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ABSTRACT

I on channels are the building blocks of the information
processing capability of neurons: any realistic
computational model of a neuron must include reliable

and effective ion channel components. Sophisticated
statistical and computational tools have been developed to
study the ion channel structure–function relationship, but
this work is rarely incorporated into the models used for
single neurons or small networks. The disjunction is partly a
matter of convention. Structure–function studies typically
use a single Markov model for the whole channel whereas
until recently whole-cell modeling software has focused on
serial, independent, two-state subunits that can be
represented by the Hodgkin–Huxley equations. More
fundamentally, there is a difference in purpose that prevents
models being easily reused. Biophysical models are typically
developed to study one particular aspect of channel gating in
detail, whereas neural modelers require broad coverage of
the entire range of channel behavior that is often best
achieved with approximate representations that omit
structural features that cannot be adequately constrained. To
bridge the gap so that more recent channel data can be used
in neural models requires new computational infrastructure
for bringing together diverse sources of data to arrive at best-
fit models for whole-cell modeling. We review the current
state of channel modeling and explore the developments
needed for its conclusions to be integrated into whole-cell
modeling.

Introduction

Ion channels drive voltage-based signal processing within
neurons and convert chemical signals into voltage changes at
the synapses between cells. They can be distinguished by the
ions that they allow to cross the membrane and by their
response to chemical signals or changes in the membrane
potential. More than 140 types of voltage-gated channels have
been identified so far [1], with an even greater number of
ligand-gated channels [2]. Some occur across many different
cell types; others are specific to certain cell types or phases of
neural development. As well as their role in neural signaling,
ion channel activity is integral to a wide range of
physiological processes, and abnormal channel behaviour is
implicated in numerous pathologies including epilepsy, cystic
fibrosis, and some forms of diabetes [3].

The development of patch-clamp techniques [4] has greatly
improved access to functional properties of ion channels and
has allowed the pharmacological and electrophysiological
characterization of many channel types. Biophysical studies
have elucidated the molecular transformations underlying
the activity of certain channels, and the first full crystal
structure was solved in 1998 [5] for a bacterial potassium

channel. Although a variety of computational models have
been used to assist in these analyses [6–10], very little of this
information is used in integrative models of neurons where
the behavior of a neuron or small network is studied with
respect to the individual currents across the membrane either
in the continuous limit [11] or stochastically [12]. Instead,
many models of neurons still fall back on the pioneering work
of Hodgkin and Huxley [13], which uses a different and more
limited formalism from the one used by biophysicists [14].
Parameter values are often drawn from previous modeling
studies, frequently with little choice but to use models derived
for different preparations, at different temperatures, and
even in different species [15,16], with the resulting need to
adjust parameters in complex models to achieve observed
behaviors [11,17].
The reason that ion channel research is so rarely used by

neural modelers is that there is currently no mechanism to
incorporate it in a whole-cell model. A model requires good
coverage of the whole-channel dynamics in a relatively small
parameter space; but channel studies often focus on details of
particular aspects of behavior and may leave other areas
relatively ill-defined. For example, the complex gating of T-
type calcium channels has important functional implications
[18], but the most detailed models focus on exploring key
aspects of the gating in detail, such as inactivation [19] or
selectivity [20], rather than on developing broad coverage of
the whole behavior. The information provides a valuable
constraint and can be used to test the validity of a model, but
it cannot be used ‘‘as is’’ either to construct a new channel
model or to modify an existing one because the data
originally used to characterize the model are generally not
available. In a few cases, e.g., [21], biophysical analysis has
yielded complete models that reproduce macroscopic
currents and that could be used ‘‘as is’’ in whole-cell models,
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but no voltage-gated channels have been characterized in
such detail.

Improving on this situation requires two complementary
developments: reliable storage, dissemination, and reuse of
experimental data [22]; and computational tools to derive the
best approximations to channel models from this data. This
would allow models to be routinely refined and updated as
new data became available, and should reveal where the
models are least well-constrained as a guide to where
experimental work is most needed. The computational side
constitutes a classic inverse problem, albeit with extremely
diverse source data. The forward process from the channel to
the recording (including the recording setup, electrode
properties, amplifier circuitry, etc.) can be well-characterized,
but it does not have an explicit inverse to get back to the
channel from the data. Instead, indirect methods must be
employed.

The inverse approach differs from traditional data analysis
and parameter estimation in two ways. First, its main
objective is not to measure specific quantities believed to be
part of the underlying system, but to deliver a computational
equivalent with behavior that is as close as possible to that of
the underlying system. Second, it avoids any form of model-
specific analysis by comparing the model with data in the
space of the raw data, with the result that the procedure can
be scaled up to handle new preparations more readily.
Naturally, if a model can be completely characterized, then
the inverse approach ends up providing estimates for distinct
physical properties of the underlying system, but in most
cases the best approximation will be a more limited model
that aggregates properties into a smaller set of parameters.

In this review we survey the mathematical methods and
computational tools available for studying ion channels and
map out the additional components needed to bridge the
gap between what is available from studies of ion channels
and what is needed to construct reliable models for use in
computing neural activity. As increasing numbers of
researchers turn to quantitative models of neurons to help
refine and interpret their observations, it is vital that these
models should be built from the best information available.
Conversely, exploiting the wealth of ion channel studies to
produce reliable channel models should facilitate new
studies and make the characterization of neural activity
dramatically more efficient. The next sections, respectively,
introduce a) the channel-modeling problem, and discuss b)
the potential for dedicated experimental work to facilitate
model development, c) how diverse information from
independent studies can be incorporated, and d) the greatest
hurdles to be overcome in fully exploiting the wealth of
empirical data that is collected.

Deriving Channel Models as an Inverse Problem

With the growing availability of computational resources,
numerical inverse approaches are increasingly used across a
range of disciplines. Together with three dedicated journals,
Inverse Problems in Science and Engineering (Taylor and Francis),
Journal of Inverse and Ill-Posed Problems (VSP Publishing), and
Inverse Problems (Institute of Physics), they address the
question ‘‘what system gave rise to these observations?’’
usually by starting with a parameterized model that is
expected to correspond to the real system for some point in

its parameter space. A computational model of the recording
process is built so that it can take any set of parameters and
generate the data that they would have given rise to in exactly
the same format as the experimental data. The model can
then be compared to the real system in the space—that of the
real data—where the most information is present. The
forward calculation is then repeated over and over for
different parameter sets guided by an optimization process to
find the model or models that best represent the data.
Astronomers and geophysicists were among the first to

exploit computational inverse methods, partly because,
unlike other scientists, they have no option of interfering
with the system under study, and partly because the forward
processes giving rise to observational data can often be well-
characterized. Even where direct inverses exist in the
idealized case, such as deconvolving an image by the point
spread function of the optics, it has long been recognized that
better results can usually be obtained in practical problems
by ignoring the direct inverse and using an iterative approach
that incorporates other factors such as the power spectrum of
the noise [23].
In its purest form, the approach specifically avoids any

form of data processing, such as calculating an activation
curve from voltage-clamp recordings of an ion channel, since
these introduce unnecessary assumptions and reduce the
dimension of the space in which models are compared. In
effect, the motivation for this type of analysis is to reduce the
dimension of the data so it can be handled more easily. But
the inverse problem approach does not need this reduction
and instead pushes the processing burden onto the computer.
In comparison with astronomical applications, the study of

ion channels is characterized by relatively simple base models
for the channels themselves, but by an enormous diversity of
complex forward processes that give rise to distinct types of
data. Historically, neuron models have tended to use the
formulation of voltage-dependent ion channel gating first
presented by Hodgkin and Huxley [13] in combination with
conduction laws that are either purely Ohmic, or given by the
Goldman–Hodgkin–Katz equations [24,25]. The Hodgkin–
Huxley (HH) equations represent a channel as a set of serial
independent gates: if all the gates are open, then the channel
is open. Biophysicists, on the other hand, prefer [26] Markov
models in which a channel is represented as a single entity
that can be in any one of a small set of states with transitions
between states governed by activation barrier–style equations
(Box 1). Such models are also loosely known as ‘‘kinetic
schemes,’’ particularly where the focus is on continuum
behavior rather than on single-channel dynamics. This
divergence between HH and Markov representations is more
a matter of historical accident than a fundamental difference
in approach. Colquhoun and Hawkes [27] discussed models in
which a channel can be represented as multiple independent
subunits each of which is described by a Markov scheme. With
this extension, the HH models form the subset in which
subschemes are restricted to having only two states. Until
recently leading neural modeling software implemented only
this subset with the result that investigators focused on these
models. However, there is extensive evidence that gating
complexes are often not independent: such models are
unable to represent certain macroscopic behaviors [28] and
studies of the proteins themselves show how the movement of
one voltage sensor affects the probability of movement of the
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others [29]. Moreover, the ease with which Markov models can
be extended to include new phenomena such as drug
interactions [30] makes the Markov scheme a natural choice
for channel models.

Most Informative Data for Constraining Channel
Models

The primary functional data for any model of an ion
channel are in the form of the channel current in terms of the
membrane potential and other environmental conditions as a
function of time. The local conditions include the
temperature, ionic concentrations on each side, and the
concentrations of any ligands that act on the channel. The
data may come from one or a few channels as in a cell-
attached patch-clamp recording [4] or from a large number
of identical channels expressed in a cultured cell line
recorded in whole-cell mode. Each preparation and each
recording method has its own uncertainties: are the
expressed channels really representative of the wild type?
Does the patch-clamp change the membrane properties and
affect channel activity? The challenge of an effective
inversion strategy is to incorporate all these uncertainties

along with the corresponding data to arrive at the best
available approximation to the underlying model.
A wide range of ingenious voltage protocols have been

developed for studying ion channels, beginning with steps to
different voltages and extending to ramps, spikes, and
multiple pulses (e.g., [18,44]) The interest of these protocols is
that they facilitate direct subsequent analysis such as the
fitting of exponentials. At the other extreme, nonequilibrium
response spectroscopy [45] applies rapidly fluctuating (up to
14 kHz) large-amplitude voltage signals. By careful choice of
the dynamics of the signal, such as bandwidth and temporal
asymmetry, the results can still be kept analytically tractable
and provide information about properties of a channel that
are not probed by stepped protocols. However, for an inverse
approach, the feasibility of direct subsequent processing no
longer matters and a much more extensive set of protocols
can be used [39]. The most important factor is to maximize
the discriminatory power of the data obtained. In the case of
ion channels, this is also driven by the time limit on how long
a channel can be held in its natural state before its activity
changes due to washout of cellular constituents, other events
in the cell, or general damage to the channel itself.
Once freed from any constraint to gather data that can be

Box 1. Mathematical Models of Ion Channels

A Markov model ([31], Chapter 1) represents an ion channel as a
collection of states and a set of transition probabilities between them:
the key property of a Markov model is that the transition probabilities
depend only on the states they connect and not on the previous history
of the model. A simple case is shown in Figure 1A. The scheme can be
written C1� C2� O, indicating three states, two closed (C1 and C2) and
one open O. A line between states indicates that a (stochastic) transition
between them is allowed. In this case the allowed transitions are C1 $
C2, C2 $ O. The transition rates between states can be voltage- or
concentration-dependent with appropriate temperature dependence as
obtained, for example by using Eyring rate theory [32]. The most widely
used expression for voltage-dependent forward, f, and backward, b,
transition rates is

f ¼ 1

ss þ secz
eðV�Vh Þ

kT

; b ¼ 1

ss þ se�ð1�cÞzeðV�Vh Þ
kT

; ð1Þ

where ss is the saturation transition time constant, s is transition time
constant, k is the Boltzmann constant, T the absolute temperature, z is
the effective valence, e is the electron charge, c is the gating asymmetry
between the forward and backward transition rates, V is the membrane
potential, and Vh is the value of the potential at which the forward and
backward transition rates are identical.

A Markov model can be solved either as a stochastic process or using
a mean field approach. In the first case, it represents the state of a single
channel: one assumes that the model is in a given state, e.g., C2, and that

it either remains there or moves to another state according to an
exponential probability distribution of rate f or b. In the second case a
collection of identical channels is represented by a set of coupled
differential equations for the fraction of the population in each of the
states [27].

A Markov model of a channel can be designed starting from its
molecular representation, with each state of the Markov model
corresponding to a different configuration of the molecule, e.g., [26].
However, it is also possible to take a signal-processing approach to the
design of Markov models: the required model is the minimal model that
represents with sufficient accuracy the response of the channel to the
stimulation protocols, e.g., [18]. The first approach arguably gives a
better understanding of the structure and functioning of the channel
and may ultimately be more appropriate when studying, for example,
the genetic determination of channel behavior. The second approach
leads to more economical numerical models that are more suitable for
numerical simulations of large collections of channels and of neurons.
We note that a channel may also be represented by a combination of
independent Markov schemes such that the open fraction is the product
of the open fractions for each component scheme [27]. This framework
includes the HH model as a subset where each component scheme has
only two states. Any compound scheme can also be represented as an
equivalent single scheme, albeit a rather complicated one [32], but
‘‘multiplying out’’ the separate state combinations.

The inverse channel–fitting problem, i.e., how to derive the values of
the parameters of a Markov channel model from measured
electrophysiological currents, has been studied in detail for many years.
First of all, equilibrium distributions of currents are insufficient to
distinguish between channel models [8], and procedures have been
developed to identify the equivalence classes of models with the same
dwell times distributions [8,33]. It is therefore necessary to consider
channel activity under dynamic conditions. Experimental data include
macroscopic currents from a large collection of identical channels and
single-channel currents. The latter provide noisy signals that are usually
first converted to a best-approximation sequence of opening and closing
transitions. Although an approach based on fitting of a two-dimensional
distribution of dwell times has been suggested [34], most strategies
consist of maximizing the likelihood of a model, defined as the
probability that it gives rise to the observed sequence of open and shut
times [6,7,27]. Over the years there have been refinements in this
technique to take into account missed events due to insufficient time
resolution of the experimental apparatus [35–37]. The use of
macroscopic currents avoids problems of noise but presents its own
statistical challenges. Recently techniques have been developed that use
correlations in macroscopic current data to infer kinetic parameters
[38,39]. There are freely available computer programs that implement
these ideas, the ‘‘DC programs’’ [40,41] and QuB [42,43].

DOI: 10.1371/journal.pcbi.0020091.g001

Figure 1. Examples of Markov Models

(A) Three-state scheme considered in the text.
(B) Best-fit model derived by Vandenberg and Bezanilla [60] for sodium
currents in the squid giant axon using least-squares fitting to single-
channel data.
(C) T-type calcium model by Frazier et al. [61] reflecting structural
constraints derived by exponential fitting of macroscopic currents. Open
circles represent open (conducting) states. Filled circles and filled squares
are closed and inactivated states, respectively. The distinction does not
affect the structure or behavior of the model, but they are useful labels
to tie the scheme to the phenomenology of channel behavior.
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easily analyzed, one natural approach would be to subject
channels to conditions that closely match those they normally
experience. For example, a sequence of action potentials with
a range of interspike intervals could be used for studying
somatic channels in neurons. Alternatively, a sequence of

steps to fixed potentials held for random time periods also
exhibits a greater range of dynamics than conventional
protocols. A good estimate of the discriminatory power for a
given protocol can be readily obtained in simulations by
measuring the sensitivity of the results to changes in the model

Box 2. Parameter Constraints from Experimental Data

The inverse approach proceeds by screening a range of possible Markov transition diagrams to find those diagrams and corresponding parameter
sets that get closest to the experimental recordings. There are two main challenges in this approach: first, to determine how well a given dataset can
constrain the most plausible model, and second, if the constraints are deemed adequate, to find that model using methods outlined in Box 1. The two
are not independent since the strength of the constraint affects the performance of whatever fitting algorithm is used, and, fortunately, can be

assessed without performing the full
inversion.

Figure 2 shows three different voltage-
clamp command waveforms, (top row).
The first is a standard sequence of voltage
steps separated by 900 ms at a holding
potential of �80 mV (unpublished data).
The model used is a linear four-state
model approximating the behavior of a
delayed rectifier sodium channel with
parameters as given in Table 1. The
current resulting from the first command
sequence is shown overlaid.

The second command profile is a
sequence of spikes with a Poisson-
distributed interspike interval (mean 50
ms) and a steady ramp to �40 mV
between spikes. The third profile has
random jumps to potentials between�80
mV and þ20 mV in multiples of 10 mV.
Each value is held for a Poisson-
distributed period, again with mean 50
ms. These are taken as canonical examples
of the two styles and have not been
adjusted in any way to fit this channel. All
the command waveforms have a total
duration of ten seconds.

The lower row shows the strength of
the parameter constraints in the vicinity of
the correct model for each of the twelve
parameters (four parameters for each of
three transitions) for the three different
voltage commands indicated by filled
squares, open triangles, and open squares,
respectively. The quantity being displayed
is the second derivative of the likelihood
function with respect to the
corresponding parameter. The scale is
logarithmic so a difference of one unit
indicates a constraint that is ten times
stronger.

The two-complex waveforms provide
constraints that are typically at least ten
times tighter than the step sequence. This
is not surprising since the step sequence
has a long, quiet holding period
occupying almost 90% of the stimulation.
But it does demonstrate that the use of
complex command waveforms that do
not allow any direct analysis is not a
problem for the method. More
interestingly, some of the constraints,
such as the one on the gating asymmetry
c for the opening transition, are almost
another factor of ten stronger with spike
stimulation than with the other protocols.
Numerical experiments, such as adjusting
the threshold in the spike profile or even
just changing the seed for the random
jump generator, suggest that sensitivity
of other quantities also depends strongly
on the details of the stimulation.

DOI: 10.1371/journal.pcbi.0020091.g002

Figure 2. Parameter Constraints Arising from Different Command Profiles

Sections of each command profile are shown in the first row. The strength of the constraints are
shown in the second row for each of the twelve free parameters grouped into three voltage-
dependent transitions. For each parameter, the symbols show the curvature of the error function
around the exact model. Filled squares correspond to standard voltage steps, open triangles to a
naturalistic spike-based waveform, and open squares to random steps.

Table 1. Parameters for the Example Model

Transition z/e Vh (mV) c s (ms)

C1 � C2 2 �40 0.5 2

C2 � 0 2 �40 0.5 2

O � I 1 �50 0.9 20

The model has three voltage-dependent transitions, each governed by Equation 1. There is a single open state with a weakly
voltage-dependent inactivation. The saturation timescale, ss, was fixed at zero.
DOI: 10.1371/journal.pcbi.0020091.t001
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parameters. One such case is shown in the last panel of Box 2,
demonstrating how the more complex protocols provide
tighter parameter constraints for a simple three-state model.

Perhaps the most intriguing aspect of this style of model
construction is that the optimal protocol inevitably depends
strongly on the channel being studied. Given the limited time
available during an experiment, there are therefore
significant advantages, in terms of confidence in the resulting
model, in adjusting the protocol in real time in the light of
the results. Given sufficient computing power, this could
involve performing the full inversion during the experiment
and iteratively refining the best-fit models as more data
becomes available. Or it could involve a less computationally
costly decision process as the experiment proceeds to
determine the regions of most active dynamics and to
concentrate on them.

Another significant feature of the approach is that the
feasibility of the inversion varies nonlinearly with the volume
of data: at low volumes of data, inversion is highly degenerate
with no clear optimal model. But increasing the breadth of
data can resolve the degeneracy, turning an underspecified
problem into one which is easily solved. For example, models
that cannot be distinguished under equilibrium conditions [8]
can be resolved with nonstationary stimuli as long as one or
more of the rates is stimulus-dependent. A further
consequence is that models based on data from a range of
sources and preparations can be expected to outperform
models based on a single series of experiments or the work of
a single laboratory, providing a strong incentive for
investigators to share experimental data.

Computational Methods

The examples in Box 2 illustrate that judicious choice of
voltage-clamp command profiles can dramatically affect key
quantities in the inversion algorithm that in turn will have a
large effect on the feasibility of the fitting process. This is
important because of the time-limited nature of voltage-
clamp experiments and because of the presence of noise in
any practical inversion. Short, well-constrained runs can be
computed more quickly than longer, less well-constrained
ones.

Although in the example the spiking command produces
the tightest constraints, it is not necessarily the most
appropriate command to use. The choice of command
waveform should itself be treated as an optimization problem
balancing a range of factors including: a) computational
cost—channel models are easier to integrate if the
stimulation has a step profile; b) screening efficiency—
commands that can rapidly reject bad models could be very
different from those that can refine good ones; c) off-
minimum convergence—the example focuses on the final
approach to a minimum, but it is equally important to help
the fitting algorithm converge from more distant models.

These considerations demonstrate that before it is worth
attempting the inverse problem on real channels, a
simulation study should be used to work out what data should
be collected to make the inversion feasible. Such a study can
also indicate the level of confidence likely to be achievable in
the resulting models.

In practical terms, a natural starting point for the search
process is the set of previously published schemes and

parameter sets for channels similar to the one under study as
well as the previous results of the inverse process itself. The
careful choice of this set is a one-off task with a significant
effect on the success and speed of the inverse process.
Occasional tests against a sequence of systematically
generated possible schemes could be used to adjust the set of
models for initial screening. Computational performance is
heavily influenced by the type of optimization methods that
can be applied. Gradients on the likelihood functions are
easily computed and can be used in the final approach to
optimal models, but local minima prevent the exclusive use of
downhill methods. As Box 2 illustrates, the problem has an
important degree of freedom in the choice of stimulation
protocol. The example shows that this can be chosen so as to
sharpen the minimum for particular parameters. A further
possibility that is yet to be demonstrated is that other
command sequences might improve convergence for models
farther away from the optimum by smoothing the error
surface or removing local minima.
The final test of a model is how well it can replace the real

channel in its contribution to the activity of a neuron. Fitting
to spiking protocols ensures the model sees the full dynamic
range of the natural environment, but whole-cell models are
also influenced by numerous factors that are still
unquantified such as channel densities, localization, and even
possible cooperation between channels [28]. These
uncertainties are often addressed by fixing the channel
models and fitting their densities [46]. The complexity of the
system makes it unfeasible to include whole-cell behavior
directly in the search for the best channel models, but it could
be used where initial fitting produces distinct but equally
plausible models.

Use of Heterogeneous Data

The examples in Box 2 focused on current recordings in
voltage-clamp mode that are collected specifically for the
modeling task. But the majority of studies will have other
primary objectives, so the results must be taken as is and
accommodated within the general inversion process. This
typically involves adding further free parameters that can
soak up any systematic differences so that a close fit can still
be achieved in much the same way as a blind deconvolution
[47] separates a noisy signal into a best estimate for the
original signal and an initially unknown point spread
function.
There are also many other sources of data about the

structure and kinetics of ion channels. A few channels have
been crystallized and their three-dimensional structure is
known [49]; many channels have been sequenced, giving
indications about the number and ranges of groups involved
in conformational changes. Where such data is not available
for a particular channel in a given species, it may be available
for channels in closely related species. These, and many other
sources, provide information about the underlying mechanics
of a channel. As with any form of statistical estimation, the
challenge is first to estimate the value that can be derived
from using a certain information source in the inverse
problem, and second how to include it in the inversion
process. Key questions for assessing the value are how strong
a constraint the data provide; whether it influences
parameters that are otherwise unconstrained; or whether the
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same constraints are more easily obtained elsewhere. These
issues should all be addressed with respect to the final goal of
the model. For example, from a biophysical perspective, the
knowledge that four gating particles must move before the
channel opens clearly determines that the scheme should
have four closed states. From a neuroinformatics perspective,
it is likely that a model that aggregates some of these states
into a single state with a modified escape rate could achieve
better overall tolerances.

Once these questions are satisfactorily answered, the
technical process of incorporating the data is usually
straightforward: an extra term is added to the error function
with a weighting reflecting the combination of possible errors
and uncertainties. For a biophysical model, the example
above with four voltage-sensing groups translates directly to a
prior, saying that schemes with other than four closed states
are extremely unlikely. For a cell-level model, where the
object is to derive a ‘‘semi–black-box’’ system that provides
the best performance when computing whole-cell behavior,
the prior will be much more complicated. It should take
account of the tradeoff between an extensive state diagram
and very uncertain parameters, or a small-state diagram and
well-constrained parameters. The value of such models in
neuroinformatics derives from their connection of two levels
of description. They package up knowledge about protein
conformation and dynamics in a form that can be used in
studying whole cells. This is just one of many such
connections needed in whole-cell modeling. It will be equally
important to produce models of how cells use nuclear
processes such as post-translation modification and channel
transport and insertion to regulate which channels are
actually present in the membrane.

Although many statistical methods exist to help address the
question of how to choose the right level of complexity of the
model to fit under these questions [49–51], their application
to highly nonlinear systems such as ion channels still rests
heavily on the experience and judgment of the investigator.
As such, for practical applications it is often better to work
directly with the ideas on which the theoretical analyses are
based. The core observation is simply that extending a model
generally makes it better able to fit the test data, but at some
stage it begins fitting the noise, too, and this makes it less
representative of other real data. The solution then is to
ensure that there are always other data available which have
not been used in deriving the model and that can therefore
provide an independent test of its performance. An essential
test is to measure the currents as the real channel is exposed
to a potential sequence recorded from the cell type under
study. A comparison with what the model does under the
same conditions yields tolerances on the model and can flag
any domains in which it is likely to fail.

Access to Source Data

When treated as an inverse problem, the construction of
channel models is most productive when there is a wide variety
of different raw data available to be fitted. Ideally this should
include recordings with complex waveforms in a range of
different temperatures and chemical environments for the
channel. For recordings to be of use in the fitting process they
require extensive metadata detailing the preparation and
recording conditions. The publication of such data and

metadata is fully in line with emerging policies on data sharing
[22,52] and the growing tendency of journals to accept
extensive data supplements in their electronic versions.
In practice, however, it is difficult to provide and validate

metadata for which there is no market: why take the time and
trouble to package up data when there is no apparent further
use for it? And how can one be sure the metadata is sufficient
for the data to be useful, when the application that may
eventually use it does not currently exist? Some of these
concerns may be overcome by negotiated pairwise
collaborations [53], but the most scalable solution is to
develop the computational infrastructure first. Once a
working software system is available, it creates a market for its
own input data. It becomes worthwhile to prepare material to
the point that it can contribute to modeling process because
there is a clear outcome in improving the tolerances of fitted
models. This mechanism can be seen in action for whole-cell
models with the growth of databases such as ModelDB [54]
and ChannelDB [55] around the modeling systems Neuron
[11] and Genesis [56] and XPP [57]. The process has worked
slightly differently in systems biology where there were
already many software systems and it was the development of
a single community-wide model specification, SBML [58], that
facilitated the development of the BioModels database [59].
It should be stressed here that the model evaluation and

optimization algorithms will form only a small part of any
practical system for large-scale channel modeling. Much of
the work will concern essential processes related to data and
metadata management, data formats, data provenance, and
user interaction with the system. From this perspective, the
output models are not so much research products themselves,
as the transient outputs of two more fundamental research
efforts: first, the experimental recording themselves, and
second, the software systems and additional input data
(weights, priors, algorithm choices) that implement solutions
to the inverse problem. Naturally, it is sure to be useful to fix
and archive particular models, but this should not preclude
their revision when more data is available or when new
algorithms come online. Shifting the focus from building
databases of model parameters to databases of original
recordings with best-fit models as a transient product should
also overcome objections that databases can become filled
with unreliable information. Rather than offering a single set
of parameters, it allows the user to pick the model most suited
to their application, and to see how it was derived and how
well it reproduces the original data.
Once sufficient data is available for largely automated

harvesting and processing, the computational procedures
outlined here can be seen in the role of an ongoing
compression process. The resulting models provide a
condensed version of the raw data: an investigator could use
the model to find out what a particular channel is expected to
do in any given circumstance without having to refer back to
the original experiments. This type of interaction is
increasingly important with the growth of multidisciplinary
studies where the user of the channel model can benefit from
incorporating the latest data but is unlikely to have the
relevant expertise to work directly with the data. It is the
software equivalent of routine developments in hardware
where a new machine suddenly makes widely accessible a set
of processes that used to require very specific training and
expertise. And just as with hardware, although functional
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prototypes can be built that can be successfully operated by
their creators, for the technology to achieve its full potential
and gain widespread use, substantial investment is required
in productizing the ideas and algorithms. The bioinformatics
community has led the way in doing this in their own domain.
Perhaps the ion channel inverse problem can be the first
instance of this philosophy spreading across the boundary
into neuroinformatics. “
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