001
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negative) edges, which could potentially play divergent roles on the

evolutionary modularity of the network. We used previously

published TF knock-out microarray data [22] to infer the sign of

ChIP-chip based regulatory network edges. Using the microarray

fold-changes (see Methods for details), we were able to infer the

mode of regulation for 4,010 of the ChIP-chip regulatory edges,

2,628 activating and 1,382 repressive. By overlaying these two

datasets, we decomposed the network into positive and negative

regulatory subnetworks and studied how the mode of regulation

affects TF-target evolutionary relationships. For TFs with 5 or

more targets of the same regulatory sign, we found that median

Ka/Ks of activated targets significantly follows TF Ka/Ks

(r= 0.26, p = 0.0036), while median Ka/Ks of repressed targets

shows no significant correlation (r= 0.068, p = 0.46). We also

found that TF Ka/Ks predicts the fraction of activated targets

which are missing in the comparison species S. paradoxus (r= 0.29,

p = 0.0038) but not for repressed targets (r= 20.079, p = 0.52).

Table 2 shows the correlation coefficients and associated p-values

for activating and repressive networks, where transcriptional edges

are inferred either from ChIP-chip or from literature curation of

small-scale experimental studies [15]. As shown in Table 2, both

the significance of the activating edge relations and the lack of a

significant trend for repressive edge relations were confirmed using

the literature curated network. Figure 5 shows how activated and

repressed target evolutionary properties have a different effect on

TF Ka/Ks. These results demonstrate that TFs evolve in

synchrony with the targets they activate but not the targets they

repress.

Discussion

Protein sequence evolutionary rate provides a unique viewpoint

into both the importance and the functional relationships between

genes and proteins. In this study, we have demonstrated how the

function of TFs in the regulatory network is more important in

understanding TF evolution than any other property measured.

  

  

  

  

 
 

 

Figure 4. Targets of fast evolving TFs have larger expression
changes through evolution. The targets of the 25% fastest evolving
TFs, on the right, have on average larger absolute fold changes in
expression between S. cerevisiae and S. paradoxus than targets of other
TFs, on the left, as determined by RNA-seq. Numbers above the bars
represent the number of TFs in the bin.
doi:10.1371/journal.pcbi.1002734.g004

Figure 5. TFs co-evolve with activated targets, but not with repressed targets. Edge signs are inferred from TF knock-out expression data.
Each data point is based on a TF with 5 or more targets regulated in the same direction. (A) Median Ka/Ks of activated target genes as a function of TF
Ka/Ks. (B) Median Ka/Ks of repressed target genes as a function of TF Ka/Ks. (C) Fraction of activated targets missing an ortholog in S. paradoxus as a
function of TF Ka/Ks. (D) Fraction of repressed targets missing an ortholog in S. paradoxus as a function of TF Ka/Ks. Numbers above the bars represent
the number of TFs in the bin.
doi:10.1371/journal.pcbi.1002734.g005
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Demonstrating how TF sequence evolution plays an important

role in the evolution of gene expression, we have shown that

targets of fast evolving TFs are more likely to see their expression

change through evolution. We found that TF evolutionary rate is

determined by very different rules than that of generic proteins,

possessing a unique correlation to expression level, CAI, median

evolutionary rate of PPI network neighbors and, as previously

reported, to PPI degree and regulatory in-degree. This evidence

demonstrates how TFs are subject to their own set of evolutionary

pressures.

We have also demonstrated that TF evolutionary rate is strongly

related to the evolutionary properties of their target genes, such as

evolutionary rate and species-specificity. Remarkably, this net-

work-level influence on TF evolutionary rate trumps even that of

gene expression. The fact that TFs and their targets tend to evolve

as modules is consistent with similar findings in other types of

biological networks. It has previously been reported that neighbors

in many types of biological networks tend to evolve at similar rates

[23], including PPI networks [7], co-expression networks [24],

genetic interaction networks [25] and metabolic networks [26].

What we have demonstrated here is that neighbor genes also tend

to evolve at similar rates in the transcriptional network (TFs and

their targets) and co-regulation network (genes regulated by a

common TF). It is important to note, since TFs have low

expression and are often regulated post-translationally, that the

regulatory network is the one network among these (including the

co-regulation network) for which the co-evolution of protein

sequences is the least likely to be explained by similar expression

levels.

The lack of correlation with CAI and expression level is

especially surprising since it has been thoroughly established that

protein abundance is by far the strongest predictor of protein

evolutionary rate [7,27,28]. This is believed to relate to the

increased pressure for proper folding and translational accuracy in

highly expressed proteins [29]. Since TFs’ distinct trend is not

explained by their lower average expression level, the difference is

likely related to TFs’ cellular role. Their expression levels may be

subject to more variation across species, as shown across the

human-chimp lineage [6]. TFs could also be subject to other

dominant evolutionary constraints, such as their network-level

role.

Looking for unique features of TFs which could explain their

distinct evolutionary trends, we found evidence suggesting TFs

may play a special role in adaptive evolution. We have shown that

targets of fast evolving TFs are more likely to show differential

expression between the two yeast species and that targets of these

same TFs are also more likely to be involved in environment-

specific functions. TFs are themselves more likely to be regulated

by fast evolving TFs, suggesting the possibility that adaptive

evolution has taken advantage of the hierarchical structure of the

regulatory network to achieve desirable phenotypic changes more

efficiently.

Another strikingly unique feature of TF evolution is the positive

trend relating TF evolutionary rate to regulatory in-degree, while

other proteins show a negative trend. Here, we found that this

positive trend appears to be a module-level trend, with TF in-

degree affecting not only the TFs evolutionary rate but also the

species-specificity of genes regulated by those TFs. The fact that

TFs were more likely to be regulated by fast evolving TFs than

other genes could also help explain this trend, especially

considering that TF evolutionary rate is much more sensitive to

the evolutionary rates of their regulators than is the case for other

proteins, as shown in Figure 3. To gain further insights into the

relation between TF in-degree and target function, we calculated

the enrichment of GO term memberships comparing targets of

high in-degree TFs ($10 regulators) to targets of low in-degree

TFs (#2 regulators) using Fisher’s exact test, considering GO

terms with 50 or more targets. As shown in Table S5, the GO

terms that were significantly enriched for targets of high in-degree

TFs are very similar to those of fast evolving TFs, centering

around peripheral or niche-specific functions, such as plasma

transmembrane transport, while GO terms enriched in targets of

low in-degree TFs, shown in Table S6, represent more central and

environment-independent functions, such as translation and

primary metabolism. These results suggest that TFs regulating

niche-specific genes tend to have higher in-degree in part to allow

for the integration of environmental signals.

When we decomposed the regulatory network into positive and

negative regulatory subnetworks, we found that only positive

regulatory relationships predict co-evolution of TFs and their

targets. A study by Hershberg et al. supports that there are distinct

evolutionary pressures on activator and repressor TFs in relation

to their role in the transcriptional network. They discovered by

comparing different strains of bacteria that activators are more

likely than repressors to be lost before all their targets are lost [2].

They suggested that the loss of activator TFs was an ‘‘efficient

means of shutting down unused pathways’’. This draws a picture

where activator TFs can be used by evolution as on/off switches

affecting the activity of multi-gene modules, thereby avoiding the

need to silence each gene through individual mutations. The loss

of repressors however tends to be avoided regardless of the

usefulness of the genes they regulate. Losing a repressor would

likely lead to the untimely expression of genes, which will incur an

energetic cost and potentially disrupt homeostasis. Similarly to the

loss of a TF, mutations in the protein sequence of a TF are likely to

impair the function of that TF. In the case of an activator, this

would lead to reduced expression of regulated genes. We therefore

expect the more conserved genes modules to be regulated by more

conserved TFs, and vice-versa. In the case of a repressor,

mutations in its protein sequence would likely lead to the over-

Table 2. Correlations between TF Ka/Ks and evolutionary properties of activated or repressed target genes.

ChIP-chip Network Literature-curated Network

Regulatory Sign Property Median target Ka/Ks

Fraction of targets lost or
gained Median target Ka/Ks

Fraction of targets lost or
gained

Activated rho (r) 0.26 0.29 0.31 0.39

p-value 0.0036 0.0038 0.00039 0.00029

Repressed rho (r) 0.068 20.079 0.10 0.065

p-value 0.46 0.52 0.30 0.61

doi:10.1371/journal.pcbi.1002734.t002
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expression of target genes, which due to resource expenditure

and/or dosage sensitivity can be damaging to the cell indepen-

dently of the evolutionary importance of target genes. This would

explain why the evolutionary rate of repressors is largely

independent of the evolutionary properties of target genes. Our

results are consistent with Hershberg et al.’s earlier findings, but

suggest that the loss of activator TFs is an extreme example within

the wider spectrum of activator TF protein evolution, which can

likely be involved in more subtle and varied modulations of

pathway activities than a simple on/off switch. This new

perspective on the evolution of trans-regulatory gene expression

control confirms that positive and negative regulatory subnetworks

are subject to very different evolutionary pressures at the

regulatory network-level.

This work details the uniqueness of TF evolutionary rate

determinants and is the first to establish the modularity of TF-

target protein evolution. This new awareness sheds much needed

light on the eukaryotic evolution of trans-level control of gene

expression through TF protein evolution and may help us better

understand how subtle differences at the protein level can lead to

pathway level variation between species. We also demonstrated

that there are fundamental evolutionary differences between

positive and negative regulatory subnetworks. Identifying consis-

tent themes in the ways regulatory networks achieve favorable

adaptations can reveal design principles underlying the system’s

dynamics and evolutionary adaptability. On a wider note, this

work has established that for a subset of proteins, systems-level

properties can leave evolutionary traces of comparable effect size

to physical features such as expression level and PPI degree.

Methods

Data Collection
We used the yeast ChIP-chip data available from the

YEASTRACT database (http://yeastract.com) [15] compiled

from multiple studies [30–35]. The literature-curated transcrip-

tional network dataset, which is based on small-scale experimental

studies, was also retrieved from the YEASTRACT database [15].

We downloaded physical interaction data from the Saccharomyces

Genome Database (SGD) [36], which compiled PPIs from

different high-throughput and small-scale studies. Orthology

between S. cerevisiae and S. paradoxus were taken from the

Orthogroups database (http://www.broadinstitute.org/regev/

orthogroups/) [37]. Ka/Ks values were calculated according to

the Yang-Neilsen method [38] using PAML [39]. Genes missing

an ortholog were assigned a Ka/Ks value higher than the fastest

evolving genes with an ortholog. Codon adaptation index (CAI)

values were taken from Wang et al. [10]. TF knock-out microarray

expression data [22] (accession #: GSE4654) and RNA-seq

expression data [16,21] (accessions: GSE13750 and GSE32679)

were retrieved from the Gene Expression Omnibus database

(http://www.ncbi.nlm.nih.gov/geo/).

Calculating and Comparing Slopes
To allow for the comparison of slopes between TFs and all

proteins, without succumbing to the pitfalls associated with the use

of highly non-normal distributions, we developed a new normal-

ization procedure. We simply assign ranks to all proteins in the

original, genome-wide, distribution. Then we use these ranks to

calculate slopes on the different protein sets, rather than re-ranking

within the subsets as would Spearman’s rank correlation. The

problem with re-ranking within the subsets is that the slopes will be

normalized to equal the correlation coefficient, which represents

the goodness of fit rather than the relative slope. This modified

procedure allows us to compare the degree of the slope between

the TF subset to the global protein set.

Assigning P-values to Subnetwork Slopes
We calculated a p-value for the unexpectedness of the TF slope

as compared to the slope for generic proteins, using a sampling

procedure similar to the approach used in [10]. We produced a

distribution of 10,000 slopes by performing regressions on

randomly selected equally sized samples of proteins whose average

Ka/Ks and degree (or the relevant pair of variables) in rank space

are within 1% root-mean-square deviation (RMSD) of the TF

subset. P-value is calculated as the fraction of slopes generated

from random samples whose incline is more extreme than or equal

to that of the slope associated with the TF subset. It is essential to

control for average rate and degree because having a different

distribution in either dimension can systematically bias the slope.

As compared to the method applied in [10], our new method

differs in that we used directly comparable slopes obtained from

the genome-wide rank space instead of the correlation coefficient,

and in that we controlled for the different average evolutionary

rate (and other relevant variables) of TFs as compared to generic

proteins. This improved method allows us to draw conclusions in

more confidence, having excluded additional potential confound-

ing factors.

Histograms and Error Bars
For each histogram, we plotted the median value for each bin,

which is more robust to outliers than the average, and used

bootstrapping with a 100 re-samplings to estimate the standard

error of the median. Using the median rather than the mean also

produces results which are insensitive to the choice of Ka/Ks

assigned to genes which lack an ortholog in the reference species S.

paradoxus.

Controls
As a control for the Ka/Ks to PPI degree and in-degree trend

comparisons, we repeated the calculations, replacing the evolu-

tionary rate of each protein with its codon adaptation index (CAI),

which is considered a good proxy for the average expression level

[17]. This way, we can confirm or discard the hypothesis that a

surprising slope relating evolutionary rate and degree is explained

by a different trend relating the strong correlate, expression, to

degree. This approach was used previously in [10]. To ensure that

false positive interactions are not a problem, we also repeated these

correlations using only network edges which are supported by two

or more independent ChIP-chip experiments, which we termed

confirmed edges (CE).

Measuring the Relationship between TF and Target
Properties

For every TF with 3 or more targets, based on ChIP-chip edges,

we measured the median Ka/Ks, the fraction of targets missing a

S. paradoxus ortholog as well as the fraction of highly conserved,

highly interactive and highly expressed targets (top 20%) and used

Spearman’s rank correlation to establish the significance of the

correlations. We repeated the analysis using literature derived

edges and using only confirmed ChIP-chip edges (CE). We used

TFs with 2 or more targets for the analysis with confirmed edges,

since the resulting network is sparser and edges more reliable. In

the case of the fraction of targets missing an ortholog, we still

required at least 3 targets because this feature affects a small

fraction of genes (,10%). We considered robust the correlations

which were found to be significant (p,0.05) in all three networks.
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For activating and repressive networks, we used TFs with 5 or

more targets regulated in the same direction to ensure the

correlations are robust to the potential uncertainties in the sign of

regulatory edges.

Calculating the Spread of Ka/Ks and Expression of Co-
regulated Genes

For each TF with 3 or more targets possessing an ortholog in S.

paradoxus, we calculated the median Ka/Ks and mRNA log read

count difference between all pairs of targets and compared the

result to the expected difference using the Wilcoxon rank-sum test.

The expected median difference was estimated from the average of

100 equally-sized randomized sets of ‘‘target’’ genes, where each

gene was chosen with a probability proportional to its in-degree.

Comparing the Expression-Level Differences of Genes
between Two Yeast Species

We used previously published RNA-seq data from both S.

cerevisiae and S. paradoxus [21] to measure the extent of gene

expression change through evolution. We first normalized expres-

sion levels by dividing the number of reads mapping to each gene by

the number of millions of reads in the sample (reads-per-million),

fixing the lowest possible gene expression at 1 read-per-million. This

procedure controls for differences in sequencing depth, allowing the

levels for each gene to be comparable across the two species. We

then measured the log2 fold expression change between the two

species for each gene, using the orthology assignments provided by

the expression study. Using logged values makes the fold change

distribution closer to a normal distribution. We then used an

unpaired t-test to determine the significance of the difference

between absolute log2 fold changes of targets of fast evolving TFs

(top 25%) and targets of slow evolving TFs (bottom 75%).

Assigning Signs to Regulatory Edges
To assign a positive or negative sign to regulatory edges, we used

previously published TF knock-out microarray data [22] which

includes 135 TFs with ChIP-chip data. For ChIP-chip derived edges

which corresponded to an X score [22], a confidence-weighted log

ratio, of absolute value greater than 1, we inferred the sign of the

edge based on the target gene expression change. The same

approach was used for literature-based edges.

Supporting Information

Figure S1 Scatter plots for distinct evolutionary trends
of TFs compared to generic proteins. Shown are rank-rank

plots and trend lines for all proteins (in blue) and TFs (in purple),

where Ka/Ks is displayed as a function of regulatory in-degree (A),

PPI degree (B), median Ka/Ks of interacting proteins (C), and CAI

(D).

(PDF)

Figure S2 TF-target co-evolution between S. cerevisiae
and S. mikatae. (A) Median Ka/Ks of target genes as a function

of TF Ka/Ks. (B) Fraction of targets missing an ortholog in S.

mikatae (lost in S. mikatae or gained in S. cerevisiae) as a function of TF

Ka/Ks. Numbers above the bars represent the number of TFs in

the bin.

(PDF)

Figure S3 Ka/Ks as predictor for transcriptional regu-
lation. Shown are the Receiver Operating Characteristic (ROC)

curves over the entire ChIP-chip network (A) and the TF

subnetwork (B) of regulatory interaction prediction based on

linear regression between TF Ka/Ks and median target Ka/Ks. In

each case, TFs were randomly split into a training set, on which

regression was performed, and a test set, on which true positive

and false positive rates were assessed. The figure shows that Ka/Ks

does not predict regulatory edges in the global network, but it does

provide some predictive power when limited to the TF subnetwork

(TFs regulating TFs).

(PDF)

Figure S4 Comparison of different genomic and net-
work features influencing evolutionary rate of metabolic
enzymes and signal transduction proteins. For each

determinant, absolute Spearman’s rank correlation coefficient (r)

is displayed, with the color of the box representing the direction of

the trend. (A) Evolutionary rate determinants of 540 metabolic

enzymes taken from YeastCyc. (B) Evolutionary rate determinants

of the 240 proteins in the GO term ‘‘signal transduction’’. This

figure shows that functionally defined protein sets other than TFs

have evolutionary rate determinant profiles similar to that of

generic proteins.

(PDF)

Table S1 Spearman correlation coefficients relating TF
and target properties in the ChIP-chip network.

(DOC)

Table S2 Spearman correlation coefficients relating TF
and target properties in the network of confirmed edges.

(DOC)

Table S3 Spearman correlation coefficients relating TF
and target properties in the network of literature
curated edges.

(DOC)

Table S4 Go terms significantly enriched in targets of
75% slowest evolving TFs as compared to the targets of
25% fastest evolving.

(DOC)

Table S5 GO terms significantly enriched in target
genes of TFs with 10 or more regulators as compared to
targets of TFs with 2 or less regulators.

(DOC)

Table S6 GO terms significantly enriched in target
genes of TFs with 2 or less regulators as compared to
targets of TFs with 10 or more regulators.

(DOC)
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