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The number of complete, publicly available genome sequences is now greater than 200, and this number is expected to
rapidly grow in the near future as metagenomic and environmental sequencing efforts escalate and the cost of
sequencing drops. In order to make use of this data for understanding particular organisms and for discerning general
principles about how organisms function, it will be necessary to reconstruct their various biochemical reaction
networks. Principal among these will be transcriptional regulatory networks. Given the physical and logical complexity
of these networks, the various sources of (often noisy) data that can be utilized for their elucidation, the monetary
costs involved, and the huge number of potential experiments (;1012) that can be performed, experiment design
algorithms will be necessary for synthesizing the various computational and experimental data to maximize the
efficiency of regulatory network reconstruction. This paper presents an algorithm for experimental design to
systematically and efficiently reconstruct transcriptional regulatory networks. It is meant to be applied iteratively in
conjunction with an experimental laboratory component. The algorithm is presented here in the context of
reconstructing transcriptional regulation for metabolism in Escherichia coli, and, through a retrospective analysis with
previously performed experiments, we show that the produced experiment designs conform to how a human would
design experiments. The algorithm is able to utilize probability estimates based on a wide range of computational and
experimental sources to suggest experiments with the highest potential of discovering the greatest amount of new
regulatory knowledge.
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Introduction

As of January 2006, the TIGR Comprehensive Microbial
Resource [1] contained 259 bacterial and 23 archaeal
sequenced genomes, and the GOLD database [2] listed 987
ongoing prokaryotic sequencing efforts. The picture emerg-
ing from metagenomic [3] and environmental sequencing [4]
efforts is that the number of sequenced genomes will surge in
the near future. In order to further our understanding of
these organisms, it will be necessary to reconstruct their
various biochemical reaction networks. First will be metab-
olism, which is arguably the most basic function that a cell
performs. After metabolic reconstruction [5], the second
most feasible reconstruction will be that of transcriptional
regulatory networks (TRNs). These regulatory reconstruc-
tions will require methods to systematically, comprehensively,
and efficiently reconstruct TRNs for which little data exist.
Initial work [6–12] on systematic TRN reconstruction has
been performed. These pioneering efforts span the range
from the theoretical to combined computational and
experimental iterative methods, and they address many of
the important issues in TRN reconstruction. No single
method is available, though, that iterates between computa-
tional and experimental phases, utilizes a dynamic modeling
framework, has a mechanism for incorporating probabilistic
data derived from any source, and explores all of the ways
that a network can be activated by different growth environ-
ments. All of these aspects are relevant to the ‘‘open
question’’ of ‘‘whether automated experimental design can
be useful in a large and poorly characterized biological
system with noisy data’’ [7]. Since the functional state of a
TRN is a direct consequence of its environment, an experi-

ment design algorithm must comprehensively probe the TRN
with different growth environments and must infer, based on
whatever computational and experimental data that exist,
which parts of the network will be most fruitful to target with
experimental investigations. To be practical, the algorithm
must suggest the most efficient series of experiments, for the
potential number of experiments is vast.
This paper presents an algorithm for systematically and

efficiently reconstructing the topology and condition-de-
pendent logic of TRNs. Practically, this means discovering
new transcription factor (TF)–target gene regulatory con-
nections, the (Boolean) logic of how TFs regulate target genes,
and the environmental stimuli that modulate TF activity. The
algorithm is presented here in the context of reconstructing
transcriptional regulation for metabolism in Escherichia coli.
The computational algorithm is intended to be applied
iteratively, in conjunction with an experimental laboratory
component that discovers direct TF–target gene interactions
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and the logic of the interactions (Figure 1). The computa-
tional component is based on dynamic growth simulations
using regulated Flux Balance Analysis (rFBA), which is a
constraints-based approach for bounding allowable steady-
state metabolic network flux distributions, coupled with a
Boolean logic formalism for transcriptional regulation. The
laboratory component has been partially detailed elsewhere
[13]. In summary, this experimental procedure employs single
or double TF knockout (KO) strains to infer TF–target gene
logic rules from a comparison between KO and wild-type
gene expression profiles in two growth environments. This
procedure is now augmented with TF binding assays to
confirm direct TF interaction with target gene promoters
[14–16]. In the context of this experimental protocol, an
experiment design consists of a growth environment shift and
a group of TFs (or ‘‘knockout group’’ [KG]) for which to
create deletion strains. The purpose of the algorithm
described herein is to produce such experiment designs,
and to do so with the primary goal of maximizing the
efficiency of the reconstruction process.

Efficient reconstruction means minimizing the number of
experimental iterations. Efficiency gains are realized from
fewer iterations in two key ways: time spent researching the

next most informative experiment design (which could
conceivably require weeks to months); and, laboratory supply
and personnel costs required to perform each iteration.
Minimizing the total number of iterations necessitates max-
imizing the number of new regulatory interactions discov-
ered in each iteration. Given the experimental protocol
described above, maximal rule discovery in each iteration
depends on a simultaneous maximization and minimization.
Assuming for a moment that one had a KG in mind for which
one wanted to discover the TRN, it would be necessary to
identify two growth environments that each maximally
activate the regulatory connections for the identified TFs.
Simultaneously, one would want to minimize the connections
identically activated in both environments to minimize
redundant discoveries.
This strategy is complicated by three facts. First, one would

not have a complete TRN by which to judge whether the
proposed growth environment shift–TF KG combination
would be the one to yield the most new regulatory logic at the
current stage of the reconstruction. Second, the best picture
one could draw for the complete, real TRN would come from
various data sources (e.g., literature, homology, expression
profile based algorithms, location analysis, and TF binding
site prediction algorithms) that are characterized by uncer-
tainty and noise. Third, it would not be an optimal strategy to
first choose a KG and then the best growth environment shift
for that KG. Since the growth environment determines how a
TRN is activated, and each of the possible KGs would be
associated with different patterns of regulatory activity
depending on the environment, it is the combination of
growth environment shift and TF KG that determines the
maximum yield of new regulatory logic.
The goal of designing a maximally efficient experimental

strategy thus requires the resolution of three critical issues.
First, how does one use criteria from various sources—with
their attendant uncertainties, incompleteness, and noise—to
infer as complete a picture as possible of the structure and
logic of the TRN? Second, how does one utilize this
incomplete picture to decide which growth environment
shift–TF KG combination is most likely to yield the greatest
amount of new regulatory knowledge? And third, how does
one do this while steering away from previously discovered
regulatory logic and towards new knowledge? After detailing
the algorithm that addresses these issues in the next section,

Figure 1. An Overview of the Combined Computational and Experimental Iterative Procedure

The computational algorithm utilizes a dynamic simulation of the current integrated transcriptional regulatory and metabolic network reconstruction to
design experiments. The new regulatory logic rules discovered by the experiments are then added to the reconstruction.
TFi, transcription factor i; TFj, transcription factor j.
DOI: 10.1371/journal.pcbi.0020052.g001
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Synopsis

In recent years, the exploration of life has been bolstered through
the advent of whole genome sequencing. This new data source
significantly enables the reconstruction of genome-scale metabolic
networks. After a metabolic reconstruction, it will be necessary to
discover the genetic control mechanisms that operate within an
organism. Transcriptional regulatory network (TRN) reconstruction is
costly both in terms of time and money, so it is critical that the
reconstruction efforts be made as efficient as possible. Experiments
must be designed so that the most new regulatory knowledge is
discovered in each experiment. The huge number of possible
experiments (;1012) and the vast amount of heterogeneous data
available for designing experiments overwhelms the human ability
to assimilate. The authors have developed an algorithm that utilizes
a mathematical model of a reconstructed metabolic network
integrated with a partially reconstructed TRN to identify the
experiment designs with the highest potential of yielding the most
new regulatory knowledge. The authors show that the produced
experiment designs are similar to those a human expert would
produce, and that the algorithm has a facility to incorporate any
relevant data source to design such experiments.
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we describe how it has been applied and assessed in the
Implementation section below.

Results

Algorithm
The logic of the algorithm, depicted in Figure 2, is to

simulate growth in a comprehensive suite of environments,
and for each simulation, record the observed expression
states of all genes and how the TRN was logically activated.
This information is then used to identify the group of TFs
(KG) that is most widely acting and most densely interacting,
and the two growth environments (representing a growth
environment shift) in which this occurs. The resulting
combination of KG and growth environment shift is then
considered the experiment design with the greatest potential
for providing the most new regulatory rules. This presump-
tion is based on the power law nature of TRNs [17,18], which
implies that more highly connected TFs are more likely to be
involved in undiscovered regulatory interactions. This meth-
odology has the added advantage of (dis)confirming rules
already in the model, but this becomes less of an issue as
subsequent iterations utilize more speculative information in
place of rules in the model as a basis for suggesting
experiment designs. The algorithmic steps are detailed next.

Step 1: Simulate growth in an exhaustive set of environ-
ments and create corresponding activity profiles. The
procedure begins with a growth simulation using the E. coli
model in each environment from a library of minimal media
growth environments. The observed gene expression states
and the logic of interaction between TFs and the genes they
regulate are summarized in a single ‘‘activity profile’’ for each
simulation (see Figure 3 and the first six sections of Materials
and Methods for further detail).

Step 2: Identify all ‘‘legal’’ growth environment shifts. Any
two environments that define a shift must differ by only one
component; otherwise, the inference of logic rules would be
ambiguous because the true causative agent of a regulatory

response would be ambiguous. Of the possible growth
environment shifts, we identify the ‘‘legal’’ ones as those that
differ by only one component.
Step 3: Create a shift activity profile for every legal growth

shift. A ‘‘shift activity profile’’ summarizes how the integrated
transcriptional regulatory and metabolic (ITRAM) network is
utilized in both environments of a growth environment shift.
It is created by combining the two activity profiles of the two
growth environments, as illustrated in Figure 2 and described
in Materials and Methods. A shift activity profile is created for
every shift identified in Step 2.
Step 4: Apply history mask to each shift activity profile. To

prevent the algorithm from re-suggesting previously imple-
mented experiment design(s), a record is kept of those cells of
the shift activity profiles that were used to suggest the
experiments that were previously implemented. In this step,
the history mask is applied to each shift activity profile
generated in Step 3 (see Materials and Methods).
Step 5: Define all KGs of TFs. Enumerate all combinations

of TFs for KGs in a range of sizes (e.g., all combinations of
two, three, four, and five TFs). (See Materials and Methods.)
Step 6: Quantify the interconnectedness of each KG in

every shift. The interconnectedness of a KG is the sum of
regulatory connection weights between all pairs of TFs in a
KG, where a regulatory connection is an instance in which
one TF regulates the other, or the two TFs regulate a common
(third) gene. The interconnectedness for a KG depends upon
the particular growth environment. For each KG k defined in
Step 5, calculate its interconnectedness (NI), NI(KGk, Sij), in
each growth environment shift Sij from Step 2. (See Materials
and Methods for further details.)
Step 7: Quantify the regulatory activity of each KG in every

shift. The regulatory activity of a KG is the sum of the TF–
target gene regulatory interaction weights for all TFs in a KG,
where a regulatory interaction is a probabilistic TF–target
gene link. The regulatory activity for a KG will be growth
environment dependent. For each KG k defined in Step 5,
calculate its regulatory activity (NR), NR(KGk, Sij), in each

Figure 2. A Graphical Depiction of the Computational Algorithm

The algorithm ultimately produces experiment designs ranked by their potential for producing the most new regulatory rules.
TFi, transcription factor i ; TFj, transcription factor j.
DOI: 10.1371/journal.pcbi.0020052.g002
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growth environment shift Sij from Step 2. (See Materials and
Methods for further details.)

Step 8: Identify the potentially most informative experi-
ments. With all growth environment shifts and all KGs
enumerated, identify the growth shift–KG combination that
maximizes first NR(KGk, Sij) and second NI(KGk, Sij). This
ranking identifies the KG whose TFs’ regulatory networks are
both most widely influential and differently activated, and
most densely interacting—and the two growth environments
for which this is the case.

Step 9: Update history mask. After an experiment design
has been implemented in the experimental phase of the
iterative cycle, a set of new logic rules will have been generated
and old rules will have been confirmed. Some of these rules will
be for TF–target gene interactions that were in the shift activ-
ity profile, whereas others will correspond to newly discovered
regulatory interactions. For those rules in the former set,
‘‘mark’’ their corresponding cells in the history mask.
In practice, the algorithm does not produce just one

experiment design. Since its purpose is to aid the exper-

Figure 3. A Graphical Depiction of How an Activity Profile Is Created for a Growth Simulation

The example model M in (A) contains genes for three transcription factors and two enzymes and shows the 0/1 (‘‘off/on’’) state of each gene in each
time step tn of a simulation for a defined growth environment E. The dashed line in the model indicates that a regulatory connection between the two
genes is not explicitly modelled, but is suspected to exist.
(B) shows how a ‘‘basic unit’’ is defined and shows the general formula for the parameterization of each cell. One basic unit exists for every known or
suspected TF–target gene pair.
As shown in (C), for such regulatory connections explicitly modelled, each cell of the basic unit gets either a ‘‘0’’ or a ‘‘1,’’ depending on whether its
associated transcription factor and target gene were observed to be in the indicated 0/1 combination in any simulation time step.
(D) illustrates how the inferred TF–target gene regulatory connections and logic derived from experimental and/or computational data are incorporated
in a basic unit.
In (E) the basic units from (C) and (D) are concatenated to form the activity profile for the simulation.
DOI: 10.1371/journal.pcbi.0020052.g003
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imentalist, it produces many designs in a structured format so
that the experimentalist can factor in any additional criteria
not considered by the algorithm. This aspect of the algorithm
output is discussed further in the following Implementation
section.

Implementation
The issue of algorithm validation presents a difficult

situation, for there is no complete TRN in existence for any
organism. We were able, though, to perform a limited
retrospective analysis using two experimental TRN recon-
struction iterations performed before the development and
completion of this algorithm. For these two experiments,
human research and intuition were used to choose the growth
environment shifts and TF KOs. The algorithm and its
development were in no way influenced by the human-made
choice of experiments for the first two iterations.

To date, only a limited amount of research has been
reported towards the development of fictitious TRNs that
would be complex, realistic, and logically consistent enough
to test this algorithm. The logical consistency requirement is
critical, for a ‘‘randomly-wired’’ TRN joined to a metabolic
network would not be able to support simulated growth, and
certainly not in a large number of growth environments.
When such networks are successfully developed, they will be
an additional test bed on which to evaluate the algorithm.

Human-produced experiment designs. The two experimen-
tal reconstruction iterations previously performed are given
in Table 1. The first [13] utilized an anaerobic fermentation
to aerobic shift with glucose as the carbon source. Five single-
deletion KO strains, plus one double KO, comprised the KG.
The second experimental iteration pursued an anaerobic
fermentation to nitrate shift with glucose as the carbon
source. As this second iteration is still in progress, only one
TF (narL) has been investigated. Each of these iterations can
be assessed on the number of new regulatory rules that they
discover, and in particular how many of these new rules
derive from each TF KO strain.

Although the Dfnr and DarcA strains from the first
iteration and the DnarL strain from the second iteration
were found to be highly informative (producing roughly 130
new rules for Dfnr and DarcA and about 70 for DnarL), the
DsoxS and DappY strains from the first iteration were found to
be relatively uninformative; they produced 30 and four new
regulatory rules, respectively. (The DoxyR strain gave an
intermediate number of rules, but many were likely a result of
an iron stress response. This result is being clarified, but it
appears that the DoxyR strain was weakly informative.) These

results suggest that more informative TF choices could
probably have been made.
Comparison to algorithm-produced experiment designs.

For the comparison we implemented the algorithm using
iMC1010v1, a genome-scale reconstruction of the integrated
transcriptional regulatory and metabolic network for E. coli.
For iMC1010v1, we constructed a library of 108,723 minimal
media growth environments. By implementing Step 1 of the
algorithm, we found that 15,580 of these were able to support
growth. From these environments, we were able to form
21,121 legal growth environment shifts. Only published
regulatory interactions (contained within iMC1010v1) were
utilized, so all probability values in the activity profiles were
unity. We considered KGs composed of between two and five
TFs. For metabolic regulation in E. coli, for which iMC1010v1

currently includes 104 TFs, combinatorial calculation gives
C(104,2)þC(104,3)þC(104,4)þC(104,5)¼ 96,748,106 unique
KGs available for analysis. With 9.63107 KGs and 21,121 legal
growth shifts for E. coli, this gives roughly 2 3 1012 potential
experiment designs.
Table 2 shows the top ten ranked experiment designs that

would have been suggested by the algorithm for the first
iteration in Table 1. (The defining environment component
of each shift is footnoted.) Table S1 gives database links for
the TFs, and Table 2 is a low-detail output of the algorithm.
In practice, for each design in Table 2, the algorithm pro-
duces many alternative, roughly equivalent growth environ-
ments that differ in their nitrogen, sulfur, phosphate, and (in
the case of non-glucose growth environments) carbon
sources. This high-detail output of alternative growth
environments gives the experimentalist options and flexibil-
ity, for some suggested substrates may not be desirable to
work with (e.g., substrate cost, poor utilization in batch
culture, etc.)
Inspection of the growth environment shifts in Table 2

reveals that the first six shifts are between terminal electron
acceptors (thus changing the respiratory conditions of the
cell) or between glucose and non-glucose carbon sources.
This behavior is in line with the human-conceived experi-
ment designs from Table 1, which both utilized terminal
electron acceptor shifts. This result is satisfying, for it
supports our goal of developing an algorithm that designs
experiments similarly to how a human expert would. Such a
computational reasoning process will become especially
advantageous when large amounts of speculative information
(from high-throughput experimental and computational
sources) are added to the design procedure, for such valuable
information would overwhelm any person’s reasoning ability.

Table 1. Human-Made Designs of Double Perturbation Experiments

Growth Environment 1 Growth Environment 2 TF KO Group

Terminal

Electron

Acceptor

Carbon/Nitrogen

Source

Terminal

Electron

Acceptor

Carbon/Nitrogen

Source

Nonea Glucose/NH3 O2
a Glucose/NH3 Dfnr, DarcA, DOxyR, DsoxS, DappY, DfnrDarcA

Nonea Glucose/NH3 NO3
a Glucose/NH3 DnarL

aIndicates the defining environment component of a shift.
DOI: 10.1371/journal.pcbi.0020052.t001
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Explicitly, both human and algorithm sought two growth
environments that activate the integrated transcriptional
regulatory and metabolic (ITRAM) network in maximal, and
maximally different, ways. And additionally, for maximal rule
discovery, both targeted for KO those TFs most responsible
for mediating the network activations.

The last four experiment designs are of a qualitatively
different nature. These last four are mainly aimed at
elucidating nitrogen-related regulation, and so do not probe
regulation states that are as different as seen with electron
acceptor and glucose shifts. They do this by shifting from a
growth environment containing two components, where at
least one can also function as a nitrogen source, to an
environment containing just one component that functions
as both the carbon and nitrogen source. These experiments
are expected to reveal less, and less globally acting,
regulation—as implied by the lower NR values. The ranking
of experiment designs in Table 2 illustrates how the
algorithm works to uncover more global regulation first and
then focuses on fine-grained resolution through discovery of
more local regulation.

The TFs suggested for the experiment designs in Table 2
conform to the reasoning of targeting for KO those TFs most
responsible for the network activations. For example, in
correspondence with the top six suggested growth environ-
ment shifts being carbon source or respiratory condition
shifts, the suggested TFs are widely influential glucose and
carbon metabolism related (crp, mlc, and cra) and respira-
tory-state specific (arcA, fnr, and narL). Both fis and lrp are
included because they are generally widely acting and
interact at promoters with some of the other more global
TFs, namely crp and arcA, and to a lesser extent, mlc and
narL. The remaining TF, rpoS, is primarily associated with
stress response and transition to stationary phase, both of
which elicit large gene expression program changes. The TF
rpoS is known to have a large regulon and to be present at
low levels during log phase [19,20]. Whether or not to
investigate rpoS during log phase as suggested by the
algorithm would likely attract expert evaluation more than
any of the other suggested TFs. Given the wide-ranging

influence of rpoS, an expert may decide that an investigation
of the role of rpoS in log phase is worthwhile, especially since
a clearer understanding of its regulatory targets in log phase
may clarify its function in stress and stationary conditions.
Such an expert evaluation step is the setting for which the
algorithm was designed.
Both of the experiment designs of Table 1 do occur in

Table 2 (indicated by boldface text), but they are not the top-
ranked designs. The first design from Table 1 is the third-
ranked design in Table 2, with a slightly different repertoire
of TF KOs. The experiment designs from both human and the
algorithm suggest the fnr and arcA TF KOs, but they suggest
different additional sets of three. It is not currently known
whether the algorithm-suggested group of three TFs would be
more informative than those chosen by humans, but as
discussed above, at least two of the three suggested by human
were found to be relatively uninformative. The second design
from Table 1 is ranked sixth in Table 2, and both human and
algorithm suggest the same TF that has so far been
investigated in that iteration.
Just as the algorithm was run to retrospectively suggest

experiments for the first iteration, we used the updated
reconstruction resulting from the completed first iteration to
retrospectively suggest experiment designs for the second
iteration. We do not show an associated table for these
results, but report that they are very similar to those of Table
2 with the difference that the third-ranked design in Table 2
is ranked sixth. The reason that this design dropped in
ranking is due to the history mask, and demonstrates the role
of the history mask in steering the algorithm away from
previously implemented experiments.

Discussion

Intuitive Interpretation of the Algorithm
The rationale for Step 8 of the algorithm is based on the

power law nature of TRNs [17,18], which implies that the
most highly connected TFs are the ones most likely to be
involved in undiscovered regulatory interactions. As a
secondary objective, the algorithm seeks the most densely

Table 2. Computer-Generated Designs of Double Perturbation Experiments

NR NI Growth Environment 1 Growth Environment 2 TF KO Group

Terminal

Electron

Acceptor

Carbon/Nitrogen

Source

Terminal

Electron

Acceptor

Carbon/Nitrogen

Source

77 16 None Non-glucosea/various None Glucosea/various Dcrp, DarcA, Dfnr, Dlrp, DrpoS

75 18 Nonea Non-glucose/various O2
a Non-glucose/various DarcA, Dcrp, Dfis, Dfnr, DrpoS

69 10 Nonea Glucose/various O2
a Glucose/various DarcA, Dcra, Dfis, Dfnr, DrpoS

68 8 NO3 Non-glucosea/various NO3 Glucosea/various Dcrp, Dfis, Dfnr, Dmlc, DrpoS

48 28 Nonea Non-glucose/various NO3
a Non-glucose/various DarcA, Dcrp, Dfnr, DnarL, DrpoS

46 21 Nonea Glucose/various NO3
a Glucose/various DarcA, Dfis, Dfnr, DnarL, DrpoS

11 20 DMSO Glycerol/aspartatea DMSO Aspartate/aspartatea DarcA, Dcrp, Dfis, Dfnr DglpR

11 20 NO3 Maltopentaose /methioninea NO3 Maltopentaose /NO3
a DarcA, Dcrp, DdcuR, DglpR, Dfnr

11 11 Fumaratea Glucose/various Nonea Glucose/various DarcA, Dfis, Dfnr, DglpR, Dlrp

11 5 O2 Cytidine/uridinea O2 Cytidine/cytidinea Dcrp, DcytR, DdeoR, Dfis, Dlrp

The experiment designs are listed in descending rank. Bold text indicates experiment designs equivalent to those in Table 1.
aIndicates the defining environment component of a shift.
DOI: 10.1371/journal.pcbi.0020052.t002
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interacting group of TFs so that the more complex
regulation will be identified first. This ordering of objectives
is used so that the algorithm will function well for both
associative and dissociative scale-free networks, in which in
the latter the most connected nodes are not connected to
each other.

To grasp why the algorithm produces the experiment
designs that it does and how it arrives at a rank ordering of
their information potential, it is helpful to consider a result
from previous work [21] directly related to the algorithm
work reported here. This result is included here as Figure S1.
This figure is the result of clustering the activity profiles
computed in Step 1 of the algorithm. It shows distinct clusters
of activity profiles whose relative spatial arrangement is due
to the growth environments to which the contained activity
profiles correspond. In particular, it was found that the most
prominent discriminators between activity profiles were the
terminal electron acceptor present in the growth environ-
ment and whether or not glucose or gluconate was the carbon
source. A secondary level of clustering, seen as distinct but
overlapping clusters, was found to be due to the nitrogen
source.

The observed clustering in Figure S1 both explains the
experiment design algorithm’s results and illustrates how it
arrives at its design ranking. As discussed earlier, the intent of
the algorithm is (in part) to identify two growth environments
that each maximally activate the TRN, and that do so in the
most dissimilar manner. Activity profiles in the same clusters
of Figure S1 represent similar activations of the TRN,
whereas those in different clusters represent more dissimilar
activations—and to a degree directly corresponding to their
separation distance. Because the terminal electron acceptor
and the presence of glucose in the growth environment were
found to be the prime discriminators between clusters, they
primarily determine the dissimilarity of the two environ-
ments’ activity profiles.

Obtaining the Initial Network
The demonstration of the algorithm with E. coli represents

a special case because of the large body of scientific literature
that exists for E. coli. For the algorithm presented here to be
applicable to an organism, there must be some initial
characterization of its TRN. Because the algorithm presented
here has the capability to incorporate and utilize essentially
any source of probabilistic data through the basic units that
constitute the activity profiles, it can be flexibly applied in an
organism-specific manner since certain types of data may be
more readily or inexpensively attainable, depending upon the
organism. To mention a few possibilities, initial character-
ization could be achieved through inference of TFs in raw
genomic sequence [22], of TF–target regulatory connections
from ab initio prediction [23], mRNA expression profile data
[24–26], or genome-wide location analysis [16], of TF binding
sites from comparative genomics [27,28], and of network logic
and structure from Bayesian and Boolean network–based
methods [29].

Relation to an Established Framework for Systems Biology
Systems biology is characterized by the integration of

heterogeneous high-throughput data into a mathematical
model and the subsequent use of this model to gain

understanding of the cellular systems(s) under study in a
way that would not be possible or feasible otherwise.
Moreover, this is done iteratively, whereby new understand-
ing is used to design subsequent experiments. Such a
framework has been established and demonstrated in a
four-step iterative procedure [30,31], but as was highlighted,
one of the most striking challenges arising from systems
biology is the further development of such iterative proce-
dures. The method presented herein represents progress on
this front. In the established work, experiments are designed
to distinguish between models that explain biological data
equally well. Here, experiments are designed for maximal
discovery of new system knowledge. Additionally, the
procedure presented herein integrates heterogeneous data
into a dynamic model, which is arguably the type of model
that will be required [32,33] for the full realization of the
promises of systems biology.

Other Modeling Frameworks
The algorithm has a modular aspect due to its ability to

accommodate alternative transcriptional regulatory model-
ing strategies or different dynamical modeling frameworks
altogether. In order to implement such modifications, four
adaptations to the algorithm would be required. First, the
basic unit will need to be able to capture the logical
relationship between each TF–target gene pair, and do so
in such a manner that external probabilistic data can be
added. Second, a history mask will be needed that is
appropriate for the new basic unit design. Third, a function
for defining and quantifying the regulatory activity, NR, of a
KG will be required. And last, depending on the new
approach, a function for defining and quantifying the
regulatory connectedness, NI, of a KG will be needed.

Conclusion
We have presented an algorithm for systematically recon-

structing a TRN with efficiency and human expert–like
reasoning as prime considerations. Efficiency is based on
time and cost; time is minimized through the algorithm-based
experiment design process that would likely take a human
expert weeks to months, and cost is minimized through the
minimization of the number of laboratory experiments that
need to be performed. The algorithm operates by deciding,
given the current state of knowledge embodied in the TRN
reconstruction, which experiment design—consisting of a
group of TF KO strains and a growth environment shift—is
most likely to yield the greatest number of new regulatory
logic rules. The designs are equally applicable to over-
expression studies. The algorithm has the ability to base its
decisions on any data source that can assign a probability to
the direct interaction of a TF and its regulatory targets and/or
to the logical nature of its interactions. This aspect of the
algorithm is significant, for it overcomes the finiteness
inherent in a model and synthesizes a potentially vast amount
of experimental and computational data that would not be
possible by a human. We performed a limited retrospective
comparison involving two previously performed TRN recon-
struction iterations and found that the experiment designs
that would have been suggested by the algorithm closely
match the experiment designs that were chosen by human
experts. This result illustrated our second goal of developing
an algorithm with human expert–like reasoning ability. We
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expect this ability, when coupled with large amounts of
probabilistic experimental and computational data, will
significantly augment the limited assimilation ability of
human experimentalists. Given the increasing number of
organisms whose genomes have been sequenced and whose
gene complement characterization is ever improving, we
expect that this algorithm or others like or based on it will be
necessary to efficiently uncover their transcriptional regu-
latory systems.

Materials and Methods

The model. The algorithm presented herein is demonstrated
using the first available genome-scale reconstruction of the
integrated transcriptional regulatory and metabolic network for E.
coli (iMC1010v1) [13]. It accounts for a total of 1,010 open reading
frames (ORFs), or about one-third of the functionally assigned
ORFs. It is composed of 906 metabolic ORFs enabling 932 bio-
chemical reactions (including transporters) among 625 metabolites,
as well as 104 TFs regulating the expression of 479 of the 1,010
ORFs. The reconstructed TRN is implemented with a Boolean logic
formalism, which allows one to compute the ‘‘off/on’’ expression
status of genes based on the ‘‘inactive/active’’ state of particular TFs
and/or the absence/presence of particular environmental constitu-
ents.

Growth simulations. Dynamic batch culture growth simulations
[34,35] were performed using the model under the regulated flux
balance analysis (rFBA) [35–40] framework. In this framework, each
simulation is an iterative process of short time intervals. In each
iteration, the off/on status of all genes and the concentrations of
environmental components from the previous iteration are noted
and are then used to evaluate the (Boolean) transcriptional regulatory
logic for every gene. The result is an updated off/on status for every
gene, and thus every reaction, in the model. Then, using a steady-state
flux assumption, a biomass pseudo-reaction is maximized, which
results in the setting of all reaction flux values in the metabolic
network. Based on these flux values, the concentrations of environ-
mental constituents and the biomass are updated. This update
completes an iteration. For this work, an environment that results in
a biomass doubling time of at most 12 h is considered to allow cellular
growth. Simulations corresponded to log-phase growth for 50 min,
with time steps in 5-min intervals.

Library of growth environments. Every growth simulation must
occur in a defined nutritional environment. In this work, we
simulated growth in all possible minimal media growth environ-
ments. In order to enumerate all such possible environments, we
collected all environmental components that could have an effect in
the model described above and categorized each one as a carbon,
nitrogen, phosphate, sulfur, or electron acceptor source. Some
components were placed in multiple categories (e.g., glucose 6-
phosphate serves as both a carbon and a phosphate source).
Additionally, each category contains ‘‘None.’’ All combinations
consisting of one component from each category formed the library
of minimal media.

The basic unit. The central element in the algorithm is the basic
unit. The purpose of a basic unit is to summarize the observed logical
relationship between a single TF–target gene pair during a particular
growth simulation. Implicit in this summary is also the expression
states of the two genes. A basic unit is created for every TF–target
gene pair between which a regulatory interaction is known or
suspected to occur. Each basic unit is composed of four cells, which
correspond to the four possible (Boolean) combinations of TF and
target gene states (i.e., TF ‘‘inactive’’/target ‘‘not expressed,’’ TF
‘‘inactive’’/target ‘‘expressed,’’ TF ‘‘active’’/target ‘‘not expressed,’’
and TF ‘‘active’’/target ‘‘expressed’’). Each of these four cells contains
a single numeric value, which is a probability value reflecting the
degree to which it is believed that the physical and logical
interactions actually occur in the organism in the given growth
environment. Each probability value is computed as the joint
probability of the TF activity state f, the target gene expression state
g, and of the event of the TF binding to the target gene’s promoter
(TFbT), or

P(TF ¼ f, Target¼ g, TFbT j M, E) (1)

where M is the model and E is the growth environment.

Parameterizing the basic unit. Basic units are parameterized using
data from two qualitatively different sources. These two approaches
are discussed in the following two sections and are illustrated in
Figure 3C and 3D.

Parameterizing the basic unit using experimentally confirmed TF–
target interactions. For TF–target pairs whose direct interaction and
logic of interaction have been experimentally confirmed (and so are
explicitly accounted for in the model), the equation for parameter-
izing the cells of a basic unit is derived from Equation 1 and Bayes
rule:

P(TF¼ f, Target¼ g j TFbT, M, E) 3 P(TFbT j M, E). (2)

Parameterizing the basic unit using speculative interaction
information. For regulatory connections between TF–target pairs
that have not been experimentally confirmed but are suggested by
data, computational and/or experimental data can be used to
estimate the probability that (1) the TF represses/activates the target
gene, (2) the TF is inactive/active in a particular growth environment,
and/or (3) the TF binds to the promoter of the target. For integrating
these varied types of data, Equation 2 is further expanded using Bayes
rule to give

P(Target¼ f j TF¼ g, TFbT, M, E) 3 P(TF ¼ f j E) 3 P(TFbT j E). (3)

The first term is the probability that the TF is an activator
(corresponding to the basic unit cells for TF/Target states 0/0 and 1/1)
or is a repressor (corresponding to the basic unit cells for TF/Target
states 0/1 and 1/0). The second term is the probability that the TF is
inactive or active in the environment E. The third term is the
probability that the TF binds the promoter for the target in E.

Creating an activity profile for a growth simulation. An ‘‘activity
profile’’ summarizes the regulatory logic and gene expression states
observed in a single growth simulation for the entire model. The
procedure for creating an activity profile begins by recording the
computed expression state of the genes in the model in every time
step (see Figure 3). For those TF–target pairs whose regulatory
connection is explicitly contained in the model, Equation 2 is used
for placing values in the basic unit. Since we use experimentally
confirmed data in the model, the second term in Equation 2—which
can literally be interpreted as ‘‘the TF can bind the target promoter,
given the model’’—is taken to be unity. The first term is either 0 or 1
depending on whether the joint TF–target state combination was
observed in any simulation time step. See Figure 3A and 3C for an
illustration. Next, basic units for suspected TF–target interactions are
parameterized using Equation 3 and any appropriate data (see Figure
3D). The final activity profile is then constructed by concatenating all
of the basic units (see Figure 3E).

Shift activity profile.We used a ‘‘shift activity profile’’ to summarize
the regulatory activity and gene expression states for a simulated shift
between two growth environments. It is created from the two activity
profiles corresponding to simulated growth in each of the two environ-
ments. The shift activity profile has the same dimensions as the activity
profiles, and each of its cells has the larger of the two values observed in
the corresponding cells of the two activity profiles. The larger value is
chosenbecause it reflects thehighest confidenceof havingobserved the
particular TF–target gene off/on state combination.

History mask. The algorithm presented herein is intended to be
applied repeatedly and iteratively to systematically discover the TRN
of an organism. To prevent the algorithm from repeatedly suggesting
the same experiments, it is necessary to record which criteria were
used to suggest any experiments performed in earlier iterations. As is
explained in Steps 6–8 of the Algorithm section, these criteria consist
of particular cells of the shift activity profiles. Thus, we record in a
‘‘history mask’’ those cells of the shift activity profile that were the
criteria for choosing experiment designs that were actually imple-
mented in previous iterations. The history mask has the same
dimensions as a shift activity profile, and any cell whose correspond-
ing logic has been confirmed by an experiment that was used to
suggest a design is ‘‘marked.’’ The history mask is applied to each shift
activity profile; those shift activity profile cells whose corresponding
history mask cells are marked are overwritten with the value 0.0.

KO groups.One of the fundamental outputs of the algorithm is the
identification of groups of TFs for which to create single-deletion KO
strains. Such groups of TFs we term ‘‘knockout groups,’’ or KGs. A KG
is characterized by the number of TFs it contains and the identity of
the TFs. For a total of m TFs, there are C(m,n) unique KGs composed
of n TFs.

Quantifying the interconnectedness of a KG. In regards to the TFs
of a KG, we define two types of TF interconnections. In the first type,
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one TF directly regulates the other. In the second type, both TFs
directly regulate a common (third) gene. To quantify the (total)
interconnectedness of a KG k, it is first necessary to quantify the
interconnectedness between every pair p of TFs in the KG. For this,
we define Itotal( pj Sij) as the sum of the interconnection weights for all
interconnections between the two TFs of p in growth environments i
and j. For the first type of interconnection, the largest probability for
such a physical interaction in both growth environments is used as
the interconnection weight. In the second interconnection type,
there will be a direct TF–promoter interaction probability for each
TF in each of the two growth environments. The product of the two
environment-specific probabilities is the probability that both TFs
regulate the gene in that environment. The maximum of these two
interaction probabilities is used as the interconnection weight. The
interconnectedness of KG k in growth environment Sij is then
computed as

NI(KGk , Sij) ¼
P

TF pairs p in KG k Itotal( p j Sij). (4)

Quantifying the regulatory activity of a KG. We define the
regulatory activity of a TF to be the probabilistically-weighted count
of genes that it directly regulates. This number will be growth
environment dependent. To quantify the regulatory activity of a TF f,
we define R( f j Sij) as the sum over all connection weights between f
and all of its inferred and/or known regulatory targets in both growth
environments i and j. The connection weights are derived from the
shift activity profiles in the following manner. First, all of the basic
units for f in the shift activity profile for Sij are identified. For each
basic unit that meets two conditions, its largest contained weight is
added to R( f j Sij). The first condition states that the TF must be
active in at least one of the environments i or j, because an
experiment utilizing this growth environment shift with this TF KO
strain would be uninformative otherwise. Specifically, this means that
the last two cells of the basic unit, corresponding to TF ‘‘active’’/
target ‘‘not expressed’’ and TF ‘‘active’’/target ‘‘expressed,’’ must both
not be zero. The second condition states that the activity relationship
between a TF and its target gene must have changed in the shift,
otherwise the KO in the second environment may likely provide no
new information. Specifically, the number of non-zero cells in the
basic unit must be greater than one. The regulatory activity of KG k in
growth environment Sij is then computed as

NR(KGk , Sij) ¼
P

TF f in KG k R( f j Sij). (5)

Supporting Information

Figure S1. The Clusters of All Computation-Based Activity Profiles of
iMC1010v1

The clusters are projected into three-dimensional space, allowing
visualization of the ‘‘space’’ of transcriptional regulation and
metabolic functional capabilities. The numbers in parentheses by
each cluster in the key are the numbers of different activity profiles in
the cluster. Comparison of the clusters shows that they can be
distinguished by the available electron acceptor (indicated by the
ellipses) and the carbon source, and to a lesser degree by the nitrogen
source. The units of each axis are in bits, as given by the Hamming
distance computed between computation-based activity profiles that
are contained within the clusters.

Found at DOI: 10.1371/journal.pcbi.0020052.sg001 (190 KB DOC).

Table S1. SwissProt Database Links for the Genes Mentioned in the
Paper

Found at DOI: 10.1371/journal.pcbi.0020052.st001 (32 KB DOC).
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