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Abstract

The photoreceptors of the Drosophila compound eye are a classical model for studying cell fate specification.
Photoreceptors (PRs) are organized in bundles of eight cells with two major types – inner PRs involved in color vision and
outer PRs involved in motion detection. In wild type flies, most PRs express a single type of Rhodopsin (Rh): inner PRs
express either Rh3, Rh4, Rh5 or Rh6 and outer PRs express Rh1. In outer PRs, the K50 homeodomain protein Dve is a key
repressor that acts to ensure exclusive Rh expression. Loss of Dve results in de-repression of Rhodopsins in outer PRs, and
leads to a wide distribution of expression levels. To quantify these effects, we introduce an automated image analysis
method to measure Rhodopsin levels at the single cell level in 3D confocal stacks. Our sensitive methodology reveals cell-
specific differences in Rhodopsin distributions among the outer PRs, observed over a developmental time course. We show
that Rhodopsin distributions are consistent with a two-state model of gene expression, in which cells can be in either high
or basal states of Rhodopsin production. Our model identifies a significant role of post-transcriptional regulation in
establishing the two distinct states. The timescale for interconversion between basal and high states is shown to be on the
order of days. Our results indicate that even in the absence of Dve, the Rhodopsin regulatory network can maintain highly
stable states. We propose that the role of Dve in outer PRs is to buffer against rare fluctuations in this network.
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Introduction

The ability of Drosophila to perceive color and motion depends

on the specific patterning of several Rhodopsin proteins

throughout its retina [1–3]. The fly retina is a complex three-

dimensional structure that consists of a lattice of approximately

800 simple eyes known as ommatidia [4]. As shown in Figure 1,

each ommatidium is a bundle of eight photoreceptor neurons

(PRs), with six motion detecting PRs (R1–R6) on the perimeter

(‘‘outer’’ PRs) and two smaller, color detecting PRs (R7 & R8) in

the middle (‘‘inner’’ PRs) [5–12]. Beginning at the third instar

larva, photoreceptors arise following the passage of a morphoge-

netic furrow across the eye imaginal disc, a monolayer of epithelial

cells. As the furrow passes, cells are recruited to ommatidia in a

stereotyped manner wherein the R8 photoreceptor is recruited

first and then followed by pairs of outer photoreceptors: R2 and

R5, R3 and R4, then R1 and R6. Finally, R7 joins the group of

cells. During pupation, photoreceptors express specific Rhodopsins

(for details of the process, see [13,14]).

A well-studied genetic network controls Rhodopsin protein

expression in the eight PR cell types, and enforces a ‘‘one-neuron,

one-receptor’’ rule across the majority of the retina, such that each

PR expresses one and only one of five types of Rhodopsin proteins

(Rh1, Rh3, Rh4, Rh5, or Rh6) [15]. In outer PRs, each cell

expresses Rh1 exclusively. There are two major types of

ommatidia: in a random subset consisting of approximately 35%

of ommatidia, inner PRs exhibit coupling such that when the R7

cell expresses Rh3, the R8 cell expresses Rh5; in the other 65% of

ommatidia, when R7 expresses Rh4, R8 expresses Rh6 (for

exception, see [16]).

Several regulators of Rhodopsin patterning have been discov-

ered and their regulatory interactions are well-characterized [16–

21]. The K50 homeodomain protein Defective proventriculus

(Dve) was recently shown to enforce the ‘‘one-neuron, one-

receptor’’ rule in the outer PRs and in the subset of Rh4-

expressing R7 cells [22]. In outer PRs, Dve acts together with the

activator Orthodenticle (Otd) in an incoherent feedforward loop

motif to repress Rh3, Rh5, and Rh6. In the inner PRs, a second

coherent feedforward loop that includes the inner PR factor Spalt

(Sal), represses Dve thus allowing Rhodopsin expression. In dve

mutants, Rh3, Rh5 and Rh6 are de-repressed in outer PRs at

levels that vary among cells. Importantly, at the time of Rh

expression, Dve is expressed in outer PR cell types where it

represses Rh3, Rh5 and Rh6 (Figure 1). Dve’s effect on Rhodopsin

expression, however, is modulated by cell-type specific inputs onto

the promoters of each rhodopsin gene (Figure 1 and [22]). Most of

these inputs have previously been shown to affect rhodopsin

expression in inner photoreceptors only. However, Otd and

Hazy/Pph13 (a Q50 homeodomain protein) are expressed in all

PRs similarly to Dve [18,21,23]. Both Otd and Hazy/Pph13 have

been shown to be necessary but not sufficient factors for expression
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of specific rhodopsins in vivo (Figure 1) and sufficient to activate their

expression in vitro [24].

Here, we quantitatively studied a molecular null mutation in dve.

Since the variable nature of this phenotype requires a quantitative

analysis (Figure 2), we developed image analysis algorithms to

identify each ommatidium in the retina and discriminate

individual PRs in 3D confocal stacks of retinae. We applied these

methods to quantify cell-specific effects in dve mutants in thousands

of cells by measuring relative protein levels for the three Rhodo-

psins in the eight different PR types over a time course of four

weeks. We measured a wide cell-to-cell variability in Rhodopsin

expression. Our ability to precisely quantify Rhodopsin levels

enables detection of subtle differences among the outer PR cell

types, which manifest in the de-repression of Rhodopsins. We

use stochastic models to understand the underlying causes of the

observed Rhodopsin distributions. This allows us to attribute

differences among cells to the rates of molecular processes such as

protein and mRNA synthesis and degradation rates. On the basis

of our modeling, we propose a functional role for Dve in outer PRs

as a buffer against rare fluctuations in the Rhodopsin regulatory

network.

Results

Image Analysis, Quantification, and Reproducibility
across Replicates

Thirty dve mutant retinae collected at four different developmen-

tal time points were analyzed by confocal microscopy and

automated image analysis algorithms (see Methods). We developed

algorithms that automatically analyze three-dimensional confocal

stacks of entire retinae and computationally extract ommatidia from

the stacks (Figure 3). Within each ommatidium, the algorithms

identified photoreceptor cells and assigned the correct photorecep-

tor type. For most retinae, our algorithms identified .500 omm-

atidia, and the number that were sufficiently well-resolved to allow

automatic identification of individual photoreceptors was typically

in the range 70–200 ommatidia per retina. We quantified

Rhodopsin protein levels using a local relative intensity measure

(Il) across an interval of z slices identified by the algorithm to

maximize both the number of ommatidia with well-resolved PRs

and the number of slices used for quantification (Figure S1 and Text

S1). This intensity measure, Il, is calculated in each z slice such that

each PR’s intensity value (Ipr) is normalized by the local ommatidia

background (Iomma), and averaged over the z slices: Il = ,Ipr/Iomma..

In order to quantitatively compare Rhodopsin protein levels across

individual retinae, we overcame several technical challenges

resulting from imaging within the complex retinal tissue (see

Methods and Figure 4). Using Il to quantify protein levels, we

demonstrated that Rhodopsin distributions are reproducible across

replicates (see Methods and Figure S2).

Cell-Specific Expression Dynamics
We applied our quantification approach using Il to measure cell-

specific Rhodopsin expression in dve mutants across several time

points. By comparing the measured distributions for different

Rhodopsins in different PRs, we observed PR specific effects in de-

repression.

Inner photoreceptors (R7, R8). The wild-type expression

pattern in R7 cells is bimodal such that approximately 35% of cells

exclusively express Rh3, while the other 65% exclusively express

Rh4. Similarly, a 35:65 ratio of Rh5:Rh6 is observed in R8 cells,

due to a signal from R7 to R8. We previously showed that in the

dve mutant the bimodal expression pattern of Rh4 is unaffected,

but the Rh3 pattern is eliminated, with Rh3 expressed at a high

level in all R7 cells [22]. In R8 cells, however, the bimodal

Figure 1. Schematic view of ommatidial organization and known regulators of Rhodopsins. (left) The eight photoreceptor (PR) types (R1–
R8) are shown in their stereotypical arrangement within an ommatidium; outer PRs shown in blue, inner PRs shown in cyan. (right) Direct regulators
of Rhodopsins Rh3, Rh5, and Rh6 are shown. Regulators that are expressed specifically in the inner PRs are shown in cyan. The symbol 1 indicates
regulators known to exhibit spatial dependencies across the retina.
doi:10.1371/journal.pcbi.1002357.g001

Author Summary

Complex networks of genetic interactions govern the
development of multicellular organisms. One of the best-
characterized networks governs the development of the
fruit-fly retina, a highly organized, three-dimensional organ
composed of a hexagonal grid of eight types of
photoreceptor neurons. Each photoreceptor responds to
a particular wavelength of light depending on the
Rhodopsin protein it expresses. We present novel compu-
tational methods to quantify cell-specific Rhodopsin levels
from confocal microscopy images. We apply these
methods to study the effect of the loss of a key repressor
that ensures each photoreceptor expresses only one
Rhodopsin. We show that this perturbation has cell-
specific effects. Our measurement of the cell-type specific
Rhodopsin distributions reveals differences between pho-
toreceptor cells, which could not otherwise be detected.
Using mathematical models of gene expression, we
attribute this variability to stochastic events that activate
Rhodopsin production.

Rhodopsin De-repression in the Fly Retina
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expression of both Rh5 and Rh6 remains. The R8 cells in the dve

mutant therefore provide a useful baseline for quantification of

Rhodopsin expression; since Rh6 is expressed at high levels in one

subset of R8 cells and is repressed in the remaining R8s, Il should

reflect this bimodality. Furthermore, this distribution can be used

to determine the range of Il values that correspond to the ‘on’ state

of Rhodopsin expression.

In Figure 5 we show the distribution of Rh6 in R8 cells

measured in a representative sample of retinae across all time

points. This distribution exhibits two pronounced peaks. We fit a

mixture of two normal distributions to the pooled data, and found

that 80% of cells express Rh6 at high levels. The ‘off’ state of Rh6

has a basal level of Il,1.960.3 (mean6stddev), while the on state

has Il,11.065.1, and we had enough data to observe cells at 3

standard deviations above the mean, at Il.26. The data fit well to

the mixture distribution, with a Kolmogorov-Smirnov test statistic

of 0.09 (p-value = 0.42). Holding constant the inferred parameters

of the two normal distributions, we refit only the mixture

parameter (the proportion of cells in the on state) separately for

each retina. This yielded a mean proportion of 78% on, with a

standard deviation of 3.5% across retinae. The approach we

developed here to characterize variability of the ratio for dve will be

useful in future studies of the wild-type ratio.

Our quantification in inner PRs here determined the range of

intensity values corresponding to the on and off states of

Rhodopsin expression. On the basis of previous measurements

of Rhodopsin density in rhabdomeres, we estimated the

conversion from our intensity units into numbers of Rhodopsin

molecules [25]. Rhodopsin density in the rhabdomere was

measured to be 2.56105 molecules/mm3. Using the average Il

for the on state, we find that one intensity unit corresponds to

approximately 2.36104 molecules/mm3.

Outer photoreceptors (R1–R6). Wild-type outer PRs

express Rh1 exclusively and strongly repress Rh3, Rh5, and

Rh6. In dve mutants, these three Rhodopsins are de-repressed in

outer PRs (Figure 2). While clear functional differences exist

between the outer (motion-detecting) and inner (color-detecting)

PRs, differences among outer PRs have not been established with

regards to Rhodopsin regulation. Our quantitative approach could

detect subtle differences in Rhodopsin expression among outer

PRs. Figure 6 shows the cell-specific Rhodopsin expression

distributions we measured at different time points (smoothed

histograms are shown). Comparison with Figure 5 indicates that in

all PRs, across Rhodopsins and time points, high expression levels

such as those observed for Rh6 in R8 are rarely seen in outer PRs.

In the next section, we show that infrequent stochastic activation

events can account for the observed expression level distributions.

The Rhodopsin distributions reveal significant differences

among outer PRs (Figure 6). While mean Rhodopsin levels are

similar across PRs, the differences are apparent in the distribution

shapes, specifically the location of their mode and the width of

their tails. To test whether visually apparent differences have

statistical significance, we used a one-sided, two-sample Kolmo-

gorov-Smirnov test, a non-parametric test for differences in the

shapes of distributions. We tested for differences between each PR

and all other PRs. We also tested for differences between multi-PR

subsets. Using this test, we found several striking cell-specific

Rhodopsin expression patterns (see Table S1 for p-values):

Figure 2. Rh3, Rh5 and Rh6 are de-repressed in dve mutants. (A) Three dimensional rendering of a representative confocal stack of a retina
dissected at the 2 week developmental time point. Phalloidin, which stains actin, was used to visualize the rhabdomeres (green). This retina is co-
stained for Rh5 (red) and Rh6 (blue). The inset shown is a zoomed-in view of the center of the retina. (B & C) Retinae were co-stained for two
Rhodopsins, and representative ommatidia extracted automatically from the image stacks are shown for retinae co-stained for either Rh3–Rh6 or
Rh5–Rh6 (panels B-i & C-i). Panels B-ii & C-ii show a cross section of the ommatidium in the phalloidin channel, indicating the automatically identified
PR cells (R1–R6; R7/R8). Rh3 levels exhibit de-repression in outer PR cells (B-iii). Rh6 levels exhibit de-repression in outer PR cells (panels B-iv & C-iv).
Rh5 levels exhibit de-repression in outer PR cells (C-iii). Scale bar is 1.5 mm (panels B) and 1.0 mm (panels C).
doi:10.1371/journal.pcbi.1002357.g002

Rhodopsin De-repression in the Fly Retina
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(1) Rh3 tends to be more repressed in R3 cells than in all other

PRs at all four time points. Similarly, Rh3 tends to be more

repressed in R4 cells than in all other PRs until the fourth time

point.

(2) Rh5 tends to be more repressed in R3 cells than in all other

PRs, most significantly at the 2 and 4 week time points. For

Rh5, R3 cells are the only cells that remain significantly

repressed at 2 and 4 weeks; all other cell types tend to express

Rh5 at high levels.

(3) Rh6 expression in R2, R4 and R5 cells are significantly more

repressed than a group composed of R1, R6 and R3 at all

time points.

(4) For Rh3, R1 and R6 cells tend to be less repressed at all time

points.

(5) Rh6 expression in R1 cells exhibits strong de-repression at all

time points.

We hypothesized that some of these cell-specific differences

might result from similar levels of regulators when cells are

developmentally recruited. To test this, we compared the

distributions of co-recruited pairs (each shown in a different color

in Figure 6), and found that these pairs tend to behave more

similarly to each other than to the other PRs. The effect is most

visually striking among Rh3 distributions. Using a one-side

Kolmogorov-Smirnov test (see Table S1 for p-values), we find

that the R3 and R4 cells tend to repress Rh3 more strongly than

the R2 and R5 pair of cells. We also find that the R2 and R5 pair

tend to repress Rh3 more strongly than the R1 and R6 pair. Co-

recruited pairs of photoreceptors do not exhibit similar tendencies

in their distributions of Rh5 and Rh6. To test if the tendency we

observe in Rh3 expression can be explained by differences in

cellular structure, we compared cell-specific distributions of

Phalloidin, which binds actin filaments. We observe a slight

tendency for pairs of co-recruited cells to have similar distribu-

tions, however this tendency is not as significant either visually or

statistically as that observed for Rh3 (see Table S1).

Stochastic Modeling of Relative Rhodopsin Levels
The distribution of Rhodopsin protein levels we measured

should be informative of the processes of mRNA and protein

production and degradation for different rhodopsin genes. Previous

studies have derived the form of the equilibrium distributions for

several different models [26–28]. In the simplest model, a

constitutively active promoter produces transcripts that are

translated into protein [27]. Assuming that protein lifetimes are

significantly longer than mRNA lifetimes, the equilibrium

distribution of protein levels is a gamma distribution, C(a,b), with

shape parameter a and scale parameter b. The two parameters are

related to the rates of mRNA production (km) and degradation

(cm), and of protein production (kp) and degradation (cp) as follows:

a~km

�
cp, b~kp

�
cm. We expect this model to be appropriate

when transcriptional activity is uniform across cells. For example,

Figure 3. Image analysis methods to identify ommatidia and individual PRs. (A) Step 1 – Identifying ommatidia in an optical slice. Each
optical section is thresholded using local contour selection. i. a representative gray scale optical section; ii. a contour map of this image, where 20
intensity contour levels are drawn; iii. results of contour selection around a region; iv. the resulting binary image. (B) Step 2 – Identifying ommatidia in
3D. Filament finding in three dimensions is applied by searching in five consecutive slices for overlapping pixels, and growing the overlapping
regions in subsequent slices. (C) Representative segmented image that results from steps 1 and 2. (D) Step 3 – Tracing PR cells within ommatidia. A
representative ommatidium, extracted from the retina. Choosing the top 800 most intense points in the first five slices, k-means clustering is
performed to identify 7 clusters, corresponding to the 7 PRs in each slice. Using these centers as seeds, we shift the window of five slices by one slice
and perform k-means of the top 800 most intense points. This process is continued until the PRs are traced. Representative results are depicted on
the left of the panel where each color identifies a different cell.
doi:10.1371/journal.pcbi.1002357.g003

Rhodopsin De-repression in the Fly Retina
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since wild-type flies strongly repress Rh3, Rh5, and Rh6 in outer

PRs, their very low expression levels in those cells should be well-

modeled by a uniform basal transcription rate. To test this, we

measured Rhodopsin distributions in wild-type flies. We found

excellent fits to gamma distributions for all three Rhodopsins,

shown in Figure 7 (insets) and Table 1. The difference between

Rh3 and Rh5 was pronounced in their values of a (they had

identical values of b), indicating differences in their basal promoter

activities or protein turnover rates, rather than differences in

translation or RNA stability.

In contrast to these results from wild-type retinae, the

distributions in dve retinae were not fit as well by this simple

model (see Figure S3). While in some cases the fit was good at the

tails of the distributions, the fit at the modes exhibited significant

deviations. The simple model, therefore, predicts fewer cells

expressing low levels of Rhodopsin than observed. Comparing dve

and wild-type distributions in Figure 7, appears that the mode

corresponds to the subpopulation of cells that exhibit basal

expression.

These deviations from the simple model indicate that protein

expression is strongly non-uniform across cells. One possibility is

that Rhodopsin promoters can interconvert reversibly between on

and off states, and mRNA is produced only when the promoter is

on. In several different regimes of this promoter on/off

interconversion model, protein levels are predicted to exhibit a

gamma distribution. For example, if the gene’s inactivation rate

is much larger than both the activation rate and the mRNA

degradation rate, then mRNA levels will have a gamma

distribution; hence, if protein levels closely track mRNA, the

gamma distribution will be observed [26]. Likewise, if the

promoter state interconverts significantly faster than proteins are

degraded, a gamma distribution is predicted [28]. Our data

exhibits significant deviations from both gamma distributions

(Figure S3) as well as the general solution obtained in [28] (data

not shown).

Our data are much more consistent with a two-state network

model in which proteins can be produced at either a low, basal

rate (off state) or a high rate (on state), and interconversion

between the two states is much slower than all other processes. We

emphasize that these two states are not necessarily different states

of the promoter alone – they may result from differences in other

processes and thus correspond to the overall state of the network

Figure 4. Quantification of relative Rhodopsin levels. (A) i. an optical section of an ommatidium stained for Rh5; ii. the optical section with PR
masks whose centers are identified by the clustering method described here; iii. contour map of Rh5. Intensities are colored such that low intensities
are dark blue and high intensities are bright red. To calculate intensity measures, our method only uses contour lines that overlap with PRs. The
contour map is broken into contours that localize to PRs (panel iv) and those that constitute the background levels (panel v). vi. shows the overlay of
the contours that localize to PRs together with the masks; vii. the calculated intensity measures are shown for each PR in this slice. Final intensity
measurements are averaged over an automatically identified z-range. (B) i. A cross section of the retina in the xz-plane in the phalloidin channel
showing the effect of tissue depth on intensity measurements. Intensity level is indicated by color from highest (red) to lowest (blue); ii. A plot of the
intensities along the line shown in panel i. The brightest points in the xy plane are close to the center of the retina where light has less tissue to travel
through.
doi:10.1371/journal.pcbi.1002357.g004

Rhodopsin De-repression in the Fly Retina
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that regulates Rhodopsin production. Due to the slow intercon-

version between states, proteins levels in each state exhibit a

gamma distribution; the overall distribution is a mixture of two

gamma distributions, with parameter pon denoting the fraction of

cells in the on state.

Fits to the two-state model are shown in Figure 7, where the

blue line indicates the distribution for cells in the on state

(parameter values are given in Table 1). While such mixture

models can suffer from over-fitting, here we have avoided this

problem by explicitly measuring the wild-type distributions, which

correspond to the off state (Figure 7, inset). The wild-type off state

is similar in its position and shape to the dve off state across time

points, indicating that the fits are reliable.

The model allows us to infer the fraction of cells in the on state

at each time point (Table 1). For Rh5, we see initially a very small

fraction of cells are on (pon = 0.02); over the course of 2 weeks, cells

get induced until approximately 2/3 of cells are on, a value that is

maintained through the 4 week time point. For Rh3, pon remains at

,0.3 until 4 weeks, when it decreases to 0.2. For Rh6, pon

fluctuates in the range 0.2–0.3 over the time course. The

difference between the on and off states of cells, and further

implications of our modeling, are addressed in detail in Discussion.

Pairwise Rhodopsin Correlations
The existence of common regulatory mechanisms acting on

different genes can often be inferred by measuring correlations of

their expression levels within cells. Although Otd regulates three

different rhodopsin genes, the presence of Dve in wild-type retinae

maximally represses these genes in outer PRs, and correlations

cannot be observed. In dve mutants, Rhodopsin expression is

revealed in outer PRs. If Otd were acting alone, we would expect

that fluctuations in Otd levels would lead to positive correlations

between different pairs of Rhodopsins. However, the presence of

other regulators in different outer PR cells could modulate the

strength or even the sign of correlations.

To test this, we plotted the distribution of relative levels for pairs

of Rhodopsins that were co-stained, Rh3–Rh6 and Rh5–Rh6

(Figure 8). In the pooled data, across all replicates and

photoreceptors, we found statistically significant positive correla-

tions for Rh3–Rh6 at the last time point (Spearman’s r<0.3, p-

value,1024) and negative correlations for Rh5–Rh6 (Spearman’s

r<20.35, p-value,1024) (Figure S4, upper panels). To verify

these, we examined correlations within each replicate and within

each photoreceptor (Figure S4, lower panels). For Rh3–Rh6,

although several replicates exhibit statistically significant correla-

tions, there is no consistent pattern, although there is a strong

tendency for positive correlations at the fourth week time point.

Some positive correlations may be spurious, e.g. while the measure

Il normalizes for variations in local mean intensity across the

retina, higher-order intensity variations might account for weak

positive correlation between Rh3–Rh6.

For Rh5–Rh6, on the other hand, we find reproducible anti-

correlation across all three replicates at the 4 week time point,

which are consistent across PR types. One explanation for anti-

correlation could be exclusion of different Rhodopsins due to

limited space and dense packing within the rhabdomere. In that

case, we would expect a cloud of points slightly elongated along a

line of negative slope. Figure 8 is not consistent with this scenario.

Instead, along the increasing Rh5 axis in the 4 week panel, we see

a spread of points, with decreasing density in the Rh6 direction.

Cells that highly express one Rhodopsin, tend to express the other

type at a lower level, and there are few cells that co-express both

Rhodopsins at high levels. We conclude the Rh5–Rh6 anti-

correlation is the result of factors other than Otd acting in the

outer photoreceptors (see Discussion).

Discussion

In this paper, we established the Drosophila compound eye as a

quantitative system for studying cell-specific gene expression. We

developed methods to image the complex three-dimensional tissue

and automatically identify ommatidia and their constituent PRs.

We quantified the cell-specific effects of removal of dve, a key

transcriptional repressor that regulates Rhodopsin patterning. In

wild type outer PRs, which exclusively express Rh1, Dve represses

the expression of Rh3, Rh5, and Rh6.

Our data shows that removal of Dve leads to a continuous and

wide distribution of expression levels (Figure 7). This cell-to-cell

variability exhibits PR-specific differences (Figure 6) suggesting

that each cell type may express different levels of Rhodopsin

regulators (Figure 1).

Importantly, we could only detect these differences by

comparing distributions since mean Rhodopsin levels exhibit little

change among outer PRs. The fact that Rh3 repression is greatest

in R3 and R4 cells is consistent with the fact that the R3/R4 pair

is known to undergo additional differentiation after PRs are

recruited [29]. Thus, our analysis has revealed that cell fate

differences in R3 and R4 yield distinct Rh3 expression in dve

mutants. Furthermore, other co-recruited pairs (R1/R6 and R2/

R5) also appear to regulate Rh3 levels similarly, suggesting that

each pair may have similar levels of Rh3 regulators. Surprisingly,

however, such similarities between co-recruited pairs are not

detected for Rh5 and Rh6. This observation suggests that outer

PRs exhibit differences in the amount and types of Rhodopsin

regulators they contain. For example, the R3 cell exhibits a strong

tendency to repress Rh5, which is distinct from all other PRs

(Figure 6). These differences in Rhodopsin regulation in outer PRs

have not previously been shown. While some examples of

differential gene expression among outer PR types are known

Figure 5. Bimodal expression of Rh6 in R8 cells. The distribution
of Rh6 levels in R8 cells shown here represents retinae at all time points.
The bar graph indicates the probability density of all PRs in each
expression level bin. A bimodal distribution, given by a mixture of two
normal distributions, was fit to the data using maximum likelihood
fitting. The means (m) and standard deviations (s) of the two Gaussians
are shown, and the mixture proportion is such that 80% of cells express
Rh6 at high levels, while 20% express Rh6 at low levels.
doi:10.1371/journal.pcbi.1002357.g005

Rhodopsin De-repression in the Fly Retina
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[30–32], further study of Rhodopsin regulation in outer PRs is

needed to identify the molecular basis for the differences we

observe.

We showed that Rhodopsin distributions in outer PRs are

consistent with a two-state model in which Rhodopsin production

occurs at either high or basal rates, which we call respectively the

on and off states (Figure 7). To understand the biological basis for

these two states, it is instructive to compare the model parameters

a and b between them, across time points, for each Rhodopsin

(Table 1). In all cases, we find aoff waon and boff v
bon. The most

pronounced differences are between b values, which are an order

of magnitude or more larger in the on state than the off state at

most time points. Since b~kp

�
cm is the ratio of protein translation

to mRNA degradation rates, the model suggests that differences

between the two states of cells in the dve mutant may stem from

post-transcriptional regulation. The on state could be associated

with stabilization of the transcript (reduction of cm) and/or

increased translation (increase of kp). Differences in Rhodopsin

trafficking to the rhabdomere may comprise additional post-

transcriptional differences between the states. Because our

experiments measure protein level distributions, they do not

provide information about the transcription rate km independently

of cp, i.e. only the ratio a~km

�
cp can be determined. Thus,

transcriptional differences between on and off states cannot be

inferred. However, under the reasonable assumption that

km,on§km,off , the observation that aoff waon implies that Rho-

dopsin turnover rates (discussed below) increase significantly in the

on state.

Figure 6. Cell-specific expression dynamics of Rhodopsins. Rhodopsin level distributions are shown for each PR type and each Rhodopsin,
pooled over retinae at each time point. Each curve corresponds to a different outer PR (R1–R6), with colors and dashing indicated by the cell ID key.
Histograms were smoothed for ease of comparison. A Gaussian smoothing kernel, k(x)~(2p){1=2e {x2=2ð Þ , is used to construct the smoothed density
P(x):

P(x)~
1

nw

Xn

i~1

k (x{xi)=wð Þ

where xi denote the observed data points, n is the number of data points (see Table 1), and w is the smoothing bandwidth (w = 0.3 for Rh3, Rh6, and
Phalloidin; 0.5 for Rh5). Insets show distributions measured from two wild-type retinae. Phalloidin levels are shown in the bottom row. Number of
retina in each panel (0 week, 1 week, 2 week, 4 week) is as follows: Rh3: (4, 2, 3, 3); Rh5: (3, 2, 7, 3); Rh6: (7, 4, 10, 6).
doi:10.1371/journal.pcbi.1002357.g006
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Our model assumes that on « off switches occur infrequently

compared to the equilibration timescale of the gene expression and

protein translation dynamics. This timescale was shown to be of

order 1
�

cp [28], and can be estimated from measured values of

Rhodopsin turnover rates. The best measurements are of Rh1 in

the blowfly, Calliphora, a dipteran with the same compound eye

organization and patterning of Drosophila. The half-life of Rh1

depends on exposure to light: photo-activated Rh1 has a half-life

of 2 hours, while in the dark its half life is 5 days [33]. Subsequent

studies suggest that half-lives are longer in Drosophila, e.g. photo-

activated Rh1 half-life is ,13 hours [25]. Our flies were raised in

12 h light-dark cycles, hence 1 day is an approximate upper bound

for the equilibration timescale. The rate constant for on « off

switching is therefore predicted to be significantly slower than 1

event per day per cell, a result that is fully consistent with our

observation that changes in pon occur over the timescale of weeks

(Table 1).

The timescale for on « off switches, which is comparable to the

organismal lifespan, is strikingly slow in view of other systems

where stochastic activation occurs on the order of minutes [34,35].

To some extent, this difference could result from the fact that

photoreceptors are post-mitotic cells with overall slower metabolic

processes than the actively dividing cells used in previous studies.

More important in our view, however, is the fact that the default

state of rh3, rh5, and rh6 genes in outer PRs is off, and the strong

Rhodopsin-specific activators are not expressed in these cells

(Figure 1). Thus, the very slow timescale we infer for on « off

interconversion suggests that even in the absence of Dve, the

Rhodopsin regulatory network in outer PRs can maintain two

extremely stable states of Rhodopsin expression. We therefore

propose that the functional role of Dve in these cells is to buffer

against rare fluctuations in the Rhodopsin regulatory network.

While the mechanism by which Dve buffers against fluctuations

is not known, we provide a simple toy network model in which

buffering operates directly through Dve’s known behavior as

transcriptional repressor of rhodopsin genes. The mathematical

model presented in Text S1 is constructed by analogy with well-

known bistable networks such as the lac operon [36,37]. The

capacity of photoreceptors to produce large amounts of Rhodopsin

protein requires up-regulation of the protein production machin-

ery, which could be induced by Rhodopsin protein itself within a

positive-feedback loop. In this case, once Rhodopsin levels

increase beyond some threshold, protein production would kick

into ‘‘high gear’’, with concomitant increase in degradation

pathways to allow for efficient turnover.

Depending on the Rhodopsin mRNA level, the system can be

either bistable or monostable, as we show in Text S1. If

Rhodopsin mRNA concentration is very low (or very high), the

system has a single stable fixed point, corresponding to low (or

high) production. In an intermediate range of mRNA levels, the

system exhibits bistability (see Figure S5). In the bistable regime,

a cell that is in the low production state remains stably in that

state. An increase of Rhodopsin levels by rare fluctuation is

required to drive the system into the high production state. Once

there, it remains stably in high gear. Within this network, the role

of Dve is to buffer against fluctuations [38] by ensuring that the

Figure 7. Rhodopsin distributions in photoreceptors fit to a two-state gene expression model. Data pooled across photoreceptors is
shown in bars. The fit to the two-state model, gmix(Il), given in Table 1, is shown in magenta; the component corresponding to the on state, gon(Il ), is
shown in cyan. Densities gmix(Il) and gon(Il ) are integrated over each bin before plotting to allow comparison with the bar histograms. Insets show
data from wild-type retinae, and the fit to a single gamma distribution function (Table 1) is shown in magenta.
doi:10.1371/journal.pcbi.1002357.g007
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system remains in the monostable regime. Removal of Dve

increases mRNA levels, moving the system into the bistable

range. Thus, in this model Dve exhibits the quintessential

hallmark of a buffer: it controls the stability of the system, not its

state (see Text S1).

Our toy network provides a plausible mechanism of buffering

by Dve, but other scenarios are clearly possible, e.g. via additional

regulatory interactions. The key point indicated by our results is

that Rhodopsin production is not entirely determined by transcript

levels. Removal of Dve renders the system poised for activation,

Table 1. Best-fit parameters for two-state model of gene expression.

Rh3 Rh5 Rh6

dve 0 wk 1 wk 2 wk 4 wk 0 wk 1 wk 2 wk 4 wk 0 wk 1 wk 2 wk 4 wk

aoff 5.6 5.6 5.6 9.0 2.0 1.8 1.7 1.7 1.2 1.4 1.3 1.9

boff 0.17 0.17 0.17 0.10 0.17 0.60 0.58 0.59 0.40 0.41 0.44 0.55

aon 2.0 1.9 1.0 0.59 0.32 0.63 1.1 1.1 0.53 0.77 0.68 1.1

bon 2.1 1.8 5.8 5.3 41 10 3.3 4.8 11 4.3 5.9 5.0

pon 0.34 0.35 0.32 0.20 0.02 0.31 0.68 0.65 0.25 0.30 0.19 0.32

Dx 1.09 1.05 1.24 1.20 1.62 1.20 1.20 1.20 1.65 1.65 1.65 1.40

n 2,737 1,169 1,736 2,163 1,687 950 2,616 1,673 4,422 2,121 4,353 3,836

wt 0 wk 0 wk 0 wk

a 5.6 2.2 3.9

b 0.17 0.17 0.12

Dx 1.57 1.62 1.72

n 672 609 672

All fits were performed using maximum likelihood optimization (we used Mathematica 8 to perform the fitting). The functional form of the fit consisted of a linear
combination of two gamma distribution pdfs, denoted goff and gon , with the mixture parameter pon . The pdf for a gamma distribution is defined by
g x; a,bð Þ~xa{1b{ae{ x=bð Þ=C að Þ. The goff pdf is shifted by Dx, determined by the lowest levels detected in each experiment: goff (Il )~g(Il{Dx; aoff ,boff ). The gon pdf is
shifted to the mode of the goff pdf: gon(Il )~g(Il{Dx{boff (aoff {1); aon,bon). The mixture pdf is given by gmix(Il )~pongon(Il )z 1{ponð Þgoff Ilð Þ.
doi:10.1371/journal.pcbi.1002357.t001

Figure 8. Distribution of pairwise Rhodopsin expression. (A & B) Each point corresponds to a single PR, with the two coordinates giving the
relative expression levels of two Rhodopsins. Data was pooled across all replicates at each time point. To give a sense for the density of points in
different regions, each point was colored to indicate the number of points within a radius = 0.5 around it. The color bar shows the number of points
indicated by each color.
doi:10.1371/journal.pcbi.1002357.g008
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making it susceptible to fluctuations. While such fluctuations can

in principle occur without activators, it is known that the specific

Rhodopsin activators Otd and Hazy/Pph13 are expressed in outer

PRs [18,21,23]. The levels of these regulators and any others

would thus be major determinants of the rate of fluctuations that

drive the system from one stable state to the other.

Using our approach, we measured correlations between levels of

different Rhodopsin proteins. While we observed weak but

significant positive and negative correlations between both Rh

pairings (Figure S4), only the negative correlations of Rh5 and

Rh6 at the 4 week time point were consistent across replicates and

cell types. It is noteworthy that in wild-type flies in the inner R8

cell, Rh5 and Rh6 expression is strongly bimodal due to the

presence of a double negative feedback loop between warts and

melted [19]. Transcriptional reporters of warts [19] and melted (D.

Jukam, personal communication) are expressed in low levels in

subsets of outer PRs, suggesting that the major effectors of this

negative feedback loop are present in outer PRs. The presence of

these regulators could result in the anti-correlations of Rh5 and

Rh6 revealed in dve mutants. Moreover, recent work has shown

that in R8 photoreceptors, Rh6 acting through an uncharacterized

pathway has the capacity to inhibit Rh5 expression [39]. Removal

of Rh6 leads to progressive expression of Rh5 in R8 PRs, which

becomes apparent only after 2 weeks. Our finding of Rh5–Rh6

anti-correlation in dve outer PRs, which develops only after 2

weeks, suggests that a similar Rh6-mediated repression could be

active in the outer PRs and revealed in the dve mutant.

Our results demonstrate the power of applying quantitative

approaches to the study of systems-level problems in developmen-

tal biology. Our measurement of cell-specific Rhodopsin distribu-

tions enables detection of subtle differences among outer PR types,

which were previously unknown. Our modeling of the distribu-

tions reveals that post-transcriptional processes play a major role

in stochastic de-repression of Rhodopsins in outer PRs in the

absence of Dve. More generally, we infer that the cellular state

corresponding to basal Rhodopsin production is stably maintained

by the Rhodopsin regulatory network even without Dve. On the

basis of these findings, we conclude that Dve’s role in outer PRs

may be to act as a buffer against fluctuations in the genetic

network that controls Rhodopsins.

Methods

Drosophila Retinae, Staging, and Sample Preparation
All retinae were dissected from dve186 flies, a molecular null

deficiency [22]. Flies were raised on standard corn meal-molasses-

agar medium and grown at 25uC. Flies were staged and then

dissected at 4 time points after eclosion: 0 weeks (+/21 day), 1

week (+/21 day), 2 weeks (+/21 days), 4 weeks (+/21 days). All

retinae were stained with Alexa-488 conjugated phalloidin, which

binds actin and is used to visualize the actin-dense rhabdomeres.

Additionally, two antibodies are used to simultaneously visualize

Rhodopsins: retinae were co-stained with one of two pairs, either

mouse anti-Rh3 (1:10) and rabbit anti-Rh6 (1:2000), or mouse

anti-Rh5 (1:200) and rabbit anti-Rh6 (1:2000). The fluorophores

conjugated to secondary antibodies were Alexa 568 (Rh3), Alexa

568 (Rh5), and Alexa 633 (Rh6). Retinae were dissected and fixed

for 15 minutes with 4% formaldehyde at 25uC. Retinae were

rinsed twice, washed for at least 2 hours in PBX and then

incubated overnight with the primary antibodies diluted in PBX.

Retinae were then rinsed twice, washed in PBX for more than

4 hours and incubated overnight with secondary antibodies.

Retinae were mounted in Prolong Gold following two additional

rinses and a 2+ hour wash. All retinae were cured for at least 5

days but no more than 7 days. Prolong Gold exhibits the best

refractive index matching between mounting media and objective

oil.

Microscopy and Image Acquisition
Images were acquired using confocal scanning laser microscopy

(Leica SP5) with a 406 oil immersion objective (NA = 1.25).

Retinae were mounted on glass slides under a cover slip in Prolong

Gold. Optical sections were collected every 250 nm, with 8-bit

depth and a pixel size of 160 nm6160 nm. Each channel was

scanned separately and images were line averaged. Retinae are

approximately 100 microns deep with a maximal diameter of

approximately 500 mm. Individual ommatidia radii are in the

range 3–5 mm, and the distance between neighboring ommatidial

centers is 12–15 mm. The centers of PRs within an ommatidium

are approximately 2 mm apart, while the spacing between each PR

is less than 250 nm, and thus just within the resolution limit. A

single image stack typically consisted of ,300 optical slices and

saved as 3–4 GB of data (Figure 2A).

Image Analysis Algorithm
Step 1: Identifying ommatidia in an optical slice. To

identify ommatidia, the following algorithm is used (Figure 3A).

First, in each section, a maximum value filter is applied in a sliding

window of size 5 pixels by 5 pixels, chosen because a typical

ommatidial cross section is composed of 500–1000 pixels and the

distance between ommatidia is between 20–40 pixels. In a

window, a maximum intensity value is calculated and assigned

to all pixels in that window. The effect of the filter is to blur

differences between PR cells, and emphasize differences between

ommatidia and the background. On the resulting image, a contour

map of intensity levels is generated, using 20 equally-spaced

intensity levels from 0 to 255, using the MATLAB function

contourc. Starting at the highest intensity contour, the image is

thresholded, connected components are identified and the number

of pixels that make up the regions are compared to the standard

acceptable range for ommatidia (500–1000 pixels). Continuing to

the next contour level, the process is repeated, new regions are

identified, and previously identified regions grow in size. Once a

region’s size falls within the acceptable range, it stops growing.

This local thresholding accounts for intensity differences across the

retina, and allows both dim and bright ommatidia to be easily

identified. The output from this analysis consists, in each slice, of a

set of putative ommatidial regions specified as a binary mask (i.e. 1

at each pixel that belongs to a region, 0 otherwise).

Step 2: Identifying ommatidia in 3D. To align ommatidial

regions between slices, we apply a sliding window operation

through the stack (Figure 3B). For every 5 slices, starting at the first

slice (the deepest slice in the tissue), we record the positions of

pixels of value 1 in each slice, and identify strongly connected

components of these pixels in three-dimensions. The resulting

regions are called nascent ommatidia. Sliding the window of 5

slices up by 1 slice, the procedure is repeated, and regions are

identified. Regions which overlap a nascent ommatidium are

added to that ommatidium. Regions which fall within an

acceptable size range but do not overlap with any regions in

previous slices are added as new nascent ommatidia. The

procedure is continued up the stack.

We apply simple corrections that catch most errors that may

occur in this process. Due to intensity differences across the retina,

occasionally the contouring procedure in Step 1 fuses two

ommatidia into a single region. To correct for this, every 20

slices, we calculate the average size of an ommatidium’s assigned

regions. If a new region is greater than one standard deviation

Rhodopsin De-repression in the Fly Retina
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from this average, only the portion that directly overlaps with the

nascent ommatidium is assigned. The remaining portion is tested

for overlap with adjacent ommatidia. If it overlaps, it is re-assigned

to a different ommatidium; otherwise it becomes a new nascent

ommatidium.

The approach ensures that anomalies within a slice are not

erroneously identified as ommatidia, and that differences in

ommatidial orientations throughout the retina do not disrupt the

three-dimensional alignment of ommatidial regions. The method also

corrects for any residual errors due to thresholding. For example, if

regions of a slice have been thresholded at a high level resulting in

abnormally small regions – i.e. one ommatidium may be broken into

two small regions – these small regions will both overlap with one

region in subsequent slices and will be joined as one ommatidium. A

representative segmented retina is shown in Figure 3C.

Step 3: Tracing PR cells within ommatidia. Within om-

matidia, the inter-PR distances are at the limits of the resolution of

the microscope (,0.5 mm). Ommatidia whose major axis is

perpendicular to optical sections are closest to the center of the

retina. These ommatidia are imaged at highest resolution and their

PRs are easily resolved. Single PRs are more difficult to resolve

within ommatidia that are further from the center of the retina,

since the resolution in z is lower than resolution in x-y. Taking

advantage of the cylindrical geometry of cells, we apply a clustering

method on the Euclidean distances between points to identify 7 cells

(Figure 3D). Beginning at the R7 layer where cells are furthest apart,

we apply k-means clustering [40], where k = 7, to the 800 most

intense points in the first five slices, randomly seeding the centers.

Sliding up one slice in the stack, we use the group centers identified

in the first five slices to seed K-means clustering of the 800 most

intense points selected from the next five slices, and so on, tracing

the seven PRs through each ommatidium. The center cells, R7 and

R8, are identified as one cell using these methods. Since our current

study focuses on the outer PRs, we do not identify the boundary

between R7 and R8 cells, but refer to them as R7/R8.

As cells extend towards the brain, they twist around the center

of the ommatidia and shrink in size, becoming difficult to

distinguish, due to insufficient resolution. Clustering in this regime

is therefore unreliable. In each retina the parts of the image stack

at which clustering is unreliable differs, due to differences in the

orientation of the sample on the slide and variation in tissue depth.

We used the maximal displacement of cell centers between slices as

a measure of the goodness of clustering (see Supplementary

Methods and Figure S1). Our unsupervised clustering method

allows for automatic cell identification with no user input. As

further validation, we visually inspected the automatic cell

identification in a subset of ommatidia and from this estimate an

error rate in identification of ,3%.

Step 4: Labeling photoreceptor types. To label the PR

types within each ommatidium, the following automatic procedure

is used. First, we generate a matrix of distances between cell

centers (averaged across the optimum z-range). Using the central

cells (R7/R8) as a reference we assign cells as R1–R6: The cell

furthest from the center cell is labeled R3. Its two nearest

neighboring cells are assigned as R2 or R4. The remaining

neighbors of both of these cells are labeled as R1 or R5. Of these

cells, the cell with no neighbor is assigned as R1. The other cell is

assigned R5. Its neighbor closest to R3 is R4 and the other is R6.

The cell between R1 and R3 is labeled as R2.

Quantification of Rhodopsin Levels
Effect of tissue heterogeneity on quantification. Due to

the inhomogeneous structure of the retinal tissue, different parts of

the retina have slight variations of refractive index, which result in

light scattering that can lead to quantification artifacts. For

example, when Rhodopsin levels are sufficiently high in one cell,

e.g. when Rh6 is expressed at high levels in the R8 cell, some light

can be scattered into neighboring cells. Using the contour plot of

fluorescence intensity, such behavior manifests as low-intensity

contours that emanate from a bright cell and cross into

neighboring cells. Our quantification detects and removes this

artifact by assigning each intensity contour to a cell if and only if it

overlapped with that cell alone, yielding a set of localized contours

for each PR (see Figure 4). Contours that overlapped with multiple

cells were not used for quantification. Contours that enclosed all 7

cells were collected as a set of contours that characterize the

ommatidium’s background level (details below).

Contour assignment. For each retina, we chose an interval of

slices over which all quantification was performed; this set of slices,

denoted Z, was semi-automatically identified by our algorithm, as

described in Text S1. For a given Rhodopsin channel, within each

slice z [ Z, we constructed contour maps of intensity for each

ommatidium (see Figure 4). Each intensity contour was assigned to

one of several mutually exclusive sets: Ax = the set of contours that

exclusively overlap PR x; B = the set of contours that encompass all

PRs. Contour assignment is performed in each z slice. First, we

identify cell centers as the centroid of all pixels that were assigned to

each PR during clustering (see C.3 above). For each cell, we found

the minimal distance d between its center and the other 6 centers,

and placed a circular mask of radius 0.45d at the cell’s center.

Contours that exclusively overlapped the mask associated with PR x

were assigned to the set Ax. Contours that enclosed all 7 PR masks

were assigned to set B above. For any PRs x that were not assigned

any contours, we allowed PR masks to increase in radius by no more

than 3 pixels, and assigned any contours that overlap exclusively

with this larger mask to Ax.

Effect of retinal curvature on quantification. The

curvature of the retina results in significant intensity variation

across optical sections. The effect is due to the fact that imaging at

a given point requires light to travel through the layers of tissue

above the point and back to the objective. The retinal curvature is

such that at a given z depth, light must pass through more tissue at

points further from the center of the retina than at points closer to

the center. Figure 4 shows this effect for the Phalloidin fluorescent

marker: in a single optical section, the fluorescence intensity is

highest for positions in the xy plane that are nearest the top of the

retina. For this reason, proper quantification of relative Rhodopsin

levels cannot simply be based on the absolute intensity levels across

a slice. We therefore compute a local reference intensity level for

each ommatidium (details below).

Contour averaging and normalization. In each optical

section, for each ommatidium we obtain its background contours,

and average their intensity values weighted by contour length to

obtain the ommatidial reference level, Iomma. We denote the length

of the contour j by rj , and its intensity level by Ij . The ommatidial

reference level was defined as Iomma~SrjIjT
�
SrjT, where the

averaging is over all j [ B. Similarly, for each PR, we obtain its

localized contours, and average their intensity weighted by

contour length. This yields the average intensity per pixel for the

PR, defined as Ipr~SrjIjT
�
SrjT, where the averaging is over all

j[Ax. We then compute the local relative intensity level of the PR,

Il , by averaging the ratio Ipr

�
Iomma over the set of z slices that are

used for quantification: Il~Ipr

�
Iomma.

Supporting Information

Figure S1 Optimum z-range landscape. We plot the

landscape that is generated for each retina as described in
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Supplementary Methods. At each interval length, we plot the

number of ommatidia (given by the number on each line) with a

particular maximum cell displacement, here defined as the average

displacement of a cell’s center between two consecutive slices.

(EPS)

Figure S2 Rhodopsin distributions of replicates using
local relative intensity. Distributions of local relative intensity

levels (Il) are shown for different Rhodopsins at different

developmental time points. Histograms are normalized to one, so

that the values of the y-axis represent the proportion of PR cells.

Each colored line corresponds to a different replicate at the given

time point. Numbers of replicates for each panel is given in Figure 6.

(EPS)

Figure S3 Rhodopsin distributions fit to a single
gamma distribution at each time point.
(EPS)

Figure S4 Pairwise Rhodopsin correlations. (I) Data

pooled over all replicates. We report the Spearman’s r correlation

coefficient. Significance is indicated as follows: * = mildly signifi-

cant (0.001,p-value,0.01), ** = significant (0.0001,p-val-

ue, = 0.001), *** = strongly significant (p-value, = 0.0001). Left

panels: correlation in data pooled across all photoreceptors. Right

panels: correlations in data from individual photoreceptor types.

(II) Data from individual replicates. Each point indicates the

correlation observed in a single replicate. Bars indicate the mean

value of the replicates’ correlation. Significance of each replicate is

shown via color key.

(EPS)

Figure S5 Stability analysis for the toy network model
of Rhodopsin production. Ribosome production rate is

indicated by the blue curve, and degradation rate by the green

line. Dotted lines indicate the production threshold P*.

(EPS)

Table S1 Results of Kolmogorov-Smirnov tests for PR-
specific repression or de-repression. We report the

significance (2log10 p-value) of the one-sided Kolmogorov-

Smirnov to test for PR-specific patterns of repression or de-

repression. We perform three types of comparisons: (1) We

compare the distribution of Rhodopsin level of each PR-type

against the pooled distribution of the other PRs. (2) We compare

the pooled distribution of Rhodopsin levels between a group of

PRs consisting of R2, R4 & R5 with one consisting of R1, R3 &

R6. (3) We compare the pooled distribution of Rhodopsin levels

between co-recruited pairs of PRs (R3 & R4 vs. R2 & R5 vs. R1 &

R6).

(PDF)

Text S1 Goodness-of-Clustering for ommatidia and toy
network model for Rhodopsin production. Describes

methods for picking best-clustered ommatidia as well as the

volume over which Rhodopsin levels (Il) are quantified for further

analysis. Additionally, includes a description of the toy model

describing a minimal network of Rhodopsin production that is

sufficient to explain the two-state phenomenological model used in

the main text.

(DOC)
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