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Abstract

A widespread mechanism of bacterial signaling occurs through two-component systems, comprised of a sensor histidine
kinase (SHK) and a transcriptional response regulator (RR). The SHK activates RR by phosphorylation. The most common
two-component system structure involves expression from a single operon, the transcription of which is activated by its
own phosphorylated RR. The role of this feedback is poorly understood, but it has been associated with an overshooting
kinetic response and with fast recovery of previous interrupted signaling events in different systems. Mathematical models
show that overshoot is only attainable with negative feedback that also improves response time. Our models also predict
that fast recovery of previous interrupted signaling depends on high accumulation of SHK and RR, which is more likely in a
positive feedback regime. We use Monte Carlo sampling of the parameter space to explore the range of attainable model
behaviors. The model predicts that the effective feedback sign can change from negative to positive depending on the
signal level. Variations in two-component system architectures and parameters may therefore have evolved to optimize
responses in different bacterial lifestyles. We propose a conceptual model where low signal conditions result in a responsive
system with effectively negative feedback while high signal conditions with positive feedback favor persistence of system
output.
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Introduction

Unpredictably changing environments necessitate appropriate

responses for successful survival by bacteria. Bacterial two-

component system (TCS) signaling shifts transcriptional programs

in response to a variety of external cues affecting bacterial growth

such as nutrient availability, osmolarity, redox state, temperature,

and concentrations of other important extracellular molecules [1].

The basic TCS core structure includes a sensor histidine kinase

(SHK) and response regulator (RR). SHK-modulated phosphor-

ylation of RR results in activation that frequently induces a

transcriptional program.

Environmental signals are routed through conformational

changes in SHK homodimers, which may participate in up to

three biochemical processes. First, each subunit hydrolyzes ATP to

trans-phosphorylate a His residue in the other subunit. Second, the

phosphorylated SHK subunit transfers its phosphate to an Asp

residue on unphosphorylated RR bound to the SHK. Third, in

bifunctional TCSs, unphosphorylated SHK can catalyze dephos-

phorylation of RRP with release of inorganic phosphate. Modula-

tion of phosphatase and/or kinase activities of SHK may therefore

induce system responses by shifting the dynamic equilibrium

between active (phosphorylated) and inactive (unphosphorylated)

forms of RR. Interactions between the RR and exogenous

phosphodonors (e.g. cross-talk with non-cognate TCSs or small

molecule phosphodonors) may also contribute to TCS activation.

Activated RR may induce expression of multiple operons. This

regulon often contains the operon encoding the RR and SHK.

Such autoregulation (Figure 1A) is observed in PhoPQ [2], PhoBR

[3], VanRS [4], CpxRA [5], CusRS [6], and many other model

systems [7]. The physiological significance of this feedback loop is

not completely understood.

Previous genomic studies in E. coli have shown widespread

positive and negative transcriptional autoregulation [8–10]. These

studies indicate several E. coli TCSs as examples of positive

feedback loops. However, we suggest that the effective sign of

feedback in TCSs may depend on the biochemical interactions of

the autoregulated proteins. Induction of bifunctional SHK in the

same operon as RR may affect the phosphorylation equilibrium,

and therefore have either positive or negative effects on the

amount of transcriptionally active RR. That is, the signal increases

RR phosphorylation, but resultant increases in gene expression

may in turn positively or negatively change the amount of

phosphorylated RR amplifying or attenuating the original signal.

The resulting sign of feedback can be related to the transient

dynamics of TCS activation: overshoot kinetics often result from

underdamped negative feedback [11], and have been observed in

one TCS [12]. The attainment of such overshoot has important

implications on the kinetics: it transiently speeds expression of

genes in the regulon (e.g. [13] and below) and is necessary for

virulence of Salmonella enterica serovar Typhimurium (hereafter,

Salmonella) in mice [12].
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We used a mathematical model of a generic TCS to

demonstrate that post-translational kinetics of SHK-RR interac-

tions can determine the effective sign of feedback. The model

explains disparate results relating to transcriptional autoregulation

in TCSs including the ‘‘learning’’ effect [3] and feedback-induced

surge [12]. Moreover, we show that some systems may display

both effectively negative and positive feedback at different

signaling levels. The effective feedback sign is determined by

kinetic parameters of TCSs, with positive and negative feedback

allowing distinct functional advantages in different circumstances.

Therefore, differences in post-transcriptional kinetics may have

arisen from selective pressure for feedback based on bacterial

lifestyle. The accessibility of either type of feedback in the same

system also raises the possibility of tuning between ‘‘responsive’’

and ‘‘persistent’’ signaling modes in a single TCS.

Results

Dynamical model of a two-component system with
transcriptional feedback

To determine the role of transcriptional feedback in TCSs, we

constructed an ordinary differential equation model extending

previous work [14,15]. The resulting model is schematically

represented in Figure 1A; reaction mechanisms are presented in

Figure 1B. The full set of reactions is listed in Table 1.

A signal may modulate the rate of kinase (kap in Reaction 10) or

phosphatase (kph in Reaction 18) activity of SHKs [16]. We usually

take the kinase activity to be constitutive as with Salmonella PhoPQ

[17], but demonstrate the generality of our results to either type of

modulation below.

A critical component of this model is the existence of an SHK-

independent flux of RR phosphorylation and dephosphorylation,

arising from small molecule phosphodonors, autodephosphoryla-

tion, or crosstalk with other TCSs [1,18–20]. We assume a

Michaelis-Menten form for these fluxes that is biologically consistent

with the crosstalk mechanism: Vexp~kexp
½RR�

½RR�zKmexp

(Reaction

19); Vexd~kexd
½RRP�

½RRP�zKmexd

(Reaction 20). The possibility of

small molecule phosphodonors as the source may result in linear

phosphorylation/dephosphorylation kinetics, resulting in qualita-

tively similar results: Vexp~kexp½RR�;Vexd~kexd ½RRP�. For brev-

ity we present only the results using the Michaelis-Menten form.

Sign of feedback depends on posttranslational
interactions of two-component systems

To study TCS induction dynamics with the model, we chose a

Monte Carlo parameter sampling approach because no general

analytical solution of transient response is possible. Signal level was

determined by parameter kph, held at 10/s for the resting steady

state and changed to 0.1/s to activate at t = 0 min. The effective

sign of feedback in the model is measured by open-loop gain
L½RRP2�

L½R0�

����
kph~0:1

at the activated steady state. That is, we take a no-

Figure 1. Schematics of two-component system production and
regulation. A. A single operon expresses response regulator (RR) and
sensor histidine kinase (SHK). Bifunctional SHK modulates RR phosphor-
ylation. Dimerized phosphorylated RR regulates its own operon as well as
downstream proteins. B. Post-transcriptional biochemical mechanisms.
fi denotes reactions modeled as monomolecular; ' and R denote
reversible and irreversible bimolecular reactions, respectively. Reaction
mechanisms include protein-protein binding and unbinding and
phosphorylation (including from exogenous sources for free RR). Each
complex is subject to growth dilution; mRNA undergoes degradation
(not depicted for clarity). Tables 1 and S1 present a quantitative
formulation of the model.
doi:10.1371/journal.pcbi.1000676.g001

Author Summary

Bacteria have evolved various mechanisms for surviving
unpredictable changes and stresses in the environment,
such as nutrient limitation. One common survival mech-
anism is the two-component system, where a sensor
protein responds to a particular type of stress by activating
a regulator in the cell. These regulators can in turn activate
genes that produce proteins for stress-appropriate re-
sponses. The activated regulator often positively regulates
transcription of its own operon containing the sensor and
regulator genes leading to a feedback loop. This is
interesting, because positive feedback is usually associated
with a slower response time than negative feedback and
therefore negative feedback would often be selected for
by evolution. Here we analyze a mathematical model to
study the interplay of this feedback and postranslational
mechanisms regulating two-component system signaling.
We found that modulation of regulator activity by its
operon partner can lead to overall negative feedback to
result from autoactivation. This happens if (1) the sensor
can both activate and deactivate the regulator, and (2)
there is some reaction resulting in regulator activation
independently of its cognate sensor. As a result our model
predicts that two-component systems may be capable of
flexibly switching between positive and negative feedback
depending on different circumstances, allowing for appro-
priate responses in a variety of conditions.

Adaptable Functionality in Two-Component Systems
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feedback, or open loop, form of the model in which the operon is

activated by putative exogenous activator R0. The gain measures how

changes in R0 concentration affect the concentration of transcrip-

tionally active response regulator RRP2 (at a concentration of R0

equal to the activated steady-state RRP2 concentration). Intuitively,

the feedback increases total RR and SHK concentrations. However,

increases in these concentrations may have a positive or negative

effect on the phosphorylated fraction of RR. These conditions

respectively correspond to effectively positive and negative feedback.

The open-loop gain is notably different from the steady-state signal-

response gain of the system. In all cases considered, system response

(level of activated RR) increased with increased signal (decreased kph).

Nevertheless, the sign of open-loop gain can be either positive and

negative for the cases in which transcriptional feedback respectively

amplifies or attenuates RRP concentration.

Parameter sampling returns both negative and positive open-

loop gains corresponding to overall negative and positive sign of

feedback (Figure 2A). In each case with a negative loop, some

fraction of RR phosphorylation results from non-cognate sources

(i.e., JE/(JE+JS).1023 where JE is flux through Reaction 19 and JS

is flux through reaction 16 in Table 1). An exogenous RR

phosphorylation flux was the only identified mechanism to

produce a negative feedback loop in a more generalized TCS

model as well (Text S1). More extensive sampling of a simplified

model confirms these results (Text S2; Figure S3).

Dynamical properties of the system correlate with
feedback sign

A common dynamical characteristic of negative feedback is

overshoot kinetics, which have been shown to occur in PhoPQ of

Salmonella [12]. A subset of randomly generated parameters results in

the prediction of feedback-induced overshoot in concentrations of

RRP and mRNA of genes under its control (Figure 2A, red circles).

Notably, the effective sign of feedback is negative for all of them.

Figure 2B shows a sample time-course selected to resemble Salmonella

PhoPQ compared with experimental results of downstream promoter

binding from [12]. We used a genetic algorithm to select parameter

sets for systems resembling PhoPQ; one of the representative sets is

used as a default example throughout the text (Table S1; Figure 2B).

Briefly, we selected for significant feedback-modulated overshoot in

RRP and significant increases in both total RR and transcriptionally

active RRP2 at the activated steady state. Figure S1 shows further

dynamical characteristics of the reference system.

In simple inducible genetic systems with autoregulation, negative

feedback is associated with faster attainment of a given steady state

as compared to positive feedback [21,22]. In the TCS model, we

compared the response (here, downstream (DS) protein accumula-

tion) between a feedback-regulated model and an open-loop model

where constitutive gene expression in the open-loop form equals

Table 1. Two-component system model with transcriptional
feedback.

Reaction
Number Reaction Rate/Flux

1 R TCS mRNA (RRP2)
kTCStxn

½RRP2�
KmTCStxnz½RRP2�

2 R DS mRNA (RRP2)
kDStxn

½RRP2�
KmDStxnz½RRP2�

3 R TCS mRNA ktxnbasalTCS ½RRP2�
4 R DS mRNA ktxnbasalDS ½RRP2�
5 mRNAs R Ø kmRNAdeg ½mRNA�

6 R SHK (TCS mRNA) kSHKtsn½TCS mRNA�
7 R RR (TCS mRNA) kRRtsn½TCS mRNA�
8 R DS (DS mRNA) kDStsn½DS mRNA�
9 Proteins R Ø kdeg ½Proteins�

10 SHK R SHKP kap½SHK�

11 SHKP R SHK kad ½SHKP�
12 SHK + RRP R SHK.RRP kb½SHK�½RRP�
13 SHKP + RR R SHKP.RR kb1½SHKP�½RR�
14 SHKP.RR R SHK.RRP kpt½SHKP:RR�

15 SHK.RRP R SHKP.RR ktp½SHK:RRP�

16 SHK.RRP R SHK + RRP kd ½SHK:RRP�
17 SHKP.RR R SHKP + RR kd1½SHKP:RR�
18 SHK.RRP R SHK + RR kph½SHK:RRP�

19 RR R RRP
kexp

½RR�
Kmexpz½RR�

20 RRP R RR
kexd

½RRP�
Kmexdz½RRP�

21 2 RRP R RRP2 kRRPmd ½RRP�2

22 RRP2 R 2 RRP kRRPdm½RRP2�

doi:10.1371/journal.pcbi.1000676.t001

Figure 2. Conditions for negative feedback and overshoot in a
two-component system model. A. Monte Carlo parameter sampling
shows that both positive and negative feedback are attainable with the
model. Overshoot kinetics only occur when the feedback sign is
negative. The y axis is fraction of contribution of JE, the flux of
exogenous response regulator phosphorylation, relative to the total
phosphorylation flux that also includes JS, the flux of sensor histidine
kinase-mediated phosphorylation. Negative feedback cases all have a
proportion of exogenous flux above ,0.001 (i.e. 0.1%). ‘‘Overshoot’’
cases denote a peak phosphorylated response regulator dimer (RRP)2

concentration greater than 50% above the activated steady state.
Open-loop gain is calculated as response of the open-loop system to
perturbation of an exogenous regulator (R0) at the activated steady
state (kph = 0.1). B. Comparison of simulated overshoot kinetics and
experimental measurement of mgtA-bound RRP (phospho-PhoP) in
Salmonella (adapted from 11). The ‘‘No Feedback’’ case takes a
constitutive expression level equal to the activated steady state of
the ‘‘With Feedback’’ case in the simulations. Simulations used the
reference parameter set in Table S1.
doi:10.1371/journal.pcbi.1000676.g002

Adaptable Functionality in Two-Component Systems
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expression at the activated steady state of the closed loop model

(Figure 3A–B). The results are consistent with negative open-loop

gain speeding responses and positive open-loop gain slowing

responses compared to the case with no feedback going to the

same steady state. The advantage of negative open-loop gain is

especially pronounced with feedback-induced overshoot. This result

confirms that the effective feedback sign as measured by open-loop

gain corresponds to the directly observable feedback sign in simpler

systems. Text S3 and Figure S4 discuss the small number of cases in

Figure 2B that appear to contradict this rule.

Another kinetic effect of feedback in TCSs is ‘‘learning’’

exhibited in E. coli PhoBR, where responses to a second stimulus

after a transient signal interruption are faster than the response to

the first signal [3]. To explore the ‘‘learning’’ effect, we determined

the response time of downstream protein accumulation after a

45 minute signal interruption (Figure 3C–D) for sampled param-

eter sets and compared this response with the one following the

initial signal. The length of the signal interregnum was chosen to

reflect prior experiments [3]. The 45 minute interregnum, longer

than the timescale of dephosphorylation (seconds to minutes), but

shorter than the timescale for protein dilution to near basal levels

(hours), is biologically reasonable (Figure 3C simulates this in the

TCS model). The results predict that the ‘‘learning’’ effect can be

observed in both positive and negative feedback, but is more

pronounced for positive feedback. Improvements in downstream

response depend on accumulation of SHK and RR protein

concentrations during the first activation (Figure 3D; Spearman’s

rank correlation ,0.625; p,0 with double machine precision).

High induction capacity attainable by most positive feedback cases

amplifies the ‘‘learning’’ effect; it does not arise from bistability or

slow response times usually associated with positive feedback

[21,23]. In fact, the phosphorylated fraction of RR responds

quickly to changes in signaling; it is the accumulation in protein

level that causes this effect (Figure 3C). Therefore, our results

correlate TCSs functioning in positive feedback mode with faster

recovery following transient signal fluctuations.

Effective feedback sign depends on signal level
The sign of feedback is a function of parameters in the model

presented here; it is therefore conceivable that specific parameter

Figure 3. Dynamic characteristics of positive and negative feedback in two-component systems. A. Two example parameter sets from
Monte Carlo sampling show that a downstream protein typically responds faster under negative feedback than positive. The two cases were selected
to have similar induction kinetics in the model lacking feedback. t95: time to attain 95% of the activated steady state from the resting state. B.
Histogram of response time ratios of sampled parameter sets shows the relationship between feedback and response time for many parameter sets
generated with Monte Carlo sampling. t95=t

nf
95v1 implies that feedback improves response time; t95=t

nf
95w1 implies that feedback is detrimental to a

fast response. C. Deactivation kinetics in example cases show two time scales in both positive and negative feedback. D. Timing of RRP recovery after
signal interruption correlates with normalized (percent) accumulation of SHK protein concentration (DSHKtot). The scatter plot shows the relationship
between DSHKtot and change in response time. Response time t50 is the time to attain 50% of the activated steady state RRPtot from the resting state;
tp

50
is the response time following a previous stimulus and 45 minute interruption. y-axis values greater than 1 denote faster response after

interrupted prior stimulus. The Spearman rank correlation is ,0.625 (p,0 with double machine precision). See Methods for parameters used.
doi:10.1371/journal.pcbi.1000676.g003

Adaptable Functionality in Two-Component Systems
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perturbations could change the strength or sign of feedback. We

found a large number of cases in which effective feedback signs

change as a function of input signal strength (parameter kph). The

majority of Monte Carlo parameter samples that predict negative

feedback for one signaling level exhibit positive feedback for a

different signal level (Figure 4A).

If wild-type TCSs are indeed capable of changing feedback sign,

the dynamic performance of the system may be capable of meeting

different functional criteria depending on the signal level. To

determine if feedback sign changes performance in TCSs, we

compared, at various signal levels (kph), open-loop gain and

response times of downstream protein induction from the basal

state (kph = 10/s) using the default parameter set (Figure 4B–C).

Response times correspond directly to the effective sign of

feedback at each activation level: negative feedback imparts faster

response. Furthermore, peak overshoot time approaches infinity as

the signal level approaches the positive feedback region (Figure 4C

dashed line). Therefore the TCS model predicts that adapting the

feedback sign based on transient signal intensity permits TCSs to

meet different functional criteria depending on the context.

Unmasking of positive feedback for the high signal region of the

dose-response curve may explain the strong effect of feedback in E.

coli TCS PhoPQ that only occurs for extreme signaling conditions

[24]. We explore other aspects of the E. coli PhoPQ dose response

in Text S4 and Figure S5.

TCSs may be subject to modulation of SHK kinase activity

(parameter kap in this model) or both kinase and phosphatase

activity (kap and kph). We scanned the 2-dimensional kap 6kph signal

space and found that modulation of either activity may result in

feedback tuning (Figure 4D).

Synergies and trade-offs in transcriptional feedback
interactions

Autoregulation by RRP proportionally affects concentrations of

both RR and SHK in the genetic architecture assumed here –

both genes co-expressed from a single operon (Figure 1). Is there a

functional rationale for why feedback affects both genes in many

TCSs, as opposed to autoregulation of only RR or SHK? To

address this question, we formulated models where expression of

one of the TCS proteins, either RR or SHK, is constitutive

(outside of the TCS regulon) whereas the other is regulated by

RRP (Circuits I and II, Figure 5). The constitutive rate of

production is set equal to the production rate in the wild-type

system with the signal parameter kph = 0.1/s. This level was chosen

to represent a production rate that avoids saturation effects of

excessively high or low expression.

When RRP only regulates the RR gene (Circuit I), the response

time is typically slow (Figure 5A). When RRP only regulates SHK

(Circuit II) the induction range (defined as the difference between

high and low signal limits, normalized to the case without

feedback) is typically smaller (Figure 5B). This suggests that the

wild-type case, with both RR and SHK feedback-regulated from a

single operon, exhibits a trade-off, balancing fast response and

high induction range. At higher signal levels, the wild-type system

exhibits a synergistic effect where the linked genes can attain

higher signal output than with feedback to RR alone (Figure 5B).

Figure 4. The effective sign of transcriptional feedback in two-component systems can reverse depending on signal strength. A. For
the sample set of parameters (Table S1) feedback is negative at low activation signal and becomes positive for sufficiently high signal (low kph). B.
Dynamic properties (response time and overshoot peak time for initially inactivated system, kph = 10) follow the effective sign of feedback at different
signal levels; parameters the same as in A. Dashed line indicates the point of sign switching; at this point overshoot time approaches infinity. C.
Monte Carlo sampling demonstrates that systems selected to have effectively negative feedback at a given signal level (kph = 0.1) robustly switch to
positive feedback at other signal levels. D. Sign of open-loop gain can switch while varying both kinase (kap) and phosphatase (kph) activities of the
sensor histidine kinase; the rest of parameters the same as in (A). Gray: positive open-loop gain. White: negative open-loop gain.
doi:10.1371/journal.pcbi.1000676.g004

Adaptable Functionality in Two-Component Systems
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Discussion

TCSs are responsible for diverse, specialized, large-scale

reprogramming of bacterial transcription in response to many

possible signals. Nevertheless, while orthologous TCSs in different

species often have drastically different regulons [25], core TCS

architectures are remarkably similar. Some TCSs are autoregu-

lated, where transcriptionally active RR induces expression of the

TCS operon. This feedback may in itself have diverse effects on the

system, including overshoot kinetics [12] and ‘‘learning’’ to respond

faster after a previous stimulus [3]. In the interest of generality we

focused on a commonly occurring TCS architecture, with linked

genes that are autoregulated. Others not considered here may have

important functional consequences (e.g. bistability emerging from

autoregulation in the B. subtilis DegS-DegU system [26]).

Feedback sign results from biochemical mechanisms
Despite the fact that autoregulation is almost uniformly positive

in TCSs (with the exception of TorRS in E. coli [27]), we have

shown that the effective feedback sign may be either positive or

negative, depending on biochemical characteristics of the system.

Why is attainment of different feedback signs physiologically

relevant? In most biological systems, negative feedback often

reduces noise and speeds responses in well-controlled comparisons

[21,28,29] while positive feedback leads to phenotypic heteroge-

neity and bistability [23,26,30,31].

Attainment of negative feedback is not deducible from examining

network diagrams such as those in Figure 1, which may bias the

observer into assuming that the feedback is necessarily positive. It is

ultimately related to bifunctionality of the SHK enzyme that can

both increase and decrease the fraction of activated RR. Our results

demonstrate a mechanism for creating a negative feedback loop that

depends on the existence of a pathway for RR phosphorylation

independent of cognate SHK activity. Intuitively, when SHK is the

sole source of RR phosphorylation and dephosphorylation the

system output is robust and insensitive to SHK concentration

[14,32]. However, when an additional feedback-independent flux of

RR phosphorylation exists, upregulation of SHK can dispropor-

tionately increase the phosphatase flux resulting in negative

feedback. Other mechanisms of attaining negative feedback may

exist, but we have failed to identify them (cf. Text S1, Table S2 and

Figure S2).

If exogenous phosphorylation is an important mechanism in

TCSs, why is it not frequently detected? One proposal is that

existence of the phosphatase activity of SHKs results in buffering,

or suppression of exogenous phosphorylation and thereby reduces

or eliminates crosstalk with other TCSs [33,34]. As a result, an

exogenous phosphorylation flux may not lead to a large effect on

the levels of activated regulator and therefore existence of cross-

talk may be difficult to detect in wild-type systems [18]. Our

modeling predictions support this conclusion: phosphorylated RR

can be kept at a low level by phosphatase activity while still

maintaining effectively negative feedback enabled by exogenous

phosphorylation.

An alternative model for feedback-induced overshoot that does

not directly invoke negative feedback is a mechanism for dynamic

Figure 5. Tradeoff and synergy in two-component system feedback interactions. A. Dynamic response of downstream (DS) protein
expression for Circuit I (feedback to RR alone) is slower than the wild-type architecture. tI

95
=tnf

95
denotes time to attain 95% of the activated steady

state of downstream protein (with kph = 0.1) in the system with constitutive expression of the shk gene, normalized to the same system with no
feedback. twt

95
=tnf

95
is the same ratio for wild-type system with both SHK and RR under feedback regulation. B. Steady state dose-response shows

reduced induction range for (RRP)2 in Circuit II (feedback to SHK alone) as compared to the wild-type (single operon) case. Induction range denotes
steady-state difference between phospho-RR dimer with kph = 0 to find the highest, saturated level, and with kph = 10 (basal expression) in the wild-
type (wt) case and the case with constitutive expression of the rr gene, again normalized to the same system with no feedback. Insets show kinetics
and dose-response of reference parameter set (Table 2; open circles on scatter plots). Constitutive gene expression is set to equal feedback-regulated
expression at high signal, kph = 0.1.
doi:10.1371/journal.pcbi.1000676.g005

Adaptable Functionality in Two-Component Systems
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regulation of SHK kinase or phosphatase activity. We considered

two mechanisms: ATP-SHK interactions that alter SHK activities,

and a temporal delay in SHK maturation such that the

intermediate species has kinase but not phosphatase activity (Text

S1). We were unable to produce overshoot kinetics with the ATP-

SHK model. The SHK maturation model can produce overshoot,

but every case we found requires unrealistic component concen-

trations and invokes a strong assumption without experimental

evidence.

Relating model predictions to experimental evidence for
negative feedback in TCSs

The best characterized system that may be attaining negative

feedback is Salmonella PhoPQ. The evidence is compelling: it

displays overshoot kinetics [12] and increasing SHK expression

from an inducible plasmid can reduce expression of a PhoP-

regulated gene [2]. However, deleting functional SHK by insertion

of a phage-derived element sometimes results in a low level of RR

activity [2,35], in contrast to what would be predicted by the

exogenous phosphorylation model in the absence of other

differences between the wild-type and mutant.

A likely explanation is that the SHK insertion somewhat

destabilizes the transcript in the mutant. In some genes, insertion

of stop codons has this effect [36]. Several TCSs also undergo

transcript processing with much greater stability of the mono-

cistronic RR mRNA than the polycistronic or SHK-only mRNAs

in E. coli [37]. If the insertion disrupts mRNA processing, the

resulting polycistronic mRNA may have a shorter half-life with

resultant lower rate of protein synthesis. The default parameter set

for our model predicts that ,2.5-fold increase in mRNA

degradation rate is sufficient for basal expression (Figure S6).

Other PhoQ-disabling insertions may not have the same effect on

mRNA stability, resulting in overexpression of PhoP in these cases.

Indeed, PhoP overexpression resulting from different PhoQ

mutagenesis experiments has been observed [38].

Our predictions are consistent with experiments showing over-

shoot kinetics, which are only attainable with negative feedback

(Figure 2). Furthermore, there are multiple established mechanisms

for exogenous phosphorylation of RRs [16]. Our model offers an

explanation for the attainment of diverse experimental results relating

to feedback in TCSs, including overshoot kinetics [12], ‘‘learning’’

effects [3], and feedback effects that only occur for extreme signaling

conditions [24]. However, more direct experimental tests are still

needed to determine if negative feedback commonly emerges as a

characteristic of TCSs in nature.

Tuning feedback in two-component systems
In some cases, the effective feedback sign in TCSs depends on

signal level, and the dynamic characteristics of the system follow

the reversal of that sign (Figure 4), suggesting on-the-fly reversal of

feedback sign as an adaptive signaling mechanism. Tuning the

feedback sign in this way allows a fast response to the initial signal

with negative feedback for rapid induction of the new transcrip-

tional program. When the signal is high and persistent, the

feedback sign is switched to positive, filtering out transient

signaling interruptions and increasing the attainable range of

signaling.

We also found some cases where the effective sign of feedback

reverses between negative and positive more than once (Figure 4A),

being positive at low signal then negative at intermediate signals

and eventually positive again at very high signals. A physiologically

relevant function for positive feedback at very low signal levels is to

create a signal threshold, below which the response is slow, and

above which the system responds rapidly to a decisive signal.

The functional consequences of transcriptional feedback are

surprisingly flexible for a system with only two interacting proteins.

Previous models suggest that TCSs without the crosstalk effect are

robust, or insensitive to variations of protein concentrations

[14,32]. The flexibility to tune feedback depending on the signal

level appears to be a sacrifice to robustness. Explicit determination

of robustness is beyond the scope of this work, but sensitivity to

perturbations of one parameter does not necessarily imply that

other aspects of robustness are lost. Further, possible evolutionary

advantages of flexibility are clear: feedback to both TCS genes in

this model enables characteristics of negative and positive feedback

that would not be attainable with transcriptional feedback to RR

or SHK alone (Figure 5).

Tuning of the feedback sign is reminiscent of other results

showing a diverse response without explicitly rewiring the network.

Some systems have been shown to transition between graded

monostable and discrete bistable steady state dose responses

[23,39,40]. On evolutionary timescales, evolvable motifs may be

capable of adapting to many different functions without disrupting

the network architecture [41]. TCSs may be similarly adaptable,

but on a short biochemical timescale.

Conclusions and suggested experiments
We propose a model for TCSs whereby transcriptional feedback

shows diverse physiologically relevant effects, including negative

feedback that gives rise to fast overshooting responses and positive

feedback that better filters transient signal interruptions.

In order to determine the effective feedback sign in vivo, we

suggest that a direct test is necessary. A conceptually straightfor-

ward way to test the feedback sign is to synthetically engineer an

open-loop system under an inducible promoter and find the

inducer level for which RR and SHK concentration match their

wild-type values. Exploring changes in downstream transcriptional

activity as a function of inducer concentration would allow direct

determination of the feedback sign. (This was done in E. coli

PhoPQ [24], which shows characteristics of effectively zero

feedback at small signals and positive feedback at large signals;

c.f. Text S4). A similar experimental set-up with just one protein

on an inducible promoter can be used to test feedback synergy and

trade-off predictions (Figure 5). Alternatively, TCS point muta-

tions may alter transcriptional or translational efficiency (Reac-

tions 1–2 or 6–7 in Table 1). With a reduction in gene expression

efficiency, steady state RRP concentrations will diverge depending

on feedback sign (Figure S7 shows predicted effects of such an

experiment). Predicted quantitative effects of this method are more

pronounced with positive than negative feedback. Thus, the low

gains in the negative feedback regime may make steady state

effects of the feedback difficult to detect. Methods similar to those

used in previous studies exploring crosstalk between TCSs [18]

may be useful to determine if Salmonella PhoPQ is subject to

exogenous phosphorylation.

Many biological networks represent a balance of stimulatory

and inhibitory effects. Here we have shown that this balance leads

to flexibility and diversity in the functional role of the

transcriptional feedback loop. This should guide toward a deeper

understanding of how interactions in biological networks may have

evolved to allow successful responses to a wide array of conditions.

Methods

Mathematical model
We constructed a mathematical model extending previous

TCS models [14,15]. As outlined in the Results section, this

model includes reactions for production/degradation, regulation
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of expression from TCS and downstream genes, and phosphor-

ylation/dephosphorylation of RR by an exogenous source.

Included reactions are summarized in Table 1.

Software and simulations
Models were generated using BioNetGen 2.0.46 [42], and

imported for analysis in Mathematica 6.0 with MathSBML 2.7.1-

07-Dec-2007 [43]. Monte Carlo parameter sampling was done for

parameters varied with log-uniform distributions, having intervals

constrained as described in Table S1. Randomly generated

parameter sets were tested for physical realizability and consis-

tency with known characteristics of TCSs using the following

criteria:

1. mRNA copies ,100/cell;

2. mRNA degradation faster than dilution of proteins;

3. basal rate of gene expression lower than feedback-regulated

rate: ktxnbasal , ktxn;

4. sufficient induction of transcriptionally active RR after

signaling: [RRP2](kph = 1023)2[RRP2](kph = 10) .1 molecule/

cell.

5. low transcriptional activity of RR when signal is absent:

[RRP2](kph = 10) and [RRP2](kph = 10; ktxn = 0) #1 molecule/

cell

6. low downstream gene expression when signal is absent: [DS

protein](kph = 10) and [DS protein](kph = 10; ktxn = 0) differ by

less than 10%

7. Sufficient overall elevation of components after activation

signaling: [DS], [RRP2] and [RRtot] change more than 2-fold

between kph = 10 and kph = 0.1.

Response times were calculated as elevation time for attaining

either 50% (t50) or 95% (t95) of the activated steady state. The

former is reported for responses where post-transcriptional kinetics

dominate a response while the latter is reported when transcrip-

tional induction dominated response times. In practice, qualitative

differences between these measures are minimal.

Two sample parameter sets were selected to have similar open-

loop induction kinetics for the purposes of illustrating differences in

responses between positive and negative feedback (Figure 3).

Negative feedback example parameters: kap = 0.1706, kad = 9.786,

kpt = 0.2028, ktp = 0.1368, kb = 2.314, kd = 0.9237, kb1 = 6.261,

kd1 = 0.001825, kRRPdm = 9.794, kRRPmd = 0.1411, ktxn = 2.11561025,

kSKtsn = 0.04708, tsn mult = 5.616, ktxnbasal = 2.24561026, KmDS =

0.01224, Km = 0.004298, kmRNAdeg = 0.001383, kexp = 0.02668,

Kmexp = 0.1361, kexd = 4.21861025, Kmexd = 1.388. Positive feedback

example parameters: kap = 8.408, kad = 0.004832, kpt = 1.392, ktp =

0.05183, kb = 0.07871, kd = 0.001172, kb1 = 2.395, kd1 = 0.002223,

kRRPdm = 2.665, kRRPmd = 7.421, ktxn = 0.0006604, kSKtsn = 0.005240,

tsn mult = 6.190, ktxnbasal = 3.41361025, KmDS = 0.06276, Km =

0.003958, kmRNAdeg = 0.007446, kexp = 3.45261026, Kmexp = 0.0004101,

kexd = 5.01761026, Kmexd = 0.0001661.

Determination of effective feedback sign, overshoot
kinetics and induction range

We used Monte Carlo sampling of parameter values to

numerically determine the range of realizable dynamic behaviors

in the autoregulated TCSs focusing on the sign of autoregulation

and possibility of overshoot behavior. Each parameter set was used

to simulate activation kinetics after a signal at t = 0 s by changing

phosphatase activity (kph) from a high, resting state (10 s21) to a

low level (1 s21). To determine the effect of feedback, we used an

open-loop version of the model in which an exogenous regulator

R0 rather than (RRP)2 controls SK/RRP production. The

effective sign of feedback is determined by the sign of the

gain defined as the derivative
L½RRP2�

L½R0�

����
kph~1

. If this gain is positive

(
L½RRP2�

L½R0�

����
kph~1

w0) the transcriptional feedback is positive; if the

gain is negative (
L½RRP2�

L½R0�

����
kph~1

v0), the feedback is negative. A

subset of cases predict RRP2 overshoot without mRNA overshoot.

This phenomenon is not dependent on transcriptional feedback

and is not of interest here. Therefore we do not analyze these

parameter sets.

Induction range (Figure 5) is defined as the difference between

RRP2 at high and low signal limits, normalized to the case without

feedback: ½RRP2�high{½RRP2�0
.
½RRP2�nf

high
{½RRP2�nf

0

.

Genetic algorithm
To determine the range of behaviors attainable by the model, we

evolved examples conforming to specific criteria using a simple

genetic algorithm. Using a set of seed parameter sets, the algorithm

randomly perturbs parameters and selects sets with the highest value

for a fitness function. This function depends on the desired criteria.

To select a parameter set that conforms to known important

characteristics of Salmonella PhoPQ after a signal, the desired

characteristics include at least 2-fold induction of (1) [RRP2] over the

resting level ( f1); (2) RRtot over the resting level ( f2); and (3) peak

RRP2 concentration over activated steady state RRP2 ( f3). The

following fitness function selects for these criteria, with each criterion

noted: f ~f1(½RRP2�ss{½RRP2�0)zf2(½RRtot�ss{½RRtot�0)z

f3
½RRP2���½RRP2�ss

� �

where f1,2,3(x)~

0, xv0
3

2

x

1zx
, 0vxv2

1, x§2

8>><
>>:

.
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Text S1 Alternative models of two-component system kinetics

Found at: doi:10.1371/journal.pcbi.1000676.s001 (0.07 MB PDF)

Text S2 Partitioned Monte Carlo sampling in a simplified model

Found at: doi:10.1371/journal.pcbi.1000676.s002 (0.03 MB PDF)

Text S3 Non-steady state open loop gains and response times

Found at: doi:10.1371/journal.pcbi.1000676.s003 (0.03 MB PDF)

Text S4 Relating overshoot kinetics to steady state response

Found at: doi:10.1371/journal.pcbi.1000676.s004 (0.03 MB PDF)

Figure S1 Characteristics of two-component system model

calibrated to resemble Salmonella PhoPQ. Dynamics of RRP2

(A), total RR (B), total SHK (C), and a downstream protein

upregulated by RRP2 (D).

Found at: doi:10.1371/journal.pcbi.1000676.s005 (0.08 MB PDF)

Figure S2 Schematic of a two-component system model with

sensor histidine kinase (SHK) maturation. This model is identical

to the main text, except that SHK-independent phosphorylation

of response regulator (RR) is disallowed, and newly produced

SHK enters a temporary state where it is capable of binding and

phosphorylating RR, but cannot catalyze the phosphatase

reaction. Newly translated SHK_0 matures at a rate kconf.

Found at: doi:10.1371/journal.pcbi.1000676.s006 (0.05 MB PDF)

Figure S3 Sampling of partitioned parameter space in a

simplified two-component system model. (A) The model was
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simplified by eliminating as many variables as possible while

retaining the capability for negative open-loop gain. (B) Distribu-

tion of negative and positive open-loop gain cases for fraction of

exogenous phosphorylation flux JE/(JE + JS). Histogram bins

containing more than 105 members were cut off for clarity. (C)

Distribution of cases with feedback-induced overshoot .10% over

the activated steady state.

Found at: doi:10.1371/journal.pcbi.1000676.s007 (0.08 MB PDF)

Figure S4 Two-component system kinetics with non-steady state

open loop gain that switches between positive and negative.

Found at: doi:10.1371/journal.pcbi.1000676.s008 (0.09 MB PDF)

Figure S5 Relationship between steady state dose-response and

overshoot kinetics in two-component systems.

Found at: doi:10.1371/journal.pcbi.1000676.s009 (0.15 MB PDF)

Figure S6 Altered mRNA stability in a simulated SHK

knockout changes total RR concentrations. Wildtype concentra-

tions at the default degradation rate for various signal levels are

shown for reference. All simulations use the default parameter set

(Table S1).

Found at: doi:10.1371/journal.pcbi.1000676.s010 (0.05 MB PDF)

Figure S7 Predicted steady-state effects of perturbing transla-

tional efficiency.

Found at: doi:10.1371/journal.pcbi.1000676.s011 (0.04 MB PDF)

Table S1 Intervals for Monte Carlo sampling and reference

parameter set

Found at: doi:10.1371/journal.pcbi.1000676.s012 (0.02 MB PDF)

Table S2 Reaction mechanisms for a generalized two-compo-

nent system model

Found at: doi:10.1371/journal.pcbi.1000676.s013 (0.02 MB PDF)
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