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Abstract

A longstanding question in molecular biology is the extent to which the behavior of macromolecules observed in vitro
accurately reflects their behavior in vivo. A number of sophisticated experimental techniques now allow the behavior of
individual types of macromolecule to be studied directly in vivo; none, however, allow a wide range of molecule types to be
observed simultaneously. In order to tackle this issue we have adopted a computational perspective, and, having selected
the model prokaryote Escherichia coli as a test system, have assembled an atomically detailed model of its cytoplasmic
environment that includes 50 of the most abundant types of macromolecules at experimentally measured concentrations.
Brownian dynamics (BD) simulations of the cytoplasm model have been calibrated to reproduce the translational diffusion
coefficients of Green Fluorescent Protein (GFP) observed in vivo, and ‘‘snapshots’’ of the simulation trajectories have been
used to compute the cytoplasm’s effects on the thermodynamics of protein folding, association and aggregation events.
The simulation model successfully describes the relative thermodynamic stabilities of proteins measured in E. coli, and
shows that effects additional to the commonly cited ‘‘crowding’’ effect must be included in attempts to understand
macromolecular behavior in vivo.
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Introduction

While reductionist biophysical studies continue to contribute

important insights into the properties and functions of biological

macromolecules, research attention is increasingly being directed

at uncovering the extent to which behavior observed in vitro is

likely to reflect that occurring in vivo [1,2]. In a physiological

setting, all biomolecules must inevitably experience non-specific,

unintended interactions with the intracellular milieu and there are

good theoretical reasons to expect that, even if such interactions

are only steric in nature, significant alterations in macromolecular

folding and association equilibria may result [2,3]. In order to

allow macromolecules to be directly interrogated in vivo therefore,

a number of important developments have been made in the

experimental fields of hydrogen exchange [4], nuclear magnetic

resonance [5,6], and fluorescence spectroscopies [7–9].

An alternative to the use of experimental techniques is to

assemble a molecular model of an intracellular environment in

silico and to use molecular simulation techniques to explore its

behavior; if such a model could be shown to be realistic – and that

is a big ‘if’ – it would have the important advantage of allowing the

simultaneous, direct observation of all molecules in the system. In

fact, at least two simulation studies that attempt to model the

bacterial cytoplasm have already been reported [10,11], producing

a number of intriguing results. Both of these previous studies,

however, modeled all cytoplasmic molecules as spheres and it is

perhaps to be anticipated therefore that simulations that include

structurally detailed macromolecular models might lead to

additional insights. In pursuit of this strategy, we have chosen

the gram-negative prokaryote Escherichia coli as a test system,

combining quantitative proteomic [12] and high-resolution

structural data [13] to build a first structurally detailed molecular

model of the bacterial cytoplasm.

Results

Full details of the construction of the model are provided in

Methods. Briefly, however, it is to be noted that the model

contains 50 different types of the most abundant macromolecules

of the E. coli cytoplasm (accounting for ,85% of the cytoplasm’s

characterized protein content by weight; [12]) and a total of 1008

individual molecules. Eight of these molecules are copies of the

heterologous (non-E. coli) protein GFP (Green Fluorescent

Protein), which has been included so that the diffusional

characteristics of the model can be compared with in vivo

experimental results (see below). A snapshot of the modeled

system, together with a full listing of its constituents, is shown in

Figure 1; the total combined macromolecular concentration in all

of the simulations reported here is 275g/l.

Parameterization of the simulation model
Starting from three different randomized initial configurations

of the cytoplasm model (all shown in Figure S1), we performed

independent Brownian dynamics (BD) simulations [14] to explore
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diffusive behavior. A variety of energetic descriptions of intermo-

lecular interactions were explored, ranging from a simple steric-

only model – which provides an opportunity to directly test the

predictions of excluded-volume ‘crowding’ theories [2,3] – to

models that include both long-range electrostatic interactions and

short-range potential functions that mimic hydrophobic interac-

tions between exposed non-polar groups. In order to determine

the most realistic energy model, the long-time translational

diffusion coefficients, DL
trans, of the ‘tracer’ GFP molecules were

computed from the BD simulations and compared with previously

reported experimental estimates obtained by fluorescence-recov-

ery-after-photobleaching (FRAP) analysis of GFP in the E. coli

cytoplasm [15–18].

A comparison of the computed GFP DL
trans values obtained

with the different energy models is shown in Figure 2A. For

simulations in which only steric interactions operate between

macromolecules the computed GFP DL
trans value is 3–6 times

higher than the experimental estimates, and although this value

decreases somewhat when electrostatic interactions between

macromolecules are added, it remains 2–5 times too high relative

to experiment. A more realistic model of macromolecular

interactions would allow favorable short-range attractions to occur

between exposed hydrophobic atoms and one simple way of

approximating such interactions is to use a Lennard-Jones

potential, with the well-depth of the potential, e, being treated as

an adjustable parameter (see Methods). As shown in Figure 2A, the

inclusion of such a term results in computed GFP DL
trans values

that decrease monotonically as the well-depth, e, increases in

magnitude. The best agreement with experiment is obtained with

e= 0.285 kcal/mol: at this value of e the computed value of

DL
trans – which is ,10% of its value at infinite dilution – is within

the experimental error of all in vivo estimates [15–18] including a

very recent report for diffusion in cells growing in minimal media

[18]. As noted in the Discussion, this optimal value of e is very

similar to the values obtained in our previous efforts to model the

interaction thermodynamics of single-component protein solutions

[19].

Having determined that good agreement with experiment could

be obtained using a so-called ‘full’ energy model that included

steric, electrostatic and short-range attractive hydrophobic inter-

actions, we extended each of three independent simulations

performed with this energy model to 20ms (see Figure S2 for plots

of the system’s energy versus time). In order to provide a useful

baseline for comparative purposes we also performed extended

simulations with the purely ‘steric’ energy model (i.e. one that

neglects the electrostatic and hydrophobic interactions); the latter

simulations were performed for simulation times of 17.5ms. Each

BD simulation using the ‘full’ energy model required more than a

year (clock-time) to complete. For both energy models, snapshots

taken from the last 15ms of each simulation were used for detailed

analysis.

Overall characteristics of the Brownian dynamics
simulations

An informative, albeit non-quantitative, impression of the

simulation behavior can be obtained by viewing movies of the

simulations (Supporting Information). In some respects, these

movies can be considered a key result of this work: they represent,

in effect, dynamic analogs of the highly influential pictorial

representations pioneered by Goodsell [20]. Examination of a

typical movie obtained from a simulation performed with the

‘steric’ energy model shows the simulated motion to be rapid,

chaotic and obviously Brownian. For the more realistic ‘full’

model, on the other hand, motion is somewhat slower-paced, and

molecules can be seen to fluctuate between engagement in short-

lived associations and periods of relatively free diffusion.

We can place these observations on a more quantitative footing,

and obtain an indication of the extent of sampling achieved in

15ms of simulation, from the remaining panels of Figure 2.

Figure 2B shows the maximum distances moved, on average, by

each molecule type during simulations performed with the ‘full’

and ‘steric’ energy models; all distances are expressed relative to

the diameter of the diffusing molecule. In the case of GFP with the

‘full’ energy model, for example, each molecule travels, on

average, approximately 6 molecular diameters (i.e. 320Å) from

its position at the beginning of the simulation. Since the data in

Figure 2B are plotted versus molecular weight it is apparent that

15ms of simulation is sufficient for the smaller macromolecules to

move very significant distances, while for the largest macromol-

ecules (the 30S and 50S ribosomal subunits), little motion away

from the initial position is achieved. On this basis alone, therefore,

we expect the estimates of diffusional behavior for the smaller

macromolecules to be somewhat more precise than those of the

larger macromolecules. A second measure of the extent of

sampling achieved during each simulation period is provided by

plotting the number of unique interaction partners encountered by

each type of macromolecule as a function of the simulation time

(Figure 2C). Encouragingly, most molecule types encounter many

unique neighbors over the course of 15ms: during a typical

simulation with the ‘full’ model, for example, each GFP molecule

encounters ,80 different neighbors. Just as importantly, the total

numbers of unique neighbors continues to increase even toward

the end of the simulation period: this indicates that the cytoplasm

model remains highly dynamic and does not tend to ‘freeze’ as the

simulation progresses.

As might be expected, the average numbers of neighbors that a

macromolecule possesses at any instant scales essentially mono-

tonically with its molecular weight: the average number of

macromolecules in the immediate neighborhood of a GFP

molecule, for example, is only ,5 while for the 50S ribosomal

subunit it is more than 25 (Figure 2D). The time constants for the

Author Summary

The interior of a typical bacterial cell is a highly crowded
place in which molecules must jostle and compete with
each other in order to carry out their biological functions.
The conditions under which such molecules are typically
studied in vitro, however, are usually quite different: one or
a few different types of molecules are studied as they
freely diffuse in a dilute, aqueous solution. There is
therefore a significant disconnect between the conditions
under which molecules can be most usefully studied and
the conditions under which such molecules usually ‘‘live’’,
and developing ways to bridge this gap is likely to be
important for properly understanding molecular behavior
in vivo. Toward this end, we show in this work that
computer simulations can be used to model the interior of
bacterial cells at a near atomic level of detail: the rates of
diffusion of proteins are matched to known experimental
values, and their thermodynamic stabilities are found to be
in good agreement with the few measurements that have
so far been performed in vivo. While the simulation
approach is certainly not free of assumptions, it offers a
potentially important complement to experimental tech-
niques and provides a vivid illustration of molecular
behavior inside a biological cell that is likely to be of
significant educational value.

Molecular Simulations of Bacterial Cytoplasm
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Figure 1. The cytoplasm model. A. Schematic inventory of the contents of the cytoplasm model. B. Rendering of the cytoplasm model at the end
of a Brownian dynamics simulation performed with the ‘full’ energy model (see text). RNA is shown as green and yellow. This figure was prepared
with VMD [110].
doi:10.1371/journal.pcbi.1000694.g001
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Figure 2. Parameterization and sampling in the cytoplasm model. A. Extrapolated long-time Dtrans values for GFP from BD simulations
performed with different energy models; ‘e’ refers to the well-depth (in kcal/mol) of the Lennard-Jones potential used to describe hydrophobic
interactions (see Methods). Solid, long-dash, short-dash and dotted lines are the experimental Dtrans values from refs. 14, 15, 16 and 17 respectively.
The vertical arrow indicates the energy model selected for further BD simulation. B. Average of the maximum distance moved during the 15ms of
production for all molecule types plotted versus their molecular weights. Upper error bars indicate the largest value of the maximum distance moved
found for any molecule of that type; lower error bars indicate the smallest value of the maximum distance moved. All distances expressed in terms of
the molecular diameters (obtained by doubling the hydrodynamic radius calculated by HydroPro [88]. C. Average number of unique neighbors
encountered by each molecule type as a function of simulation time; each line refers to a different molecule type. D. Average number of neighbors
possessed by each molecule type at any instant, plotted versus molecular weight. E. Time constant for the slower of the two exponentials describing
the rate at which neighbors are lost, plotted for each molecule type versus molecular weight. F. Average number of times that each molecule type’s
immediate neighbors exchange during 15ms simulation plotted versus molecular weight of each molecule type.
doi:10.1371/journal.pcbi.1000694.g002
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dissociation of these neighboring interactions – which in all cases

are in the microsecond range – also scale straightforwardly with

the molecular weight (Figure 2E), indicating that molecules remain

in the neighborhood of larger macromolecules for somewhat

longer periods of time than they do with smaller macromolecules.

The data shown in Figures 2C and 2D can be combined to

provide an estimate of the number of times that each molecule’s

entire complement of neighbors is replaced during the simulations

(Figure 2F). Interestingly, while the overall trend is such that

smaller macromolecules encounter a more dynamic constellation

of neighbors even the largest macromolecules experience a

significant number of environmental changes during the 15ms

simulation period. While each GFP molecule, for example,

effectively ‘shed its skin’ of neighbors a total of ,14 times, even

the 50S ribosomal subunit undergoes ,5 such transformations

(Fig. 2F). This observation suggests that the limited diffusional

exploration carried out by the largest macromolecules evident in

Figure 2B may, in at least one important respect, give a

misleadingly low indication of the extent of configurational

sampling achieved in the simulations: it is in fact, possible for a

completely static macromolecule to rapidly encounter widely

different microenvironments simply by virtue of the dynamic

exchange of its smaller, more mobile neighbors.

Translational and rotational diffusion
While it was noted above that the long-time DL

trans value of

GFP obtained with the ‘full’ energy model is in good agreement

with in vivo measurements (Figure 2A), there are other aspects of

diffusional behavior in the simulations that warrant examination.

One question that is of interest is how the observed Dtrans values of

macromolecules depend on the observation interval, dt, over

which their diffusion is monitored (see Methods). The answer to

this question is plotted in Figures 3A and 3B for the three most

abundant members of the cytoplasm model (MetE, TufA and

CspC); these proteins have been chosen for closer examination

because their high abundance yields the most statistically robust

numbers, but very similar results are obtained for the other

constituents of the model. Figure 3A plots the computed Dtrans

values of the three proteins versus dt for both the ‘full’ and ‘steric’

energy models. The clear variation of Dtrans with dt seen for all

three proteins is indicative of ‘anomalous’ diffusion [21–23]; the

magnitude of the anomaly is conventionally expressed by the

anomality exponent, a, (Methods) which is plotted for the same

proteins, again versus dt, in Figure 3B. Examination of this figure

shows that with the ‘steric’ energy model, the diffusion of all three

proteins progresses from being normal (a,1), to transiently

subdiffusive (a,1), to normal again as the observation interval

increases from dt,100ps to dt,10ns to dt,1ms. With the ‘full’

model, in contrast, macromolecules exhibit transiently anomalous

subdiffusion even at the shortest observation intervals; again

however, a slow, but unequivocal return toward normal diffusion

occurs on a high microsecond timescale. The same qualitative

features are seen for all other molecule types although, for the

largest macromolecules or those with the very lowest copy

numbers, it is not always clear that sampling is sufficient to be

absolutely certain of a return to normal diffusion at the longest dt

values. At very short values of dt however we can obtain quite

precise values of a for all molecule types; when these are plotted

versus molecular weight (Figure 3C) it is apparent that while there

is a clear difference between the values obtained with the two

energy models, and a clear size-dependence of a with the ‘steric’

model, there is no such obvious trend with the ‘full’ model.

For both energy models, the plots of a versus dt fit well to an

analytical function (solid lines in Figure 3B) that, when integrated,

enables an asymptotic long-time translational diffusion coefficient,

DL
trans, to be estimated (see Methods). The observed DL

trans values

of all molecule types are expressed relative to their translational

diffusion coefficients at infinite dilution (D0
trans) and plotted versus

molecular weight in Figure 3D. For both energy models, the ratio

DL
trans/D0

trans decreases with increasing molecular weight, which

is qualitatively consistent with experimental studies of tracer

protein diffusion in simple single-component protein solutions [24]

and of Ficoll diffusion in the cytoplasm of mouse 3T3 cells [25].

The poorer correlation obtained for the ‘full’ model (which does

not appear to be solely due to incomplete sampling) suggests that

translational diffusion in vivo should not be predictable with

arbitrary precision solely from knowledge of molecular weight;

again, this is in line with the often significant variations observed in

the in vivo diffusion coefficients of similarly-sized GFP-constructs

[15,26]. It is perhaps worth noting, however, that the computed

diffusive behavior of the heterologous GFP – marked by an

asterisk in the ‘full’ model data points – is consistent with the

general trend established by the endogenous E. coli macromole-

cules.

The rotational motion of macromolecules is also significantly

affected by immersion in the cytoplasm model. In the case of the

‘full’ energy model, the rotational behavior can be fit equally well

by either a double-exponential function or a model that describes

transiently anomalous rotational diffusion [27]. Since it is the

rotational behavior on a nanosecond timescale that is more

relevant to experimental measurements (see Methods), we plot the

short-time rotational diffusion coefficient, DS
rot of all molecule

types, relative to their rotational diffusion coefficients at infinite

dilution, D0
rot, in Figure 3E. As would be anticipated given the

translational behavior shown above, rotational diffusion is

significantly slower with the ‘full’ model than it is with the ‘steric’

model.

Notably, a comparison of Figures 3D and 3E shows that with

both energy models rotational diffusion is slowed less by immersion

in the cytoplasm than is translational diffusion. This can be viewed

as indicating that the two kinds of motion experience different

relative viscosities (grel
T and grel

R for translational and rotational

diffusion respectively). Figure 3F plots the ratio of these relative

viscosities, grel
T/grel

R, versus molecular weight for all molecule

types. For the abundant proteins MetE, TufA, and CspC, and the

less abundant GFP, we find the ratio of these relative viscosities,

grel
T/grel

R, to be 3.6, 3.0, 3.2 and 2.5, respectively using the ‘full’

model; perhaps surprisingly, similar numbers are also obtained

with the ‘steric’ model (Figure 3F). These computed ratios are in

quite good agreement with the value of grel
T/grel

R of 2.660.2

obtained from in vitro data for apomyoglobin diffusion in human

serum albumin [28] (see Methods) and the value of grel
T/grel

R of

2.160.3 reported for GFP in Chinese hamster ovary cells [29]; the

lower value obtained in the latter case is consistent with the lower

macromolecular concentration of the mammalian cytoplasm

relative to that of E. coli.

The thermodynamics of protein stability in the cytoplasm
model

In addition to the simulations providing direct views of diffusive

motions in the cytoplasm, snapshots extracted from the simula-

tions offer an important opportunity to explore the thermody-

namic consequences of the cytoplasm on macromolecular stability.

Using a variant of Widom’s ‘particle-insertion’ method [30], the

free energy change that accompanies the insertion of a molecule

into the cytoplasm can be rigorously computed by subjecting the

molecule to millions of randomized placements (see Methods). We

used this approach to compute the cytoplasm’s effects on the

Molecular Simulations of Bacterial Cytoplasm
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Figure 3. Translational and rotational diffusion in the cytoplasm model. A. Dtrans values for the three most abundant proteins plotted
versus observation interval dt; error bars indicate the standard deviation of values obtained from three independent simulations; solid lines represent
fits to the data obtained by integrating the analytical functions shown in the next panel. B. Computed anomality exponents, a, obtained by
numerically differentiating the Dtrans values shown in A; solid lines represent fits to the data using an analytical function defined in Methods. C.
Anomality exponent, a, computed at the shortest accessible time interval (dtmid = 144ps) plotted for all molecule types versus molecular weight; error
bars represent standard deviations from the three independent BD simulations. D. Long-time Dtrans values expressed relative to infinite-dilution
values plotted versus molecular weight of each molecule type; asterisk denotes GFP. E. Short-time Drot values expressed relative to infinite-dilution
values plotted versus molecular weight of each molecule type. F. Ratio of the effective translational and effective rotational viscosities, plotted for all
molecule types versus molecule weight.
doi:10.1371/journal.pcbi.1000694.g003

Molecular Simulations of Bacterial Cytoplasm

PLoS Computational Biology | www.ploscompbiol.org 6 March 2010 | Volume 6 | Issue 3 | e1000694



folding equilibria of selected proteins by performing separate

insertion calculations on their native state structures and on

ensembles of 1000 unfolded structures generated by a sophisticat-

ed conformational sampling method [31]. We focused initially on

the only two proteins for which experimental estimates of

thermodynamic stability in the E. coli cytoplasm are available: (1) a

construct of the l-repressor N-terminal domain, l6-85 [4], which

has been found to have essentially identical stability in vivo and in

vitro, and (2) the cellular retinoic acid binding protein [7,32]

(CRABP), which has been found to be thermodynamically

destabilized in vivo relative to in vitro. Both of these findings – the

latter in particular – are non-trivial results to capture since they are

inexplicable in terms of conventional macromolecular crowding

theory [2,3,7,33,34] (see below).

We performed thermodynamic calculations under a total of four

different scenarios. The first scenario that we examined involved

taking cytoplasm snapshots sampled during the ‘steric’ BD

simulations, and computing the cytoplasm-interaction energies of

the folded and unfolded conformations with the same ‘steric’

energy model: this scenario corresponds to that considered in

conventional models of macromolecular crowding effects [2]. In

this case, the differences between the folding free energies in vivo

and in vitro are computed to be +1.360.0 and +2.260.1 kcal/mol

for l6-85 and CRABP respectively (blue bars in Figure 4A), with

the positive signs indicating that the folding free energies of both

proteins are calculated to be more favorable in vivo than in vitro.

When compared to the experimental values (red bars in Figure 4A),

these results are in poor quantitative agreement for l6-85 and are

qualitatively wrong for CRABP. In a second scenario, we took

cytoplasm snapshots sampled during the ‘full’ model BD

simulations, but computed the cytoplasm-interaction energies of

folded and unfolded conformations using the simpler ‘steric’

energy model. In this case, the differences between the folding free

energies in vivo and in vitro are computed to be +1.060.0 and

+1.660.0 kcal/mol for l6-85 and CRABP respectively (cyan bars

in Figure 4A). The smaller crowding effects obtained in this

situation reflect the fact that during the ‘full’ BD simulations

transient clustering of molecules creates bigger voids in the system;

again however, these computed results are in poor quantitative

agreement with experiment for l6-85 and are in qualitative

disagreement with experiment for CRABP.

A third scenario that we examined involved taking cytoplasm

snapshots sampled during the ‘steric’ BD simulations and

computing the cytoplasm-interaction energies with the ‘full’ energy

model. In this case, the differences between the folding free

energies in vivo and in vitro are computed to be +0.160.5 and

21.861.4 kcal/mol for l6-85 and CRABP respectively (green bars

in Figure 4A), both of which, notwithstanding the larger error

bars, are in rather good agreement with the experimental results.

Finally, we took cytoplasm snapshots sampled during the ‘full’

model BD simulations and computed the cytoplasm-interaction

energies with the same ‘full’ energy model. In this fourth scenario

– which on the basis of the diffusional properties described above

would be hoped to provide the most realistic description

(Figure 2A) – the computed changes in stability amount to

+0.360.1 and 20.960.4 kcal/mol for l6-85 and CRABP

respectively (yellow bars in Figure 4A); again, these results are in

close quantitative agreement with the experimental results. The

overall picture that emerges, therefore, is that the experimental

results cannot be reproduced, even qualitatively, when the ‘steric’

energy model is used to score the interactions between the folding

protein and the cytoplasm environment, but they can be

reproduced – and with a perhaps surprisingly high degree of

quantitative accuracy – when the ‘full’ energy model is used in the

particle-insertion calculations. Furthermore, the fact that similarly

good results are obtained regardless of which energy model was

used in the BD simulations suggests that, for such calculations, the

method of sampling the cytoplasm’s configurations is perhaps less

important than the nature of the energy function used to describe

the protein of interest’s interaction with it.

Histograms of the computed interaction energies of the folded

and unfolded state with the cytoplasm explain why the predictions

of the ‘full’ model successfully reproduce experiment, and deviate

so significantly from the predictions of the purely steric model: for

both proteins, but especially so in the case of CRABP, the

unfolded state conformations are computed to have somewhat

more favorable energetic interactions with the cytoplasm than the

folded state conformations (Figure 4B). The consequence is that

while the excluded-volume (crowding) effect experienced by both

proteins undoubtedly significantly stabilizes their folded states

relative to their unfolded states (e.g. see the blue and cyan bars

in Figure 4A), the effect is counterbalanced by the more favorable

energetic interactions engaged in by the unfolded state

conformations.

To explore the potential generality of this latter result, we

performed identical calculations for a number of other monomeric

proteins using snapshots taken from the ‘full’ model BD

simulations; histograms illustrating the size distributions of the

unfolded states of the tested proteins are shown in Figure 4C. The

computed changes in their folding free energies are plotted in

order of increasing molecular weight in Figure 4D. As before,

when the ‘steric’ energy model is used to compute the cytoplasm-

interaction energies the proteins’ stabilities are computed to

increase (white bars in Figure 4D); the computed stability changes

scale broadly with the molecular weight of the protein, reflecting

the greater relative difference between folded and unfolded state

dimensions of larger proteins. In contrast, when the ‘full’ energy

model is used to compute the cytoplasm-interaction energies, the

molecular weight dependence is lost (dark grey bars in Figure 4D):

some proteins are computed to be stabilized and others

destabilized in vivo relative to in vitro (in no case however is the

extent of destabilization sufficient to predict that the proteins will

be predominantly unfolded in vivo). These results suggest that

differences between the in vitro and in vivo thermodynamic

stabilities will vary significantly with the identity of the protein.

The thermodynamics of protein-protein interactions in
the cytoplasm model

We performed similar calculations to explore the potential

thermodynamic effects of immersion in the cytoplasm on a variety

of protein-protein associations. For the formation of homo-dimeric

complexes (Figure 4E), we again find that the excluded-volume

crowding effect, which alone stabilizes dimers relative to separated

monomers by on average 1.160.3 kcal/mol, is largely cancelled

by the more favorable energetic interactions that the monomers

form with the cytoplasm constituents: when the ‘full’ energy model

is used the stabilization of the dimeric forms by the cytoplasm is

computed to be, on average, only 0.160.3 kcal/mol. For the

assembly of the trimeric nucleus [35] of the bacterial cytoskeletal

protein ParM from three separated monomers, we find that the

stabilization predicted with the ‘full’ energetic model is also

significantly lower than that predicted from the crowding effect

alone (Figure 4F); again, the smaller value appears more consistent

with the close similarities between the polymerization behavior of

ParM observed in vitro and in vivo [36]. Finally, we performed

calculations on the assembly of two published (but putative)

structural models of amyloid-like aggregates [37,38], each formed

by association of 8 monomer units (Figure 4F). For one of these

Molecular Simulations of Bacterial Cytoplasm
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Figure 4. Thermodynamic effects of the cytoplasm model on protein folding and association equilibria. A. Computed stabilization of
the folded state relative to the unfolded state for two experimentally-studied proteins; experimental data for Lrp (l6-85) and CRABP taken from refs [4]
and [32] respectively. ‘steric sampling’ indicates that insertions were performed on snapshots taken from a BD simulation performed with the ‘steric’
energy function; ‘steric scoring’ etc. indicates that the ‘steric’ energy function was used to calculate the cytoplasm-interaction energies, Eint, of the
inserted proteins. B. Histogram of interaction energies, Eint, obtained for all non-clashing insertions of the folded and unfolded state conformations of
CRABP with snapshots sampled from the ‘full’ model BD simulations; inset shows the same for l6-85. C. Distribution of radius of gyration values for the
1000 unfolded conformations generated with the RCG software [31]; distributions are plotted in order of increasing molecular weight of the studied
proteins. D. Same as A. but showing computed results for six other proteins, listed in order of increasing molecular weight. E. Computed stabilization
of dimeric form relative to two separated monomers for eleven proteins, listed in order of increasing molecular weight. F. Computed stabilization of
oligomeric form relative to separated monomers for three proteins.
doi:10.1371/journal.pcbi.1000694.g004

Molecular Simulations of Bacterial Cytoplasm

PLoS Computational Biology | www.ploscompbiol.org 8 March 2010 | Volume 6 | Issue 3 | e1000694



two cases, the aggregation of an SH3 domain [37], we find that the

use of the ‘full’ model predicts a slightly greater stabilization than

that predicted solely on the basis of the crowding effect; the

additional stabilization observed in this case results from the

protein’s interactions with the cytoplasm being dominated by

repulsive electrostatic interactions, which, on average, are

diminished in the aggregated state (see Figure S3).

Discussion

Developing working computational models of intracellular

environments is one potential route to understanding differences

between biomolecular behavior observed in vitro and in vivo. The

simulations and calculations described here represent the first

attempt to build such a model for the bacterial cytoplasm using

atomically detailed structures of the constituent molecules, and

represent the first attempt to directly model the consequences of

immersion in the cytoplasm on the thermodynamics of protein

stability and protein-protein interactions. It is worth noting that

these innovations have been made possible in large part due to the

immense progress made by the structural biology community in

recent years: in constructing our model it was a major surprise to

us to find that, of the 50 most abundant cytoplasmic E. coli proteins

identified in the study of Link et al. [12], it was possible to produce

complete or near-complete structural models for more than 45 (see

Supporting Information). Since large-scale structural genomics

initiatives continue to map out the structural proteomes of

organisms with ever increasing detail [39] it will be possible to

make future generations of cytoplasm models even more

compositionally complete.

Before considering the strengths and weaknesses of the present

model, and the implications of the results reported here, it is

important to reiterate that at least two other cytoplasm models

have already been reported in the literature. The first such model

was described by Bicout and Field [10] some thirteen years ago.

Owing to the comparative paucity of both structural information

and computer power then available, the model was restricted to

only three types of macromolecule, each of which was modeled as

a sphere: their modeled system contained 12 ribosomes, 188 copies

of a generic protein of molecular weight 160kDa, and 136 tRNAs.

Langevin dynamic simulations were used to model behavior over a

timescale of 7.5ms, and four different electrostatic approximations

were investigated in an attempt to cover a range of possible

simplified descriptions of the ribosome’s electrostatic properties.

With all four models, the long-time translational diffusion

coefficient of the modeled protein was slowed by only ,40%

relative to its infinite-dilution value. Since their work pre-dated the

first reports of Dtrans values measured in vivo, Bicout and Field

could not know at the time that this simulated diffusion was too

fast relative to experiment; they were therefore not in a position to

more fully calibrate their model. Despite this issue, it should be

clear to readers that the work of Bicout and Field was far ahead of

its time. It should also be apparent that, like the influential work of

Goodsell [20], it was a direct inspiration for the work reported

here.

A second and much more recent model for the bacterial

cytoplasm has been developed by Ellison and co-workers [11].

Relative to Bicout and Field’s work, the model of Ridgway,

Broderick et al. provides an enormous step forward in terms of

compositional complexity: .100 different types of proteins are

represented, and thanks to the availability of the authors’ own

proteomic data [40], are present in copy numbers that are likely

to much more closely reflect their relative abundances in vivo. On

the other hand, all macromolecules are treated as spheres, and

intermolecular interactions are assumed to be purely steric in

nature. In addition, the actual modeling of motion is somewhat

simplified: particles take steps of uniform length in randomly

chosen directions, with the steps being accepted only if no

collision – or reaction – with a neighboring molecule occurs.

While somewhat approximate, this approach has the significant

advantage of allowing reactive events to be rapidly modeled,

making the simulation model applicable to a more general set of

problems than that considered here. The resulting model of the

cytoplasm was used to investigate the effects of crowding on the

translational diffusion of macromolecules and on the rate of the

diffusion-limited association of the barnase-barstar protein-

protein complex. As noted by the authors, the diffusional

simulations produced only a two-fold decrease in the translational

diffusion coefficients of GFP-like molecules, suggesting, in

common with the results reported here, that (steric) crowding

effects alone are insufficient to explain the ,10-fold slowed

diffusion of GFP observed in vivo.

Relative to these two previous cytoplasm models, therefore, the

present approach offers a significant increase in both structural

and energetic complexity: all macromolecules are modeled in

atomic detail and interact with one another via an energetic model

that accounts for the two major types of interaction that drive

protein-protein associations (i.e. electrostatic and hydrophobic

interactions). It does so, of course, at very significant computa-

tional expense: each of the simulations performed with our ‘full’

energy model required more than a year of clock-time to

complete. But even with its associated expense it should not be

thought that the present model represents the pinnacle of

sophistication in terms of its description of reality. Leaving aside

the fact that the model is incomplete in terms of the types of

macromolecules (and small molecules) that it includes, there are

several key assumptions of the modeling that are both important to

stress and which represent obvious candidates to address further in

future work.

A first simplification of the present approach, and one shared by

the previous models described above, is that all macromolecules

have here been treated as rigid bodies. This simplification has two

consequences. First, it immediately precludes us from making any

meaningful attempt to simulate the (presumably very interesting)

diffusive behavior of highly flexible macromolecules such as

mRNAs and intrinsically unstructured proteins. While this is

undoubtedly a limitation, it is to be noted that in terms of their

contributions to the overall mass content of the cytoplasm, such

molecules play a comparatively minor role relative to that played by

the folded, globular macromolecules examined here [10]. It is also

to be noted that there are currently very serious technical obstacles

to be overcome if the diffusive behavior of flexible macromolecules

is to be simulated with any degree of realism: we have shown

recently, for example, that the inclusion of hydrodynamic

interactions (HI), which are computationally very expensive to

compute, is essential if flexible protein models are to adequately

reproduce translational and rotational diffusion [41]. A second

consequence of the rigidity of the present model is that it is not

immediately suited to describing conformational changes that

might potentially occur in highly crowded conditions, and for

which interesting experimental and simulation results have

recently been reported [42,43]. As shown in the second part of

this paper however, this limitation can be overcome, at least for

the purposes of calculating thermodynamic effects, by the use of

particle-insertion calculations. In fact, the use of such an approach

has enabled us to explicitly evaluate the cytoplasm’s thermody-

namic consequences on both folding and association equilibria,

something that would currently be prohibitively expensive to
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achieve through the direct dynamic simulation of flexible protein

models.

A second, but not unrelated simplification adopted in the

present approach concerns the energy model used to describe

intermolecular interactions. On the one hand, the model is

comparatively sophisticated in that it includes descriptions of

electrostatic and hydrophobic interactions, and models both at an

atomic, or near-atomic level of resolution: in this respect it is a

clear improvement over previous models used to simulate the

cytoplasm. On the other hand, the model assumes that

electrostatic desolvation effects can be neglected (which may lead

to an overestimation of the strength of electrostatic interactions;

[44]) and treats hydrophobic interactions as pairwise additive

[45,46] and of equal strength for aliphatic and aromatic groups.

We assume that the effects of these missing features are at least

partly subsumed, in an implicit fashion, within our single

hydrophobic parameter, e. For this reason, we should be careful

not to attach too much importance to the absolute value of e found

here (0.285 kcal/mol): it is, nevertheless, encouraging that it is

very similar to the range of values that we previously obtained [19]

when modeling the thermodynamics of simple dilute protein

solutions (0.22–0.28 kcal/mol). This is perhaps especially notable

given the enormous difference between the protein concentration

studied here (275mg/ml) and that studied in the previous work

(10mg/ml).

In future, it should be possible to increase the sophistication of

the energy model without incurring an exorbitant additional

computational cost: if one stays with a rigid-body approach, for

example, a number of grid-based methods might be used that

allow electrostatic desolvation [44] and/or hydrophobic interac-

tions [47–50] to be rapidly calculated. It should be remembered,

however, that a more complicated functional form will not

necessarily lead to better results, and that, at least for now, it is

highly likely that some degree of empirical adjustment of energy

terms will be required in order to reproduce experimental

behavior. This will be especially true if the intention is to use a

similar model to explore, for example, macromolecular crowding

effects on specific protein-protein interactions: despite significant

advances, no current computational method is capable of

accurately predicting the strength or geometry of specific

protein-protein interactions with any generality [51]. To model

such situations, therefore, it may be necessary to supplement the

energy model with additional short-range forces to drive the

formation of known intermolecular contacts, in the same way that

such terms (commonly known as Gō-potentials; [52–54]) are often

used in the modeling of protein folding processes; an alternative

might simply be to use different e values for different protein-

protein interactions.

A third limitation of the present model concerns its very

simplified description of macromolecular hydrodynamics. In

particular, while the basic hydrodynamic properties of all

macromolecules (i.e. their translational and rotational diffusion

coefficients at infinite dilution) are properly accounted for, the BD

simulations reported here do not allow for the presence of

hydrodynamic interactions (HI) between macromolecules; again this

is true also of the two previously reported cytoplasm models

[10,11]. The immense expense associated with HI calculations

remains a major stumbling block to their inclusion in large-scale

simulations [55] and a number of attempts have therefore been

made to accelerate their computation (see, e.g. [56,57] for very

recent and potentially important examples). This expense would

be further increased in the present case if, as would in principle be

necessary, an Ewald summation technique was used to properly

account for HI in periodic boundary conditions [58].

While simply stating that HI are expensive to calculate does not

constitute a compelling reason for leaving them out of the

simulations, it is pertinent to note that the omission of HI seems

unlikely to be the cause of the gross overestimation of the diffusion

coefficient of GFP obtained with the ‘steric’ energy model

(Figure 2A). It is certainly true, as noted elsewhere [18], that for

hard-sphere-like colloidal particles – where the interactions

between particles are extremely short-range – theoretical work

has established that the inclusion of HI should cause decreases in

Dtrans values over both short [59] and long timescales [60,61].

Such decreases are, however, unlikely to bridge the ,5-fold gap

necessary to bring the ‘steric’ energy model behavior into

quantitative agreement with experiment: in an interesting recent

simulation study, for example, it was found that an approximate

description of HI in crowded hard-sphere solutions resulted in only

a ,40% additional decrease in the diffusion coefficient relative to

simulations without any description of HI [62]. In addition, it is

also to be noted that for colloidal particles with long-range

repulsive electrostatic interactions, theory indicates that the

inclusion of HI causes modest increases in Dtrans values at both

short [63,64] and long timescales [64,65]. Since the current model

has macromolecules interacting with each other not only by short-

range steric forces and long-range repulsive electrostatic forces, but

also by short-range attractive interactions between exposed

hydrophobic residues it is difficult to predict the effects that the

inclusion of HI might ultimately cause, other than to say that we

think they may be comparatively modest. In keeping with the caveat

given above about our energy model, however, we clearly must

leave open the possibility that the hydrophobic parameter, e, is

also, in part, serving as an implicit correction for the omission of

HI from the simulations.

Having produced in the preceding paragraphs a litany of

shortcomings of the model one might be tempted to view it as so

fundamentally limited that its practical utility is in doubt. Perhaps

the strongest argument against such a view comes from the results

of the particle-insertion calculations aimed at computing the

thermodynamics of protein folding in vivo (Figure 4A). It is

important to note that these thermodynamic calculations should

be considered bona fide predictions of the simulation model since it

was calibrated to reproduce a quite different experimental

observable, i.e. the translational diffusion coefficient of GFP.

Because of this, we can rule out the possibility that the calibration

of the model predisposes it to trivially reproduce experimental

protein stability effects. To our knowledge, the calculated results

reported here with our ‘full’ energy model are the first to provide a

quantitative rationalization of the experimental observation that

CRABP is destabilized in vivo (relative to in vitro) and that l6-85’s

relative stability is essentially unchanged. As noted earlier, the

experimental CRABP result is inexplicable with conventional

macromolecular crowding theory (as exemplified by the results

obtained here when the ‘steric’ energy model is used in the

particle-insertion calculations) since the dimensions of its unfolded

state are greater than those of its native state. Use of the ‘full’

energy model, on the other hand, produces results in close

agreement with experiment because it explicitly allows for the two

states of the protein to engage in differential, favorable energetic

interactions with the rest of the constituents of the cytoplasm.

Interestingly, good results are obtained when the ‘full’ energy

model is used in the particle-insertion calculations regardless of

whether the cytoplasm snapshots were sampled from the ‘steric’

BD simulations or sampled from the ‘full’ BD simulations.

Although the most internally consistent approach is obviously to

use the same energy model in both the BD simulations and the

particle-insertion calculations, the fact that good results can
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apparently also be obtained using snapshots from the ‘steric’ BD

simulations is intriguing since such simulations are much faster to

conduct than those using the ‘full’ energy model. Our model’s

predicted effects on the folding free energies of the six other

proteins investigated (Figure 4D) await experimental testing of

course, but regardless of how quantitatively accurate such

predictions might eventually turn out to be we feel reasonably

confident in suggesting that future attempts to understand a

protein’s folding thermodynamics in vivo will need to describe its

interactions with the cytoplasm with more realism than is provided

by simple steric interactions.

Other findings from the simulations, while probably more

difficult to directly test experimentally, provide examples of the

kinds of new information that can be obtained from simulation

approaches that attempt to model intracellular environments.

Examples include the observation that the immediate neighbors of

individual proteins exchange rapidly on a microsecond timescale –

even for the very largest macromolecules – and that diffusion is

transiently anomalous even on a sub-nanosecond timescale. The

latter observation is especially interesting given the current interest

in anomalous subdiffusion as an efficient mechanism of search and

association in physiological situations [8,66]. Finally, one might

also point to the fact that the simulation model correctly

reproduces the cytoplasm’s relative translational and rotational

viscosities as an important favorable result since differential effects

on translational and rotational motion appear to have interesting

effects on protein-protein association rates in crowded solutions

[67–69]. It should be remembered, however, that a similarly good

reproduction of the relative translational and rotational viscosities

is also obtained with the otherwise poorly performing ‘steric’

energy model.

An examination of all of the dynamic and thermodynamic

results described above shows, we think, that it is possible to

leverage the existing structural biology and quantitative proteomic

data to produce a meaningful, working molecular model of the

bacterial cytoplasm. The actual simulation model used here has a

number of limitations, of course, but continuing increases in

computer power and/or the development of faster simulation

methodologies, will likely allow many of these drawbacks to be

eliminated in the not too distant future. Given the continuing

progress in the fields of structural biology and quantitative

proteomics it is likely that the same basic approach might be used

to model other intracellular environments.

Methods

Selection of the constituents for the cytoplasm model
When this work was initiated, the only large-scale quantitative

study of the E. coli proteome was that reported by Link et al. [12]

who experimentally measured levels of .200 of the most abundant

proteins present in E. coli. A number of other quantitative proteomic

studies of E. coli have since been reported [40,70,71], and, since this

work was completed, quantitative estimates of metabolite concen-

trations have also become available [72]. Restrictions on computer

memory (4GB of RAM for all servers used) meant that the total

number of different types of macromolecules that could be

realistically modeled was limited to 51: these would be 50 types of

E. coli macromolecule plus the Green Fluorescent Protein (GFP).

Although including only 50 different types of macromolecules

means that the model underestimates the structural diversity of the

cytoplasm, it is important to note that the macromolecules selected

for inclusion account for 85% (by number of protein chains) and

86% (by mass) of all the cytoplasmic proteins quantified and

identified in Table 4 of Link et al. [12].

Of the 50 types of E. coli macromolecules to be included in the

model, 45 would be proteins. These were selected by working down

the list identified by Link et al. in order of decreasing abundance,

selecting only those proteins (a) for which high-resolution structures

were then available in the Protein Data Bank [13] (PDB) or for

which reasonable homology models could be constructed (see

below), and (b) for which the cytoplasm was unambiguously

identified as the major cellular location in the EcoCyc [73] and/or

CCDB [74] databases. A full list of all potentially cytoplasmic

proteins identified and quantified in Table 4 of Link et al. (under

minimal media conditions), arranged in decreasing order of chain-

abundance, is shown in Table S1; asterisks in the columns headed

‘Mod.’ denote those proteins included in our cytoplasm model. It is

an indication of the tremendous coverage of the structural proteome

that has been achieved by the structural biology community that we

were able to obtain, or build, reasonable structural models for all of

the 30 most abundant cytoplasmic proteins identified by Link et al.

[12]. In addition to the 45 different types of proteins, 5 types of

macromolecule were RNAs or RNA-protein complexes: these were

the two ribosomal subunits (50S and 30S), and three typical tRNAs

for which structures were available: (tRNA-Gln, tRNA-Phe and

tRNA-Cys). It is to be noted that we did not model complete

(translating) 70S ribosomes owing (a) to the inherent difficulties in

modeling the flexible mRNA, and (b) to the absence – at the time

this work was begun – of a three-dimensional structure showing the

arrangement of multiple 70S ribosomes in a polyribosome [75].

The total number of molecules in the simulations was set to 1008

(eight copies of GFP and 1000 E. coli macromolecules). This number

was chosen so that the eventual assembled cytoplasm model would

be large enough to provide a reasonable representation of the

environment while still allowing simulations of up to 20ms to be

performed (albeit over the course of more than a year clock-time).

The linear dimensions of the final modeled system (808.4Å in each of

the x, y and z directions) correspond to approximately one-twelfth of

the diameter of a typical E. coli cell [76]. A summary of the

macromolecules selected, their subunit compositions, the PDB codes

of their originating structures, and the degree of sequence coverage

achieved by the structural models, is presented in Table S2. Using

composition estimates provided by Neidhardt et al. [76] as a guide,

we set the total concentration of macromolecules in the model

(excluding the ‘tracer’ GFP) to 275 g/l; this is slightly on the low side

of the rough values of 300–340 g/l estimated independently by

Zimmerman and Trach [77]. Of this, 55g/l (i.e. 20% of the total) is

contributed by RNA, with 15% of the RNA dry weight contribution

being made by tRNA and the remainder being made by ribosomal

RNA [76]. mRNA, which accounts for only ,4% of the total dry

weight of RNA in the cell, is omitted from the present model. The

remaining 219g/l (i.e. 80%) of the model is contributed by proteins;

this percentage is deliberately set somewhat higher than the 55%

contribution to the dry weight of the entire cell estimated by

Neidhardt et al. [76] in order to compensate for the missing volume

of components that are not explicitly represented in the model

(DNA, mRNA, lipid, lipopolysaccharide, murein, and glycogen). If

one takes the specific volumes of proteins and RNA to be 0.73ml/g

and 0.58ml/g respectively [77], the total volume fraction occupied

by macromolecules in the model is 0.19; if instead, an ‘effective’

specific volume of macromolecules suggested by Zimmerman and

Trach is used [77] (1.0ml/g), the total volume fraction occupied by

the macromolecules in the model amounts to 0.27.

Preparation of the macromolecular structures for
simulation

Structures for all selected proteins were identified by performing

a BLAST search [78] of the protein’s FASTA sequence (as
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reported in the EcoCyc database) against the entire PDB and

selecting the structure with the closest identity to the query

sequence using the program BioEdit [79]. The quaternary

structure of each selected structure was determined using the

PQS web server [80] and was verified, where possible, with the

EcoCyc database; it should be noted that correct identification of a

protein’s quaternary structure is a non-trivial undertaking, and the

PQS predictions are unlikely to be 100% reliable [80,81].

Homology modeling was used for all proteins for which either

no E. coli structure was directly available in the PDB, or for which

a significantly greater coverage of the sequence could be obtained

through the use of a non-E. coli structure. All homology modeling

was performed using the SWISS-MODEL web server [82] via the

so-called ‘‘First Approach mode’’; for oligomeric proteins each

individual chain was homology-modeled independently.

Any sidechains missing from a structure were built in using the

molecular modeling program WHATIF [83]. Hydrogens were

then added, and partial charges and radii were assigned to atoms

using the program PDB2PQR [84]. For proteins, partial charges

and atomic radii were taken directly from the PARSE parameter

set [85]. For nucleic acids, which are not represented in the

PARSE parameter set, partial charges were instead assigned from

the CHARMM23 parameter set [86]; partial charges for the

modified bases of tRNAs, such as pseudouridine, were assigned

based on similarity to functional groups already represented in the

parameter sets. The protonation states of all protein ionizable

residues were assigned using the fast empirical algorithm PropKa

[87]; for these calculations, the pH was set to 7.6, the estimated

pH of the E. coli cytoplasm [76]. With each structure complete,

infinite-dilution translational and rotational diffusion coefficients –

which are necessary input parameters for BD simulations [14] –

were calculated with the program HYDROPRO [88] using

default parameters. For the latter calculations we assumed a

solvent viscosity, g, of 0.89cP, which corresponds to the viscosity

of pure water at 25uC; given that the most recent estimate of the

total metabolite concentration in the E. coli cytoplasm is ,300mM

[72] we do not anticipate, based on what we currently know, that

the viscosity of the solvent environment will be hugely altered from

the pure water value.

The final stage of preparation for each molecule involved the

calculation of electrostatic potential grids; these were computed in all

cases by using the APBS software [89] to solve the non-linear

Poisson-Boltzmann (PB) equation [90]. As in our previous BD study

of single-component protein solutions [19], two cubic electrostatic

potential grids were computed for each type of macromolecule: (a) a

comparatively fine grid, of spacing 2Å, with dimensions sufficient to

encompass a 20Å shell around the macromolecular surface, and (b) a

coarse, long-range grid, of spacing 4Å, that extends at least 50%

further in each direction than the smaller grid. The use of a 2Å grid

spacing for the higher resolution grids, rather than the 1Å grid

spacing used in our previous simulations [19], was necessary in order

to fit all potential grids into the available 4GB of RAM. This spacing

is, however, sufficiently detailed that at least two grid points always

intervene between interacting atoms even when they are at the

closest possible separation distance (4.5Å); significant numerical

instabilities in the calculated electrostatic forces do not, therefore,

arise. In all PB calculations the solvent dielectric was set to 78.0 and

the internal dielectric of the macromolecule was set to 12.0, with the

boundary between the two being determined by the cubic-spline

surface [91] implemented in APBS [89]. Use of an internal dielectric

of 12.0 is intended to provide a simple, averaged description of the

different dielectric responses of macromolecular interiors and

exteriors [19,92,93]. The ionic strength in all PB calculations was

set to 150mM. With the electrostatic potentials in hand, ‘effective

charges’ were computed for each molecule type using the procedure

established by Gabdoulline & Wade [94,95]. Finally, as in our

previous work [19], simulations were accelerated by retaining, in

addition to the effective charges, only those non-hydrogen atoms that

were solvent-exposed: these atoms were identified using the ACC

tool within APBS [89], with a 4Å solvent probe.

Brownian dynamics simulation protocol
The BD software used for the simulations is an extension of the

methodology developed and tested in our previous work on pure

protein solutions [19]. Modifications were made to the software to

improve memory usage so that 102 electrostatic potential grids

could be simultaneously held in memory; in addition, toward the

end of this study, loop-level parallelization of a number of key

loops was implemented with OpenMP (http://www.openmp.org)

to accelerate computations by a factor of ,4.

All simulations were performed under periodic boundary

conditions [96] in a cubic cell with edges of 808.4Å. The initial

configuration of each system had eight GFP molecules evenly

positioned at the center of the eight octants of the cell; all other

macromolecules were initially positioned by performing random

translations and rotations within the cell subject to the requirement

that there was at least a 10Å separation between the surfaces of all

neighbors. Three independent configurations were generated in this

way by use of different random seeds; views of each system before

and after 15ms of simulation are shown in Fig. S1. As in our previous

work, BD simulations were conducted using the Ermak-McCam-

mon algorithm [97] with a time step of 2.5ps, with additional

algorithmic measures being taken to ensure that no atom-atom

distances at the completion of each timestep were less than 4.5Å.

For subsequent analysis of the simulations, the 3D translational

vector and the 363 rotational matrix necessary to specify the

position of each macromolecule were recorded every 100ps.

The form of the energy model used to describe intermolecular

interactions was identical to that used in our previous work [19]: the

effective charge method [94] was used to calculate electrostatic

interactions, and a Lennard-Jones potential (comprising 1/r12 and

1/r6 terms) was used to provide a simple combined description of

steric, van der Waals and hydrophobic interactions. To accelerate

the simulations, the combined non-electrostatic interactions were

computed only between atom pairs separated by less than 12Å; a list

of all such pairs was continually updated every 40 timesteps (i.e.

every 100ps). As in our previous work, we treated the strength of

these non-electrostatic interactions, which are determined by the

well-depth, eLJ, of the Lennard-Jones potential, as the only adjustable

parameter of the model. In order to determine the best setting, three

independent BD simulations of at least 6ms duration were

performed with each of the following eLJ values: 0.190, 0.285,

0.3325 and 0.380 kcal/mol. Finally, for comparison purposes, two

additional sets of three BD simulations were also performed: these

were (a) simulations in which the only the repulsive (1/r12-

dependent) steric interactions operated (these are the ‘steric’

simulations discussed in the main text) and (b) simulations in which

only steric plus electrostatic interactions acted.

Analysis – translational diffusion coefficients
The effective translational diffusion coefficients, Dtrans, of

molecules were calculated from the simulations using the Einstein

equation:

Dtrans~Sdr2T=6dt ð1Þ

where , dr2 . is the mean-squared distance traveled by the
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molecular center of mass in the observation interval, dt; all Dtrans

values reported in Results are mean values for each molecule type

averaged over the number of copies of each type. In cases of

‘normal’ diffusion, the computed Dtrans values are independent of

dt; in certain cases of diffusion in vivo and in vitro however,

anomalous sub-diffusion is observed [8,21–23,66]; in such cases,

the apparent Dtrans value is dependent on dt, decreasing with

increasing dt. A common way of describing anomalous diffusion

involves writing it in the form:

Dtrans(dt)!dta{1 ð2Þ

where the apparent translational diffusion coefficient Dtrans is now

written to indicate that it depends on the observation interval and

a is the so-called anomalous diffusion (anomality) exponent; a= 1

corresponds to normal diffusion since it leads to Dtrans being

independent of dt, and a,1 indicates anomalous (sub)diffusion.

Taking logarithms and differentiating with respect to log (dt)

allows us to write:

d log (Dtrans (dt))=d log (dt)~a{1 ð3Þ

This enables us to obtain a by numerically differentiating Dtrans

values computed over a range of dt values; in practice we

computed Dtrans at dt values of 100, 200, 300, 600, 1000, … ps,

and obtained a at the logarithmic mid-point, dtmid, of these time-

intervals, dtmid = 141, 245, 424, … ps.

Plots of a versus log (dtmid) for macromolecules simulated with

both the ‘steric’ and ‘full’ energy models all indicated that a itself

was dependent on dtmid, thus signifying that diffusion was transiently

anomalous. To our knowledge, there is no explicitly derived

functional form that describes the expected dependence of a on dt

for transient anomalous diffusion. We found however that the data

fit well to the following empirical functional form (see Fig. 3B):

a (dt)~a0za (exp({dt=tshort))zb (1{exp({dt=tlong)) ð4Þ

where a0 is a constant, a and b are parameters that describe the

amplitude of the dt-dependent changes to a, and tshort and tlong

are, respectively, the timescales over which a first decreases, and

then returns to one, with increasing dt. Plots of a versus dt for all

molecule types were fit to the above functional form with

SigmaPlot [98]: fits were performed using all datapoints from

the shortest dtmid value up to the first datapoint that had a percent

error exceeding ,25% (obtained by comparing the a values

computed from the three independent BD simulations), or that

deviated qualitatively from the trend. To ensure that the latter

criterion did not drastically affect the results, the fits were repeated

retaining even those datapoints that qualitatively deviated;

essentially the same behavior was obtained but with slightly

greater values of tlong. Regressed values of tshort and tlong are

plotted versus molecular weight for all molecule types in Figs. S4

and S5 respectively.

Having fit a function to the observed dependence of a on dt, it

was numerically integrated to obtain an extrapolated, asymptotic

long-time Dtrans value using the Dtrans value at dt = 100ps as the

starting point for the integration. The quality of fits of the

integrated Dtrans values (for the most abundant proteins) is

indicated by the solid lines in Fig. 3A.

Analysis – rotational diffusion coefficients
Effective rotational diffusion coefficients were computed from

the time-dependent behavior of the 363 rotational matrix

recorded every 100ps for every molecule during the simulations.

For each of the three rotational axes, an autocorrelation function,

h (dt), was calculated as:

h (dt)~Se (0):e (dt)T ð5Þ

where e (0) and e (dt) are unit vectors pointing along one of the

rotational axes at time t = 0 and t = dt respectively, and the

brackets indicate an average over all possible initial timepoints; the

three computed autocorrelation functions were averaged to give a

single decay function consistent with the isotropic rotation that we

assumed for all molecule types at infinite dilution. Since the

resulting averaged autocorrelation function for the ‘full’ energy

model did not fit well to a single-exponential decay, and given that

translational diffusion was clearly transiently anomalous, we decided

to use the following functional form proposed recently for

transiently anomalous rotational diffusion [27]:

h (dt)~h0 exp ((1{dt=trot) : (1za exp({dt=trel)))f g ð6Þ

where h0 is the value of the autocorrelation function at dt = 0

(always 1), a is a parameter, trot is a long-time rotational

correlation time (which dominates as dtR‘), and trel is the

timescale over which a faster, short-time rotational relaxation gives

way to the slower rotation characterized by trot. The above

functional form was fit to computed values of h for each molecule

type over a range of dt values up to 1ms; the r2 values for these fits

were all in excess of 0.999. An example of such fits for the most

abundant proteins is shown in Fig. S6. The long-time rotational

diffusion coefficient, DL
rot, is then obtained using the relationship:

DL
rot~1=(2trot) ð7Þ

and the short-time rotational diffusion coefficient, DS
rot, is

obtained from [27]:

DS
rot~(1za) DL

rot ð8Þ

The computed ratios DL
rot/D0

rot and DS
rot/D0

rot obtained with

the ‘full’ energy model are plotted for all molecule types versus

their molecular weights in Fig. S7; a plot of the parameter a versus

molecular weight shows no obvious relationship (not shown).

Analysis – literature estimates of relative translational
and rotational viscosities

Comparison of the simulated translational and rotational

diffusion coefficients with the infinite-dilution values that are

input parameters for the simulations provides an indication of the

relative viscosities experienced during the two types of motion.

From studies of GFP diffusion in Chinese hamster ovary cells, the

Verkman group reports [29] a relative viscosity experienced by

translational motion, grel
T = 3.260.2, and a relative viscosity

experienced by rotational motion, grel
R = 1.560.1. Combining

these numbers gives a ratio, grel
T/grel

R of 2.160.3, indicating that

the effective relative viscosity experienced by translational motion

is roughly twice that experienced by rotational motion in

mammalian cells.

A second estimate of the grel
T/grel

R ratio can be obtained from

the work of Zorrilla et al. [28,99]: these authors have reported

measurements of the translational diffusion coefficients of

apomyoglobin (17kDa) using fluorescence correlation spectroscopy

(FCS) measurements [28] and have compared them with
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rotational diffusion coefficients that they had previously measured

[99] for the same system using time-resolved fluorescence

depolarization experiments. They report measurements for two

different background proteins, RNaseA and human serum

albumin (HSA); we focus on the data reported for the latter since

its molecular weight (67kDa) is much closer to the number-

averaged molecular weight of the macromolecules in our

cytoplasm model (87kDa), than is the molecular weight of RNaseA

(14kDa).

The data reported by Zorrilla et al. are expressed relative to the

macroscopic viscosity, gm, of the protein solution (measured with an

Ostwald viscometer). They report that gm fits to the following

functional form, gm =g0 exp (Ac/(12Bc)), where g0 is the viscosity of

pure water, c is the background protein’s concentration in mg/ml,

and A and B are background-dependent constants:

A = 2.761023 ml/mg and B = 1.361023 ml/mg for HSA [99].

Using these values we obtain a macroscopic viscosity for a 275 mg/

ml HSA solution of 3.155 g0. Using the data given in Table 2 of ref.

49, the effective viscosity experienced by the translational motion of

apomyoglobin in HSA is expressed as grel
T = (gm/g0)1.28, which

from above means that we can write grel
T = 3.1551.28 = 4.35;

following similar calculations the effective viscosity experienced by

the rotational motion is grel
R = (gm/g0)0.44 = 3.1550.44 = 1.66. Togeth-

er, these numbers translate into a value of grel
T/grel

R of 2.660.2.

As noted in the main text, we find that both the translational and

rotational diffusion coefficients of molecules vary with the time

interval, dt, over which diffusion is observed. While the

observation of this transient anomalous diffusion is significant in

its own right it takes on added significance when comparing the

relative viscosities experienced by translational and rotational

motion. This is because the timescales over which the two types of

experiments are conducted are quite different: translational

diffusion coefficients are obtained from FCS experiments by

fitting to an autocorrelation function over a timescale extending

from microseconds to seconds [21,22,66] while rotational diffusion

coefficients are obtained from fits to data obtained over a

nanosecond timescale [28,29]. We therefore compare the

experimentally derived relative viscosities quoted above with

diffusion coefficients computed from the BD simulations on the

same timescales, i.e. we compare with the ratio of the long-time

translational diffusion coefficient DL
trans and the short-time

rotational diffusion coefficient, DS
rot (see Fig. 3F).

Analysis – monitoring of intermolecular contacts
The intermolecular contacts engaged in by each molecule were

recorded every 100ps during the BD simulations and subsequently

analyzed to determine: (a) the average number of neighbors of

each molecule type at any given time, (b) the number of unique

neighbors encountered by each molecule type during the course of

the entire simulations, and (c) the rate of dissociation of

intermolecular interactions. The definition of ‘neighbor’ was kept

somewhat loose in order to detect all molecules in the immediate

environment of the molecule being probed: molecules were

assigned as neighbors if any of their atoms were within ,12Å of

each other. The rates at which the neighbors of a particular

molecule dissociated were obtained from plots of the fraction of its

neighbors, initially present at t = 0, that remained after some time

t = dt, averaged over all possible initial timepoints. In order to

obtain the characteristic neighbor-decay rate for each particular

type of molecule, such plots were averaged over all molecules of

that type. The resulting plots are found to follow biexponential

kinetics: (a) a very fast decay process (tfast) that typically has an

amplitude of ,0.7 and is due to loss of neighbors that interact only

peripherally with the molecule of interest, and (b) a slower decay

process (tslow) that has an average amplitude of ,0.3 and is due to

loss of those neighbors that form bona fide intermolecular contacts.

Typical fits for these data are shown in Fig. S8.

Method for calculating thermodynamics in the cytoplasm
The effects of immersion in the cytoplasm on the thermody-

namics of protein folding and protein-protein association were

computed using the particle insertion technique first outlined by

Widom [30]. For small perturbations, the free energy change, DG,

for transferring a molecule from an environment free of any

interacting macromolecules to the cytoplasm environment can be

rigorously expressed as:

DGWidom~{RT lnSexp({Eint=RT)T ð9Þ

where Eint is the interaction energy of the molecule with the

constituents of the cytoplasm, R is the Gas constant, T is the

temperature, and the brackets indicate an average over

randomly selected insertion positions and configurations of the

cytoplasm environment. In order to assess the likely effects of

the cytoplasm on a thermodynamic process (such as protein

folding) therefore, separate particle-insertion calculations are

required for both the initial state (e.g. unfolded protein) and the

final state (e.g. folded protein). Such calculations give the free

energy changes for the vertical processes in the thermodynamic

cycle shown below:

initial state /{{
DG (in vitro)

{{{?{ final state

(in vitro) (in vitro)

?DGWidom(initial state) ?DGWidom(final state)

initial state /{{
DG (in vitro)

{{{?{ final state

(in vivo) (in vivo)

ð10Þ

Since free energy is a state function, the difference between the

free energy changes of the horizontal processes is equal to the

difference between the free energy changes of the vertical

processes. We can therefore write the difference between the

free energy change for the process in vivo and in vitro, DDG, as:

DDG~DG (in vivo) { DG (in vitro)

~DGWidom(final state) { DGWidom(initial state)
ð11Þ

The effect of the cytoplasm on the free energy change for a process

can therefore be calculated without needing to know the actual

value of the free energy change for the process in vitro. A

conceptually similar but different approach to computing thermo-

dynamics in crowded solutions has recently been outlined by Zhou

and co-workers [100]. Code for performing particle-insertion

calculations was generated by modifying the existing BD simulation

program; prior to performing large-scale explorations of protein

folding and association thermodynamics, the code’s correctness was

first checked by comparing its predictions for the free energy cost of

placing a sphere into a solution of spheres with the corresponding

predictions of scaled particle theory [101,102].

Cytoplasm effects on protein folding equilibria
Calculations of the cytoplasm’s thermodynamic effects initially

focused on protein folding equilibria. In addition to calculating the

folding thermodynamics of six proteins already present in the
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cytoplasm model (Adk, Bcp, CspC, Efp, GFP and PpiB), we

examined two other proteins that have been subject to direct

experimental study in vivo: these were the 80-residue l6-85

construct studied experimentally by Ghaemmaghami and Oas

[4] and the 136-residue cellular retinoic acid binding protein

(CRABP) investigated by Ignatova, Gierasch and co-workers

[7,32]. The structure of the folded state of l6-85 was taken from its

crystal structure in complex with operator DNA (pdbcode: 1LMB

[103]); the G46A & G48A mutations present in the experimental

construct were made using the rotamer-sampling method

SCWRL3 [104]. The structure of the folded state of CRABP

(pdbcode: 1CBI [105]) was altered to include the R131Q mutation

used in the experimental construct [7], but in the absence of direct

structural information no attempt was made to model the

experimentally-incorporated fluorophore.

The unfolded states of all eight proteins were modeled as ensembles of

1000 unfolded conformations generated using the conformational

sampling method developed by the Sosnick group [31]; the code was

kindly made available by Dr. Abhishek Jha. This method has been

shown to produce models with dimensions in good agreement with

experimental estimates [31]. Prior to calculations, the structures of all

conformations were completed by adding sidechains with SCWRL3

[104] and by adding hydrogens with the PDBTOPQR utility [84] of

APBS [89]. In order to ensure consistency between the BD simulations

and the Widom particle-insertion calculations, effective charges and

electrostatic potential grids were calculated for all conformations (both

folded and unfolded) using the exact same protocol employed with the

rigid protein models of the cytoplasm model (see above).

For each protein, a large number of random trial positions were

attempted with both the single, folded state structure and the 1000

unfolded state conformations; each trial consisted of a different

randomly selected translation and rotation. For the folded state

structure, a total of 25 million trials were attempted; for the unfolded

state, 250,000 trials were attempted for each of the 1000

conformations (to give a total of 250 million trials for each cytoplasm

‘snapshot’ studied). For each trial position, the interaction energy of

the protein with the surrounding cytoplasm was calculated with (a)

the ‘full’ energetic model, which includes electrostatic, steric and

hydrophobic contributions, and (b) the ‘steric’ energetic model. To

simplify the latter calculations, only two possible energies were

allowed: the interaction energy, Eint, was set to +‘ if any of the

protein’s atoms came within 4.5Å of any of the cytoplasm atoms, and

was set to zero if not; this binary scoring method is effectively identical

to that used in most examinations of excluded-volume (crowding)

effects. Due to the very significant computational expense associated

with the particle-insertion calculations, they were applied only to the

final ‘snapshot’ of the three independent BD simulations performed

with the ‘full’ and ‘steric’ models. Error bars for all reported free

energy changes were therefore calculated as the standard deviation of

the computed values obtained from the three different system

‘snapshots’. The total number of unfolded and folded-state trial

positions that were accepted and rejected for each protein, for each of

the three ‘full’ model cytoplasm ‘snapshots’ are listed in Table S3.

Cytoplasm effects on protein association equilibria
A very similar protocol was used to calculate the effects of the

cytoplasm on a variety of protein association reactions. Calculations on

each assembled protein complex were performed exactly as described

above. Calculations on each disassembled complex – e.g. two

separated protein monomers in the case of a dimerization reaction –

were carried out by performing insertions of all components

simultaneously; importantly, each randomized placement was first

screened to ensure that there were no steric clashes between any of

the inserted components before their interactions with the cytoplasm

were evaluated. As might be expected, the requirement of simulta-

neously placing multiple molecules into the cytoplasm meant that in

some cases very large numbers of trial positions were required in order

to obtain reasonably converged results. Owing to the significant

computational expense, therefore, calculations were only performed

on snapshots taken from BD simulations performed with the ‘full’

energy model. In addition, since the Boltzmann-weighting of the

sampled interaction energies can contribute significant noise in cases

where the number of accepted placements are comparatively low, the

cytoplasm-interaction energy distributions were first smoothed by

fitting to sums of three Gaussians using SigmaPlot [98] (see Fig. S9 for a

typical fit). The total numbers of accepted and attempted insertions for

the various association reactions studied are listed in Table S4.

Dimerization equilibria were investigated by performing

separate particle-insertion calculations on the dimeric forms

and the monomeric forms; for such calculations it was assumed

that no structural change (e.g. unfolding) occurs when the two

monomers are separated. The trimerization equilibrium of

ParM was investigated in analogous fashion, by performing

calculations on a trimer extracted from the ParM filament

model (pdbcode: 2QU4 [106]). The aggregation of a poly-Q-

inserted RNaseA to form an amyloid fiber was studied using the

theoretical model developed by Eisenberg and co-workers

(pdbcode: 2APU; [38]). The model deposited in the PDB

contains 56 aggregated monomeric units; the largest aggregate

for which we could obtain reasonably precise free energy

estimates however contained eight monomeric units (Fig. 4F).

Since formation of the amyloid structure involves a significant

change in conformation, the use of monomeric structures

extracted without modification from the aggregate model would

be inappropriate. Instead, the structure of the monomeric poly-

Q-inserted RNaseA was taken from the crystal structure

reported by the Eisenberg group (pdbcode: 2APQ [38]). In

order to ensure sequence-consistency with the amyloid model, a

A131H mutation was made with SCWRL3 [104]. In addition,

since the monomeric structure has no resolved coordinates for

the inserted GQQQQQQQQQQGNP stretch this region was

model-built using the loop-building program Loopy [107]. The

second aggregate structure studied was a theoretical model of

SH3 domain aggregation proposed by the Shakhnovich group

[39] and kindly made available to the authors by Dr. Feng Ding

(UNC; personal communication). This structure contains only

Ca atoms so complete backbone coordinates were first

constructed using the SABBAC webserver [108] (http://

bioserv.rpbs.jussieu.fr/cgi-bin/SABBAC) before sidechain po-

sitions were constructed using SCWRL3. Owing to the

structure’s origins being a Ca-only model we were unable to

add sidechains in such a way that the assembled aggregate

model was free of internal steric clashes; this, however, does not

significantly affect our ability to estimate the model’s interaction

with the cytoplasm environment. As with the RNaseA amyloid

model, it would be inappropriate to assume that the conforma-

tions of unaggregated monomeric units are identical to those

found in the amyloid model; instead therefore the conformation

of the monomeric SH3 domain was taken from the crystal

structure (pdbcode: 1NLO [109]).

Two movies, each showing 1.8ms of simulation, are provided as

separate Quicktime .mov files. Video S1 shows a BD simulation

performed with the ‘full’ energy model; Video S2 shows a BD

simulation performed with the ‘steric’ energy model. File size

restrictions at the PLoS website have limited the size and resolution

of the uploaded movies to be used for review. Higher resolution movies

are available to readers at the authors’ website: http://dadiddly.

biochem.uiowa.edu/Elcock_Lab/Movies.html.

Molecular Simulations of Bacterial Cytoplasm

PLoS Computational Biology | www.ploscompbiol.org 15 March 2010 | Volume 6 | Issue 3 | e1000694



Supporting Information

Figure S1 Views of the three independent system setups before

and after 15ms of BD simulation with the ‘full’ energy model. 50S

and 30S ribosomal subunits can be identified by the green/yellow

of their RNA and the blue and red (respectively) of their proteins.

This figure was prepared with VMD [110].

Found at: doi:10.1371/journal.pcbi.1000694.s001 (3.10 MB TIF)

Figure S2 Total system energy and its electrostatic and

hydrophobic components, plotted versus simulation time; the

vertical dashed line indicates the beginning of the production

simulation.

Found at: doi:10.1371/journal.pcbi.1000694.s002 (0.13 MB TIF)

Figure S3 Histogram of cytoplasm-interaction energies, Eint,

obtained for all non-clashing insertions of the aggregated and non-

aggregated states of the SH3 domain.

Found at: doi:10.1371/journal.pcbi.1000694.s003 (0.11 MB TIF)

Figure S4 Time constant for the exponential describing the

descent to the minimal value of the anomality exponent, a, plotted

for all molecule types versus molecular weight.

Found at: doi:10.1371/journal.pcbi.1000694.s004 (0.09 MB TIF)

Figure S5 Time constant for the exponential describing the

return to normal rotational diffusion plotted for all molecule types

versus molecular weight; note that for the ‘steric’ model rotational

diffusion is essentially normal at almost all observation intervals

examined.

Found at: doi:10.1371/journal.pcbi.1000694.s005 (0.09 MB TIF)

Figure S6 Plot showing the quality of fit of a two-exponential

decay function to the autocorrelation function describing rota-

tional motion for the three most abundant proteins in the model.

Symbols indicate the simulation data; lines indicate the two-

exponential fit.

Found at: doi:10.1371/journal.pcbi.1000694.s006 (0.10 MB TIF)

Figure S7 Ratio of the short-time and long-time rotational

diffusion coefficients to the infinite-dilution value plotted for the

‘full’ model for all molecule types versus molecular weight.

Found at: doi:10.1371/journal.pcbi.1000694.s007 (0.09 MB TIF)

Figure S8 Plot showing the quality of fit of a two-exponential

decay function to the function describing the loss of neighbors for

five selected molecule types. Symbols indicate the simulation data;

lines indicate the two-exponential fit

Found at: doi:10.1371/journal.pcbi.1000694.s008 (0.10 MB TIF)

Figure S9 Plot showing the quality of fit of a 3-Gaussian

distribution to the cytoplasm-interaction energy distributions

obtained for non-clashing insertions of the IcdA protein in dimeric

and monomeric states; note that the y-axis is on a logarithmic

scale.

Found at: doi:10.1371/journal.pcbi.1000694.s009 (0.11 MB TIF)

Table S1 Ordered list of all those proteins identified and

quantified in Table 4 of Link et al. [12] under minimal medium

conditions and for which the cellular location is either clearly

cytoplasmic or undetermined. ‘N-abd’ is the cellular abundance of

each chain of the protein determined by Link et al. ‘MW’ is the

molecular weight of each chain of the protein as estimated from

the amino acid sequence in the Ecocyc database [73]. Asterisks in

the ‘Mod.’ column identify those proteins present in our cytoplasm

model; note that the low-abundant proteins SucC and RplC are

included in the model because they are components of more

abundant protein complexes.

Found at: doi:10.1371/journal.pcbi.1000694.s010 (0.25 MB RTF)

Table S2 Alphabetically-ordered list of the macromolecules

present in our cytoplasm model showing the pdbcode of their

originating structures, the infinite-dilution translational and

rotational diffusion coefficients [88], and the sequence coverage

of each model.

Found at: doi:10.1371/journal.pcbi.1000694.s011 (1.25 MB PDF)

Table S3 Details of the particle-insertion calculations of the

folding equilibria of 8 different proteins, listed in order of

increasing protein chain length. Results are shown only for

insertions into ‘snapshots’ (A, B, C) taken from BD simulations

performed with the ‘full’ energy model. The total numbers of

attempted insertions for the folded and unfolded states (for each

‘snapshot’) are 25 million and 250 million respectively. DGWidom

and DDG are insertion free energies obtained using the ‘steric’

energy model: these numbers can be obtained directly from

knowledge of the number of attempted and successful insertions

listed in this table.

Found at: doi:10.1371/journal.pcbi.1000694.s012 (0.10 MB RTF)

Table S4 Details of the particle-insertion calculations of the

association equilibria of 14 different proteins. ‘Process’ refers to the

stoichiometry of the association process examined: 1R2 denotes

that the equilibrium is between two monomers and one dimer,

4R8 denotes that the equilibrium is between two tetramers and

one octamer etc. As in Table S3, DDG is the insertion free energy

difference obtained using the ‘steric’ energy model: this number

can be obtained directly from knowledge of the number of

attempted and successful insertions listed in this table.

Found at: doi:10.1371/journal.pcbi.1000694.s013 (0.12 MB RTF)

Video S1 Cytoplasm Full Energy Model. 1.8 microseconds of

simulation carried out with the ‘full’ energy model.

Found at: doi:10.1371/journal.pcbi.1000694.s014 (9.97 MB

MOV)

Video S2 Cytoplasm Steric Energy Model. 1.8 microseconds of

simulation carried out with the ‘steric’ energy model.

Found at: doi:10.1371/journal.pcbi.1000694.s015 (9.96 MB

MOV)
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61. Nägele G (1996) On the dynamics and structure of charge-stabilized

suspensions. Phys Rep 272: 215–372.

62. Sun J, Weinstein H (2007) Toward realistic modeling of dynamic processes in

cell signaling: quantification of macromolecular crowding effects. J Chem Phys

127: 155105.
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