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Abstract

The intestinal microbiota plays important roles in digestion and resistance against entero-pathogens. As with other
ecosystems, its species composition is resilient against small disturbances but strong perturbations such as antibiotics can
affect the consortium dramatically. Antibiotic cessation does not necessarily restore pre-treatment conditions and disturbed
microbiota are often susceptible to pathogen invasion. Here we propose a mathematical model to explain how antibiotic-
mediated switches in the microbiota composition can result from simple social interactions between antibiotic-tolerant and
antibiotic-sensitive bacterial groups. We build a two-species (e.g. two functional-groups) model and identify regions of
domination by antibiotic-sensitive or antibiotic-tolerant bacteria, as well as a region of multistability where domination by
either group is possible. Using a new framework that we derived from statistical physics, we calculate the duration of each
microbiota composition state. This is shown to depend on the balance between random fluctuations in the bacterial
densities and the strength of microbial interactions. The singular value decomposition of recent metagenomic data
confirms our assumption of grouping microbes as antibiotic-tolerant or antibiotic-sensitive in response to a single antibiotic.
Our methodology can be extended to multiple bacterial groups and thus it provides an ecological formalism to help
interpret the present surge in microbiome data.
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Introduction

Recent advances in metagenomics provide an unprecedented

opportunity to investigate the intestinal microbiota and its role in

human health and disease [1,2]. The analysis of microflora com-

position has a great potential in diagnostics [3] and may lead to the

rational design of new therapeutics that restore healthy microbial

balance in patients [4–6]. Before the clinical translation of human

microbiome biology is possible, we must seek to thoroughly un-

derstand the ecological processes governing microbiota composi-

tion dynamics and function.

The gastro-intestinal microbiota is a highly diverse bacterial

community that performs an important digestive function and, at

the same time, provides resistance against colonization by entero-

pathogenic bacteria [7–9]. Commensal bacteria resist pathogens

thanks to resources competition [1,8], growth inhibition due to short-

chain fatty acid production [10], killing with bacteriocins [11,12] and

immune responses stimulation [13,14]. However, external challeng-

es such as antibiotic therapies can harm the microbiota stability and

make the host susceptible to pathogen colonization [15–20].

Despite its importance to human health, the basic ecology of the

intestinal microbiota remains unclear. A recent large-scale cross-

sectional study proposed that the intestinal microbiota variation in

humans is stratified and fits into distinct enterotypes, which may

determine how individuals respond to diet or drug intake [21].

Although there is an ongoing debate over the existence of discrete

microbiome enterotypes [22], they could be explained by ecological

theory as different states of an ecosystem [23]. Ecological theory can

also explain how external factors, such as antibiotics, may lead to

strong shifts in the microbial composition. A recent study that

analyzed healthy adults undergoing consecutive administrations of

the antibiotic ciprofloxacin, showed that the gut microbiota changes

dramatically by losing key species and can take weeks to recover

[24]. Longitudinal studies, such as this one, suggest that many

microbial groups can have large and seemingly random density

variations in the time-scale of weeks [25,26]. The observation of

multiple microbial states and the high temporal variability highlight

the need for ecological frameworks that account for basic microbial

interactions, as well as random fluctuations [27–29].

Here we propose a possible model to study how the intestinal

microbiota responds to treatment with a single antibiotic. Our

model expands on established ecological models and uses a minimal

representation with two microbial groups [30] representing the

antibiotic-sensitive and antibiotic-tolerant bacteria in the enteric

consortium (Fig. 1). We propose a mechanism of direct interaction

between the two bacterial groups that explains how domination by

antibiotic-tolerants can persist even after antibiotic cessation. We

then develop a new efficient framework that deals with non-

conservative multi-stable field of forces and describes the role played

by the noise in the process of recovery. We finally support our model
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by analyzing the temporal patterns of metagenomic data from the

longitudinal study of Dethlefsen and Relman [24]. We show that the

dynamics of microbiota can be qualitatively captured by our model

and that the two-group representation is suitable for microbiota

challenged by a single antibiotic. Our model can be extended to

include multiple bacterial groups, which is necessary for a more

general description of intestinal microbiota dynamics in response to

multiple perturbations.

Results

Mathematical model
We model the microbiota as a homogeneous system where we

neglect spatial variation of antibiotic-sensitive (s) and antibiotic-

tolerant (t) bacterial densities. Their evolution is determined by

growth on a substrate and death due to natural mortality, anti-

biotic killing and social pressure. With these assumptions, we

introduce, as a mathematical model, two coupled stochastic dif-

ferential equations for the density of sensitives and tolerants (rs

and rt) normalized with respect to the maximum achievable

microbial density:

drs

dt
~

rs

rszf rt

{Erszjs(t)~Fs(r)zjs(t) ð1Þ

drt

dt
~

f rt

rszf rt

{yrsrt{rtzjt(t)~Ft(r)zjt(t) ð2Þ

In the physics literature these types of equations represent

stochastic motion in a non-conservative force field F. The first

terms in F correspond to the saturation growth terms representing

the indirect competition for substrate and depend on f , which is

the ratio of the maximum specific growth rates between the two

groups. If f w1 tolerants grow better than sensitives on the

available substrate and the reverse is true for f v1. They

effectively describe a microbial system with a growth substrate

modeled as a Monod kinetic [31] in the limit of quasi-steady state

approximation for substrate and complete consumption from the

microbes (see Methods for details). Both groups die with different

susceptibility in response to the antibiotic treatment, which is

assumed to be at steady-state. E defines the ratio of the combined

effect of antibiotic killing and natural mortality rates between the

two groups (see Methods for details). While the system can be

studied in its full generality for different choices of E, we consider

the case of Ew1 because it represents the more relevant case where

sensitives are more susceptible to die than tolerants in the presence

of the antibiotic. A possible E(t) that mimics the antibiotic

treatments is a pulse function. With this, we are able to reproduce

realistic patterns of relative raise (fall) and fall (raise) of sensitives

(tolerants) due to antibiotic treatment as we show in Fig. S4 in the

Supporting Information Text (Text S1). Additionally, we intro-

duce the social interaction term between the two groups, yrtrs, to

implement competitive growth inhibition [13,32]. In particular,

we are interested in the case where the sensitives can inhibit the

growth of the tolerants (yw0), which typically occurs through

bacteriocin production [33]. Finally we add a stochastic term j
that models the effect of random fluctuations (noise), such as

random microbial exposure, which we assume to be additive and

Gaussian. The analysis can be generalized to other forms of noise

such as multiplicative and coloured.

Antibiotic therapy produces multistability and hysteresis
We first analyzed the model in the limit of zero noise, j~0. In

this case, we were interested in studying the steady state solutions

that correspond to the fixed-points of equations (1,2) and are

obtained imposing F~0. We found three qualitatively-distinct

biologically meaningful states corresponding to sensitive domina-

tion, tolerant domination and sensitive-tolerant coexistence (see

Text S1). We evaluated the stability of each fixed point (see Text

S1) and identified three regions within the parameter space

(Fig. 2A). In the first region the effect of antibiotics on sensitive

Figure 1. The two-group model of the intestinal microbiota
with antibiotic-sensitive and antibiotic-tolerant bacteria. Anti-
biotic sensitives can inhibit the growth of tolerants and both groups
compete for the same growth substrate. Model parameters Es and Et

represent the antibiotic sensitivity of sensitive and tolerant bacteria
(where EsvEt), ms and mt represent their affinities to substrate and y
represents the inhibition of tolerants by sensitives.
doi:10.1371/journal.pcbi.1002497.g001

Author Summary

Recent applications of metagenomics have led to a flood
of novel studies and a renewed interest in the role of the
gut microbiota in human health. We can now envision a
time in the near future where analysis of microbiota
composition can be used for diagnostics and the rational
design of new therapeutics. However, most studies to date
are exploratory and heavily data-driven, and therefore lack
mechanistic insights on the ecology governing these
complex microbial ecosystems. In this study we propose
a new model grounded on ecological and physical
principles to explain intestinal microbiota dynamics in
response to antibiotic treatment. Our model explains a
hysteresis effect that results from the social interaction
between two microbial groups, antibiotic-tolerant and
antibiotic-sensitive bacteria, as well as the recovery
allowed by stochastic fluctuations. We use singular value
decomposition for the analysis of temporal metagenomic
data, which supports the representation of the microbiota
according to two main microbial groups. Our framework
explains why microbiota composition can be difficult to
recover after antibiotic treatment, thus solving a long-
standing puzzle in microbiota biology with profound
implications for human health. It therefore forms a
conceptual bridge between experiments and theoretical
works towards a mechanistic understanding of the gut
microbiota.

Switches in the Intestinal Microbiota
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bacteria is very low (f Ev1) and domination by sensitives is the

only stable state (sensitives monostability). In the second region the

effect of the antibiotic on sensitives is stronger than their inhibition

over tolerants (f Ew1zy=E) and the only stable state is domination

by tolerants (tolerants monostability). Finally, in the third region

(1vf Ev1zy=E) both sensitive and tolerant dominations are

possible and stable, while the third coexistence fixed point is

unstable (bistability) (see Text S1). This simple analysis shows that

multistability can occur in a gut microbiota challenged by an

antibiotic where one group directly inhibits the other (i.e. through

the y term). Furthermore, it suggests that multistability is a general

phenomenon since it requires only that antibiotic-sensitive and

antibiotic-tolerant bacteria have similar affinities to nutrients. This

is a realistic scenario because tolerants, such as vancomycin

resistant Enterococcus [18], are often closely related to other com-

mensal but antibiotic-sensitive strains and therefore should have

similar affinity to nutrients. Finally, the solution of equations (1)

and (2) reveals that hysteresis is present for values of f E and f y
leading to multistability (Fig. 2B). Similarly to magnetic tapes, such

as cassette or video tapes, which remain magnetized even after the

external magnetic field is removed (i.e. stopping the recording), a

transient dose of antibiotics can cause a microbiota switch that

persists for long time even after antibiotic cessation.

Noise alters stability points
The previous analysis shows the existence of multistability in

the absence of noise. However, the influx of microbes from the

environment and/or the intra-population heterogeneity are ex-

pected in realistic scenarios and affect the bacterial density

evolution in a non-deterministic fashion. This raises the question

of how the noise alters the deterministic stable states and their

stability criteria. We assume that the noise is a fraction of bacteria

j(t) that can be added (or removed) at each time step, but on

average has no effect since SjT~0. This assumption is justified by

the fact that a persistent net flux of non-culturable bacteria from

the environment is unrealizable. We also assume that this random

event at time t is not correlated to any previous time t’, which

corresponds to Sjk(t)jk’(t’)T~Dd(t{t’)dkk’, where D character-

izes the noise amplitude and d is the Dirac delta function. We

calculated the stationary probability of the microbiota being at a

given state by solving the stationary Fokker-Planck Equation (FPE)

[34] corresponding to the Langevin equations (1,2):

{+:(F Ps)z
D

2
+2Ps~0: ð3Þ

By numerically solving equation (3) as described in [35], for

increasing D, we find that for small values of D the most probable

states coincide with the deterministic stable states given by F~0
(Fig. 3A). However, by increasing D the distribution Ps spreads

and the locations of the most probable states change and approach

each other. As a consequence, the probability of an unstable

coexistence, characterized by rsw0 and rtw0, increases thus

avoiding extinction. This intuitively justifies how recovery to a

sensitive-dominated state within a finite time after antibiotic

cessation becomes possible with the addition of the noise. Without

noise, the complete extinction of sensitive bacteria would have

prevented any possible recolonization of the intestine. Beyond a

critical noise level (Dc) bistability is entirely lost and the probability

distribution becomes single-peaked with both bacterial groups

coexisting. The microbiota composition at the coexistence state

can be numerically determined from the solution of Ps(rs,rt), as

shown in Fig. 3B and Video S1. Further investigations based on

analytical expansion of the Langevin equations (see Methods) show

that for small random fluctuations, D%Dc, the first noise-induced

corrections to the deterministic density are linearly dependent on

D with a proportionality coefficient determined by the nature of

the interactions (insets in Fig. 3B). These linear correction terms

can be obtained as a function of the model parameters and,

after substituting a particular set of values in the bistable region

(f ~1:1,E~1:1 and y~0:4), they are Sf(1)
s T~{4:3 D for sensitives

and Sf(1)
t T~4:4 D for tolerants. These numbers are different from

those reported in the insets of Fig. 3B. However the discrepancy is

due to the propagation of the boundary conditions when numerically

solving the solution of the FPE using finite elements (see Text S1).

This has important biological implications since it suggests that

extinction is prevented and, more importantly, that a minority of

environmental microbes can settle in the gut at a rate that depends

on the strength of their social interaction with the established

microbiota.

Figure 2. Multistability and hysteresis in a simple model of the
intestinal microbiota. A: phase diagram showing the three
possible stability regions. Antibiotic-sensitive bacteria dominate
when f Ev1 and antibiotic-tolerant bacteria dominate when
f Ew1=2z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1z4f y=2

p
and therefore these are regions of monostabil-

ity. There is a region of bistability between the two regions where
domination by either sensitives or tolerants is possible. B: schematic
display of the hysteresis phenomenon explaining cases where antibiotic
treatment produces altered microbiota (i.e. tolerants domination) that
persists long after antibiotic cessation. C–F: mean density values
obtained simulating the Langevin dynamics for a maximum time
T~10000 after an instantaneous change of the parameter y (C and D)
and E (E and F). These averages are obtained over 1000 noise
realizations. C, D and E, F show the antibiotic-tolerants or antibiotic-
sensitives densities, respectively, as a function of the social interaction
parameter (y) with f E~1:21 or the antibiotic killing (E) with f y~0:77.
doi:10.1371/journal.pcbi.1002497.g002

Switches in the Intestinal Microbiota
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The introduction of random perturbation affects the stability

criteria of the stable states. In particular, we observe that the

bistability region decreases when the noise amplitude D increases

(Fig. 2C–F). At the limit, when DwDc the bistability is entirely lost

and the only stable state is the one where both groups coexist. This

concept was previously hypothesized but not explicitly demon-

strated in a model of microbial symbionts in corals [30].

Noise affects the recovery time
Our model predicts that in absence of stochastic fluctuations the

recovery time is larger than any observational time-scale so that it

is impossible to revert to the conditions preceding antibiotic

perturbation (see Fig. S4 in Text S1). In reality, data show that this

time can be finite and depends on the microbiota composition and

the degree of isolation of the individuals [18,24,36]. Thus, we aim

to quantitatively characterize how the relative contribution of

social interaction and noise level affects the computation of the

mean residence time.

In order to determine the relative time spent in each domination

state, we compute the probability of residence pi(t) in each stable

state i~1,2,::,N using master equations [34]. This method is more

efficient than simulating the system time evolution by direct

integration of the Langevin equations because it boils down to

solving a deterministic second-order differential equation. Fur-

thermore, this approach scales up well when the number of

microbial groups increases, in contrast to the numerical solution of

the FPE which can become prohibitive when Nw3. In our model,

the master equations for the probability pi(t) of residing in the

tolerant i~1 or sensitive i~2 domination state are:

dp1(t)

dt
~{P1?2p1(t)zP2?1p2(t)

dp2(t)

dt
~{P2?1p2(t)zP1?2p1(t) ð4Þ

where Pi?j is the transition rate from state i to j, which can be

obtained in terms of the sum over all the state space trajectories

connecting i to j.

By solving this system of equations at steady-state, we

obtain the residence probabilities p1~ 1zP1?2=P2?1ð Þ{1
and

p2~ 1zP2?1=P1?2ð Þ{1
. After computing the transition rate

Pi?j!e{
S r�ð Þ

D as a function of the parameters, as reported in the

Methods, we determine p2, which is our theoretical prediction for

the mean relative residence time St2=(t1zt2)T spent in the

tolerant domination state (Fig. 4). The theoretical predictions are

in good agreement with those obtained by simulating the dynamics

multiple times and averaging over different realizations of the

noise. A first consequence from this analysis is that the time

needed to naturally revert from the altered state depends

exponentially on the noise amplitude (1=D). As such, we predict

that for the case of an isolated system (D*0) the switching time is

exponentially larger than any other microscopic scale and the

return to a previous unperturbed state is very unlikely. On the
Figure 3. Most probable microbiota states change from
bistable scenario to mono-stable coexistence with increasing
noise. A: the bacterial density joint probability distribution determined
by solving the Fokker-Planck equation (3) for four different values of the
environmental noise. B: the bacterial densities at the peaks of P(rs,rt)
as a function of the noise parameter D. Red symbols are data from the
numeric solution of the Fokker-Planck equation and the black solid lines
are the exponential fit. Parameters used: f ~1:1, E~1:1 and y~0:4. The
insets detail the linear regime.
doi:10.1371/journal.pcbi.1002497.g003

Figure 4. Microbiota resident time in antibiotic-tolerant
domination as a function of the: A–B) antibiotic action (E) and
C–D) social interaction (y) parameters. Blue circles show the
theoretical predictions obtained by determining the probability of the
most probable path. Red circles are obtained by simulating the
Langevin dynamics over 10000 iterations and averaged for 1000 noise
realizations. Higher order-corrections can be included to increase the
theoretical estimation accuracy.
doi:10.1371/journal.pcbi.1002497.g004

Switches in the Intestinal Microbiota

PLoS Computational Biology | www.ploscompbiol.org 4 April 2012 | Volume 8 | Issue 4 | e1002497



contrary, as the level of random exposure D is increased, the time

to recover to the pre-treated configuration decreases (see Fig. S4 in

Text S1). Additionally, this method can be considered as a way to

indirectly determine the strength of the ecological interactions

between microbes which can be achieved by measuring the

amount of time that the microbial population spends in one of the

particular microbiota states. Therefore, it can potentially be

applied to validate proposed models of ecological interactions by

comparing residence times measured experimentally with theo-

retical predictions.

Analysis of metagenomic data reveals antibiotic-tolerant
and antibiotic-sensitive bacteria

We now focus on the dynamics of bacteria detected in the

human intestine and test the suitability of our two-group rep-

resentation by re-analyzing the time behaviour in the recently

published metagenomic data of Dethlefsen and Relman [24]. The

data consisted of three individuals monitored over a 10 month

period who were subjected to two courses of the antibiotic cip-

rofloxacin. Since the data are noisy and complex, and the in-

dividual subjects’ responses to the antibiotic are distinct [24],

identifying a time behaviour by manual screening is not a trivial

task. We do it by using singular value decomposition (SVD) to

classify each subject p phylotype-by-sample data matrix X p into its

principal components. Because of inter-individual variability we

obtain, for each subject, the right and left eigenvectors associated

to each eigenvalue. By ranking the phylotypes based on their cor-

relation with the first two components we recover characteristic

temporal patterns for each volunteer [37,38].

In all three subjects, we observe that, in spite of the indi-

vidualized antibiotic effect, the two dominant eigenvalues or prin-

cipal components together capture about 70% of the variance

observed in the data (Fig. 5A–C). Invariably, the first component

shows a decrease in correspondence to antibiotic treatment and

reflects the behaviour of antibiotic-sensitive bacteria (green line in

Fig. 5D–F). Conversely, the second component increases with the

antibiotic treatment and represents antibiotic-tolerants (red line in

Fig. 5D–F). The observation that each subject’s microbiota can be

decomposed into two groups of bacteria with opposite responses

to antibiotics supports the validity of the two-group approach

used in our model. Classification of each individual’s phylotypes

as sensitive or tolerant can be obtained by determining their

correlation with the two principal components (see Text S1)

(information in the right-eigenarrays matrix from SVD). Bacteria

correlated with component 1 are usually highly abundant before

antibiotic treatment and drop strongly during treatment, often

below detection. Vice-versa, bacteria correlated with component 2

are typically in low abundance before the antibiotic and increase

with antibiotic administration (Fig. 5G–I). Interestingly, despite

significant inter-individual differences in recovery time (Fig. 5G–I)

and individualized response of each subject, the data show that in

each individual the majority of bacteria are antibiotic-sensitive and

only a small but significant fraction are tolerant to ciprofloxacin

(see Text S1). The recognition of these time-patterns could be

considered as a possible tool to indirectly determine the sus-

ceptibility of non-culturable commensal bacteria to FDA-approved

antimicrobial compounds. However, the presence of strains in the

same phylotypes that display both behaviors in response to the

drug may constitute a significant challenge for the success of this

method.

The time evolution of the phylotypes (Fig. 5G–I) qualitatively

agrees with our theoretical prediction that after the antibiotic

administration the system moves fast, meaning in a time smaller

than any other observable time-scale, into a new stable state with

less sensitives and more tolerants. Further, the data also suggest

that the return to sensitive domination happens after a recovery-

time scale that depends on the microbial composition.

Discussion

We present a model of inter-bacterial interactions that explains

the effect of antibiotics and the counter-intuitive observation that

an antibiotic-induced shift in microbiota composition can persist

even after antibiotic cessation. Our analysis predicts a crucial

dependence of the recovery time on the level of noise, as suggested

by experiments with mice where the recovery depends on the

exposure to mice with untreated microbiota [18]. The simple

model here introduced is inspired by classical ecological modeling

such as competitive Lotka-Volterra models [39,40], but relies on

mechanistic rather than phenomenological assumptions, such as

the logistic growth. Although more sophisticated multi-species

models include explicit spatial structure to describe microbial

consortia [33,41–43], our model is a first attempt to quantitatively

analyze the interplay between microbial social interactions (y) and

stochastic fluctuations (Dw0) in the gut microbiota. We find that

these two mechanisms are the key ingredients to reproduce the

main features of the dynamics in response to antibiotic (sudden

shifts and recovery). Our model can be easily generalized to in-

clude spatial variability and more complicated types of noise.

Therefore we provide a theoretical framework to quantify micro-

biota resilience against disturbances, which is an importance

feature in all ecosystems [44]. By introducing a new stochastic

formulation, we were able to characterize composition switches

within the context of state transition theory [45,46], an important

development over similar ecological models of microbial popula-

tions [30]. We present a new method to calculate the rate of

switching between states that identifies the most likely trajectory

between two stable states and their relative residence time, which

can be subjected to experimental validation. Finally, we apply

SVD to previously published metagenomic data [24], which allows

us to classify the bacteria of each subject in two groups according

to their temporal response to a single antibiotic. The SVD method

has been used before to find patterns in temporal high-throughput

data, including transcription microarrays [37] and metabolomics

[47]. Although our approach seems to capture well the main

temporal microbiota patterns, we should note that the use of the

Euclidean distance as a metric for microbiome analysis presents

limitations and recent studies have proposed alternative choices

[48–50]. We also opt for an indirect gradient analysis method [51]

because we are interested in emergent patterns from the data

regardless of the measurements of the external environmental

variable (i.e. presence or absence of the antibiotic) [50].

We propose a mechanism of interaction between two bacterial

groups to explain the lack of recovery observed in the experi-

ments that can be validated in the near future. Although training

the model with the available data sets would be of great interest,

this will not be useful in practice because we need more statistical

power to be predictive. However, we anticipate that a properly

validated mathematical model of the intestinal microbiota will

be a valuable tool to assist in the rational design of antibiotic

therapies. For example, we predict that the rate of antibiotic

dosage will play a crucial role. In order to let the microbiota

recover from antibiotic treatment, it is better to gradually de-

crease antibiotic dosage at the first sign of average microbiota

composition change, which has to be larger than the threshold

community change represented by the day-to-day variability [26],

rather than waiting for tolerant-domination and then stopping

antibiotic treatment.

Switches in the Intestinal Microbiota
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We show here the application of our theory to a two-bacterial

group scenario because we are interested in the microbiota response

when challenged with a single antibiotic. However, in more realistic

conditions the microbiota is subjected to different types of per-

turbations, which may drive it towards more alternative stable states.

Our theory of the microbial-states switches characterization can

be naturally extended to more than two states and consists of the

solution of the linear system of equations pP~0, where p is the

array of probability of residing in each stable state and P is

the matrix of transition rates among the states.

The ongoing efforts to characterize the microbial consortia of

the human microbiome can yield tremendous benefits to human

health [52–55]. Within the next few years, we are certain to

witness important breakthroughs, including an increase in the

number of microbiomes sequenced as well as in sequencing depth.

Yet, without the proper ecological framework these complex

ecosystems will remain poorly understood. Our study shows that,

as in other complex microbial ecosystems, ecological models can

be valuable tools to interpret the dynamics in the intestinal

microbiota.

Methods

Full model and simplification
The model introduced in equations 1 and 2 is derived from the

more detailed model described below. We model the bacterial

Figure 5. Analysis of microbiota response to the antibiotic ciprofloxacin from three subjects [24] using singular value
decomposition identifies antibiotic-sensitive and antibiotic-tolerant bacteria. A–C: fraction of variance explained by the five most
dominant components. D–F: plot of each sample component 1 (green) and 2 (red) coordinates versus sample time. G–I: sorting of the phylotypes
log2-transformed abundance matrix based on the correlation within the two principal component. Above (below) the green dashed lines, we display
the time series of the top 20 phylotypes strongly correlated (anti-correlated) with component 1 and anti-correlated (correlated) with 2 and dropping
(increasing) during treatment, which we identify as sensitves (tolerants). Subject 3 (C,F,I) displays absence of sensitive bacteria for a prolonged period
of about 50 days after the first antibiotic treatment. This confirms the fact that microbiota response to antibiotic can differ from subject to subject.
Additionally, it also supports our model prediction of remaining locked in a tolerant-dominated state after antibiotic treatment cessation.
doi:10.1371/journal.pcbi.1002497.g005
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competition in a well-mixed system in the presence of antibiotic

treatment by means of the following stochastic differential

equations:

dS

dt
~K(S0{S){

msSrs

Bs(Sza)
{

mtSrt

Bt(Sza)

drs

dt
~

msSrs

Sza
{cArs{Krszjs(t)

drt

dt
~

mtSrt

Sza
{yrsrt{Krtzjt(t)

dA

dt
~K(A0{A) ð5Þ

where we account for two bacterial groups; the intestinal resident

sensitive flora rs and an antibiotic tolerant one rt. Additionally,

we also consider the substrate S and the antibiotic A densities. The

antibiotic time evolution is simply a balance between inflow and

outflow (i.e. no decay due to microbial degradation) where K is the

system’s dilution rate, which sets the characteristic microscopic

time-scale, and A0 is the constant density of the incoming anti-

biotic, which can be time dependent. Similarly the substrate

concentration, S, results from a mass balance from influx and

microbial consumption. As for the antibiotic, S0 is the constant

density of the incoming nutrient (i.e. the concentration of resources

coming from the small-intestine). The second and third terms in

the right-hand side of the second equation in (5) describe the

amount of substrate consumed by bacterial growth assuming

Monod kinetics where ms (mt) is the maximum growth rate for

sensitives (tolerants), a is the half-saturation constant for growth,

which parametrizes the bacterial affinity to the nutrient, and Bs

(Bt) is the yield for growth for sensitives (tolerants). The last two

equations describe how sensitives and tolerants grow on the

substrate available and are diluted with the factor K . We mimic

the effect of the antibiotic on the sensitives adding a term pro-

portional to the sensitive density where the constant of pro-

portionality cA is the antibiotic-killing rate. We also introduce a

direct inhibition term yrs, which mimics the inhibition of sensitive

bacteria on the tolerants (social interaction). Finally the Gaussian

random variables js, jt are the additive random patterns of

exposure and represent the random microbial inflows (outflows)

from (to) the external environment.

It is convenient to scale the variables and set the dilution rate to

unity (K~1). Therefore, all the rates have to be compared with

respect to the system characteristic dilution rate. Introducing
~SS~S=S0, ~rrs~rs=(BsS0), ~rrt~rt=(BtS0), ~AA~A=A0, ~cc~(A0c)=K ,
~yy~y=(KBsS0), ~mms~ms=K , ~mmt~mt=K , ~aa~a=S0, ~jjs~js=
(BsS0K) and ~jjt~jt=(BtS0K) and dropping the tilde symbols, we

obtain the following dimensionless model:

dS

dt
~1{S{

msrs

Sza
S{

mtrt

Sza
S

drs

dt
~

msS

Sza
rs{cArs{rszjs

drt

dt
~

mtS

Sza
rt{yrsrt{rtzjt

dA

dt
~1{A ð6Þ

If we assume that the antibiotic is a fast variable compared to the

microbial densities (rs,rt) (i.e. the time-scale at which the antibiotic

reaches stationary state is smaller than that of the bacteria), we can

solve for
dA

dt
~0 and obtain A~1. If we also assume that the

incoming substrate is all consumed in microbial growth, therefore

maintaining the population in a stationary state with respect to the

available resources, and that, similarly to the antibiotic, the

resources equilibrate much faster than the bacterial densities

(quasi-steady state assumption,
dS

dt
~0), we obtain that:

S

Sza
~

1

msrszmtrt

: ð7Þ

If we now define a new parameter E~(cz1) describing the relative

ratio of the combination of antibiotic killing and natural mortality

(i.e. wash-out) between sensitives and tolerants, the model reduces to

the two variables model in r reported in equations (1–2).

Effective potential and location of long-term states
The introduction of random noise has the important conse-

quence of changing the composition of the stable states (Fig. 3A).

In order to characterize this phenomenon, we expand the solution

of the Langevin equations (1–2) around one of the stable states

obtaining the following set of equations for the variable f~r{ri:

dfi

dt
~
X

s

dFi

dfs

����
ri

fsz
1

2

X
sk

dFi

dfsdfk

����
ri

fsfkz . . . zji ð8Þ

where to simplify the notation we drop the explicit time-

dependence. We can easily recognize the first derivative of the

force on the right-hand side as the Jacobian matrix computed in

one of the minima
dFi

dfs

����
ri

~J(ri). This equation can be solved

order by order by defining the expansion f~f(0)zf(1)z . . . and

writing the equations for each order as:

df(0)
i

dt
~
X

s

Jis(ri)f
(0)
s zji ð9Þ

df(1)
i

dt
~
X

s

Jis(ri)f
(1)
s z

1

2

X
sk

Visk(ri)f
(0)
s f(0)

k : ð10Þ

Assuming that the initial condition at time zero is fi(0)~0,

which can always be neglected for long-term behaviour, the

solution of equation (9) is

f(0)
i (t)~

ðt

0

dt’
X

s

eJ(t{t’)� �
is

js(t’): ð11Þ

This means that the average location of the minima at zero order

is not modified by the noise since Sf(0)T!SjT~0. By computing

the solution of the equation (10) we similarly find that:

f(1)
i (t)~

1

2

ðt

0

X
skm

eJ(t{t’)� �
is

Vskmf(0)
k (t’)f(0)

m (t’)dt’ ð12Þ

The long-time average value of the first order correction now

reads:

lim
t??

Sf(1)
i (t)T~

1

2
lim
t??

ðt

0

X
skm

eJ(t{t’)
� �

is
VskmSf(0)

k (t’)f(0)
m (t’)Tdt’ ð13Þ

The time integral can be easily computed assuming that the

eigenvalues of J are negative, or at least their real part is, as it
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should be for stable fixed points; therefore we obtain that:

lim
t??

Sf(1)
i (t)T~

1

2

X
skm

{ J{1
� �

is
VskmSf(0)

k (?)f(0)
m (?)T: ð14Þ

Thus, we find that the effect of random fluctuations is to correct

the value of the stable points as if an external field, proportional to

strength of the fluctuations, was present. This field is equal to the

mean square displacement at large time opportunely weighted by

the inverse of the curvature of the bare potential around the stable

points, J(ri). The correlation can be now computed using

equation (11) and reads:

Sf(0)
k (?)f(0)

m (?)T~

lim
t??

ðt

0

dt0
ðt

0

dt00
X
ss0

eJ(t{t0)
h i

ks
eJ(t{t00)
h i

ms0
Sjs(t0)js0 (t

00)T ð15Þ

Since Sjs(t’)js’(t’’)T~Ddss’d(t’{t’’) the previous equation sim-

plifies to

Sf(0)
k (?)f(0)

m (?)T~ lim
t??

D

ðt

0

dt’
X

s

eJ(t{t’)� �
ks

eJ(t{t’)� �
ms
: ð16Þ

which results in Sf(1)T!D.

Theoretical estimate of the mean residence time
The mean residence time in each state is proportional to the

residence probability pi(t) defined in equation (4). To obtain it, we

need to compute the transition rate Pi?j as a function of the model

parameters as:

Pi?j~
1

tf {ti

ðrj

ri

Dr P(r), ð17Þ

where ti and tf are the initial and final time and Dr is the

functional integral over the trajectory r(t). Each time trajectory

r(t), solution of equations (1–2), has an associated weight P(r),
defined as:

P(r)~

ð
Dj P(j)d(j{ _rrzF (r)): ð18Þ

By discretizing the time so that t~‘t with ‘~1, . . . ,M and t the

microscopic time step, we obtain that the Langevin equations can

be written using the Ito prescription [56] as:

r‘{r‘{1

t
~F(r‘{1)zj‘ ð19Þ

where we use the short notation r(‘t)~r‘ and the initial value is

r0~ri. The time discretization allows us to interpret the

functional integral in equation (18) as:

P(r)~

ð
P
M

‘~1
dj‘P(j‘)d r‘{r‘{1{ F(r‘{1)zj‘

� �
t

� �
ð20Þ

Since the noise is Gaussian and white, its distribution now reads:

P j‘
� �

~
t

2pD

� 	1=2

e
{ t

2D
Dj‘ D2 : ð21Þ

This can be justified using the property of the delta-functionÐ
d(t{t0)dt~1 and its discrete time version t

PM
i~1 f (t)dij~1 so

that f (t)~E{1 follows and d(t{t’)?dij=t.

Using the properties of the delta function, and integrating out all

j‘s, the continuous limit expression of equation (21) is

P(r(t))~e{
S rð Þ

D ð22Þ

where S(r)~
1

2

ðtf

ti

dt’D _rr(t’){F(r)D2 has an intuitive interpretation

in thermodynamics and it is related to the entropy production rate

[57]. By using stationary-phase approximation, it turns out that in

the computation of the rate defined in (17) only one path matters,

r�, which is the most probable path. Higher order factors are

proportional to the term DT~tf {ti [45,46], and therefore

simplify with the denominator in equation (21). This comes from

the fact that several almost optimal paths can be constructed

starting from r�. In the optimal path, the system stays in a stable

state for a very long time, then it rapidly switches to the other

stable state where it persists until tf . By shifting the switching time

one obtains sub-optimal paths that, at the leading order in D, give

the same contribution of the optimal one and their number is

directly proportional to DT . This leads to

Pi?j(r)!e{
S(r�(t))

D

ð
Dr exp {

1

2D

ð
dtdt0r(t)

d2S(r)

dr(t)dr(t0)
r(t0)

 !
: ð23Þ

The functional Gaussian integral can be computed [45,46] and

only provides a sub-leading correction to the saddle-point

contribution resulting in the transition rate formula Pi?j!e{
S r�ð Þ

D ,

which is reported in the Results section.

We now need to determine the optimal path and its associated

action S(r�). This path is defined as the one where the functional

derivative of S is set to zero such that the initial and final states are

fixed. This produces a set of second-order differential equations

€rra~
X

b

Fb
LFb

Lra

z
X

b

_rrb

LFa

Lrb

{
LFb

Lra

 !
ð24Þ

which can be solved imposing the initial conditions on ri and _rr(ti).

It is easy to verify that the downhill solution is _rr~F and it is

associated with null action. Meanwhile, the ascending trajectory,

which is the one leading to a non-zero action and hence gives the

transition rate value, is not given by _rr~{F, as it would be for

conservative field of forces. This means that in presence of a

dissipative term the reverse optimal path from the minimum to the

maximum is different with respect to the one connecting the

maximum from the minimum of the landscape.

As the last point, we want to show that the action associated to

the optimal path can be further simplified by noticing that

E~
1

2
D _rrD2{DF(r)D2
� �

~0: ð25Þ

We can easily prove this condition by showing that the time

derivative dE=dt vanishes when equation (24) is satisfied and

remembering that the optimal path connects two stable states

where F~0 and _rr~0. This property allows us to rewrite the

action as:
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S(r�)~

ðtf

ti

dt’ D _rr�(t’)D2{ _rr�(t’):F(r�(t’))
� �

: ð26Þ

We solved numerically the equation (24) using a trial-and-error

approach. We varied the first-derivative at initial time in order to

arrive as close as possible to the final point within some numerical

precision. In principle the ideal trajectory connecting two stable

points should be computed in the limit of _rr(ti)?0 but this

trajectory will take infinite time. We report three examples of most

probable paths connecting the points i to j and reverse for a

chosen set of _rr(ti) in Fig. S6 of the Text S1.

Singular value decomposition
We first rarefy the raw phylotypes counts matrix as in [24]. We

then normalize the logarithm of the counts according to the

following procedure: 1) we add one to all the phylotypes counts to

take into account also for the non-detected phylotypes in each

sample, 2) we log-transform the data and 3) we normalize the

resulting matrix with respect to the samples averages. In formulae,

the count associated to phylotype i in sample j for each subject p is

X
p
ij ~ log2 (Raw

p
ijz1){mj ,

where mj~
PN

i~1 log2 (Raw
p
ijz1)=N is the average value of the

counts in each sample and N is the total number of phylotypes.

Among all possible normalization schemes, we decide to subtract

the column averages because we aim at identifying patterns within

samples based on their correlation in bacterial composition.

Indeed, the covariance matrix of the samples is proportional to

(X p)T X p, where (X p)T is the transpose matrix. SVD on the

matrix X p is thus equivalent to the principal component analysis

(PCA) performed on the samples covariance matrix.

Supporting Information

Text S1 Text S1 reports additional calculations, figures and

details on: 1) model and relative stability analysis, 2) effect of

random fluctuations and noise-induced dynamics and 3) Singular

Value Decomposition.

(PDF)

Video S1 Video S1 shows the stationary probability distributions

Ps as a function of the sensitive and tolerant densities for increasing

noise value D, which ranges from 10{4 to 10{2. For visualization

purposes, the noise value associated to each movie frame is displayed

as an increasing bar in the top panel.

(MOV)

Video S2 Video S2 shows the time evolution of the two principal

components for the three subjects from [24]. Empty circles rep-

resent untreated samples, asterisks represent samples during

treatment 1 and filled circles represent represent samples during

treatment 2.

(MP4)
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