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Abstract

An animal’s ability to navigate through space rests on its ability to create a mental map of its environment. The
hippocampus is the brain region centrally responsible for such maps, and it has been assumed to encode geometric
information (distances, angles). Given, however, that hippocampal output consists of patterns of spiking across many
neurons, and downstream regions must be able to translate those patterns into accurate information about an animal’s
spatial environment, we hypothesized that 1) the temporal pattern of neuronal firing, particularly co-firing, is key to
decoding spatial information, and 2) since co-firing implies spatial overlap of place fields, a map encoded by co-firing will be
based on connectivity and adjacency, i.e., it will be a topological map. Here we test this topological hypothesis with a simple
model of hippocampal activity, varying three parameters (firing rate, place field size, and number of neurons) in computer
simulations of rat trajectories in three topologically and geometrically distinct test environments. Using a computational
algorithm based on recently developed tools from Persistent Homology theory in the field of algebraic topology, we find
that the patterns of neuronal co-firing can, in fact, convey topological information about the environment in a biologically
realistic length of time. Furthermore, our simulations reveal a ‘‘learning region’’ that highlights the interplay between the
parameters in combining to produce hippocampal states that are more or less adept at map formation. For example, within
the learning region a lower number of neurons firing can be compensated by adjustments in firing rate or place field size,
but beyond a certain point map formation begins to fail. We propose that this learning region provides a coherent
theoretical lens through which to view conditions that impair spatial learning by altering place cell firing rates or spatial
specificity.
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Introduction

In order for an animal to be able to navigate a space,

remember its route, find shortcuts, and so forth, it must have a

fairly sophisticated internal representation of the spatial environ-

ment. This internal map is made possible by the activity of

pyramidal neurons in the hippocampus known as place cells.

Place cells are so named because of their striking spatial

selectivity: as an animal (in experiments, typically a rat) explores

a given environment, different place cells will fire a series of

action potentials in different, discrete regions of the space. Each

region, referred to as that cell’s ‘‘place field,’’ is defined by the

pattern of neuronal firing (most intense at the center and

attenuated toward the edges of the field) (Fig. 1)—elsewhere, the

cell remains silent [1]. The mechanism of this selectivity (why a

place cell fires when the rat is here rather than there) is opaque,

and how the ensemble of place cells forms a hippocampal map of

the environment is only slightly less mysterious. It is believed that

the ensemble of place cells activated in a given environment

produces a sufficient number of place fields to cover the animal’s

vicinity [2]: indeed, a rat’s path through a small space can later

be re-traced with a high degree of accuracy by recording

hippocampal spiking activity during its explorations and then

analyzing the location, size, and firing rates of a mere 40–50

place fields [3–5]. Such experiments suggest that the information

contained in place cell firing patterns encodes spatial navigation

routes and somehow represents the spatial environment. The

hippocampal map thus seems to form the basis of the animal’s

spatial memory and spatial cognition [6].

How does the brain convert the pattern of neuronal firing into

an approximation of the surrounding space? And what informa-

tion is most important to navigation and spatial memory? In

theory, the mental map could represent metric information

(distances and angles), affine aspects (colinearity or parallels), or

topological information (connectedness, adjacency, containment).

The reigning paradigm is that the maps encode geometric

information: in fact, most efforts to analyze cognitive maps

derived from place fields are based explicitly on the geometry of

both the place fields and the environment [2,4,6,7]. But this can

not be how the hippocampus or neurons receiving hippocampal

output decode place cell firing, because the brain has no direct

access to the place fields mapped by neuroscientists. To
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understand what algorithms the brain might use to decode

hippocampal place cell firing, then, we should rely solely on the

information provided by place cell spiking activity [8,9].

If we restrict ourselves to cell spiking activity, the temporal

features of the firing pattern become paramount: in particular, if

spatial location is the primary determinant of each place cell’s

firing, then contemporaneous activity or co-firing of several place

cells implies that the corresponding place fields overlap. It is, in

fact, generally assumed that neurons downstream of the hippo-

campus interpret place cell spiking patterns based on co-firing.

What is not often appreciated, however, is that if place cell co-

firing implies spatial overlap of place fields, then the map formed

by co-firing is going to be based on connectivity, adjacency and

containment—in other words, it will be a topological, rather than

a geometric, map.

Indeed, the way place fields cover an environment calls to

mind a basic theorem of algebraic topology: if one covers a

space X with a sufficient number of discrete regions, then it is

possible to reconstruct the topology of space X from the pattern

of the overlaps between the regions [10]. We propose that the

hippocampus actually does create a connectivity map derived

from place cell co-firing patterns. Although we do not imply any

specific interpreting mechanism, we propose nevertheless that it

is possible to derive spatial information from place cell firing,

with specific implications (and quantifiable predictions) for the

qualities of the hippocampal spatial map. We hypothesize that

the connectivity map is topological, i.e., any finite structure of

overlaps between spatial regions, as represented by temporal

overlap of spike trains, can be realized using regions of different

shapes or sizes. One implication of this hypothesis is that the

information contained in the spike trains is qualitative in nature

and can be studied using topological techniques. This is not to

deny that the hippocampal connectivity map could contain

additional space encoding mechanisms for geometric informa-

tion (scale, distances, angles)—this question would have to be

answered experimentally. Nevertheless, a number of experi-

ments [11–14], have demonstrated that smooth geometric

variations of the environment produce continuous stretches of

the place field layouts that preserve the relative timing between

spikes, so that the temporal pattern of spiking remains largely

invariant with respect to geometric transformation. This

provides some experimental support for our mathematical

intuition.

Here we investigate whether a topological connectivity map can

be effectively and reliably derived from neuronal spiking patterns

using computational tools recently developed in the field of

algebraic topology. We show that there exist certain requirements

for the firing activity to produce a stable topological map and that

the experimentally observed characteristics of firing activity likely

satisfy these requirements.

Figure 1. Place fields can be derived from place cell spike trains. (a) As a rat explores a given environment, various place cells will fire in
spatially discrete locations. Here, for the sake of simplicity, we depict three place fields as they might arise from spike trains from three place cells, as
in the next panel. (b) Schematic representation of spike trains fired from three different place cells as a rat explores an environment. Note that there is
contemporaneous spiking activity, or co-firing. (c) The place fields derived from the three place cells in (b): the co-firing patterns indicates areas of
overlap of the place fields. When the rat makes a straightforward trajectory through an explored environment, different place cells will be activated
and their place fields can overlap.
doi:10.1371/journal.pcbi.1002581.g001

Author Summary

Our ability to navigate our environments relies on the
ability of our brains to form an internal representation of
the spaces we’re in. The hippocampus plays a central role
in forming this internal spatial map, and it is thought that
the ensemble of active ‘‘place cells’’ (neurons that are
sensitive to location) somehow encode metrical informa-
tion about the environment, akin to a street map. Several
considerations suggested to us, however, that the brain
might be more interested in topological information—i.e.,
connectivity, containment, and adjacency, more akin to a
subway map— so we employed new methods in
computational topology to estimate how basic properties
of neuronal firing affect the time required to form a
hippocampal spatial map of three test environments. Our
analysis suggests that, in order to encode topological
information correctly and in a biologically reasonable
amount of time, the hippocampal place cells must operate
within certain parameters of neuronal activity that vary
with both the geometric and topological properties of the
environment. The interplay of these parameters forms a
‘‘learning region’’ in which changes in one parameter can
successfully compensate for changes in the others; values
beyond the limits of this region, however, impair map
formation.

Topological Model of Hippocampal Map Formation
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Results

We will first outline the key concepts underlying our approach;

more precise mathematical explanations are provided in the

Methods section for interested readers.

Our topological framework: simplicial complexes, spatial
and temporal

In algebraic topology, the topological features of a space X are

defined by its topological invariants, i.e., those properties of the

space that are invariant to applied transformations. Topological

invariants are described via indices, the simplest of which are the

so-called Betti numbers that formalize the counting of loops and

holes in various dimensions. The zeroth Betti number, b0(X),

counts the connected components in the space X; b1(X) gives the

number of one-dimensional (1D) loops, b2(X) the number of two-

dimensional (2D) loops, and so on (see Methods and [10]). The

Betti numbers can be calculated by an algorithm that analyzes the

‘‘cover’’ of a space X by an ensemble of discrete regions [15]. This

algorithm uses ‘‘nerve of the cover’’ or ‘‘nerve simplicial complex,’’

N(X), which has as many vertices as there are regions used to cover

the space X. If two regions overlap, the corresponding vertices, say,

vi and vj, are considered connected by a 1D bond vij. If three

regions overlap, then three bonds, vij, vjk, and vki, support a 2D

triangular facet, and so on, as the number of overlaps and bonds

increase. The complex N(X) obtained from a sufficiently dense

cover of the space X will reproduce the correct topological indices

of X (see Methods for a more precise definition of ‘‘sufficiently

dense’’). The structure of the simplicial complex thus approximates

the structure of the environment (see Methods).

Drawing on this concept of the nerve simplicial complex N(X),

whose structure can be used to deduce the structure of a space, we

devised a temporal analogue, the temporal simplicial complex T

that should give a complete topological description of a space X in

terms of place cell co-firing. The difference is that the structure of

the temporal simplicial complex T unfolds over time, T = T(t): as

the animal explores its environment and more place cells fire (and

co-fire), the structure of the complex T(t) grows as t increases with

the number of spikes. It should thus be possible to trace the

emergence of topological information as more and more spikes are

fired. When the animal is first introduced to the environment,

there would be few data points from place cell spiking, but the data

would accumulate as the animal explores, enabling the formation

of an internally consistent topological map. Eventually, after a

certain minimal time �TTmin, the structure of T(t) should saturate,

and its topological characteristics should stabilize and produce the

correct topological indices, which would indicate the completeness

of the topological information.

Given a certain experimental, phenomenological or theoretical

description of place cell firing, it should be possible to trace the

accumulation of topological information with t and discover how

much time �TTmin is required to produce the correct topological

signature of a particular environment. The temporal framework

we propose does impose certain requirements, however: just as

there must be a sufficient number of place fields covering a space X

in order to produce a coherent map of that space, we predict that

there are certain conditions that must be met by place cell activity

if we are to be able to rely solely on the temporal overlap between

neuronal spike trains. First, there should be sufficient co-firing of

place cells. Second, the place cells should have sufficient spatial

specificity (though there will be a certain amount of biological

noise). Third, there should be a realistic learning period in which

true signals can be distinguished by their persistence beyond

biological noise. These criteria may or may not be met by the

hippocampus, given the high variability of biological systems [5],

but they follow from our topological hypothesis. In this paper we

use newly developed methods from Persistent Homology theory

(see Methods) to test our hypothesis and to study the temporal

dynamics of topological information emerging from the spikes.

Selecting parameters on which to base the model
The parameters that might be taken into account to define place

cell activity are numerous and complex: there are biophysical

variables (firing rates, spike amplitude, etc.), behavioral variables

(the animal’s running speed, etc.), out-of-field firing (not all place

cell firing is for spatial encoding purposes), and so forth. For the

sake of simplicity, at least for this first attempt to model place cell

ensemble behavior, we zeroed in on just a few key parameters that

will still enable us to ask key questions.

First we had to decide how to define temporal overlap between

spike trains. There is some conjecture in the field that each theta

cycle—the basic EEG cycle in the hippocampus, with a frequency

of ,8 Hz—defines a temporal unit of processing [16,17]. This

suggested to us that we might describe neuronal activity in terms of

firing rates, defined over time bins comparable to the theta cycle.

Absent any data that speaks directly to this, we defined co-firing as

firing that occurred over two consecutive theta cycles.

For this initial analysis, we ignored the details of the spike train

structure, such as spike bursting [18] and phase precession [19–21]

focusing instead on the total number of cells (N), the firing rate (f),

and a computationally derived place field size (s). (In other words,

whereas place fields are typically created by mapping recorded

neuronal firings onto an actual rat’s trajectory through a particular

environment, our algorithm ascribes size on the basis of the spread

of simulated data points. See Methods.)

Thus, for an N-cell ensemble this approach produces 3N
independent parameters, f1, f2, …, fN, and sx,1, sx,2,…, sx,N, sy,1,

sy,2,…, sy,N. Since we are interested in the behavior of the cell

ensemble and not just the firing rate of a single place cell or the

size of an individual place field, however, we define the values fi
and si by the probability distributions P(f) and P(s). Fig. 2 shows a

typical shape for these distributions derived from experimental

data collected on a linear track (unpublished data, Y.D. and L.F.);

these data can be naturally fit by a log-normal distribution with a

certain mean and a certain standard deviation, �ff ,sf

� �
and �ss,ssð Þ,

respectively. We further assumed that spiking dynamics are

attributable solely to the rat’s movement through the environment,

i.e., that the probability distributions P fð Þ~P f D�ff ,sf

� �
, and

P sð Þ~P sD�ss,ssð Þ do not depend on time. It is important to note,

however, that place fields can be highly plastic during the first few

minutes in a new environment [22], so our estimates of the time

required to build an accurate topological map are likely to be

lower bounds.

Given these starting assumptions and simplifications, the

individual firing rates fi and place field sizes si are simply random

variables drawn from the stationary distributions P(f) and P(s), so

the total number N of cells can be treated as another independent

parameter characterizing the ensemble. With N included, the

activity regime of a place field ensemble is specified by just five

parameters: �ff ,sf , �ss,ss and N. To further reduce the number of

parameters in our model, we capitalized on the fact that the mean

and the standard deviation of the distributions P(f) and P(s) can be

compared to actual experimental data and are thus not arbitrary

(see Fig. 2). We can therefore avoid overly broad or overly narrow

distributions P(f) and P(s) by imposing the additional conditions

sf ~a�ff and ss~b�ss, (the higher the individual firing rates and

place field sizes found in the ensemble, the wider the spread) and

selecting the proportionality coefficients a and b so that the shape

Topological Model of Hippocampal Map Formation
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of the distributions P(f) and P(s) mimics those derived from the

experiments. In our computations we used a = 1.2 and b = 1.7 (as

in Fig. 2). This last simplification reduces the number of

parameters to just three— �ff , �ss, and N —which gives us a 3D

parameter space that can be readily simulated and visualized.

Given the temporal nature of our map formation model, we will

adopt one more simplifying assumption, namely, that all the

instances of co-activity that occur between t = 0 and t~Tmin are

‘‘remembered’’ and can be used to establish the structure of the

temporal complex T(t). Clearly, any ‘‘forgetting’’ mechanism

would cause the temporal complex to deteriorate; information

provided by new spike trains could compensate for this loss, but

transience of data would increase the map formation time Tmin.

The model
The foregoing considerations led to the following (very

simplified) working model of place cell activity:

1. Place cell firing activity is a stationary Poisson process

described by the rate model [1] (see Methods). Theta

oscillations, bursting and other effects are not considered.

2. Two cells are considered to be co-active if they fire within two

consecutive periods of theta oscillations, i.e., within ,1/4 sec.

We expect shorter time windows would require longer periods

for map formation, so this value helps us establish a lower

bound on the length of time required to extract connectivity

information.

3. The firing rate amplitudes fi and the computed place field sizes

(sx,1, sy,1) of the cells in the ensemble are described by

independent probability distributions P(m,s), where we used

the mode m (to identify the peak of the distribution) and the

standard deviation s (e.g., the log-normal or the gamma

distributions). In our simulations we used log-normal distribu-

tions with sf ~a�ff and ss~b�ss, a = 1.2 and b = 1.7.

4. Retained memory assumption: all firing events occurring up to

time t can be used in the analysis. We ignore place cell firing

that occurs because of the internal dynamics of the hippocam-

pal network (such as reactivation of past experience [23]).

Our analysis is based on the dynamics of ‘‘cycles,’’ objects that

can be used to count the number of topological holes within the

temporal complex T(t) (Fig. 3, Methods). The intuition

informing our approach is that, at early stages of exploration,

only a few co-firings will have occurred and so the complex will

not adequately represent the topological structure of the environ-

ment. As the rat begins to explore an environment at time t = 0,

the temporal complex will consist mostly of 0-cycles, marking the

cells that have fired but not necessarily co-fired. As the rat

continues to explore the environment, the co-firing cells will

produce links between the vertices of T(t), and higher dimensional

cycles will appear. Fig. 3 shows the cycles in each dimension as a

function of time: each horizontal bar represents the timeline of a

particular cycle in the complex T(t). At any time t, a vertical

section will encompass the timelines of all the cycles that are

present in T(t) at that moment. Once born, a cycle remains stable

over a certain period of time, but as t increases, most cycles in each

dimension will disappear as so much ‘‘topological noise,’’ leaving

only a few persisting cycles that express stable topological

information. The beauty of this Persistent Homology method

[24] (see Methods) is that it accommodates such noise so we can

distinguish between cycles that persist across time (reflecting real

topological characteristics) and transient cycles produced by the

rat’s behavior (e.g., circling in a particular spot during one trial).

The time required for the correct number of bars (cycles) to

appear in every dimension is, by design, the time required to extract

the correct topological signature of the environment, which can thus

be interpreted as the minimal time �TTmin required for the rat to learn

the environment. Since this procedure can be applied to various

place cell ensembles with different firing profiles, the Persistent

Homology method allows us to determine how �TTmin varies with the

parameters of hippocampal firing activity. In effect, each set of

parameters will produce a ‘‘barcode’’ that can be ‘‘scanned’’ in

order to discern the topological structure of the environment.

Map formation depends on hippocampal state
We simulated map formation times using different place cell

parameters and three separate planar 262 meter areas with 1 or 2

Figure 2. Distributions of firing rate and place field size collected by recording place cell firing as a rat explores a linear track. A
typical place cell fires at a rate of ,10–20 Hz and place fields typically range from 10 to 30 cm across. These experimentally derived distributions
serve as realistic constraints on our simulated data by providing proportionality coefficients a and b so that the shape of the distributions P(f) and P(s)
mimics those derived from the experiments. From the data depicted here, a = 1.2 and b = 1.7.
doi:10.1371/journal.pcbi.1002581.g002

Topological Model of Hippocampal Map Formation
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holes (Fig. 4, top row). (We chose this size because it is similar to

that of experimental spaces used for neuroscientific studies of rat

place cell properties.) The topological features to be detected are

the number of holes in each environment. For the 2-hole

environments we considered two cases with different hole sizes

to vary the geometrical characteristics of the environment while

keeping its topology fixed.

The trajectories were simulated to be: 1) sufficiently ergodic to

represent non-preferential exploratory spatial behavior (i.e., there

was no artificial circling or other ad hoc favoring of one segment of

the environment over another). The spatial occupancy of the

immediate vicinities of the holes and of the corners was therefore

higher than the average, which is similar to patterns of spatial

occupancy in the open field and linear track experiments. 2) The

mean and the maximal speed were kept within the range of typical

experimental values (based on our experience; the mean speed was

chosen to be slightly higher than a typical experimental mean

value in order to get a lower estimate for the learning time �TTmin).

Lastly, 3) the distribution of the moment-to-moment changes in

the direction of the simulated rat’s movement, DQsim, matches the

experimental histogram of DQexp.

We asked whether, and for which ensembles, the place cell

spiking signals would be able to produce a temporal simplicial

complex with the correct number of topological loops (Betti

numbers; see Methods) in every dimension—the connectivity of

the space (0D loops) and the correct number of 1D loops. In each

of these environments we simulated a set of 1000 place cell

ensembles by independently varying three parameters of neuronal

activity. We probed ten distributions of firing rates, with the mean

maximal rate, �ff , ranging from 2 to 40 Hz, and ten distributions for

Figure 3. Persistent cycles form a topological barcode. Top and bottom graphs show which 0D and 1D cycles, respectively, persist in this cell
ensemble. Each colored horizontal line represents one 0D cycle (top panel) or one 1D cycle (bottom panel). Initially, until cells begin co-firing, each 0D
cycle corresponds to one cell. At later times, both 0D and 1D cells are emergent phenomena, produced by co-firing of groups of cells. The dotted red
vertical line at 5.84 minutes marks the moment when the correct number of loops appears in both 0D and in 1D, which is the minimal map formation
time �TTmin. The series of short horizontal bars in both panels (some quite miniscule) and the longer lines that disappear before �TTmin represent
topological noise, i.e., cycles that fail to persist. The one persistent 1D cycles indicates that the environment in question has one physical (topological)
loop, and the single 0D cycle indicates that the space is connected, of one piece. Together, this pattern of stable bars forms a barcode that can be
‘scanned’ to discern the topological structure of the environment (see Methods).
doi:10.1371/journal.pcbi.1002581.g003
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the place field sizes with �ss, ranging between ,10 and ,90 cm.

The size of the population varied independently from N = 50 to

N = 400 cells. In each case, the centers of the place fields were

scattered randomly and uniformly over the environment. For each

combination of the parameters �ff , �ss, and N —which we can say

defines a hippocampal ‘state’—the computation was repeated 10

times (total 10610610610 = 10,000 ensemble simulations), which

allowed us to compute the average time �TTmin required for the

emergence of the correct topological signature for each specific

choice of the ensemble parameters, �ff , �ss, and N. Although the

simulated trajectory was fixed, we chose a new set of place field

centers for each set of �ff , �ss, and N for each repetition.

The results are shown in Fig. 4. The three panels across the

second row show the mean map formation times �TTmin (in minutes)

for each of the three environments in the top row. Each point on

this diagram represents a particular place cell ensemble with a

certain mean ensemble firing rate �ff , mean place field size �ss and

number of cells N. The sizes of the dots represent the percentage

of repetitions in which a given set of parameters (�ff , �ss, and N)

produced the correct outcome: the largest dots correspond to the

most successful ensembles, and the sizes of the smaller dots

represent the percentage of trials producing the correct outcome

for that set of parameters. The color of the dots represents the

value of the mean map formation time �TTmin (see Figure legend).

Some ensembles consistently produced the correct topological

signature for all 10 repetitions, even in very short time frames

(large blue dots), whereas other ensembles either produced the

correct signature in only a fraction of repetitions (smaller dots) or

repeatedly failed to produce the correct result over long periods of

time (smallest red dots; �TTmin§30 mins, i.e., ,20,000 theta cycles).

These data illustrate, first, that the firing activity of smaller place

cell ensembles (N#150), characterized by low mean firing rates

(�ff #10 Hz) and by small mean place field sizes (�ss#20 cm),

consistently failed to produce the correct topological characteris-

tics of the environment. Similarly, ensembles with very large place

field sizes (low spatial selectivity of the place cell’s firing, high �ss
values) also failed to produce the correct topological signature.

Both types of cases are represented by the dots on the periphery of

each cloud (Fig. 4, second row). In contrast, larger place cell

ensembles with higher firing rates and well-tuned place fields

reliably captured the topological structure of the environment

within 2–5 mins. As a result, each point cloud can be conceived as

containing within its fuzzy boundaries a learning region L: a

submanifold in the space encompassing the hippocampal states

that produce the correct topological map within a biologically

plausible time-frame. This pattern is clarified by the 2D sections of

the 3D diagram (Fig. 5, S1 and S2).

It is noteworthy that the points with intermediate sizes,

representing the partially failing ensembles, tend to diffuse out

from the center of L to the sparser boundary region of the cloud.

This neatly illustrates the transition that occurs between the

hippocampal states that consistently produce stable, topologically

accurate maps (interior points of L), and those that do not (dots

outside of L). Thus, for all hippocampal states within L, the �TTmin

values show an orderly, regular dependence on all three variables
�ff , �ss, and N. Despite the stochastic nature of the model, then, the

minimal map formation time �TTmin can be approximated by a well-

defined, continuous function of the parameters,
�TTmin~�TTmin

�ff ,�ss,N
� �

. If the firing activity regime moves out of L,

then the time �TTmin abruptly increases at the boundary of this

region.

The map formation region is stable and robust
It is noteworthy that at the core of L, the characteristic minimal

map formation time is �TTmin<2–5 mins, which is comparable to

the biological learning time in rats and mice in simple

environments [25,26]. Indeed, the characteristic time �TTmin is

shorter than the time it takes the trajectories themselves to cover

environments A, B, and C (see Fig. 6); in other words, the

topological model forms maps more rapidly than simply compu-

tationally covering the simulated space. As noted above, one of the

key hypotheses of our model is that map formation time �TTmin is

included in the biological learning time. We reasoned that before

the ‘‘topological noise’’ stabilizes, it is not possible to tell how many

correct loops there will be or which ones are going to persist (see

Fig. 3), so that prior to �TTmin the spatial information encoded by

place cell firing is unstable and probably incomplete. Therefore, if

the spatial map produced by hippocampal activity is based on

interpreting the co-firing patterns, one of the main qualitative

predictions of this approach is that the biological learning time can

be estimated by �TTmin. If, for example, the map formation time for

a place cell ensemble in Rat A is �TTA
min, and for a place cell

ensemble in Rat B is �TTB
min, and �TTA

minw
�TTB

min then Rat A will take

longer to learn an environment than Rat B. This difference should

be observed in the Morris water maze task and other behavioral

experiments.

Figure 4 also shows that the size of the learning region L

depends on the complexity of the environment. L is largest for

environment C, in which topological connectivity is defined by the

quasi-linear order of place cell firing. The region L for

environment B is the most compact, reflecting the fact that this

environment is topologically the most complex because the

navigational paths are indexed by two topological indices (defined

by the fundamental group p1), so that two persistent loops have to

be extracted from a set of non-persisting loops. At the same time, it

is also more geometrically complex than the quasi-linear

environment (C), because it allows 2D motion.

Figure 4. Variations in topology place different demands on hippocampal state. The top row depicts three experimental configurations,
each two meters square, for our computational simulations; note that the second and third scenarios (B and C) are topologically equivalent but
geometrically different, and that scenario C will force our simulated rat to adopt a quasi-linear trajectory. The dense network of gray lines represents
the simulated trajectories. Second row: Point cloud approximations that reveal mean map formation times for each space configuration. Each dot
represents a hippocampal state as defined by the three parameters (�ff , �ss, and N); the size of the dot reflects the proportion of trials in which a given
set of parameters produced the correct outcome; the color of the dot is the mean time over ten simulations. If, for example, one set of parameters
produced the correct topological information in 6 out of 10 trials, the dot will be 60% of the size of the largest dot, and the color will reflect the mean
map formation time for the correct trials. (Blue represents success within the first 25% of the total time; green within the first 50%, yellow-orange
within the first 75%, and red means success took nearly the whole time period. The maximal observed time was 4.3 minutes for configuration A,
11.7 minutes for B, and 9.3 minutes for C.) Note how the third scenario (C) contains a preponderance of blue dots, indicating that the majority of
hippocampal states easily mapped this environment. This is because the two holes are so large that a rat is virtually forced into a straight-line
trajectory. Third row: Each dot represents the relative standard deviation of map formation times �TTmin for successful trials where D�TTmin is small (,0.3).
Fourth row: Combining the mean map formation times (second row) with the robustness requirement DTmin=�TTminv0:3 (third row) reveals a domain
of stable, robust map formation times that we call the core of the region L in the text.
doi:10.1371/journal.pcbi.1002581.g004
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It is also important to note that the mean map formation time
�TTmin produces a stable, robust core of the learning region L. To

characterize the stability of �TTmin values, we considered the

standard deviation of the minimal map formation times, D�TTmin

computed for each fixed value of �ff , �ss, and N. The third row of

panels in Fig. 4 demonstrates the relative standard deviation of

the map formation times, DTmin=�TTmin as a function of �ff , �ss, and N.

The variations in map formation times increase towards the

boundary of the learning region, i.e., the place cell ensembles

defined by parameters at the boundary of L are successful only a

fraction of the time—these ensembles are ‘‘unstable’’ in their map

formation ability, or we might say the maps themselves are

unstable. (One can imagine a rat with some impairment being

unable to learn a space because its mean place cell firing rate is a

little too low to produce consistent information about the test

environment.) Inside L, the values of �TTmin vary less. To emphasize

this, the subregion R�5R of points x~ �ff ,�ss,N
� �

in which the

relative standard deviation of the Tmin values is less than 30%

(DTmin=�TTminv0:3) (Fig. 4, third row).

Finally, in order to single out the hippocampal states for which

the mean map formation time �TTmin is not only biologically

plausible but also robust, we combined the requirements �TTminv30

mins (used to build Fig. 4ii) and DTmin=�TTminv0:3. The resulting

robust learning region at the core of L (Fig. 4iv) shows that the

parameters of the place cell ensemble that guarantee reliable map

formation form a well-defined submanifold in the parameter

space. This submanifold can be computed using the methods

outlined above for each specific environment and for each specific

model of neuronal firing, allowing us to relate the geometric and

the topological features of the space with the biological parameters

of hippocampal place cell activity.

In summary, it is usually assumed that an ensemble of cells with

spatially selective firing will naturally encode a spatial map. Our

results demonstrate that the spatial selectivity of firing does not, by

itself, guarantee a reliable mapping of the actual environment. The

geometric shape of the learning region L and the distribution of

the �TTmin values within L depend on the global geometry and

topology of the environment. This means that place cells cannot

be ‘agnostic’ about the scope and nature of the spatial encoding

task: the geometry of the environment sets limits on the parameters

of neuronal activity that are able to lead to a coherent topological

map. Despite the stochastic nature of the system, well-defined

mean map formation times �TTmin not only exist inside of the stable

learning region L, but their values can be approximated by a

continuous function of the place cell ensemble statistics. The latter

implies that a continuous variation of the hippocampal state within

L will result in a continuous change of the mean map formation

time value �TTmin. The hippocampus can thus change its operating

state inside L without compromising the integrity of the

topological map, such that the size and the shape of L reflect

the scope of the biological variability that the hippocampus can

afford in a given environment. The larger the region L, the more

stable the map.

Discussion

We have examined the dynamics of hippocampal spatial map

formation beginning with arbitrary place cell activity regimes, both

those that resemble biological cells and those that do not. We

created a computational program to simulate map formation with

three independent variables: the firing rate of the place cells, the

size of the place field, and the number of cells. We then tested the

model on three different scenarios (which included two topological

configurations and two different geometries), and repeated the

simulation in each scenario 10 times prior to statistical analysis.

Our simulations show that in order to form a reliable topological

map of the environment, the place cell ensemble must operate

within certain parameters—outside these parameters, place cells

can be spatially specific but will not be able to produce a reliable

map. It is noteworthy that the parameters for place cell firing and

place field size that produced a robust map formation region L

Figure 5. 2D sections highlight dependence of map formation times on hippocampal state. These 2D sections are based on the point
cloud data in Fig. 4C, second row (far right). Dot sizes and colors represent the same characteristics as described in Fig. 4 (i.e., the larger and bluer
the dot, the more successful and more rapid the map formation). Graph A fixes the mean place field size at 50 cm, and shows that robust map
formation in this case requires a larger number of cells firing at a higher rate. Graph B shows that, at a mean firing rate of 17 Hz, any ensemble size
between 100 and 400 neurons can fairly rapidly form a correct topological map as long as the place fields are between 50 and 80 cm. Graph C
shows that an ensemble of 325 cells can have mean firing rates from 10 to 35 Hz and form maps quickly and accurately with place field sizes from 40–
80 cm. In short, smaller place cell ensembles, with low mean firing rates (�ff ,10 Hz) and too small (�ss,20 cm) or too large (�ss.100 cm) mean place field
sizes, fail to produce the correct topological signature. In contrast, sufficiently large place cell ensembles with higher firing rate neurons and well-
tuned place fields reliably capture the topological structure of the environment in a time frame comparable to the experimentally observed map
formation period.
doi:10.1371/journal.pcbi.1002581.g005
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correspond well with experimentally observed place cell firing

rates and place field sizes: when the simulated place cells fired at

rates either below or above a certain range, or when the simulated

place field sizes fell above or below a certain range, what we call

the learning region failed to form (Figure 5, S1 and S2).

Mathematically, the model could have required any set of values

to work: firing rates of 500 Hz and place field sizes of 2 cm, for

example. There was no a priori reason that the parameters should

fall so neatly into biological range. The fact that they do lends

support to our topological paradigm, despite the simplicity of this

first model.

Other parameters and models of place cell behavior
Our current model relies on a simple spike train structure based

on a Gaussian firing rate (Methods). We ignored many biological

parameters of place cell activity, such as synaptic connections,

theta phase procession and spike bursting, and out-of-field firing.

The ensembles we used were also rather small, ,400 neurons,

which is less than 1% of the number of cells that are believed to be

active in a rat’s hippocampus during its exploration of a new

environment [27] and about 2% of that number for mice [28].

Larger numbers of cells can be incorporated into future versions of

the model, which will lead to a more realistic description of the

hippocampal spatial map. Although we expect that the quantita-

tive predictions of the model will change as more subtle

neurophysiological phenomena are included, we do not anticipate

that the overall structure outlined in the current, basic model will

change qualitatively. For example, preliminary analyses suggest

that the phenomenon of theta precession and multiply connected

place fields affect map formation time, i.e., the size and the shape

of region Lmodel but do not change the fact of L’s existence or the

existence of the function �TTmin~�TTmin
�ff ,�ss,N
� �

.

One could conceivably choose any valid set of parameters to

define hippocampal states that produce a model-defined learning

region Lmodel. The result will correspond to the actual, biological

place cell map only to the extent that the starting model accurately

captures relevant aspects of place cell activity. For example, the

Continuous Attractor Neural Network Models [29], which

includes (among other things) synaptic efficacies, could be tested

for the topological completeness and robustness of the map that it

produces. In the absence of exact knowledge about place cell

activity in a specific animal, the structure of Lbio can be studied

using statistically defined (experimental or model-generated)

characteristics of neuronal activity. The approach we have

outlined here is thus one means of testing the efficiency of other

place cell activity models in forming spatial maps.

Figure 6. Ergodicity times for the three environments shown in Figure 4. For each environment, the graph shows how much time is
required to cover a certain percentage of the 363 cm spatial bins. This ergodic time scale shows that it takes approximately ten minutes for a rat to
cover 80% of the environment; by comparison, the topological map formation time for stable regimes is much lower.
doi:10.1371/journal.pcbi.1002581.g006
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The topological model predicts that: (1) the parameters

describing the hippocampal place cell map in healthy animals

should fall inside of the stable learning region L computed for the

given environment, and (2) the hippocampal state might drift

towards the boundary of stability or even leave the stability region

as a result of a deterioration of neuronal activity. As long as the

parameters used in the model are phenomenological characteris-

tics of neuronal firing, the structure of the learning region Lmodel

will define the effect that a particular parameter has on the

hippocampal place cell map as a whole. With this approach, there

is no need for a priori assumptions about place cell firing rates or

the parameters that define place field sizes. Instead, the correct

values can be estimated based on the structure of the computed

stability region. The fact that the values typically observed in

electrophysiological recording experiments fall within the region of

stability shown in Fig. 4 is a testament to the validity of the

grounding assumptions of our model as outlined above.

Implications of the topological model for spatial learning
Despite its simplifications, the current model allows us to

examine whether a particular set of place cell parameters can be

used to map a given environment and vice versa, and to reason

about the effect of the geometry and topology of an environment

on place cell behavior. For example, Figure 4 demonstrates that

greater topological complexity reduces the size of the stable

learning region L by constraining the range of hippocampal states

capable of forming accurate maps in a reasonable amount of time.

This is, in fact, what is observed in experiments that include a

large number of objects (enriched environments) and are thus

more geometrically and topologically complex than the standard

environments: the firing rates and the number of active cells tend

to increase [30,31], and the place fields become more sharply

tuned [6].

Although the current model does not describe the formation of

place fields themselves, it provides some insight into the process of

learning in novel environments. Place fields show considerable

plasticity over the course of learning new environments, expanding

in adaptation to large environments [32] or over the course of

several days of learning (with a concommitant decrease in the

number of place cells firing at high rates) [33]. (As presciently

noted by Shen et al. [34] in a study of aging rats, the expansion of

place fields increases the amount of place field overlap, which can

encode more information, at least up to a point.) Furthermore,

Karlsson et al. [33] reported that a stable high rate cell population

(�ff $25 Hz) emerges over the course of learning a new environ-

ment. More specifically, while the overall population firing rate

diminishes with learning, the spatial specificity of a small

proportion of active cells increases, while neurons that are weakly

spatially tuned are suppressed. This is precisely the sort of

compensation within L predicted by our model: the hippocampus

is free to adopt the most efficient parameters within the learning

region once a space is learned, and map formation remains stable.

Indeed, perhaps the most striking aspect of the current study is

not that it supports the hypothesis that the hippocampus encodes

topological information about the environment, but that the

learning region L, which reflects the scope of biological variability

that the hippocampus can afford in a given environment, is rather

large. Given the importance of spatial navigation, and thus spatial

map formation, to the lives of most animals, it is not surprising that

there should be such a wide range of possible firing rates, place

field sizes, or cell numbers capable of forming a map of a simple

space. (Lose the ability to navigate reliably, and one’s lifespan

shortens dramatically.) Our model would predict that a degener-

ating brain that is losing place cells might initially compensate by

upregulating firing rate and that such compensation might take

place for quite some time before function is noticeably impaired.

Numerous studies have documented spatial learning deficits and

changes in place field characteristics in mice bearing specific

genetic mutations, but the connection between behavioral changes

and the changes in place field properties has been unclear. We

suggest that significant alterations of place cell behavior result in

hippocampal states hovering at or beyond the boundaries of L that

cannot consistently support spatial learning. In mouse models of

Alzheimer disease (AD), for example, the place fields are larger

(less spatially specific), the firing rates lower, and the number of

active cells smaller [35,36]. We speculate that the hippocampal

map in AD does not do its job because the parameters of place

field activity fall outside the core of the learning region Lbio and

therefore cannot reliably encode spatial information. Similarly,

acute ethanol intoxication causes place fields to lose their

specificity temporarily suppresses place cell firing rate in a dose-

dependent manner [37], and the place fields concomittantly lose

their spatial specificity [38]; according to our proposed model, the

lowest doses of ethanol do not compromise the rat’s navigational

ability because they allow the place cells still to operate within the

learning region. Our model could thus help shed light not only on

the process of learning in novel environments, but also on how

such abilities can be lost.

Methods

We open this section by outlining the assumptions we made

about place fields and place cells in this first attempt at a model of

hippocampal spatial map formation. We then define key

theoretical concepts from algebraic topology that motivated our

particular computational approach, particularly relating to the

relatively new tools of Persistent Homology theory.

The three environments and simulations of rat
trajectories

Each experimental environment depicted in the top row of

Figure 4 is 2 meters square. The hole in scenario A is

50cm 6 50cm; the two holes in scenario B are 50cm 6 50cm and

50cm 6 1m, respectively; both holes in scenario C are

180cm 6 80cm. We simulated rat movement to have a mean

speed of 25 cm/sec (with a range from 0cm/sec to 50cm/sec) and

designed the trajectories to mimic how a rat moves in actual open

field experiments: moment by moment, the animal’s head changes

position by some amount DQsim, and we reconstructed the

histogram of the DQexp distributions from recorded trajectories so

they match the bimodal distribution as found in [39].

Simulating place cell firing
For this initial analysis, we ignored the details of the spike train

structure, such as spike bursting [18] and phase precession [19],

and used the simplest cell firing model based on the time rescaling

theorem (modeling spiking as ‘‘Poisson noise’’) [40]. In this

approach, place cell firing is represented by an inhomogeneous

Poisson process with a time-independent rate function l~l ~rrð Þ,
which is a function of the animal’s position,~rr and which produces

stochastic firing around place field centers. These Gaussian place

fields are not characterized by sharply defined boundaries. Our

model thus allows for noise from ‘‘erroneous spikes’’ that may

connect place fields in one case and not connect them in another.

In the simplest case that is commonly used for place cell activity

modeling (cf. [3]), the firing rate li of an individual cell ci is

modulated by a single peak 2D Gaussian function,
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li(~rr)~fie
{

~rr{~rrc
i

� �2

2s2
i

centered around the point~rrc
i (the center of the ith place field) with

the variance, s2
i ~ s2

i,x,s2
i,y

� �
.

Assumptions regarding place fields
In this model, we assume that: 1) Place fields are ellipsoid and

omni-directional, as typically recorded in open field environments

[41] and are derived from a 2D Gaussian rate function (see below.)

2) Place fields within each given simulation are stable, i.e., P(s), the

probability distribution of place fields does not change over time.

3) The place field sizes vary according to a log-normal distribution,

the center being s-mean (cf. Fig. 2). Because our simulations varied

both the number of place cells and the size and shape of place

fields, we expect that some combinations of parameters tested—

e.g., a combination of low cell number N and small mean place

field size s—will fail to cover the experimental space, while a large

N should cover the area uniformly. Indeed, we found that low N

and s-mean produced high rates of map formation failure (see

Figs. 4 and 5).

Simplicial complexes
Simplicial complexes are used to approximate the structure of

topological spaces [42]. For example, a tetrahedron, as a simplicial

complex, consists of four triangular facets, six linear edges, and

four points in Euclidean space. Each one of these elements is by

itself a smaller simplex; this hierarchy is captured in the notion of

an abstract simplicial complex, in which the tetrahedron is thought

of simply as a set of 4 elements, and any of its 3-element subsets

corresponds to a facet, any subset of two corresponds to a segment

or edge, and any subset of one corresponds to a vertex. Therefore,

given a set of vertices V, a k-simplex is an unordered subset {v0,

v1,…, vk}, where vi?vj for all i?j. The facets of this k-simplex

consist of all (k21)-simplices of the form v0, v1,…, vi21, vi+1,…,vk,

for some 0#i#k. Geometrically, the k-simplex can be described as

follows: given k+1 points in Euclidean space Rm (m$k), the k-

simplex is a convex body bounded by the union of (k21) linear

subspaces of Rm defined by all possible collections of k points

(chosen out of k+1 points). Any abstract simplicial complex on a

(finite) set of points V has a geometric realization in some Rn.

It can be shown that topological features, e.g., holes in the

environment, correspond to loops in the simplicial complex, which

can be detected through combinatorics of the simplices. It is

possible to determine, for example, whether two points in the

complex are connected by a sequence of edges or not. The

simplicial complex produced by the overlaps between the place

fields covering the environment is known in algebraic topology as

the ‘‘nerve of the cover’’ or the ‘‘nerve simplicial complex’’ N(X)

[10,43,44].We use the abstract simplicial complex to interpret the

pattern of temporal overlaps between the place cell spike trains.

Homology theory
The hypothesis that drives this project is that the hippocampus

encodes a topological map. To begin our investigation we ask

whether the topological map produced by the place cells captures

the most basic topological features of the environment, namely,

the number of holes in it. This question can be addressed using

homology theory, which aims to detect homologous loops and to

categorize holes in a space. Since the structure of the nerve

simplicial complex approximates the structure of the environment,

we can use homology theory to count the loops in the simplicial

complex and therefore the number of holes in the environment.

There are numerous variants of homology: we use simplicial

homology with Z2 coefficients (the algebraic system consisting of

the Boolean values 0 and 1, equipped with ‘‘and’’ as the

multiplication and ‘‘exclusive or’’ as addition).

Betti numbers and homology groups
Let S denote a simplicial complex. Roughly speaking, the

homology of S, denoted, H�(S) is a sequence of vector spaces

Hk(S), k = 0,1,2,…, where Hk(S) is called the k-dimensional

homology of S. The dimension of Hk(S), called the kth Betti

number of S, is a coarse measurement of the number of different

k-dimensional structures, e.g., ‘‘loops’’ in S, that cannot be

collapsed or deformed into one another (see Fig. 7). For example,

the simplest basis for H0(S) consists of a choice of vertices, one in

each path-component of S. Hence the dimension of H0(S) is equal

to the number of connected components of S. Likewise, the

Figure 7. Examples of low-dimensional manifolds and their Betti numbers with some of the corresponding loops. (a) A point is a 0D
loop; no higher dimensional loops are present. Thus, each manifold containing at least one point has a 0D loop, so every list of Betti numbers starts
with a ‘‘1’’. (b) A circle is a 1D loop, with no other loops in higher dimensions. (c) A 2D torus with two examples of non-contractible (red) 1D loops, and
an example of a 1D loop contractible into a point (green). The 2D surface of the torus is the 2D loop listed. (d) A 2D sphere, with two exemplary
contractible 1D loops. The 2D surface of the sphere ‘‘loops’’ onto itself.
doi:10.1371/journal.pcbi.1002581.g007
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simplest basis for H1(S) consists of looping sequences of 1D edges

in S, which surround holes in S. For example, if S is a 1D graph,

then the space H1(S) encodes the number and types of loops in the

graph.

Cycles, boundaries and homotopies
For each k$0, let Ck(S) be the vector space whose basis is the set

of oriented k-simplices of S; that is, k-simplices {v0,…, vk} together

with an order type denoted [v0,…, vk] where a change in

orientation corresponds to a change in the sign of the coefficient:

v0, . . . ,vi, . . . ,vj . . . ,vk

� �
~{ v0, . . . ,vj , . . . ,vi, . . . ,vk

� �
,

if an odd permutation is used. For k larger than the dimension of

S, we set Ck(S) = 0.

The boundary map is defined to be the linear transformation h:

CkRCk21 which acts on basis elements [v0,…, vk] via

L½v0,:::,vk�~
Xk

i~1

({1)i½v0,:::,vi{1,viz1,::::,vk�

This gives rise to a chain complex: a sequence of vector spaces and

linear transformations

:::?
L

Ckz1 ?
L

Ck ?
L
:::?

L
C2 ?

L
C1 ?

L
C0

Consider the following two subspaces of Ck: the cycles (those

subcomplexes without boundary) and the boundaries (those

subcomplexes which are themselves boundaries) formally defined

as:

N k-cycles: Zk(S) = Ker(h: CkRCk21)

N k-boundaries: Bk(S) = Im(h: Ck+1RCk)

A simple lemma demonstrates that h # h= 0; that is, the

boundary of a chain has an empty boundary. It follows that Bk is a

subspace of Zk. This has significant implications. Just as 1D loops

on graphs, the k-cycles in S are the basic objects which count the

presence of ‘‘holes of dimension k’’ in S. Certainly, many of the

k-cycles in S are measuring the same hole; still other cycles do not

really detect a hole at all—they bound a subcomplex of dimension

k+1 in S. We say that two cycles f and g in Zk(S) are

homologous if their difference is a boundary:

½f�~½g�<f{g[Bk(S):

The k-dimensional homology of S, denoted Hk(S) is then the

quotient vector space

Hk Sð Þ~Zk Sð Þ=Bk Sð Þ:

Specifically, an element of Hk(S) is an equivalence class of

homologous k-cycles. This inherits the structure of a vector space

in the natural way [f]+[g] = [f+g] and c[f] = [cf] for c[Z2. The

k-th Betti number of S is then formally defined as the dimension

of the k-dimensional homology group:

bk Sð Þ~dim HK Sð Þ

A map f : SRY is a homotopy equivalence if there is a map g :

YRS so that f #g is homotopic to the identity map on Y and g # f is

homotopic to the identity map on S. This notion is a weakening of

the notion of homeomorphism, which requires the existence of a

continuous map g so that f # g and g # f are equal to the

corresponding identity maps. The less restrictive notion of

homotopy equivalence is useful in understanding relationships

between complicated spaces and spaces with simple descriptions.

By arguments utilizing barycentric subdivision, one may show

that the homology H�(S) is a topological invariant of S: it is

indeed an invariant of homotopy type. Readers familiar with the

Euler characteristic of a triangulated surface will not find it odd

that intelligent counting of simplices yields an invariant. For a

simple example, the reader is encouraged to contemplate the

‘‘physical’’ meaning of H1(S). Elements of H1(S) are equivalence

classes of (finite collections of) oriented cycles in the 1-skeleton of

S, the equivalence relation being determined by the 2-skeleton of

S.

Building simplicial complexes from the spike data:
Moving from spatial overlap of place fields to temporal
overlap of spike trains

Given a set of place fields {PF1,PF2,…,PFN}, with specified

shapes and locations, one can use a simple algorithm to construct

the simplicial complex N with vertex set {v1,…,vk} (one vertex per

cell/place field). Two vertices vi and vj are connected by an

oriented 1D bond sij = [ij], if the corresponding regions PFi and PFj

overlap. Three vertices support an oriented 2D facet sijk = [ijk], if

there exists an overlap of three regions PFi, PFj and PFk, and so on.

In general, a simplex si1,i2,:::,ik ~½i1,i2,:::,ik� is in N if and only if

PFi1
\PFi2

\:::\PFik
~1:

This is the so-called ‘‘Čech simplicial complex’’ or the ‘‘nerve’’

complex N [10,44]. It can be shown that if the set of PFs,

{PF1,PF2,…,PFN}, covers the space X,

X~
[N
k~1

PFk

sufficiently densely, then, under fairly general conditions, the nerve

complex N has the same homotopy type as the underlying space X,

and so the topological invariants computed from N will agree with

those corresponding to X [10,15,44]. To be precise, ‘‘sufficiently

dense’’ here means that each point of space X is contained in at

least one place field, and each finite intersection of the fields is

contractible.

In the context of studying a hippocampal map formation, in

which the analysis is based on temporal characteristics of place cell

activity, the simplicial complex can be constructed using the

notion of temporal overlap between the spike trains rather than

spatial overlap between place fields. The intuition is the following:

If the rat happens to visit the location in space spanned by

PFi1\PFi2\:::\PFik=1, then there is a non-zero probability

that the cells ci1 ,ci2 ,:::,cik will produce spikes at roughly the same

time. Then the coactivity of the place cells can be interpreted as

spatial connectivity: if at any a moment of time t during the

observation period, two neurons ci, and cj cofire, then there is a link

between the corresponding vertices; if three neurons ci, cj and ck

cofire, then there is a 2D facet between the vertices and so on.

Consider the collection s1, s2, …, sN of spike trains (where each si is

an ordered list of times at which place cell ci fires) corresponding to

the N cells and fix e.0 and m[N. Then we define the simplicial

complex T by the rule: the simplex
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½i1,i2,:::,ik�[T<At[½0,T � such that min
j[f1,:::,kg

sij\½t{e,tze�
�� ��§m.

This defines a ‘‘temporal simplicial complex’’ T, which is a

direct analogue of the ‘‘spatial’’ simplicial complex N, which

summarizes the information contained in the pattern of temporal

overlaps between the spike trains and gives a complete topological

description of the space X.

This construction achieves the goal of providing us with a

topological method that can tell us whether cells are indeed

receiving all the information necessary for reconstructing the

topology of the environment. The main question discussed in the

paper is whether and to what extent different hippocampal states

(as defined by variations in the mean firing rate �ff , mean place field

size �ss, and the number of cells N) affect the network’s ability to

encode topological information.

In theory, there are two ways in which one can build simplicial

complexes in order to describe the topological information

contained in place cell firing activity: use place field geometry or

place cell spike trains. How are the corresponding simplicial

complexes N and T related?

It is often remarked that homology is functorial, by which it is

meant that it faithfully represents topological information. To clarify

this point, consider two simplicial complexes S and S9. Let f: SRS9

be a continuous simplicial map: f takes each k-simplex of S to a k9 -

simplex of S9, where k9#k. Then, the map f induces a linear

transformation f# : Ck(S)RCk(S9). It is a simple lemma to show that

f# takes cycles to cycles and boundaries to boundaries; hence there

is a well-defined linear transformation on the quotient spaces

f� : Hk Sð Þ?Hk S’ð Þ, f� f½ �ð Þ~ f# fð Þ
� �

:

This is called the induced homomorphism of f on H*.

Functoriality means that (1) if f: SRY is continuous then f* :

Hk(S)RHk(Y) is a group homomorphism; and (2) the composition of

two maps g # f induces the composition of the linear transformation:

(g # f )* = g* # f*. This correspondence allows us to not only relate the

spatial and the temporal complexes, but to consider the dynamics of

simplicial complexes used in this paper to study the formation of

different of hippocampal maps, using the idea of Homological

Persistence.

Persistent homology and barcodes
Given e.0 and m[N we define a function f: TRR+ as follows:

f(½i1,i2,:::,ik�)~min t[½0,T �, min
j[f1,:::,kg

Dsij
\½t{e,tze�D§m

	 

:

This function is a filtration on the simplicial complex T, and the

pair (T, f) is called a filtered simplicial complex. The concept

of filtration is best understood by imagining that the simplicial

complex is built across time. One starts with an empty simplicial

complex and as time goes by, that is, as the rat explores the

environment, the firing of cells ‘‘witnesses’’ [45] the formation of

links between the vertices of the simplicial complex. For example,

for a cell i, by definition f(i) equals the first time that a significant

firing is observed in the spike train si. More precisely, f(i) equals the

first time t that the spike count for si is above m in a window

centered at t of size +e.

Note that by definition, for any simplex s containing i, f(s)$f(i).
This implies, in particular, that a vertex is added to the simplicial

complex earlier than any edge containing the vertex. More

generally, one also sees that f(s)$f(t) for any t5s. Thus we have

an increasing family of simplicial complexes, parameterized by the

real line. Indeed, for each t$0 let

T(t)~ s[T ,f(s)ƒtf g:

Then, if t1#t2#…#tn are all the different values taken by f(s) as s
ranges in T, we have the increasing sequence of simplicial

complexes

15T (t1)5T (t2)5:::5T (tn)~T :

The simplicial complex T (tn) above is the one that could be

regarded as a proxy for N: it contains all the connectivity

information produced by all the co-firings that occurred before tn.

Edelsbrunner and colleagues, however, made the following

observation [46]: given t#t9 there is a natural inclusion of

simplicial complexes T(t)5T(t’). Because of the functoriality

property described above, this induces a linear transformation

Hk(T (t))RHk(T (t9)) for any k. What Edelsbrunner et al. observed

was that in order to study the homology of a given space one

should keep track of the entire system of vector spaces Hk(T (t))

along with all the linear transformations described above.

Such a system is called a persistence vector space.

Importantly, it was shown that persistence vector spaces admit a

classification analogous to the classification result for finite

dimensional vector spaces [47], which asserts that two vector

spaces of the same dimension are isomorphic. In the case of

persistence vector spaces, it turns out that attached to each is a

barcode (see above and Fig. 3). The barcode corresponds to the

persistent cycles in the simplicial complex, and any two isomorphic

persistence vector spaces have the same barcodes. In the case of

the temporal simplicial complex T, these barcodes can be

interpreted as the ‘‘time lines’’ traced by the topological loops,

which characterize the stability of the topological structure defined

by place cell co-activity patterns.

To analyze both simulated and experimental data we used

jPLEX, a collection of MATLAB functions for computational

topology that implements the concepts described above. It is freely

available from http://math.stanford.edu/comptop/programs/.

Supporting Information

Figure S1 2D slices of point cloud data in Figure 4
(environment A, fourth row), with steady variation in
mean firing rate. Colors and sizes of dots code for the same

meanings as described in the legend of Fig. 4: the large blue dots

represent the most successful hippocampal states for map

formation, with the most rapid map formation times. Here the

graphs show a gradual increase in mean firing rate (from 5–31 Hz)

and how this affects the overall shape of the learning region. At

low firing rates (upper left panels) there is no successful map

formation; at 8 Hz, we begin to see some map formation occurring

at the largest place field sizes (80–90 cm), especially as the number

of neurons increases to 300–350. By 17 and 20 Hz (lower left

panels), there is fairly good and rapid map formation with place

field sizes around 60 cm. By the time the firing becomes very rapid

(31 Hz), smaller place field sizes of 20 cm are able to produce

topologically accurate maps, sometimes, but map formation time is

long (red dots) so the process is not very efficient.

(TIF)

Figure S2 2D slices of point cloud data in Figure 4,
(environment A, fourth row) with steady variation in
mean place field size. From these data it appears that the

hippocampal state is less sensitive to the chosen range of mean place
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field sizes (especially between 50 and 80 cm) than it is to firing rate.

The graphs show that at this mid-range of place field size, map

formation is rapid and accurate (lots of blue dots) for a fairly wide

range of firing rates and number of cells in the ensemble.

(TIF)
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