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Abstract

Recent studies have noted extensive inconsistencies in gene start sites among orthologous genes in related microbial
genomes. Here we provide the first documented evidence that imposing gene start consistency improves the accuracy of
gene start-site prediction. We applied an algorithm using a genome majority vote (GMV) scheme to increase the consistency
of gene starts among orthologs. We used a set of validated Escherichia coli genes as a standard to quantify accuracy. Results
showed that the GMV algorithm can correct hundreds of gene prediction errors in sets of five or ten genomes while
introducing few errors. Using a conservative calculation, we project that GMV would resolve many inconsistencies and
errors in publicly available microbial gene maps. Our simple and logical solution provides a notable advance toward
accurate gene maps.
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Introduction

All of genomics depends on accurate identification of coding

regions. Most gene boundaries are predicted using computational

methods, and only a tiny fraction have been verified experimen-

tally. Unfortunately, the accuracy of current gene-finding

algorithms is not perfect. Error rates for the most common

algorithms—Glimmer3 [1], GeneMark [2], and Prodigal [3]—

currently range from 1.5%–17.6% [3]. Gene prediction errors

alter protein sequences and intergenic regions (IGRs). Changes in

protein sequence influence calculations of similarities, phylogenetic

analyses, and can lead to errors in function annotation. Changes in

IGRs affect a suite of other predictions, such as operon structure,

regulatory motifs, and comparison of regulatory regions among

genomes. Changes in gene boundaries also affect microarray

design and interpretation of microarray data [4].

Gene-prediction error is a well-recognized problem [5] but the

full extent of gene prediction errors from current computational

methods is unknown. Recent studies yielded insight into the

problem for bacterial genomes. Pallejà, Harrington, & Bork [6]

found nearly a thousand examples of spurious gene overlaps (a

gene stop being downstream of the following gene’s start) in 338

bacterial genomes. Recently, we noted inconsistencies in gene start

sites among 53% of the orthologous gene sets across the

Burkholderia genus [7]. Although we expected real biological

variation to yield some inconsistencies in gene starts, many

inconsistencies for the Burkholderia genus included predictions of

alternative starts in regions of nearly identical sequence and likely

represented errors. We found most of these start site inconsisten-

cies could be resolved by choosing alternative start sites for one or

more of the orthologous genes, improving comparisons of IGRs

across the genus. We and others have speculated (either implicitly

or explicitly) that efforts to improve consistency of gene boundaries

among orthologs can also improve the accuracy of gene

predictions [7,8,9]. However, this hypothesis has not yet been

tested.

Here, we test this idea using a set of validated Escherichia coli

genes. We provide, for the first time, quantitative evidence

showing that consistency increases accuracy. We discuss the

significance of our results in the context of gene prediction

methods that make use of multiple genomes, and find that our

method is distinguished both by its effective use of larger numbers

of genomes, by its simplicity and modularity, and by its use of

contemporary (not older and error-ridden) gene-predictions. To

our knowledge, the method is the only tool available for non-

specialists to solve the routine problem of refining the accuracy of

extant gene maps in public databases.

Results/Discussion

Motivation for improving gene predictions using a
majority vote

Gene finding programs need to evaluate several possible start

sites for each gene. The programs occasionally make mistakes and

pick the wrong start site. If mistakes for orthologous genes in

different genomes are uncorrelated (an unrealistic assumption, but

useful as a reference point for algorithm development), then if less

than half of the predicted starts are wrong, they might be corrected

by a majority vote.

To formulate the majority vote idea mathematically, consider a

set of N orthologous genes with experimentally verified start sites

that have consistent positions in a multiple sequence alignment. If
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the probability of a gene finder predicting the wrong start site for

any of the orthologs is e, and if the predictions for different

genomes are independent, then the probability pi of finding i errors

among all of the orthologs is given by a binomial distribution,

pi~
N!

i! N{ið Þ! ei 1{eð ÞN{i: ð1Þ

The probability of finding at least one error among all of the

orthologs is

piw0~1{ 1{eð ÞN , ð2Þ

and the probability of the majority of the orthologs containing an

error is

piwN=2~
X

iwN=2

N!

i! N{ið Þ! ei 1{eð ÞN{i ð3Þ

For example, let the probability of predicting an incorrect start site

be e = 0.05, at the low end of the range of error rates for common

gene finders [3]. If the number of orthologous genes (N) is 5, the

chance of at least one error, piw0, in the ortholog set is 22.6%, but the

chance that the majority of orthologs are erroneous (piwN=2) is only

0.12%. The mean error rate SiT~
P

ipi is 0.25 across all number of

errors for five orthologs, and is 0.0035 across i.2. In this scenario,

choosing a globally consistent site where a majority of the original

predictions coincide is expected to correct 1{0:12=22:6~99:5% of

the inconsistent ortholog sets, and to correct 120.0035/0.25 = 98.6%

of the individual genes that have prediction errors.

The above model illustrates that typical gene prediction error

rates can lead to double-digit inconsistencies in ortholog sets (e.g.

in the above case, a 5% error rate led to a 22.6% inconsistency

rate). It also illustrates the ability of a majority vote to decrease

errors and thereby increase accuracy through increasing consis-

tency. The increase in accuracy requires that the error rate for a

single gene start be less than 50%. This prerequisite is satisfied by

modern gene calling software, for which reported error rates range

from 1.5% to 17.6% [3].

Genome Majority Vote algorithm
Although the above model gives clear and quantitative insight

into how comparative genomics might improve the accuracy of

gene maps, it is merely a reference point and does not consider the

important effects of real biological variation and correlated errors.

In our previous study of gene start site consistency in the

Burkholderia genus [7], we noted that ortholog sets in which a

majority of the start sites did not coincide were likely to represent

biological variation, whereas ortholog sets in which a majority of

the start sites coincided were likely to represent errors. To

determine whether a majority vote scheme might decrease start

site errors in real gene maps, we developed a Genome Majority

Vote (GMV) algorithm and applied it to a conservative test case:

gene maps from E.coli and close relatives.

The GMV algorithm works as follows. For a given set of

orthologous genes, if the positions of the start sites already coincide

in a multiple sequence alignment, they are accepted. If they do not

coincide, a start position is sought which is consistent for the

majority of the genes and for which there is a reasonable

alternative start site for the remaining genes in the set. If such a

position is found, it is accepted, and the predictions are changed

for the outlying genes. Otherwise, no start site prediction is made

for the ortholog set.

We implemented GMV in the pipeline illustrated in Fig. 1. The

input of the pipeline is a set of genome FASTA files. The output is

a set of gene predictions for each genome after enforcing

consistency using a genome majority vote (GMV) algorithm. A

typical GMV correction is illustrated in Fig. 2. Details of the

pipeline are described in the Methods section.

Conservative approach to evaluation of the GMV
algorithm

Any gene-calling software can in principle be used as a front end

to provide input gene calls to GMV. Here we used Prodigal [3]

predicted gene maps for E. coli and close relatives as a starting

point for GMV evaluation. This choice solved two problems. First,

Prodigal conveniently provided a list of reasonable alternative start

sites for each gene, simplifying the comparison and reassignment

of possible start sites among genomes. Second, Prodigal provided

gene maps with fewer prediction errors compared to existing

GenBank annotations that were obtained from older, more error

prone versions of gene finders like Glimmer2. Prodigal is

reportedly the most robust gene finder for diverse genomes [3].

Therefore, our use of Prodigal gene maps instead of Glimmer3 [1],

GeneMark [2], or older annotations appeared to be the most

logical and conservative approach.

Because Prodigal gene maps are likely to be more accurate than

most of the gene maps currently in GenBank [3], using Prodigal

gene maps to test the performance of GMV in correcting errors

should provide conservative estimates of performance. We

reported previously that Genbank maps for Burkholderia species

were more inconsistent than Prodigal maps [7]; we show similar

results in a later section of this paper for a set of E. coli genomes of

comparable diversity. Use of more error-prone gene maps—either

from other gene finders or from genomes that are more

problematic for gene prediction—would be expected to inflate

the number of observed inconsistencies among orthologs and the

projected impact of applying the GMV algorithm.

Author Summary

The genetic code tells us precisely how a DNA sequence
will be translated into a protein. However, it is more
difficult to identify where translation will start and stop in
the entire length of an organism’s genome sequence.
Computer software can predict where the start sites are,
and this is successful most of the time; however, errors do
occur. We hypothesized that some errors might be
corrected by comparing predictions for the genome
sequences of closely related organisms. This correction
scheme seems especially appropriate for bacterial ge-
nomes: not only is protein production in bacteria simpler
than in higher organisms, but hundreds of bacterial DNA
sequences are now available, and many of these are
closely related. To test the hypothesis, we developed a
method to detect whether a gene’s start site is inconsis-
tent with the majority of equivalent genes in a set of
related bacterial genomes. The method then modifies the
start if it can be made consistent with the majority of
genomes. Our tests show this majority vote method
improves the accuracy of gene start sites. Application of
the method to existing bacterial genomes should elimi-
nate many inconsistencies and correct a large number of
errors.

Genome Majority Vote Improves Gene Predictions
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To evaluate the performance of the algorithm, we created eight

genome test sets that varied in size and diversity (Supplementary

Table S1, Supplementary Figs. S1–S8). Each set contained either 5

or 10 genomes and included E. coli K-12 MG1655 as the reference

genome. The sets represented low, medium, high, or very high

diversity. We used a set of 871 experimentally validated Escherichia

coli K12 MG1655 genes downloaded from the EcoGene web site

[10] (http://ecogene.org) as a standard to determine error rates. A

gene prediction was classified as erroneous if the translational start

site differed from that of the validated gene; no errors were detected

in translational stop sites.

GMV increases gene start site consistency
Among the eight test sets, 5.9% to 61.8% of the ortholog sets

had inconsistencies. The majority vote rule improved consistency

for 13.2% to 51.9% of the ortholog sets (Table 1). The impact

Figure 1. Flow diagram for the pipeline implementing the Genome Majority Vote algorithm. Individual steps A–E are explained in the
text (Methods).
doi:10.1371/journal.pcbi.1002284.g001

Genome Majority Vote Improves Gene Predictions
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varied depending on the number and diversity of genomes in the

test sets. The impact was highest for the medium diversity sets.

The maximum level of consistency that could theoretically be

imposed ranged from 81.6% to 99.9% (Table 1, last row). The

difference between the theoretical maximum and the levels

achieved by GMV ranged from 3.6% to 35.2%; these differences

increased monotonically with the diversity of the genome test sets.

The range of differences encompasses a value of 18% calculated

from the results for five Burkholderia genomes [7], demonstrating

the general consistency of the previous results with the results

presented here. The ortholog sets not revised by GMV involve

choosing alternative start sites for the majority of genes. These

ortholog sets might represent real biological variation in the

location of gene start sites, as we discussed previously [7]. In

contrast, GenePRIMP [9] also uses homologs to identify potential

start site prediction errors, but does not appear to have a

mechanism that could distinguish errors from true biological

variation.

GMV changes typically preserve start codons
Among the ortholog sets revised by GMV, ATG was the most

common start codon, as expected (Table 2). We calculated

statistics for start codon changes for the medium and high diversity

genome test sets, which accounted for the largest number of

Figure 2. Example of a GMV modification of gene starts that is typical in terms of ortholog sequence identity, change in the length
of the gene, and the start codon before and after the change.
doi:10.1371/journal.pcbi.1002284.g002

Table 1. Consistency statistics for ortholog sets.

5 genomesa 10 genomesa

Low Medium High Very High Low Medium High Very High

Total # of ortholog sets generated
in the pipeline

3633 2446 1414 988 3271 2133 1317 380

# of ortholog sets for which Prodigal
starts were initially inconsistentb

213 (5.9%) 536 (21.9%) 574 (40.6%) 547
(55.4%)

251
(7.7%)

614 (28.8%) 634 (48.1%) 235 (61.8%)

# of ortholog sets for which Prodigal
starts were already consistentb

3420 (94.1%) 1910 (78.1%) 840 (59.4%) 441
(44.6%)

3020
(92.3%)

1519 (71.2%) 683 (51.9%) 145 (38.2%)

# of inconsistent ortholog sets
that were made consistent by GMVc

74 (34.7%) 278 (51.9%) 204 (35.5%) 74
(16.8%)

89
(35.5%)

286 (46.6%) 227 (35.8%) 31 (13.2%)

# of ortholog sets with consistent
starts after GMVb

3494 (96.2%) 2188 (89.5%) 1044 (73.8%) 515
(52.1%)

3109
(95.0%)

1805 (84.6%) 910 (69.1%) 176 (46.3%)

# of ortholog sets with at least
one consistent startb

3626 (99.8%) 2428 (99.3%) 1326 (93.8%) 863
(87.3%)

3269
(99.9%)

2098 (98.4%) 1215 (92.3%) 310 (81.6%)

aThe genomes in each set are listed in Supplementary Table S1.
bPercentage is with respect to total # of ortholog sets generated in the pipeline.
cPercentage is with respect to # of ortholog sets for which Prodigal starts were initially inconsistent.
doi:10.1371/journal.pcbi.1002284.t001
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revised ortholog sets. The start codon identity was preserved in

69%–75% of GMV revisions. The start codon distribution for

ortholog sets before revision by GMV, calculated as the mean

among four test sets, was approximately 87% ATG, 9% GTG,

and 4% TTG. After revision, the distribution was 79.5% ATG,

14.5% GTG, and 6% TTG.

GMV increases gene prediction accuracy
Before applying GMV, we first note evidence of an association

between consistency and accuracy of gene start sites among

orthologs. Among ortholog sets with consistent start sites, the E.

coli start site accuracy ( = 100% – [error rate]) ranged from 96% to

100% (Table 3, row 5) in low to high diversity genome test sets.

The start site accuracy was lower for orthologs with inconsistent

start sites, ranging from 69.2% to 91.8% (Table 3, row 6). Overall,

the error rate for consistent start sites was about 15% lower than

the error rate for inconsistent start sites (Table 3, subtract row 6

from row 5 and calculate the mean). This observation supports the

notion that the pursuit of consistency can improve accuracy.

The GMV pipeline corrected the most errors when applied to

the high and medium diversity test sets (Table 4). Error rates (i.e.

rates of inappropriate corrections) were lower for the high diversity

sets, and more corrections were produced for the medium diversity

sets. In the high diversity 5-genome test set, GMV yielded 41

modifications in E. coli, which included 13 genes with validated

start sites. For the 13 ground truth positives (GP), GMV corrected

11 errors but also incorrectly shifted 2 previously correct start sites.

In other words, GMV yielded 11 true positives (TP) and 2 false

positives (FP) for this data set. The sensitivity was S = TP/

GP = 0.846, and the error rate was E = FP/(TP+FP) = 0.154.

Applying this error rate to all 41 modified starts in E. coli yields

an estimated 35 correct changes and 6 incorrect changes (Fig. 3).

For the other genomes in the test set, GMV changed a total of 252

start sites, 88 of which were in ortholog sets for which E. coli

validation information was available. The positions of 82 of the 88

changes coincided with a validated E. coli start site, while the other

6 were erroneous. These numbers yield an error rate of 6/

82 = 0.07. This is about half the error rate calculated for E. coli

alone and may be more representative because it was derived from

a larger sample size (n = 82, compared to n = 13); if the E. coli

predictions had yielded 1 false positive instead of 2, the E. coli rate

would also have been 0.07, illustrating the sensitivity of statistics to

small changes when the sample size is small. Applying the 0.07

error rate to all 252 changes that GMV made, we expect 235 of

these to be correct and 17 to be incorrect changes. With the 10-

genome high-diversity test set, there were more modifications, and

the error rate was lower: GMV changed a total of 363 start sites,

and only 3 of the changes were predicted to be incorrect. For the

medium-diversity test sets, there were more modifications at the

cost of a higher error rate: with 5 genomes, GMV changed a total

of 357 start sites, 30 of which are predicted to be incorrect; with 10

genomes, 522 start sites were changed, 54 of which are predicted

to be incorrect.

Projected impact on consistency of microbial ortholog
sets

To estimate the broader impact of GMV, we calculated the

increase in consistency for the medium and high diversity genome

test sets with either 5 or 10 genomes and then applied these rates

to 39 genera. For each test set we obtained the number of genes mk

predicted by Prodigal for each genome k and selected the smallest

number, M = min(m1, m2, …, mk). The value of M corresponds to

the maximum possible number of ortholog sets for a genome set.

Values of M are given in Table 5. Next, we calculated the ortholog

set yield Y = O/M, where O is the actual number of ortholog sets

obtained for each genome set (see first row of Table 1). The yield

for medium diversity was Y<1/2, and for high diversity Y<1/3,

roughly independent of the number of genomes in the set (Table 5).

Finally we calculated the increase in consistency after running

GMV, which ranged from I = 11.4% to I = 17.2%, calculated as a

percentage of the number of actual ortholog sets (Table 5). To

estimate the number of ortholog sets with increased consistency, nI,

after running GMV, we used the equation

nI~MYI : ð4Þ

We identified suitable target genomes from a list of finished

microbial genomes from the Integrated Microbial Genomes

resource (http://img.jgi.doe.gov/cgi-bin/pub/main.cgi). We iden-

tified 39 genera, each containing a minimum number of 5 finished

genomes, as likely targets for our method (Supplementary Table

S2). We calculated M for each genus and obtained a conservative

estimate of the total number of ortholog sets made consistent for

each genus using Equation (4) with the lowest values Y = 0.326 and

I = 0.114 from Table 5. The total estimated number of ortholog

sets made consistent for 467 genomes was about 4,000.

Although the precise values of Y and I will differ depending on

the genus, using the above values is reasonable for our

conservative rough estimate. In Table 5 the value of Y only

weakly varies with the number of genomes (e.g. Y declined only

about 10% when the number of genomes doubled from 5 to 10),

but is sensitive to sequence diversity. Sequence diversity does

change depending on the genus; however, we visually inspected a

bacterial phylogenetic tree (Supplementary Fig. S9) and found that

the evolutionary divergence among the genus-level genome sets is

similar to the medium and high diversity genome sets analyzed

above, providing evidence that the value of Y is at least in the right

ballpark. In addition, because Prodigal performs comparatively

very well on E. coli [3], the value of I is likely a lower bound on the

value that would apply to the 39 genera. For many of these genera,

higher initial error rates in gene start site prediction would likely

Table 2. Codon change statistics for GMV start site changes
in medium and high diversity genome test sets.

5 genomes 10 genomes

Codon before
change

Codon after
change Medium High Medium High

ATG ATG 243 184 354 249

ATG GTG 47 26 66 41

ATG TTG 16 10 33 26

GTG ATG 31 15 42 22

GTG GTG 8 5 5 7

GTG TTG 0 1 0 1

TTG ATG 9 10 14 11

TTG GTG 3 1 7 5

TTG TTG 0 0 1 1

Total Changes 357 252 522 363

Same codon 251 189 360 257

Different codon 106 63 162 106

doi:10.1371/journal.pcbi.1002284.t002
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yield a larger number of ortholog sets that could be corrected, as

we reported previously with Burkholderia genomes [7].

Consistency of GenBank versus Prodigal maps
The impact of GMV estimated with Prodigal gene maps is likely

to be conservative because Prodigal gene predictions (for

orthologs) tend to be more consistent than extant Genbank data.

By ‘‘Genbank data’’, we mean the owner-approved or ‘‘curated’’

maps that are accessed by default in Genbank. As described

previously [6], the percentage of ortholog sets with inconsistent

start sites among 5 Burkholderia genomes (representing a medium

diversity set) was 53% and 35%, respectively, based on Genbank

maps and Prodigal maps. Similar results were obtained in the

current study with ortholog sets from the comparable 5-genome,

medium diversity E. coli test set (Table 6; Supplementary Table

S3). In this test set, 2,289 ortholog sets were common to GenBank

maps and Prodigal maps, enabling a direct comparison of

consistency rates. Twice as many ortholog sets had inconsistent

GenBank start sites (925, or 40.4%) as had inconsistent Prodigal

start sites (455, or 19.9%). Prodigal made 60% (552) of the 925

GenBank ortholog sets consistent, and GMV made an additional

21% consistent. Together, Prodigal and GMV made 81% (746) of

the GenBank ortholog sets consistent. This corresponds to an

increase in consistency of I = 746/2289 = 0.326.

The above conservative estimate suggests applying our pipeline

could significantly increase consistency of GenBank gene maps,

with Prodigal accounting for L and GMV accounting for J of

the total impact. We also obtained an alternative, less conservative

Table 3. Validation statistics for ortholog sets.

5 genomes 10 genomes

Low Medium High Very High Low Medium High Very High

# of ortholog sets for which E. coli
validation was available

833 683 457 274 800 618 414 129

# of ortholog sets for which E. coli validation
was available and for which Prodigal
predictions were already consistenta

825 (99.0%) 613 (89.8%) 382 (83.6%) 245 (89.4%) 787 (98.4%) 546 (88.3%) 329 (79.5%) 107 (82.9%)

# of ortholog sets for which E. coli validation
was available and for which Prodigal
predictions were inconsistenta

8 (0.96%) 70 (10.2%) 75 (16.4%) 29 (10.6%) 13 (1.63%) 72 (11.7%) 85 (20.5%) 22 (17.1%)

# of ortholog sets with start sites matching a
validated E. coli starta

799 (95.9%) 664 (97.2%) 444 (97.2%) 271 (98.9%) 769 (96.1%) 602 (97.4%) 406 (98.1%) 126 (97.7%)

# of ortholog sets with start sites matching a
validated E. coli start and for which Prodigal
predictions were already consistentb

792 (96.0%) 609 (99.3%) 381 (99.7%) 245 (100%) 760 (96.6%) 544 (99.6%) 328 (99.7%) 107 (100%)

# of ortholog sets with start sites matching a
validated E. coli start and for which Prodigal
predictions were inconsistentc

7 (87.5%) 55 (78.6%) 63 (84.0%) 26 (89.7%) 9 (69.2%) 58 (80.6%) 78 (91.8%) 19 (86.3%)

aPercentage is with respect to total # of ortholog sets.
bPercentage is with respect to # of ortholog sets for which E. coli validation was available and for which all Prodigal predictions were already consistent. This represents

accuracy of the consistent subset.
cPercentage is with respect to # of ortholog sets for which E. coli validation was available and for which Prodigal predictions were inconsistent. This represents accuracy
of the inconsistent subset.

doi:10.1371/journal.pcbi.1002284.t003

Table 4. Validation statistics for GMV algorithm corrections to Prodigal gene maps.

5 genomes 10 genomes

Low Medium High Very High Low Medium High Very High

# of ortholog sets with an incorrect E. coli start (GP) 34 19 13 3 31 16 8 3

# of corrected validated starts in E. coli (TP) 0 9 11 3 1 8 7 3

# of E. coli errors introduced (FP) 1 2 2 1 0 0 0 0

Error Rate (Ea) 1.00 0.182 0.154 0.25 0.5b 0.111b 0.125b 0.25b

Sensitivity (Sc) 0 0.474 0.846 1.0 0.032 0.5 0.875 1.00

Total # of changes in E. coli 13 51 41 12 9 38 21 4

Total # of changes in all genomes 92 357 252 88 169 522 363 40

Total # of changes that agree with a validated start 9 76 82 31 20 114 126 28

Total # of changes that disagree with a validated start 4 7 6 1 4 15 0 0

aE = FP/(TP+FP), where TP = number of true positives (second row), and FP = number of false positives (third row).
bEstimated by adding one additional false positive to obtain a nonzero value.
cS = TP/GP, where TP = number of true positives (second row), and GP = number of ground truth positives (first row).
doi:10.1371/journal.pcbi.1002284.t004
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estimate of the impact by modifying the GMV algorithm to

preferentially use the gene calls already in GenBank as opposed to

new Prodigal gene calls. In the modified algorithm, if the GenBank

start sites already coincide in a multiple sequence alignment, or if a

majority of these start sites do not align, nothing is done.

Otherwise, if a majority of the GenBank start sites coincide, an

alternative, consistent Prodigal start site is sought in the minority

genomes. If one is found, then in the minority genomes the

GenBank start sites are replaced with the consistent Prodigal start

sites. Applying this algorithm to the same 2,289 ortholog sets that

were common to GenBank maps and Prodigal maps in the 5-

genome, medium diversity E. coli test set made 78% (717) of the

925 inconsistent GenBank ortholog sets consistent. This number is

comparable to the 81% made consistent by first substituting all of

the GenBank start sites with Prodigal start sites, and then applying

GMV; however, in this alternative mode GMV was responsible for

all of the changes as opposed to J of the changes in the original

mode. Using the method described for the Prodigal projection

above, we project that running GMV in this alternative mode on

467 currently sequenced microbial genomes (Supplementary

Table S2) would make more than 10,000 ortholog sets consistent.

Unfortunately, although GMV used in this alternative mode does

improve consistency, because the GenBank gene maps for E. coli

have already been modified to account for the 871 experimentally

validated start sites, we cannot say whether such an application of

GMV increases gene map accuracy. Therefore we have no good

basis on which to recommend that GMV be used in this

alternative mode, and we adhere to the more conservative

projection that GMV would resolve about 4,000 inconsistencies

in Prodigal gene maps, as estimated in the previous section.

Projected impact on accuracy of microbial gene maps
To project the broader impact of the GMV method on the

accuracy of Prodigal gene maps, we first calculated a correction

rate for the medium and high diversity genome test sets with either

5 or 10 genomes and then applied this rate to 39 suitable genera.

The correction rate R per genome was calculated as

R~
C

NM
, ð5Þ

where M is the maximum number of possible ortholog sets as

defined in the previous section, C is the total number of changes in

the set from Table 4, and N is the number of genomes in the set.

Correction rates, R, for 5-genome test sets with medium and high

diversity were 1.7% and 1.2% respectively, and were 1.2% and

1% for corresponding 10-genome test sets. The entire range was

therefore 1% to 1.7%. To obtain the projected impact on

accuracy, we used the same set of 39 genera (Supplementary Table

S2) that were used to estimate the impact on consistency. With

correction rates of 1% or 1.7%, the total estimated number of

corrections for 467 genomes was 13,700 and 23,300, respectively.

The estimated rate of erroneous corrections varied widely. The

error rates calculated from Table 4 were 8.4% and 6.8% for 5-

genome test sets of medium and high diversity, respectively, and

12% and 0.8% for 10-genome test sets of medium and high

diversity. With the worst-case scenario (12% error rate), we project

GMV to yield more than 10,000 valid gene start corrections in 467

microbial genomes.

The projection above applies to Prodigal gene maps; an

assessment for existing Genbank gene maps is also desired.

Accuracy can be directly measured for organisms, like E. coli, that

have a gene map and a set of experimentally validated gene start

Table 5. Ortholog set yield calculated for medium and high
diversity genome test sets.

5 genomes 10 genomes

Medium High Medium High

Maximum possible # ortholog sets, M 4282 4332 4151 3710

Ortholog set yield, Ya 57.1% 32.6% 51.3% 35.4%

Increase in consistency after
applying GMV, Ib

11.4% 14.4% 13.4% 17.2%

aCalculated as percentage of M using values from the first row of Table 1.
bCalculated as percentage of the number actual ortholog sets by subtracting

the third from the fifth row of Table 1.
doi:10.1371/journal.pcbi.1002284.t005

Figure 3. Impact of gene prediction changes in high diversity genome sets. Number of correct and incorrect changes are estimated using
validated starts in E. coli, as described in the text. A) E. coli; B) All genomes.
doi:10.1371/journal.pcbi.1002284.g003
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sites. However, the Genbank gene map for E. coli has already been

revised to include the 871 experimentally validated gene start sites,

and therefore the accuracy of the map for these genes cannot be

improved further. We must therefore estimate the impact based on

the following logic: 1) the vast majority of Genbank maps are

inferior in quality compared to the E. coli map, which has benefited

from a rigorous community annotation effort [11]; 2) Genbank

gene maps have as much as twice as many inconsistencies as

Prodigal gene maps; and 3) we have directly measured the impact

of GMV on the accuracy of Prodigal gene maps. Using the 12%

error rate from the high diversity, 10-genome test set as a worst-

case scenario for erroneous corrections, more than 20,000 valid

corrections are projected for Genbank gene maps for 467

microbial genomes.

It is conceivable that the impact will be lower for new gene

maps obtained from recent improvements in annotation pipelines.

Newer maps may include information from servers such as MaGe

[12], RAST [8], or GenePRIMP [9] that use comparative

genomics methods for genome annotation, including leveraging

information from experimentally validated gene starts. Given the

evolving quality of newer gene maps, the true value of the GMV

method in correcting errors in GenBank genomes will depend on

accumulation of data from a broader set of users.

Significance of the GMV algorithm in light of other
methods

Ours is one of several approaches to leveraging multiple

genomes for improving gene predictions. Numerous methods have

used conservation patterns in pairwise sequence alignments to

distinguish coding from non-coding regions in eukaryotic (SLAM

[13], SGP2 [14], TWINSCAN [15,16,17], Guigó et al. [18]) or

prokaryotic genomes (Walker et al. [19],). The use of more than

two sequences to improve prediction of gene boundaries is a more

recent addition.

RAST [8] and GenePRIMP [9] both use homologs identified

via BLAST [20] to refine assignment of gene starts to new

genomes. However, the decision rules and implementation details

for revising gene start sites using these methods were not

documented in detail. For example, the total number of orthologs

that are used for comparison, selection of diversity among

orthologs (when a spectrum of diversity is available), and the

definition of consistency for these methods are unclear. These

methods might make an effort to minimize 59 length differences

among orthologs, which does enforce a kind of consistency, in the

spirit of GMV. However, our Burkholderia study [7] appears to be

the first example of a strict rule to enforce consistency of start sites

in a multiple sequence alignment. Another important distinction

between GMV and these methods is their use of ‘‘old’’ gene

predictions as reference material (obtained when acquiring

homologs from databases with archived, error-prone information)

versus contemporary gene predictions. RAST and GenePRIMP

both exploit archived material, in which the extent of errors is

unknown. As shown above for the 5-genome, medium diversity

genome set, our GMV algorithm can, in principle, exploit older

gene maps; however, we can only recommend exploiting new gene

predictions. As discussed above, new predictions are expected to

be more accurate and, compared to gene maps already deposited

in the databases, the lack of manual adjustment of these

predictions enabled them to be used to rigorously assess the

performance of GMV using experimentally validated genes. The

automation of this pipeline provides a facile means to periodically

upgrade gene maps for collections of older genomes, as well as

improving gene start site predictions for new genomes.

N-SCAN [21] and CONTRAST [22] can produce gene calls

using information from more than two genomes. N-SCAN

leverages a phylogenetic model to improve gene prediction.

CONTRAST improved on N-SCAN by doing away with the

phylogenetic model in favor of a machine learning approach. It is

notable that, with the exception of CONTRAST, prior compar-

ative genomics approaches were unable to demonstrate improved

gene start site predictions beyond adding a second genome, much

less more [23]. CONTRAST demonstrated small improvements

as the number of genomes was increased to five [22]. The fact that

the performance of GMV improved when the number of genomes

was increased from five to ten makes it unique among comparative

genomics methods.

A shared feature of prior approaches is that the multiple

genomes are input at the front end and are used to develop a

tightly integrated gene prediction model. By contrast, the GMV

algorithm is run as a post-processing step. The main disadvantage

of this is the additional compute time required to refine gene calls:

running GMV on a 5-genome set takes about K a day on a single

processor machine. The compute time is limited by the BLAST

step, which scales like the number of genomes squared; however,

the speed of the BLAST step (and all other steps of the pipeline)

can be substantially improved by parallel processing. A major

advantage in implementing GMV is that it can be coupled to any

gene prediction software so long as a list of alternative start sites is

Table 6. Comparison of inconsistencies for Prodigal vs. GenBank or Glimmer3 start sites.

5 genomes Medium
Diversity

5 genomes High
Diversity

Prodigal vs. GenBank # of shared ortholog sets 2289 1234

# of ortholog sets for which Prodigal starts were initially inconsistent 455 413

# of ortholog sets for which GenBank starts were initially inconsistent 925 311

# made consistent by Prodigal 552 50

# made consistent by GMV 194 47

Prodigal vs. Glimmer3 # of shared ortholog sets 2427 1398

# of ortholog sets for which Prodigal starts were initially inconsistent 532 566

# of ortholog sets for which GenBank starts were initially inconsistent 869 767

# made consistent by Prodigal 432 248

# made consistent by GMV 193 155

doi:10.1371/journal.pcbi.1002284.t006
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provided. Aside from the great flexibility it provides in applica-

tions, the modular nature of GMV allowed us to treat it as an error

correction method, enabling a well-controlled means of evaluating

its performance.

Conclusions
The GMV algorithm dramatically decreases inconsistencies in

the location of predicted gene start sites, and is projected to

eliminate thousands of inconsistencies in currently sequenced

microbial genomes, facilitating comparative genomics studies. At

the same time, it is capable of correcting hundreds of errors in sets

of 5–10 genomes and is potentially capable of correcting more

than 10,000 errors in microbial gene maps. Moreover, GMV

provides a straightforward solution to the challenging problem of

improving gene start site predictions using more than two

genomes. Overall, GMV is a simple and logical solution that

resolves inconsistencies and increases the accuracy of gene maps.

Methods

Genome sets
Genome sets were selected with the aid of a bacterial

phylogenetic tree (Benjamin McMahon, personal communication).

The tree was derived by aligning the concatenated amino acid

sequences of the b and b9 subunits of RNA polymerase from over

400 bacterial genomes. The 400 bacterial genomes were

downloaded from NCBI (completed) and JGI (draft) in June of

2009. The amino acid sequences of the beta and beta-prime

subunits of the RNA polymerase were extracted from each

genome and concatenated. An initial multiple sequence alignment

was calculated using MUSCLE [24], followed by iterative manual

curation of the alignment with BioEdit (http://www.mbio.ncsu.

edu/bioedit/bioedit.html) based on the known three-dimensional

structure, and tree building with a maximum likelihood method

employing a minimal model of protein functional pressure (RIND

[25] and WEIGHBOR [26]). The phylogenetic tree was

calculated from the aligned sequences. The root of the tree was

placed at the long branch connecting gram-positive and gram-

negative bacteria, in accord with current understanding of

bacterial evolution [27]. The resulting tree (Supplementary Fig.

S9) compares well to those in the literature [28] and with 16S

rRNA-based trees; it disagrees with the less-detailed NCBI

taxonomy (where available) in only a handful of cases.

The genome sets used for testing GMV are listed in

Supplementary Table S2. Sets of 10-genomes were selected to

represent low, medium, and high, and very high levels of diversity.

The low diversity sets consist of randomly selected substrains of E.

coli. The medium diversity sets were selected with the aid of the

phylogenetic tree (Supplementary Fig. S9) to approximately span a

maximum evolutionary distance similar to that spanned by the

Burkholderia genus, which was the subject of our previous analysis of

gene start consistency [7]. The genomes selected for the medium

diversity sets cover a portion of the Enterobacteriaceae family. The

high diversity datasets were selected to achieve approximately a

twofold increase in the maximum evolutionary distance over the

medium diversity datasets and cover a larger portion of the

Enterobacteriaceae family. The very high diversity datasets were

selected to increase the evolutionary distance by another factor of

two. The very high diversity datasets include genomes from two

families of Gamma Proteobacteria: Enterobacteriaceae and Pasteurel-

laceae. After selecting the 10-genome sets, subsets of 5 genomes

were down-selected for each diversity level.

Table 7 summarizes the diversity in each of the 8 test sets using

the median of the minimum sequence identity in each set. Fig. 4

illustrates more detailed statistics on the sequence identity in the

high diversity genome sets, which yielded the best performance for

the GMV algorithm. Supplementary Figs. S1–S8 provide this

information for all genome sets. Supplementary Table S1 lists the

genomes in all genome sets. (Note that the low diversity genome

test sets include several strains of E. coli genomes; in this paper, we

refer to E. Coli K-12 MG1655, the reference genome, as E. coli.)

GMV algorithm
The GMV algorithm was implemented in an automated

pipeline to predict consistent start sites, illustrated in Fig. 1. The

software is distributed freely under a New BSD license and is

available at http://code.google.com/p/gmv/. The input is a set of

similar genomes whose start sites are to be predicted. These

genomes are provided in FASTA format to the GMV algorithm.

The different steps in the pipeline involve four different software

programs, each of which is automatically activated:

Step A. In this step, gene predictions are made for each

genome in the set using Prodigal (we used version 1.10 here, which

is no longer available; the version we distribute uses versions 2.00–

2.50) [3]. Like most gene finding programs, Prodigal selects a

single best start site but also evaluates other potential start sites for

each gene, computing a quality score for each start site that it

proposes. The GMV algorithm uses the alternative start sites in the

subsequent steps of the pipeline.

Step B. In this step, alternative start sites for each gene in

each genome are obtained from the Prodigal output files.

Step C. In this step, gene predictions from Step B are used to

derive ortholog sets by a pan-reciprocal best hit approach using

BLASTP (version 2.2.20) with default settings [20]. First, BLASTP is

used to obtain sequence identity for all pairs of proteins

corresponding to the genes predicted by Prodigal. The sequence

identity score computed by BLASTP is normalized by multiplying it

by the number of aligned bases and dividing it by the number of bases

in the longer of the two compared sequences. Sets of orthologous

genes that include a single pan-reciprocal best BLASTP match for

each genome are identified; matches are ranked by the normalized

sequence identity computed above. Each ortholog set contains

exactly one representative from each genome in the set.
Step D. Multiple sequence alignment is performed for each

ortholog set using MUSCLE (version 3.7) with default settings

[24]. The sequence of each gene in the alignment includes the

250 bp DNA sequence upstream of the earliest of the possible

Table 7. Median sequence identities among orthologs from
all genome test sets.

# Genomes, Diversity Median Sequence Identitya

5, Low 99.3%

5, Medium 85.2%

5, High 71.6%

5, Very High 64.4%

10, Low 98.8%

10, Medium 82.5%

10, High 69.5%

10, Very High 51.3%

aThe sequence identity used is the minimum value among all gene pairs in each
ortholog set. The percentage value is normalized using sequence length
information (Methods).

doi:10.1371/journal.pcbi.1002284.t007
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starts. Nucleotide sequences are used to construct multiple

sequence alignments.
Step E. This is the final step in the GMV pipeline and it

involves prediction of consistent start sites. If the positions of all of

the original start sites coincide in the multiple sequence alignment,

the predictions are accepted as is. Otherwise, look for a position

where the original start sites coincide for a majority of genomes,

and where an alternative start site coincides in each of the

remaining genomes. Use the alternative sites as modified

predictions for the remaining genomes. If there is no consistent

start site that obeys the majority rule, flag the prediction as

inconsistent.
It is important to note that the GMV pipeline is not restricted to

using Prodigal for gene prediction and MUSCLE for multiple

sequence alignment. GMV can be made to work with any gene

prediction software that can output alternative start sites in Step A.

The current requirements for input to GMV is described in the

manual included in the package, distributed at http://code.google.

com/p/gmv/. Similarly, it is possible to use any multiple sequence

alignment software that can handle nucleotide data in Step D of

the pipeline. The entire pipeline can be run automatically, without

any manual intervention. It is also possible to run each step of the

pipeline separately, if necessary.

Software
The GMV algorithm pipeline was developed using Java (JDK

1.6) and Perl 5.8. The software has been tested on both Linux and

MacOS X operating systems. Software is available under the New

BSD open source license and is freely available at http://code.

google.com/p/gmv.

Supporting Information

Figure S1 Histogram of mean (top) and minimum (bottom)

identity score between genes in ortholog sets derived from the low

diversity, 5 genome set.

(PDF)

Figure S2 Histogram of mean (top) and minimum (bottom)

identity score between genes in ortholog sets derived from the

medium diversity, 5 genome set.

(PDF)

Figure S3 Histogram of mean (top) and minimum (bottom)

identity score between genes in ortholog sets derived from the high

diversity, 5 genome set.

(PDF)

Figure S4 Histogram of mean (top) and minimum (bottom)

identity score between genes in ortholog sets derived from the very

high diversity, 5 genome set.

(PDF)

Figure S5 Histogram of mean (top) and minimum (bottom)

identity score between genes in ortholog sets derived from the low

diversity, 10 genome set.

(PDF)

Figure S6 Histogram of mean (top) and minimum (bottom)

identity score between genes in ortholog sets derived from the

medium diversity, 10 genome set.

(PDF)

Figure S7 Histogram of mean (top) and minimum (bottom)

identity score between genes in ortholog sets derived from the high

diversity, 10 genome set.

(PDF)

Figure S8 Histogram of mean (top) and minimum (bottom)

identity score between genes in ortholog sets derived from the very

high diversity, 10 genome set.

(PDF)

Figure S9 Bacterial phylogenetic tree. The tree is based on

aligning the beta and beta-prime subunits of the RNA polymerase

and was generated using a maximum likelihood method [25,26].

The root of the tree is at the left, on the long branch connecting

gram-positive and gram-negative bacteria. The lengths of

horizontal lines correspond to a measure of evolutionary distance.

(PDF)

Table S1 List of genomes in each genome set. The FASTA files

were downloaded June–July 2010.

(PDF)

Table S2 List of genomes used to estimate projected impact of

GMV on consistency and error rates in gene predictions. The 467

Figure 4. Sequence identity statistics for the high diversity ortholog sets. A) 5-genome set; B) 10-genome test set.
doi:10.1371/journal.pcbi.1002284.g004
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genomes were organized into 39 genera for the estimate. The

genome list was obtained from the Integrated Microbial Genomes

resource at the DOE Joint Genome Institute (http://img.jgi.doe.

gov/cgi-bin/pub/main.cgi) in September 2010.

(PDF)

Table S3 Source files for GenBank default and Glimmer3 gene

start sites for 5 genome sets of medium and high diversity.

(PDF)
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