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Abstract

Interactions between microbial species are sometimes mediated by the exchange of small molecules, secreted by one
species and metabolized by another. Both one-way (commensal) and two-way (mutualistic) interactions may contribute to
complex networks of interdependencies. Understanding these interactions constitutes an open challenge in microbial
ecology, with applications ranging from the human microbiome to environmental sustainability. In parallel to natural
communities, it is possible to explore interactions in artificial microbial ecosystems, e.g. pairs of genetically engineered
mutualistic strains. Here we computationally generate artificial microbial ecosystems without re-engineering the microbes
themselves, but rather by predicting their growth on appropriately designed media. We use genome-scale stoichiometric
models of metabolism to identify media that can sustain growth for a pair of species, but fail to do so for one or both
individual species, thereby inducing putative symbiotic interactions. We first tested our approach on two previously studied
mutualistic pairs, and on a pair of highly curated model organisms, showing that our algorithms successfully recapitulate
known interactions, robustly predict new ones, and provide novel insight on exchanged molecules. We then applied our
method to all possible pairs of seven microbial species, and found that it is always possible to identify putative media that
induce commensalism or mutualism. Our analysis also suggests that symbiotic interactions may arise more readily through
environmental fluctuations than genetic modifications. We envision that our approach will help generate microbe-microbe
interaction maps useful for understanding microbial consortia dynamics and evolution, and for exploring the full potential
of natural metabolic pathways for metabolic engineering applications.
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Introduction

While several aspects of microbial metabolism can be fruitfully

addressed by studying individual microbial species, many

contemporary challenges, including environmental remediation

and infectious diseases, require a massive effort towards under-

standing how microbes interact with each other. In fact, in nature,

most microbes do not live in isolation, but rather exist as part of

complex, dynamically changing, microbial consortia [1,2]. From a

metabolic perspective, the coordinated action of multiple inter-

acting microbes is known to enable specific metabolic processes,

such as the bio-geochemical process of nitrification that occurs in

soil and marine water [3], pesticide degradation in agricultural

settings [4], anaerobic methanogenesis in animal rumen, fresh

water ponds and sewage sludge digester [5], anaerobic oxidation

of methane in marine environments [6] or degradation of xylan or

complex oligosaccharides in the microbial flora of the human gut

[7,8]. Metabolic interdependencies are also thought to partially be

associated with the problem of microbial unculturability [9].

Metabolic interactions between pairs of microbial species could

be thought of as unidirectional or bidirectional exchanges of small

molecules, which may benefit one or both species (Table 1). A

commensal interaction is a one-way exchange, where one

organism is dependent on the product of the other. An obligate

bidirectional exchange (commonly referred to as cross-feeding,

syntrophy or mutualism) is perhaps the most fascinating of all

possible interactions. Such an interaction implies a mutual

dependence, which seems contingent on the rise of improbable

matching of resource requirements and availabilities. Metabolic

syntrophy is thought to drive fundamental biogeochemical

processes (Fig. 1, [10–13]), either through the mutual benefit of

a uni-directional nutrient exchange (Fig. 1A), or through bi-

directional cross-feeding [8,10,11,14,15]. In addition, engineered

species can be induced to display mutualistic interactions, as

shown in classical work aimed at unraveling the order of metabolic

reactions in biosynthetic pathways [16–18], and in recent synthetic

ecology experiments [19–21] (Fig. 1B).

In parallel to experimental studies, the rise of genome-scale

constraint-based models of metabolism has the potential to help

address questions that cannot be easily addressed experimentally.

Constraint-based models of metabolic networks represent an

efficient framework for a quantitative understanding of microbial

physiology [22] (see Methods). Such models rely on the knowledge

of the stoichiometry for every known metabolic reaction taking

place in the cell, and focus on predicting steady state fluxes (i.e.

reaction rates) rather than time-dependent metabolite concentra-
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tions. By focusing on the fluxes, one can view cellular metabolism

as a resource allocation problem: given that the system has internal

stoichiometric and thermodynamic constraints, and a certain

amount of nutrients available, how should the flow through the

network be distributed to allow the cell to achieve a given

biological task, e.g. grow at maximal possible rate? This approach,

also known as flux balance analysis, has been described in detail

elsewhere [23–26], and given rise to a plethora of interesting

discussions on optimality in metabolic network regulation and

evolution [23,27–30]. In the study of microbial ecosystems, it has

been recognized that the extension of constraint-based models

from individual to multiple interacting species or compartments

involves novel challenges and opportunities [31–33]. In particular

it has been shown that stoichiometric models of individual species

can be combined to provide testable predictions about ecosystem-

level behavior [32,33]. The alternative method of network

expansion has been used to identify putative metabolic synergy

between all pairs of nearly 450 organisms in a single environmen-

tal setting [34]. Moreover, in broader context, evolutionary and

functional insight was obtained through large meta-metabolism

models that ignore the spatial distinctions between different

organisms [35–37].

Here, we use constraint-based models to develop a new strategy

for the study of metabolism-based symbiotic interactions in pairs of

microbial species. While in most analyses of cross-feeding

interactions the focus is on the properties of the organisms

themselves, we take a different approach, asking whether, given

two arbitrary organisms, it is possible to identify environmental

conditions that induce a mutualistic or commensal interaction. We

start by exploring known symbiotic pairs, to determine if available

stoichiometric models seem to provide predictions that are in

agreement with empirical observations. The algorithms we

developed allow us not only to verify potential interactions, but

also to produce lists of putatively exchanged metabolites. Then, we

ask whether, given any two species whose stoichiometric models

are available, it is possible to predict potential nutrient

compositions that induce specific symbiotic behaviors, in partic-

ular commensalism and mutualism. Hence, taking advantage of

the efficiency of constraint-based models, we explore the large

space of possible media compositions, in search for nutrient

combinations that sustain a co-culture of two species but do not

support growth of each organism on its own. We apply our

pipeline to the prediction of novel environments and interactions

for a coculture of Escherichia coli and Saccharomyces cerevisiae, and for

all pairwise combinations of seven bacterial species: Escherichia coli,

Helicobacter pylori, Salmonella typhimurium, Bacillus subtilis, Shewanella

oneidensis, Methylobacterium extorquens, and Methanosarcina barkeri. In

addition to providing an algorithmic platform for synthetic ecology

exploration, we envisage that our approach will help mapping and

understanding interactions that occur in natural microbial

consortia.

Results

As a first step in our analysis we asked whether, using

stoichiometric models, we could reproduce three metabolic

interactions depicted in Figs. 2 and 1. The first, simplest

interaction (Fig. 2D) is an elementary case of syntrophy in a toy

model. The second interaction (Fig. 1A) is the previously modeled

[33] naturally occurring interaction between a hydrogen produc-

ing bacterium and a methanogen archaeon [38,39]. The third

(Fig. 1B) is an obligate mutualism between two strains of yeast

engineered to be auxotrophic for lysine (Lys-) and adenine (Ade-)

respectively [19]. In each case, we built a joint model for the

organism pair by combining their stoichiometric matrices into a

single ecosystem-level stoichiometry (Fig. 2). This unified stoichi-

ometry involves the creation of a new compartment (the joint

environment) that can communicate with the individual species

and serves as an interface for the description of environmental

nutrient availability (see Fig. 2 and Methods). In the cases of Figs. 2

and 1B, upon building the joint stoichiometry, we could verify that

the pairs of organisms could grow only syntrophically. Similarly,

for the case of Fig. 1A, we verified that our model implementation

Author Summary

Microbial metabolism affects biogeochemical cycles and
human health. In most natural environments, multiple
microbial species interact with each other, forming
complex ecosystems whose properties are poorly under-
stood. In an effort to understand inter-microbial interac-
tions, and to explore new metabolic engineering avenues,
researchers have started building artificial microbial
ecosystems, e.g. pairs of genetically engineered strains
that require each other for survival. Here we computa-
tionally explore the possibility of creating artificial
microbial ecosystems without re-engineering the microbes
themselves, but rather by manipulating the environment
in which they grow. Specifically, using the framework of
flux balance analysis, we predict environments in which
either one or both microbes in a pair would not be able to
grow without the other, inducing commensal (one-way) or
mutualistic (two-way) interactions, respectively. Our algo-
rithms can successfully recapitulate known inter-microbial
interactions, and predict millions of new ones across any
pair amongst different microbial species. Surprisingly, we
find that it is always possible to identify conditions that
induce mutualistic or commensal interactions between
any two species. Hence, our method should help in
mapping naturally occurring microbe-microbe interac-
tions, and in engineering new ones through a novel,
environment-driven branch of synthetic ecology.

Table 1. Definition and description of possible types of interactions, as used in the current work and described in the literature.

Interaction Definition used in this work Notes

Mutualism Obligatory cross-feeding of metabolites. Each organism
provides a metabolite essential to the other organism

This is also sometimes called syntrophy or symbiosis

Commensalism One organism depends on the other for supply of a nutrient
essential for growth

If the organism supplying a metabolite to the other
pays a fitness price, this is known as parasitism

Neutralism Neither organism depends on cross-feeding for growth Since the two species are sharing the same resources,
this situation could give rise to competition

doi:10.1371/journal.pcbi.1001002.t001

Environment-Induced Synthetic Microbial Ecosystems
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reproduced the unidirectional flow of nutrients responsible for the

symbiotic relationship between the two species.

We next asked whether the stoichiometric implementation of

organism pairs could be used to generate predictions of the

metabolites exchanged between the two species upon symbiotic

growth. Towards this goal we developed an algorithm that allows

us to predict what metabolites need to be exchanged between two

species in order to survive under a given environmental condition

(Fig. 3). Our search for exchanged metabolites (SEM) algorithm

constitutes an extension of flux balance modeling, applied to the

unified ecosystem-level stoichiometry (Fig. 2) [31]. SEM is based

on a mixed integer linear programming algorithm that identifies

the fewest number of metabolites exchanged between individual

species, under the constraint that both organisms must still be able

to produce biomass at a rate larger than a given minimal

threshold. For a particular medium, SEM can recursively find

multiple optimal or near-optimal solutions, though it is not

guaranteed to identify all possible ones (See Methods for more

details). In the toy model (Fig. 2C) and in the methanogenic pair

(Fig. 1A) we recovered the expected exchange metabolites. The

results were less obvious in the case of complementary yeast

auxotrophs (Fig. 1B). In this case, upon applying SEM to the yeast

pair, we found two feasible sets of exchanged metabolites under

the glucose minimal medium used in the experiment. These sets

both use lysine and then either adenosine-(3,5)-bisphosphate (PAP)

or hypoxanthine (HXAN) (Fig. S2). While the observed exchange

of lysine confirms the intuition, reflecting the deficiency of one of

the engineered organisms (Lys-), it was somehow surprising not to

observe, for analogous reasons, a predicted exchange of adenine.

The reason for this discrepancy can be explained by looking at the

relevant metabolic pathways (Fig. 4). Although several metabolites

downstream of the ade8 reaction might restore flux through the

rest of the adenine biosynthesis pathway, based on the stoichio-

metric model [40] only PAP and HXAN can be reversibly

transported. As indicated by the metabolic pathway map, both of

these metabolites are easily converted into adenosine via

mechanisms that circumvent the knocked out enzyme of the

Ade- strain. Thus our algorithm produced testable predictions on

potentially exchanged metabolites between the two yeast strains in

the engineered syntrophic pair.

So far, we have shown that joint stoichiometric models can be

helpful in describing known cases of symbiotic interactions,

providing novel testable predictions. This analysis, however, has

been limited to a single medium composition. Can one generalize

this approach, and try to identify a multitude of media that would

impose mutualism or commensalism between any two species? To

address this question, we developed an algorithm for the search of

interaction-inducing media (SIM), aimed at finding a large

number of minimal or near-minimal media that are predicted to

induce interactions between two given microbial species (see

Methods). As a preliminary step for the SIM algorithm, we

assemble a list of metabolites that are usable by at least one of the

two organisms, based on the stoichiometric models. The algorithm

then starts by assigning a single minimal set of metabolites (i.e. a

growth medium) that allows both organisms (in their joint pair

configuration, as in Fig. 2C,F) to grow with a rate that is above a

given threshold (Table S2). This medium is minimal in the sense

that removal of any one metabolite makes it impossible for the pair

to grow. This minimal medium is also chosen so as to avoid (if

possible) nutrients that contribute more than one essential element

(e.g. avoiding amino acids, which can serve both as carbon and as

nitrogen sources). Next, we perturb this initial medium by

removing its carbon source metabolite, causing the modified

medium not to sustain growth. We then identify a substitute

metabolite (or metabolite set) that restores the capacity for growth

(see Methods for a more detailed description). This process is

repeated by iteratively removing each possible carbon-contribut-

ing metabolite found in the previous step, resulting in a set of

feasible carbon sources (black squares in carbon source array in

Fig. 3A). This perturbation loop is repeated for different elements

(e.g. nitrogen, Fig. 3A). The arrays of feasible nutrients

contributing different elements (C and N in the example of

Fig. 3; C, N, P, S in the real calculations) are then used to

construct a matrix of all possible combinations (Fig. 3A). Each of

these combinations constitutes a medium that can putatively

sustain growth of the organism pair. The next step is to test

Figure 1. Two known examples of metabolism-based symbiotic
interactions which we use as test cases for our algorithms.
Chemical formulas represent metabolites and arrows represent possible
exchange or transport reactions. A Experimental and computational
setup of the methanogenic community composed of Desulfovibrio
vulgaris and Methanococcus maripaludis [32]. D. vulgaris consumes
lactate and produces formate and hydrogen which are consumed by M.
maripaludis. While this may seem a one-way, i.e. commensal interaction,
it has been determined that D. vulgaris benefits from hydrogen
consumption by M. maripaludis, as this reduces the hydrogen partial
pressure, allowing D. vulgaris to continue its metabolic processes.
Hence, this should be considered a case of mutualistic interaction. B
Schematic representation of the yeast synthetic ecosystem experimen-
tally constructed in [19]. Yeast strains Ade- and Lys- where engineered
to be auxotrophic for adenine and lysine respectively. It has been
shown that neither yeast strain could grow on a minimal glucose
medium alone. The same medium however does allow both to grow
syntrophically in co-culture, demonstrating a mutualistic interaction.
doi:10.1371/journal.pcbi.1001002.g001

Environment-Induced Synthetic Microbial Ecosystems
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whether each of these media indeed sustains growth of the pair,

and whether it can sustain growth of each species on its own

(Fig. 3B). Even if a medium allows both species to grow, this does

not imply that it will necessarily induce mutualistic growth. In fact,

some of these media could simply be minimal media that can be

used to grow both species individually (see Methods). Other media

could be supporting commensal growth, i.e. allow one species to

grow, and to produce a metabolite necessary for the other species

to survive under the same conditions. Finally, some of the media

may sustain growth of both species, without allowing either of the

two individual species to grow on its own. Within these media,

therefore, the two organisms would be able to survive only by

exchanging essential metabolites, in an obligate syntrophic or

mutualistic interaction. Computationally, testing for growth of the

joint pair and of each individual species, allows us to easily classify

the type of interaction induced by each medium (Fig. 3C). The

details of the algorithm are described in the Methods section. Note

that here we do not take into account the specific cost that an

organism would incur to produce a metabolite that can benefit

another organism. Hence, we do not distinguish, for example,

between commensalism and parasitism (see Table 1).

We first applied SIM to the pairs of organisms presented in

Figs. 1A and 1B. For the methanogenic pair of Desulfovibrio vulgaris

and Methanococcus maripaludis (Fig. 1A), SIM identified only six

simple media that can sustain growth of the joint organism pair.

One of these six media corresponds to an experimentally tested

environmental condition, and is the one imposed in the original

model. It contains lactate, ammonia and di-hydrogen sulfide.

Under this condition, D. vulgaris is predicted to utilize lactate and

be able to grow on its own, while M. maripaludis is not, and can

only grow in presence of the H2 and formate secreted by D.

vulgaris. One aspect that the model does not capture explicitly at

this point is the benefit that D. vulgaris receives from its association

with M. maripaludis. This benefit is due to the fact that H2

consumption by M. maripaludis reduces the partial pressure of the

gas, allowing D. vulgaris to keep producing H2 in a thermodynam-

ically advantageous way. In addition to this canonical medium

composition, our approach predicts five additional media that

allow for growth of both organisms. One of these is predicted to

induce another commensal interaction, in which D. vulgaris reduces

sulfate to sulfide, which is then also shared with M. maripaludis.

This interaction, however, may not be feasible, as there is some

experimental evidence that suggests that sulfate reduction does not

occur alongside methane production [14]. Interestingly, the

remaining four media are predicted to induce obligate (thermo-

dynamics-independent) syntrophy (Table 2). The mutualistic

interactions arise because, according to the model, M. maripaludis

is capable of fixing nitrogen to ammonium and extracting

ammonium from alanine. Ammonium can then be utilized by

D. vulgaris, which otherwise lacks the capacity to obtain it

endogenously. These nitrogen-related interaction predictions are

yet to be tested, but previous work has verified that Methano-

coccus is both able to fix nitrogen [41] and use alanine as a

nitrogen source [42]. It is important to emphasize that we are

considering here a rather small number of media, which do not

include certain metabolites that D. vulgaris is known to be able to

metabolize, such as pyruvate, ethanol, malate and fumarate

[43,44]. This is a consequence of the fact that the specific

stoichiometric models available for these organisms are not

genome-scale, but rather encompass only a subset of known

metabolism pathways (approximately 100 reactions each).

In the case of the engineered yeast pair (Fig. 1B), SIM led to the

prediction of a total of 36212 distinct media that allow for growth

of both yeast strains in the joint model (Fig. S1). Of these, a total of

12981 media (35.8%) do not support growth of the individual

strains (mutualism-inducing media), 12817 media (35.4%) can

sustain growth of one of the organisms but not the other

(commensalism-inducing), and 10414 (28.8%) can sustain growth

of each strain individually (neutralism case). The computation of

these media for the synthetic yeast pair offered us the opportunity

to obtain more insight into how the algorithm performs, and into

the biochemical rationale for patterns of interactions observed.

Specifically, we compiled a metabolite-by-condition usage matrix

M whose element Mij is equal to one if metabolite j is used in

condition i, and zero otherwise, as predicted by SIM (Fig. 5 and

Fig. S3). By clustering the columns (i.e. metabolites, see Methods

for details) of the M matrix, it is apparent that some metabolites

are required under all conditions, while other metabolites are not

essential, being only required occasionally, often serving as

alternatives to nearby metabolites (Fig. 5). Furthermore, one can

separate the M matrix into sub-matrices pertaining to the four

different classes of interactions (neutralism, mutualism, and the

two commensal), and detect specific patterns of interaction that

can be reconciled, e.g., with the biochemistry of the syntrophic

pair (Fig. 5 and Fig. S3). One may also ask whether it is possible to

discriminate between different types of interactions by performing

Figure 2. Construction of a joint metabolic network model for two idealized microbial species meant to illustrate how a minimal
metabolism-based mutualistic interaction could occur. The networks of the two individual species are represented in panels A (red
metabolites) and B (blue metabolites). The joint model, in which the two species share the same environment, is depicted in panel C, while the
specific configuration of active fluxes in the mutualistic regime is shown in panel D. The two individual organisms differ only in their internal
metabolic reaction (R1), while they have the same metabolites (X, Y and Z), the same uptake/secretion properties, and same usage of precursors to
produce biomass. Arrows represent reactions, and encode information about reversibility (single vs. double arrow). The boxes represent distinct
metabolic compartments: each organism has an extracellular (EX1, EX2) and a cytosolic (CYT1, CYT2) space. This level of compartmentalization is
usually sufficient to appropriately model individual species. In this way, constraints on transporters (reactions TX, TY, TZ) can be decoupled from the
constraints on environmental availability of nutrients (reactions EX, EY, EZ). In panels E and F we display each species as a stoichiometric matrix, in
which columns correspond to reactions and rows to metabolites (see Methods for more details). For simplicity, we show here only the nonzero
elements of each matrix. In building the joint model (see panels C, G) the two individual species (maintaining their color code) are embedded in a
new environmental compartment (ENV), in which metabolite availability is controlled, as for individual models, through exchange reactions EX, EY,
and EZ. The former exchange reactions EX, EY, and EZ of individual species are relabeled in the joint model as shuttle reactions SX, SY, and SZ. Being
able to distinguish between shuttle reactions (which allow to artificially control the flow of a metabolite through the boundary of an organism) and
transport reactions (TX, TY, TZ, associated with specific enzymes, which could possibly catalyze multiple transport reactions of different molecules) is
an important subtlety of our framework, essential for a correct implementation of the SEM algorithm (see Methods). Notice that the stoichiometric
matrix for the joint model (panel G) is composed of two blocks that are exactly the stoichiometric matrices for the individual species (panels E, F),
with the addition of appropriate stoichiometric coefficients to encode the exchange and shuttle reactions (first three rows and first three columns). If,
in the joint model, metabolite X is the only nutrient available in the medium, the two species will be forced to engage in a mutualistic interaction in
order to survive (i.e. produce each its own biomass). This is illustrated in panel D, where the direction of the arrows reflects active fluxes under this
specific condition. The ensuing mutualism is due to the fact that none of the two organisms can produce on its own all three biomass component,
and each needs to receive a molecule from its partner.
doi:10.1371/journal.pcbi.1001002.g002
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an unsupervised clustering of the different media. Upon

implementing a k-means clustering of neutral and mutualistic

media, we found that the two sets of media do partition

significantly more than random (p-val ,102300, see Methods),

but in a way that is too weak to allow for a straightforward

classification.

The interaction class specificity of certain metabolites is best

highlighted in Figs. 5B, D, where, for each metabolite, we

enumerate the total number of media per interaction class. This

provides a comprehensive picture that complements the analysis of

exchanged metabolites described above. In general, this type of

representation may be useful in trying to design or prioritize media

for experimental testing and applications, where one may want to

give top preference to media that are mostly found in one class of

interactions (e.g. syntrophic), and that are common to a large

number of identified media (see Text S1). Different, biologically

more relevant criteria for prioritizing metabolites (and conse-

quently media that contain them) may be envisaged, for example

based on the number of reactions each metabolite participates in

(see Methods, Table S4).

The detailed analysis of the three test cases described so far

indicates that the SEM and SIM algorithms are helpful in

identifying true interactions and providing insight into the

biochemical pathways underlying experimentally observed or

putative interactions. As a first step towards novel synthetic

ecology predictions, we studied the spectrum of possible

interactions between E. coli and S. cerevisiae. This is motivated by

the fact that the individual stoichiometric models for these two

organisms are possibly the best curated and thoroughly tested

experimentally [30,45–47]. The E. coli - S. cerevisiae pair could be

seen as a reference system for future experimental testing, as well

as a good benchmark for performing sensitivity analyses of our

algorithms. By applying the SIM algorithm to this pair we

identified ,11.6 million media (Fig. S6), out of which 4.7% are

mutualism-inducing, 3.3% and 75.3% are commensalism-induc-

ing (S. cerevisiae - E. coli and E. coli – S. cerevisiae respectively), and

16.8% are neutralism-inducing. In Table S4 we analyze in detail

Figure 3. Schematic representation of the pipeline used to
search for interaction-inducing media (SIM). The SIM algorithm is
capable of identifying a large number of growth media predicted to
induce symbiotic interaction between different microbial species. The
algorithm is seeded with an initial medium (e.g. containing a specific
carbon and a specific nitrogen source) that can sustain growth of a
given joint pair of species. Then A the algorithm searches for all
metabolites (or sets of metabolites) that can substitute the original
carbon source, and subsequently all the metabolites that can substitute
the original nitrogen source (black squares in corresponding arrays).
These selected carbon and nitrogen sources are combined in all
possible ways to give rise to a set of putative media that can sustain
growth of the joint model (matrix in the figure). In the next step B the
algorithm loops through each putative medium identified in A, and
tests for growth of the joint pair as well as of each species individually.
Finally C the different possible outcomes provide predictions of types
of interactions induced by each medium. The actual algorithm, which
takes into account more than two elements, is described in detail in the
text and Methods.
doi:10.1371/journal.pcbi.1001002.g003

Figure 4. Schematic representation of the metabolic network
around adenine in S. cerevisiae. This diagram illustrates why only
certain metabolites are predicted to be exchanged under the
syntrophy-inducing medium used in our computational implementa-
tion of the original experimental setup. Only the major metabolic steps
around adenine synthesis in yeast are included for simplicity. Nodes
represent metabolites, single arrows represent single biochemical
reactions, and multiple arrows represent chains of biochemical
reactions. Metabolites that can only be imported (but not exported,
i.e. unidirectional transporters) according to the stoichiometric model
[38] have a red rectangle around them, while metabolites that can be
both imported and exported (i.e. have reversible transporters) have a
blue rectangle around them. Exchange metabolites are restricted to the
set of metabolites the can be imported by the recipient and exported
by the provider organism.
doi:10.1371/journal.pcbi.1001002.g004

Environment-Induced Synthetic Microbial Ecosystems
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two solutions selected based on the prioritization criteria described

above. Fig. 6 illustrates the results of multiple types of sensitivity

analysis performed on the E. coli – S. cerevisiae pair. In particular, it

can be seen that the interaction class predictions are highly robust

with respect to individual perturbations that remove (Fig. 6A), add

(Fig. 6B) or simultaneously add and remove (Fig. 6C) individual

reactions from the stoichiometric models. Furthermore, robustness

does not decrease significantly, on average, for at least ten

cumulative gene addition/removal perturbations (Fig. 6D).

It is in principle possible to extend our computation of

interactions to any organism for which a stoichiometric recon-

struction is available. Here we present a computation of all

possible pair-wise interactions between seven bacteria of relevance

to health (first three) or environmental (last four) applications,

namely Escherichia coli, Helicobacter pylori, Salmonella typhimurium,

Bacillus subtilis, Shewanella oneidensis, Methylobacterium extorquens, and

Methanosarcina barkeri. These specific organisms were chosen based

on a balance between the following criteria: (i) they span wide

spectra of function, environment and taxonomy; (ii) most of them

have well characterized laboratory strains which could be used for

future experimental testing; and (iii) they have publicly available

stoichiometric models. While all stoichiometric models used here

have undergone manual curation and some form of experimental

validation, it is important to keep in mind that different models

may have different levels of agreement with experimental

observations. Thus, predicted interactions between arbitrary pairs

should be evaluated in light of the expected fidelity of the

corresponding individual stoichiometric models.

The results of this interaction analysis are summarized in the

matrix of pie charts found in Fig. 7 (see also Table S1). The

number of interaction-inducing media for a pair of organisms (size

of each pie chart), as well as the proportions of different types of

interactions, can vary significantly between pairs, from more than

three hundred million for the E.coli - S. typhimurium pair, to only

one in the H. pylori - M. barkeri case. At a first glance, one can

identify several trends in the patterns of predicted inter-species

interactions. For example, E. coli is predicted to be able to interact

with most organisms in a large number of different environments.

These interactions appear to be dominated by commensalism,

where E. coli acts as the provider. This may be due to a

combination of E. coli’s ability to survive on a variety of carbon

sources and of its capacity to export a number of byproducts. In

contrast, H. pylori, except for the interaction with E. coli, has very

few interaction-inducing media and frequently acts as a recipient,

possibly reflecting its near obligatory parasitic nature [48]. Some

organisms lie between these two extremes, e.g., the archaeon M.

barkeri, which is predicted to interact with other species in a

moderate number of environments, most of which induce

commensal interactions that have M. barkeri as the recipient. In

general, pairs of organisms appear to be dominated only by a few

interaction classes. In addition, specific organisms tend to have an

overall specific role in interactions with all species. For example, E.

coli and B. subtilis are largely on the giving end of commensal

interactions, while M. barkeri and H. pylori are mainly on the

receiving end, and a sizable portion of M. extorquens and S. oneidensis

interactions are mutualistic. Furthermore, some pairs display a

large proportion of neutral interactions, i.e. can individually grow

on a lot of common minimal media. This is most prominent for

the E. coli and S. typhimurium pair, for which such an outcome may

be expected, based on the fact that they tend to occupy a similar

environmental niche. What might be less intuitive is that, for this

same pair, we found also numerous environments that induce

commensalism and mutualism.

For each pair of organisms it is possible to analyze in detail the

environments identified, and use the SEM algorithm to determine

what nutrients might be exchanged between the two organisms.

For example, a mutualistic interaction between the bacterium E.

coli and the archaeon M. barkeri is explored in detail in Fig. S5. This

interaction is particularly interesting as a similar bacterium/

archaeon pair may have been implicated in the rise of the

primordial eukaryotic cell. For certain combinations of organism

pair and growth media the SEM algorithm becomes computa-

tionally very heavy, and impractical. An alternative heuristic for

identifying possible minimal sets of exchanged metabolites can be

implemented in these cases (see Methods). We applied this

alternative method to identify the exchanged metabolites in two

cases of mutualism between S. cerevisiae and E. coli and two cases for

the E. coli - H. pylori pair (Table S4). The relatively simple set of

exchanged metabolites of the S. cerevisiae - E. coli pair provides

novel experimentally testable biological hypotheses. The more

complex metabolic exchange in the E. coli - H. pylori pair may

reflect the parasitic nature of H. pylori.

Interestingly, almost all pairs in Fig. 7 appear to be potentially

capable of engaging in mutualistic interactions (yellow portion of

pie charts), given the appropriate growth medium. This is in sharp

contrast with the relative paucity of neutralism-inducing condi-

tions (Fig. 7, green portion of the pie charts). In general, the fact

that neutralism-inducing interactions are rarely observed means

that, upon exploring the space of next-to-minimal media that

sustain a pair of organism, it is much more difficult to find media

that sustain each organism on its own than it is to find media that

support lifestyles involving unidirectional or bidirectional ex-

Table 2. Predicted feasible media for the methanogenic community of Fig. 1A.

Key Nutrients Used Exchange metabolites Byproducts

Nitrogen Sulfur Carbon D. vulgaris to M. maripaludis M. maripaludis to D. vulgaris

NH3 H2S Lactate H2,Formate Acetate, CO2, CH4

NH3 SO4 Lactate H2,Acetate,H2S Acetate, CO2, CH4, H2S

Ala H2S Lactate H2,Formate NH3 Acetate, CO2, CH4

Ala SO4 Lactate H2,Formate,H2S NH3 Acetate, CO2, CH4

N2 H2S Lactate H2,Formate, Acetate NH3 Acetate, CO2, CH4

N2 SO4 Lactate H2,Formate, Acetate,H2S NH3 Acetate, CO2, CH4

Exchanged and produced metabolites are also indicated. The first medium has been previously experimentally determined, and corresponds to the one used in [33].
The second medium induces a commensal interaction, while the last four media are predicted to give rise to mutualistic interactions.
doi:10.1371/journal.pcbi.1001002.t002
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Figure 5. Metabolite usage predicted across interaction-inducing media in the pair of yeast strains from Fig. 1B. Metabolites in all
panels of this figure are clustered according to their presence in all media analyzed (see Methods). A Binary map of metabolite usage (black = not
used; red = used) across all neutralism-inducing media. This emphasizes that some metabolites are used in all media, while others are never used. A
large set of metabolites is used in different combination, forming a complex map of mutual capacities to compensate each other. B By looking at the
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change. To some extent this may be expected, given that our

algorithm searches for parsimonious solutions which guarantee

growth of a pair of species. However, since it was not obvious a

priori whether symbiotic interactions were at all possible, one may

take these results as an indication that nutrient-poor environmen-

tal conditions are expected to be dominated by symbiotic

interactions. Such a view point would offer the opportunity to

use our approach as a quantitative modeling framework for

partially understanding and estimating microbe unculturability in

the wild. Moreover, it is possible to envisage simple simulations of

the long-term dynamics of symbiosis based on estimates of the

probabilities of transitions between different types of interactions

upon environmental fluctuations. To exemplify this idea, we

computed a matrix of transition probabilities for the E. coli – S.

cerevisiae pair (Fig. 8A) (see Methods). A striking feature of this

graph is the high transition probability between different states,

suggesting a major and dynamical role of environmental

fluctuations in determining microbial community lifestyles. In this

case, the mutualistic state is quite unstable, possibly a consequence

of the distinct environmental niches in which the two organisms

belong. The fluidity of symbiosis under environmental perturba-

tions is especially interesting in comparison with the corresponding

graph for genetic perturbations, displaying a high degree of

robustness, i.e. stability of individual states (Fig. 8B, extension of

the data from Fig. 6).

Discussion

Understanding natural and engineered microbial ecosystems is

an ongoing challenge, relevant to multiple disciplines and

applications. It is a challenge that undoubtedly requires a large

computational effort, and novel algorithmic approaches. Our

proposed method for identifying environments that induce

symbiotic interactions is based on genome-scale stoichiometric

models of metabolic networks, and can be in principle scaled up to

computing interactions between any pair of organisms for which

individual genome-scale constraint based models are available

[49,50]. In the current search for symbiosis-inducing environments

we varied only metabolites containing carbon, nitrogen, phos-

phorus, and sulfur. Future extensions may explore larger chemical

spaces, which could help identify interactions that are based on the

exchange of other essential elements, including metal cofactors

such as iron and magnesium. Furthermore, future models could be

made more realistic by taking into account the role of fitness cost

in determining the evolutionary advantage of different metabolite-

sharing strategies.

While our implementation of the SIM algorithm to identify

symbiosis-inducing media is currently limited to pairs of

organisms, it can be easily extended to predicting media that

induce symbiosis between triplets of species, or larger combina-

tions. This follows from the fact that the framework defined in

Fig. 2 can accommodate any number of different species, and that

the algorithm would only need to check a longer list of options (e.g.

all possible three-way interactions) relative to what presented in

Fig. 3C. Extending the SEM algorithm for searching minimal sets

of exchanged metabolites to three or more organism, however,

would be more challenging, and one may need to further develop

heuristics such as the one we used for the data in Table S4. In

going from pairs to more complex communities of organisms

known to populate a given environment, our algorithms would

provide putative sets of interaction networks viable for such

ecosystem. As of now the computation of the media for a given

pair of microbial species takes on the order of 10 CPU hours per

10,000 media tested. This implies that systematic calculations for

pairs or triplets between tens or hundreds of species will require

high performance computing platforms and optimized algorithms.

Figure 6. Robustness analysis of the joint E. coli – S. cerevisiae
model. We evaluate the robustness of our approach by estimating the
chance that a predicted interaction (e.g. mutualism) will change (e.g. to
commensalism) when an organism’s metabolic network is perturbed. In
A, B and C this chance is displayed as a probability transition matrix,
where darker shades indicate larger probability. Each row and column
corresponds a different type of interaction (Sc = S. cervisiae; Ec = E. coli).
Here the perturbations (100,000 for each matrix) are A individual
reaction deletions, B reaction additions, and C combined instances of
one addition and one deletion. The cumulative effect of multiple
random addition or deletions (from one up to 10, corresponding to
,0.25% of the organisms’ reaction set) is illustrated in panel D. This
graph shows the probability of not changing interaction class as a
function of the number of perturbations implemented. This analysis
shows that interaction classes are quite robust even when faced with
multiple insults.
doi:10.1371/journal.pcbi.1001002.g006

overall frequency of metabolite usage across all neutralism-inducing media, one can see that lysine and adenine, or their derivatives, are always
present, as expected. C The binary map (as in panel A) for all mutualism-inducing media. D Frequency of metabolites across all mutualism-inducing
media. These media never contain the lysine and adenine derivatives observed above. Metabolites appearing at high frequency (positions between
20 and 30 on the x axis) correspond to carbon sources swapped between the two strains. E The atomic composition of metabolites from the above
maps. This chart allows one to track the distribution and overlap of different atomic sources across metabolites.
doi:10.1371/journal.pcbi.1001002.g005
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Figure 7. Predicted map of pairwise interactions between seven microbial species. The size of the pie chart is representative of the
number of media that allow growth of both organisms, as defined in the pie chart size legend to the right. The relative amount of each interaction
type is represented by the proportion of each wedge of the pie. Details on the numbers and types of interactions for each pair of organisms can be
found in Table S1. The values of n and m reported in the white boxes on the diagonal indicate respectively the number of reactions and metabolites
present in each stoichiometric model.
doi:10.1371/journal.pcbi.1001002.g007
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Given the current high pace of developments in these research

areas, we envisage that this will be possible in the near future.

While increasingly detailed genome-scale stoichiometric models

are being built and validated experimentally for several species

[49,50], one should keep in mind that these models constitute only

coarse approximations of real biochemical complexity, which lack

several layers, such as regulatory feedback and many thermody-

namic constraints, and are often limited by our knowledge of gene

function. Missing pathways, or wrongly annotated ones, as well as

different levels of knowledge available for different organisms

could bias our predictions, and could give rise to false positive or

negative predictions of interactions. As seen in the engineered

yeast strain test (Fig. 4, and Fig. S2), the direction of metabolite

transport can play a role in defining possible exchanges between

species, as can the number and specificity of annotated

transporters and listing of non-enzymatic metabolite diffusion

capabilities. However, examination of the relative number of

transport reactions and their direction across all the species used in

this study does not show any major bias (data not shown),

suggesting that the different patterns of interactions observed in

different organism pairs are not merely a consequence of major

discrepancies in level of detail for different species.

In addition to transporters, any individual reaction within an

organism’s network could have an impact on possible interactions.

Hence it would be important to know how sensitive our overall

classification of media is to potential annotation errors in the

models. We addressed this point by performing multiple types of

sensitivity analyses on two different pairs of species (Fig. 6 and Fig.

S4). The results of this analysis indicate that our interaction

classification is largely robust to missing reactions in the model,

suggesting that the patterns depicted in Fig. 7 roughly reflect true

biological expectations. Even though our predictions are compu-

tationally robust, the ultimate way to determine the predictive

capacity of our approach will be experimental testing. Similar to

the cycles of refinement for individual genome scale stoichiometric

models [49–51], we expect that the results from biological

experimentation can feed back into refinement of models and

algorithms for predicting interactions. For example, if a medium

predicted to induce a mutualistic interaction is found experimen-

tally to induce a commensal relationship instead, this would

Figure 8. Graph of transition probabilities between different types of interactions in the joint S. cerevisiae - E. coli model upon
environmental and reaction perturbations. These graphs show the chance of transition from one interaction type to another (as in Fig. 6)
computed for either A environmental or B reaction network perturbations. For reaction network perturbations, the transition chances are the same
ones computed for Fig. 6C. For environmental transitions, we performed perturbations to the growth media by swapping a randomly chosen
environmental metabolite with a different random one. Arrows thickness and corresponding number indicate the probability of each interaction class
(neutralism, mutualism, and two commensalism classes) remaining unchanged (self-arrows) or transitioning to a different interaction class. Dashed
arrow represents transition probabilities of less than 0.01. See methods and text for more details.
doi:10.1371/journal.pcbi.1001002.g008
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provide useful knowledge about metabolite uptake properties not

accounted for in the model (Table S3).

Despite these potential limitations, our community models were

successfully used to identify media that allow for mutualistic

growth and identify metabolites that are being exchanged in three

test cases. Running these processes on the toy system showed us

that these algorithms give results that match our intuition and can

be manually validated. By applying the algorithm to more

complicated scenarios, such as an experimentally proven syn-

trophic yeast pair, we could recapitulate biological observations

and predict additional experimentally testable environments under

which similar mutualistic communities should arise.

Bridging across levels of description, one can draw an analogy

between epistatic interactions in genetic networks and symbiotic

interactions between microbes. The molecular composition of a

sterile medium could be seen as an ecological unperturbed

phenotype. It could be the case that a given microbial species is

unable to grow on such medium. Hence, ‘‘perturbing’’ the

environment by inoculating this microbe would give no observable

change in the medium composition, i.e. no phenotype. This could

happen equally for a second microbial species. However, if the two

species are able to grow syntrophically in this environment,

inoculation of both microbes (i.e. a double perturbation) will

produce a major change in the medium, i.e. consumption of

resources used for growth, and generation of novel byproducts.

Thus, the combined effect of the microbes is highly synergistic

relative to what is expected by observing the two microbes alone.

This phenomenon is formally analogous to an extreme epistatic

interaction between gene deletions, such as synthetic lethality [45].

Given the increasing amount of data and mathematical expertise

generated in the study of genetic interaction networks, we envisage

that valuable cross-fertilization will be possible between the field of

synthetic ecology and the study of genetic networks.

Our results offer new insight on some evolutionary aspects of

microbial ecosystems. Cryptic metabolic interactions may be the

source of the unculturablity of many organisms. Since next-

generation sequencing technologies can now produce the

sequenced genomes of organisms we can not culture, it is possible

to construct the metabolic network model for a species that has

never been grown in a lab as pure culture. From this model one

could infer what metabolites such organism would require from an

interaction partner, paving the way for novel experimental testing.

The mechanisms responsible for the evolutionary emergence of

mutualistic interactions are an unresolved puzzle, though there is

evidence that gene loss or horizontal gene transfer may drive some

of these processes [52,53]. Our results suggest an alternative

mechanism, driven by environmental changes. Two organisms,

initially growing independently of each other in a given

environment, may be forced to become a commensal pair upon

environmental depletion of a metabolite required by one of the

species and producible by the other. A bidirectional co-

dependency could ensue from a subsequent environmental change

forcing a similar interaction in the opposite direction. Based on

our prediction of nutrient sets that support symbiotic interactions,

it may be possible to estimate the chances that a random walk in

the space of environments will hit a mutualism-inducing or a

commensalism-inducing one.

Another aspect that should be stressed is that many of the

predicted symbiosis-inducing media may be theoretically feasible,

but still not practically viable in a straightforward way, e.g.

because the relevant metabolic pathways or necessary transporters

may be down-regulated, allosterically inhibited or kinetically

unfavorable. Such limitations, as well as potential limitations in

metabolite transportability, might be overcome by implementing

targeted (e.g. regulatory) mutations, or rounds of experimental

evolution [52,54,55].

Finally, we envision that our proposed approach of a

computationally driven synthetic ecology based on re-designing

environments rather than organisms could have several applica-

tions. First of all, in analogy with synthetic biology, and as

explored already with some artificial synthrophic species, the

payback will be partially in terms of understanding interactions by

building them. This may be seen as a first step towards building a

stoichiometry-based microbial interactome, to help in the

interpretation of metagenomic sequencing and microbial ecosys-

tem data. Moreover, in terms of metabolic engineering, using the

enzymatic potential of multiple interacting species can greatly

expand the space of process optimization possibilities. Generating

novel pathways by inducing interactions between different

organisms rather than (or in addition to) genetically engineering

the genomes of individual species has several benefits. First, one

could use the metabolic potential of organisms that may be hard to

genetically manipulate. Second, communities may be inherently

more stable than individual modified species, in which specific

mutations could potentially revert. We anticipate that methods like

the ones we propose will be important in developing and analyzing

synthetic communities of organisms. Our algorithms can be

extended to simulate communities containing more than two

organisms, predict gene knockouts that would give rise to

mutualistic interactions and eventually entire consortia of

microorganisms. Furthermore, the algorithms and methods we

developed could be extended to study human health related

problems. In addition to understanding interactions in the human

microbiome, similar approaches could be used to ask how different

cell types interact within a specific tissue and how a pathogen

interacts metabolically with the host it infects.

Materials and Methods

Definitions and basic formulation of stoichiometric
models

Our algorithms use the framework of stoichiometric constraint-

based models of metabolic networks, which have been described in

detail elsewhere [56,24,57]. A stoichiometric matrix (S) is used to

encode all the information about the topology and mass balance in

a metabolic network, including the complete set of enzymatic and

transport reactions in the system. Transport reactions, inferred

from genome annotations, specialized prediction tools or literature

curation, include both protein-catalyzed transport, e.g. ATP-

driven transport, or ion-coupled symport/antiport, as well as free

diffusion of small molecules (e.g. O2, CO2, etc.) through the cell

boundaries. Element Sij represents the number of molecules of

metabolite i participating in reaction j (with i = 1,…,m, and

j = 1,…,n). The stoichiometric matrix S can be used as the starting

point for efficiently generating predictions of metabolic rates

(fluxes, vj, with units mM?(g dry mass)21?(hr)21) at a genome scale,

e.g. using flux balance analysis (FBA) [56,24]. FBA is generally

based on two main simplifying assumptions. The first is a steady

state assumption, which in matrix form can be expressed as Sv = 0.

This assumption generates a large number of equality constraints

that define the space of feasible metabolic states for the system.

Further constraints (e.g. associated with reaction irreversibility of

individual reactions) are imposed through inequalities of the type

LBiƒviƒUBi, where LBi and UBi constitute vectors of lower and

upper bounds of reaction i respectively. These constraints will be

later written concisely as LBƒvƒUB. The second step of FBA is

an optimization step, in which Linear Programming (LP) can be

used to determine feasible flux distributions for some presumed
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cellular objective (c), subject to the previously described con-

straints. Typical objectives include maximization of biomass or

ATP production, though different optimization approaches are

used throughout this work, as illustrated below. Our implemen-

tation of flux balance models uses the GNU Linear Programming

Kit (GLPK, http://www.gnu.org/software/glpk/) called from a

Matlab shell through GLPKmex (http://glpkmex.sourceforge.

net/).

Toy model
The toy model is composed of two simple organism models

(Fig. 2, and Fig. S1). Each sub-model contains transporters for

three metabolites (X, Y and Z), one biochemical reaction (XRY

or XRZ) and one growth reaction (X+Y+ZRBiomass). Individ-

ually organism 1 (red in Fig. 2) can grow on metabolites X and Z,

and produce metabolite Y. Organism 2 (blue in Fig. 2) can grow

on metabolites X and Y, and produce metabolite Z. If organisms 1

and 2 where grown as a co-culture (i.e. sharing the same

environment) they would only need metabolite X to be both able

to grow.

Methanogenic pair model
We implemented a stoichiometric model for the methanogenic

syntrophic pair constituted by D. vulgaris and M. maripaludis, as

described in [33], and originally implemented on the FluxAnalyzer

platform [58]. The original model was shown to produce valuable

quantitative predictions about metabolic interactions between the

two species. During growth on lactate, D. vulgaris produces H2,

acetate and formate, all byproducts which M. maripaludis can utilize

to grow and produce methane. Stolyar et al. [33] created

biochemical models for each organism and joined them through

an intermediate extracellular space. In transferring the model to

our simulation platform we performed slight updates to the

stoichiometric matrices, as detailed in the supplementary data file

on our website, http://synthetic-ecology.bu.edu/. Our flux

balance models involve 108 reactions for D. vulgaris and 103 for

M. maripaludis. It is important to mention that these specific

stoichiometric reconstructions are not genome-scale (as opposed to

the ones used subsequently in our work), and only account for

carbon, nitrogen, sulfur and hydrogen atoms.

Engineered S. cerevisiae pair model
To create the joint yeast model, we began with two copies of the

newest yeast genome scale metabolic reconstruction iMM904 [40],

and modified them to match the biological strains used in [19]. In

one model, we identified and disabled the reactions associated with

the gene Lys2, by setting the upper and lower flux bounds to zero.

This modeled strain corresponds to the experimentally constructed

Lys- strain, and is unable to grow on glucose minimal media

without lysine as a supplement. Similarly, to model the Ade-

biological strain we identified and disabled the reactions associated

with Ade8 gene. This resulted in a model that required an adenine

supplement to grow on a minimal medium. The strains in [19] had

additional mutations that disabled the allosteric regulation of

lysine and adenine pathways. As regulation is not represented in

our constraint-based models, this aspect was left out. Unless

otherwise noted, in the simulated minimal media we limit the

amounts of glucose and O2, and allow free use of ammonia,

sulfate, phosphate and salts.

Microbial models used in the interaction matrix
The genome scale metabolic models for 5 of the organisms used

have been published and are publicly available (Escherichia coli [59],

Bacillus subtilis [60], Helicobacter pylori [61], Salmonella typhimurium

[62], Methanosarcina barkeri [63]). For Shewanella oneidensis we used an

early version of the recently published model [64], provided to us

by Jennifer Reed. For Methylobacterium extorquens we used a genome

scale extension of a previous reconstruction [65], provided to us by

Steven Van Dien. Models were imported into Matlab from the

XML files using the Cobra toolbox [25]. The metabolites of each

model were manually checked for consistency across models.

Multi-species stoichiometric models
Our approach for generating multi-species model extends the

multi-species model employed by Stolyar et al., by introducing a

fictitious compartment that represents the extracellular environ-

ment shared by both species, in addition to the original

extracellular spaces for individual models. Our formulation, for

two species 1 and 2 (assumed for this explanation not to have a

periplasm) uses the following compartments (represented in square

brackets, as in the standard notation used in [59,40,66,67]):

[CYT1] = cytoplasm for species 1, [EX1] = extracellular space of

species 1, [CYT2] = cytoplasm of species 2, [EX2] = extracellular

space of species 2, [ENV] = environment shared by species 1 and

2. For a metabolite Xi that can be exchanged between the

environment and a given species (say species 1), we define the

following reactions (where Y and Z are potential cofactors

involved in transport across the cell membrane):

(1) vEX
i = Exchange flux for Xi Xi [ENV] , = .

(2) vS
i = Shuttle reaction for Xi Xi [ENV] , = . Xi [EX1]

(3) vT
i = Transport for Xi Xi [EX1] + Y , = . Xi [CYT1] + Z

In previous formulations of joint models for different species or

organelles [31–33] the extracellular spaces for the two interacting

organisms (i.e. [EX1] and [EX2]) was collapsed into a single

compartment, with no need for [ENV]). Here, by introducing an

extra layer (and the extra shuttle reactions) we make it much easier

to monitor what metabolites are being transported through the

membrane. For example, if metabolite Xi is transported in and out

of the cell through several different transporters, in order to know

whether there is a net influx or efflux of Xi we would have to add

up all the transporter fluxes. In our formulation, this is achieved

simply by looking at the shuttle reaction flux. In a single species

model, this would have been easily achieved by observing the

exchange flux, but the extra degrees of freedom entailed by the

multi-species model requires this extra layer of description. In

addition, this formulation makes it much easier to implement our

search algorithm for exchanged metabolites (SEM), in which we

want to minimize the number of exchanged metabolites

irrespective of the number of transporters available for each

metabolite. The other important aspect of this distinction between

exchange and shuttle fluxes is that, in terms of constraints, we have

independent control on what molecules are environmentally

available versus what molecules we want to make available for

individual species. While this feature has not been used in the

current work, it may be useful in future developments. The

proposed formulation could serve as a standard way of building

ecosystem-level stoichiometric models.

Search for Exchanged Metabolites (SEM) algorithm
We have developed a mixed integer linear programming

algorithm to identify a minimal set of possible exchanged

metabolites between two organisms 1 and 2 that can grow

simultaneously under a specified condition. Solving this problem

requires imposing additional constraints to the regular mass

balance and capacity constraints. First, since we require growth of
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both organisms, we fix the minimal growth rate of both organisms

(v
(1)
growth and v

(2)
growth) to an arbitrary minimal amount (v

( min )
growth = 0.1

in our simulations):

v
(1)
growth§v

( min )
growth

v
(2)
growth§v

( min )
growth

A second constraint derives from the need to identify the set of

metabolites that can be exchanged between the two species. This

can be done by finding the intersection TM(1 and 2) between all the

metabolites that are potentially transportable in the first and in the

second model (metabolite sets TM(1) and TM(2) respectively). Each

interchangeable metabolite i in TM(1 and 2) is associated with two

shuttle reactions vS,1
i and vS,2

i importing the metabolite into

individual species, and one exchange reaction vex
i , mediating its

transport to the common environment. The condition of mutual

exchange of metabolite i can then be expressed as the following

constraint:

DvS,1
i DzDvS,2

i DzDvex
i D{L:hiƒ0

where L is a large number (‘‘infinite’’), and hi is a binary variable

which assumes a value of 1 if metabolite i is transported between

the two species, and 0 otherwise.

Identifying a minimal set of exchanged metabolites amounts

then to minimizing the sum of the hi variables over all metabolites.

Overall, the optimization problem can be expressed as follows:

minimize
X

i[TM(1 and 2)

hi

subject to :

Sv~0

LBƒvƒUB

v
(1)
growth§v

( min )
growth

v
(1)
growth§v

( min )
growth

DvS,1
i DzDvS,2

i D{Dvex
i D{Lhiƒ0

hi [ f0,1g

i [ TM (1 and 2)

In most cases, the joint flux balance model for two interacting

species in a given medium can have multiple feasible flux solutions.

Correspondingly, under a given growth condition there may be

multiple equivalently minimal sets of exchanged metabolites. To

address this degeneracy, we developed an algorithm that

systematically identifies a large number of exchange metabolite

sets. We reasoned that a set of exchanged metabolites will likely be

a minimal set that allows for growth of both organisms. Hence, if

we remove any one metabolite from the exchanged set, growth of

both organisms is not possible without adding in at least one other

metabolite into the set. Applying this algorithm in an iterative way

allows us to identify multiple alternate exchange sets. At any given

step, one metabolite is removed from the last solution, forcing the

solver to find a substitute exchanged metabolite at the next

iteration. This process is repeated until no more feasible solutions

can be found.

Alternative exchanged metabolite identification method
For very large pairs of stoichiometric models, the SEM

algorithm described above may be impractical. Therefore, we

have devised a heuristic 2-steps alternative method that is more

easily scalable to large systems. In the first step of this approach we

solve a modified FBA problem for the joint pair of organisms

using Linear Programming. Specifically, we minimize the sum of

shuttle reactions fluxes that do not involve metabolites found in

the current medium. This means that the search space is defined

by

TM 1 and 2ð Þ~ TM 1ð Þ|TM 2ð Þ
� �

\EM

where EM is the set of metabolites contained in the current

growth medium. All constraints are the same as described for the

SEM algorithm. As opposed to SEM, in this optimization

problem we minimize the sum of the absolute values of the

fluxes, hence removing any non productive (e.g. cycles) exchange

of metabolites:

min
X

(DvS,1
i DzDvS,2

i D)
n o

This first step does not necessarily find a minimal set of

metabolites that mediate the interactions, but rather one of many

possible feasible set. As a second step, we can then apply the SEM

algorithm where we limit TM to the metabolites found in the first

step. The final set identified will be minimal (in the sense that

removal of any metabolite will lead to infeasibility), but may not

have a globally minimal count of exchanged metabolites, due to

the intermediate step before SEM.

Search for Interaction-Inducing Media (SIM) algorithm
Here we describe the heuristic for identifying the set of media

that support growth of multi-species co-cultures, and predicting

the class of interaction they induce (see Fig. 3 for more details).

After building a joint stoichiometric model as previously defined

(Fig. 2), we identify an initial minimal medium (MM) that allows

for positive growth rate of both organisms. In this work, we

choose this initial medium manually, so as to select nutrients

that are common to most organisms, and that constitute single

element sources (e.g. do not contain both C and N). Our MM

contained, for all pairs, succinate, ammonium, inorganic

phosphate and sulfate, as well as oxygen and minerals. Then,

in individual pairs, we included a minimal number of

additional secondary metabolites (e.g., co-factors) as needed (see

Table S2).

The core of the SIM algorithm is a function that identifies all

possible metabolites (or sets of metabolites) that can substitute in

the medium an initially available source for a given atom. In the

current work we focus on identifying different sources for carbon,

nitrogen, sulfur, and phosphate only. The analysis could be in

principle extended to other atomic contributions, including

cofactor metals, such as iron. The core function in SIM is

recursive, and is best described, for a specific atom A, through the

following pseudo-code (where CM is the Current Medium being

evaluated) (see also Fig. 3):

Initialize CM=MM

Initialize PM={All environmental metaboli-

tes}\CM

Function Find_Replacement(A, CM, PM) {
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Temporary Medium (TM)=CM\{molecules that
contain A}
Replacement Sets (RS)=empty set of replace-
ment metabolites.
X=Find XMPM such that Vgrowth.0 on union(TM,
{X})(SMM algorithm, see below)

if ( X is not empty ) {

TM=union(TM, {X})
Remove X from PM
RS=Find_Replacement(A, TM, PM)

RS=[[X], RS ];
}
return RS

}

Note that the real algorithm (see Matlab scripts at http://synthetic-

ecology.bu.edu/) takes into account the fact that it may not be

possible for a single metabolite to substitute a previous one. In such

case the function will continue searching for an additional metabolite

that would allow nonzero growth. Hence, it may be the case that at a

particular iteration, two molecules are compensating for the initially

removed one. In the subsequent step, the algorithm will bifurcate,

and try to remove each of these molecules individually.

In the next step, we generate a large set of possible media by

determining all possible combinations of replacement metabolites

for different atoms (Fig. 3A). We then check each predicted

medium for growth of the joint and two individual models by

applying FBA (Fig. 3B). Those media that allow for growth of the

two organisms in the joint model, but not the individual models

induce mutualistic growth through the exchange of metabolites.

Media that sustain growth of only one individual organism, in

addition to the pair, induce commensal interactions. Finally, those

media that sustain growth of both individual organisms constitute

cases of a neutral interaction (Fig. 3C, Table 1).

Here, we implement SIM based on a single initial MM.

However, the specific choice of MM may influence the

composition of the media predicted by SIM. To address this

question, we implemented a sensitivity analysis, by focusing on a

specific pair of organisms (yeast syntrophic pair), and recalculating

the interaction-inducing media based on different choices of the

initial carbon sources (glucose, pyruvate, acetate, fructose).

Regardless of which initial medium was used, the same metabolites

were identified as being viable carbon sources in the different

trials. The identified media (i.e. combinations of the above

metabolites) were almost identical (average 97.4% overlap62%),

regardless of the initial medium used.

Search for Minimal Media (SMM) Algorithm
A minimal medium is defined here as a set of metabolites that

allows for a feasible solution with positive growth rate, and such

that removal of any metabolite from the set would force the system

to have no solution, or solutions with zero growth. To find the

metabolites that belong to a minimal media, we implemented a

mixed integer linear programing algorithm similar to what has

been previously used in [68,69]. As a first step we identify the set

{vEX} of exchange reactions (labeled as (1) in the section Multi-

species stoichiometric models above). We then solve a minimization

problem which uses, in addition to the usual FBA constraints: (i) a

constraint on minimal growth rates, as described for SEM

(vgrowth § v
( min )
growth) and (ii) a constraint expressing whether or not

metabolite i is utilized (vEX
i {L:hiƒ0). Here, the binary variable hi

assumes a value of 1 if metabolite i is transported between the two

species, and 0 otherwise.

Identifying a minimal set of metabolites in a medium then amounts

to minimizing the sum of the hi variables over all metabolites in {vEX}.

Overall, the optimization problem can be expressed as follows:

minimize
X

i[fvEXg
hi

subject to :

Sv~0

LBƒvƒUB

vgrowth§v
( min )
growth

vEM
i {Lhiƒ0

hi [ f0,1g

i [ fvEXg

Clustering of metabolites and media found with SIM
To cluster the metabolites of all the media identified in the

syntrophic yeast pair (Fig. 5 and Fig. S3), we compiled a

metabolite-by-condition usage matrix M whose element Mij is

equal to one if metabolite j is used in condition i, and zero

otherwise. We clustered the columns (i.e. metabolites) of the M
matrix, by implementing an average linkage hierarchical clustering

using the Jaccard distance as a metric in Matlab. Alternate

clustering methods gave equivalent results. Rows were clustered

with the same method, but, for Figs. 5A, C, and Fig. S3A, C, we

built separate clustering trees for each class of interactions. In

addition, to determine whether media that induce different types

of interactions tend to spontaneously segregate, we applied the

same clustering algorithm to the combined set of neutralism and

mutualism-inducing media. We next counted the number of

interactions of each type that were called correctly using the

clustering. We obtained: TP = 10513; TN = 7964; FP = 2450;

FN = 2468; Hypergeometric p-val = 0; accuracy (TP+TN)/

(P+N) = 0.790 (T = true; F = false; P = positive (in this case,

mutualism); N = negative (in this case, neutralism). The high

accuracy suggests that it is possible to roughly discriminate

mutualism and neutralism cases. However, this accuracy does not

extend to the case of all four interaction types (data not shown).

Robustness to environmental perturbations
For the S. cerevisiae and E. coli pair, 1000 media were chosen for

each interaction class at random. For each of these media the set of

metabolites was perturbed and the pair retested for interaction

class 100 times. This was done by selecting a carbon containing

metabolite, and replacing it with another carbon containing

metabolite at random (but still allowing growth of the organisms in

the joint model). The transition probabilities fore each interaction

class were then calculated as the mean fraction of times a given

interaction class is transformed into another interaction class upon

the perturbation (Fig. 8A).

Robustness analysis relative to perturbations of
metabolic reactions

For the S. cerevisiae and E. coli pair, 1000 media were chosen at

random. For each of these media, three types of reaction

perturbations were performed 100 times. The first type of reaction

perturbation consists of the deletion of a reaction at random from

the joint model. The second type of reaction perturbation is
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implemented by adding a reaction at random to the joint model.

The third type of perturbation corresponds to the simultaneous

deletion of a reaction and addition of another reaction at random.

The transition probabilities between any two interaction classes A

and B were calculated as the mean fraction of times interaction

class A became interaction class B after perturbation (Fig. 6A,B,C).

In order to study the effects of multiple (k, ranging from 1 to 10)

insults, we extended the perturbation analysis by randomly

selecting and applying k random insertions or deletions 1000

times, and counting the number of times the interaction class

change. The randomly added reactions were taken from the subset

of KEGG reactions [70] involving metabolites present in the joint

model.

Supporting Information

Figure S1 Interaction-inducing media identified for the pair of

yeast strains of Fig. 1B.

Found at: doi:10.1371/journal.pcbi.1001002.s001 (0.11 MB PDF)

Figure S2 Results from the modeling of the syntrophic

interaction between two S. cerevisiae strains engineered to be

auxotrophic for adenine (Ade-) or lysine (Lys-) respectively.

Found at: doi:10.1371/journal.pcbi.1001002.s002 (0.09 MB PDF)

Figure S3 Metabolite usage predicted for the pair of engineered

yeast strains in media that induce commensal interactions.

Found at: doi:10.1371/journal.pcbi.1001002.s003 (0.18 MB PDF)

Figure S4 Robustness of predicted interaction types upon gene

deletions in the joint model for M. extorquens and M. barkeri.

Found at: doi:10.1371/journal.pcbi.1001002.s004 (0.10 MB PDF)

Figure S5 Two examples depicting the details of environment-

induced mutualistic interactions identified through the SIM

algorithm for the (E. coli, M. barkeri) pair.

Found at: doi:10.1371/journal.pcbi.1001002.s005 (0.15 MB PDF)

Figure S6 Interaction-inducing media identified for the S.

cerevisiae - E. coli pair.

Found at: doi:10.1371/journal.pcbi.1001002.s006 (0.14 MB PDF)

Table S1 Number of media that induce each possible class of

interaction for every pair of microbes.

Found at: doi:10.1371/journal.pcbi.1001002.s007 (0.01 MB XLS)

Table S2 List of metabolites composing the initial medium for

applying the SIM algorithm to each pair of species.

Found at: doi:10.1371/journal.pcbi.1001002.s008 (0.02 MB XLS)

Table S3 Possible inferences that one could make from

comparing predicted outcomes of interactions during growth on

different media with corresponding experimental results.

Found at: doi:10.1371/journal.pcbi.1001002.s009 (0.01 MB XLS)

Table S4 Exchanged metabolites for two mutualism-inducing

media for two different interacting pairs of organisms.

Found at: doi:10.1371/journal.pcbi.1001002.s010 (0.01 MB XLS)

Text S1 Media ranking methods.

Found at: doi:10.1371/journal.pcbi.1001002.s011 (0.06 MB PDF)
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