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Abstract

Retroviral vectors are widely used in gene therapy to introduce therapeutic genes into patients’ cells, since, once delivered
to the nucleus, the genes of interest are stably inserted (integrated) into the target cell genome. There is now compelling
evidence that integration of retroviral vectors follows non-random patterns in mammalian genome, with a preference for
active genes and regulatory regions. In particular, Moloney Leukemia Virus (MLV)–derived vectors show a tendency to
integrate in the proximity of the transcription start site (TSS) of genes, occasionally resulting in the deregulation of gene
expression and, where proto-oncogenes are targeted, in tumor initiation. This has drawn the attention of the scientific
community to the molecular determinants of the retroviral integration process as well as to statistical methods to evaluate
the genome-wide distribution of integration sites. In recent approaches, the observed distribution of MLV integration
distances (IDs) from the TSS of the nearest gene is assumed to be non-random by empirical comparison with a random
distribution generated by computational simulation procedures. To provide a statistical procedure to test the randomness
of the retroviral insertion pattern, we propose a probability model (Beta distribution) based on IDs between two
consecutive genes. We apply the procedure to a set of 595 unique MLV insertion sites retrieved from human hematopoietic
stem/progenitor cells. The statistical goodness of fit test shows the suitability of this distribution to the observed data. Our
statistical analysis confirms the preference of MLV-based vectors to integrate in promoter-proximal regions.
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Introduction

The transfer of a therapeutic gene into somatic cells (gene

therapy) is a promising medical approach for the management of

many inherited and acquired diseases. Among several systems

developed for gene delivery, replication-defective viral vectors

derived from retroviruses are the most widely used. In fact, after

infecting a target cell, retroviral vectors deliver the therapeutic

gene directly to the cell nucleus and stably insert it into the host

cell genome; the process is commonly referred to as ‘‘integration’’.

It has been observed that retroviral vectors integrating in the

proximity of the transcription start site (TSS) of host genes may

enhance or disrupt normal transcription [1], occasionally favouring

tumour initiation [2,3] (insertional oncogenesis). Such genotoxic risk

represents a major hurdle to the safety of gene therapy and requires

sensitive pre-clinical assays for insertional mutagenesis [4,5].

Understanding location preferences of retroviruses becomes

crucial in evaluating both the safety profile of a therapeutic vector

as well as the integration process per se, which is still far from being

completely understood.

Just few years ago, retrovirus integration was believed to be

random, and the chance of accidentally activating a gene was

considered remote. Recent studies based on cellular and animal

models (reviewed in [6]) reported empirical evidence of preference

for certain retroviral vectors, i.e. those deriving from Moloney

Murine Leukemia Virus (MLV), to integrate near the start of

transcriptional units, whereas others (like Simian Immunodeficiency

Virus (SIV)– and Human Immunodeficiency Virus (HIV)–based

vectors) did not show the same tendency. A representative example

is given in Figure 1 (see [7]). In this case, the variable of interest to

investigate integration preferences is the integration distance (ID)

from the TSS of the nearest gene. In statistical terms, this is a signed

distance function [8,9], since it assumes negative or positive values

according to the position of integration site with respect to the gene

(upstream and downstream, respectively). The distribution of MLV

IDs from the TSS shows a bell shape [10]. Here we remark that

‘‘bell-like’’ shape does not necessarily mean a ‘‘Gaussian’’

distribution. Indeed, other distributions (e.g., Cauchy distribution,

Laplace distribution) may show a ‘‘bell-shape’’ similar to that

observed in Figure 1. This is considered by the authors as sufficient

evidence of a non-random pattern when compared to the almost flat

distribution of 65,000 computer-generated random insertion sites. A

crucial issue for mathematical biologists is to provide an analytic

approach for the assessment of such non-randomness [11].

In this paper, we first show that a bell-shape distribution is not

necessarily evidence of non-randomness. Then we introduce a new

distance measure based on a normalization of the conventional

ID. This new variable is assumed to follow a Beta distribution, thus

allowing us to build a direct testing procedure for the non-random

integration hypothesis. Applied to real experimental data, the

estimated parameters provide a statistical measure confirming

retroviral integration preferences for the proximity of TSSs.
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Methods

Definitions
Each retroviral integration is defined by its nucleotide position

on the chromosome (UCSC Genome Browser, human genome

assembly March 2006, hg18 release, http://genome.ucsc.edu/).

Integration-proximal genes are annotated according to UCSC

RefSeq Genes category. For each insertion site (IS), the following

definitions are uniquely given:

N nearest gene: nearest 39 or 59 end of a gene

N nearest upstream TSS

N nearest downstream TSS

These definitions are applied to integrations landing within

transcriptional units (intragenic) as well as to insertions mapping

between two genes (intergenic). Integration distances from the

nearest gene TSS and from the nearest 59 and 39 TSSs are then

computed. IDs assume positive or negative values when the

insertion nucleotide is located downstream or upstream of the

TSS, respectively. Figure 2 provides a schematic representation of

one intergenic integration from our dataset with the nearest

transcriptional units. The IDs from the TSS relevant to this paper

are shown.

Modelling Integration Distance Distribution
Let X be the random variable (r.v.) describing the integration

position. We next address the problem of testing the hypothesis of

randomness of X over the genome with respect to the TSS. In

statistical terms, this is equivalent to testing that the null hypothesis

H0: X is distributed uniformly over the whole genome. The

alternative hypothesis is H1: X distribution is influenced by the

TSS.

Starting from a common annotation criteria [2,7,12,13], we

focus on ID from the TSS of the nearest 39 or 59 end of a gene

(which might differ from the ID from the nearest TSS). We call

this distance Y(X) defined as a function of X:

Y Xð Þ~X{Wj Xð Þ

j Xð Þ~arg min
k

gk{Xj j
ð1Þ

where Wj(X) represents the TSS position of the nearest annotated

gene gk.

Let us now suppose random integration, that is X is uniformly

distributed over the genome. Despite this, it can be seen that Y

might well be non-uniformly distributed. This is shown in Figure 3,

where 1,250,000 integrations are generated from a Uniform

distribution over the support [1, ,36109 bases] and Y(X) are

computed with respect to real TSSs and gene length distributions

(Text S1, Remark 1). We can observe a bell-shaped distribution

Figure 1. Distribution of Moloney Leukemia Virus (MLV) and Simian Immunodeficiency Virus (SIV) integration sites centered on
transcription start sites of the nearest gene. The empirical comparison between simulated (dotted line) and observed distribution leads the
authors to conclude in favour of non-randomness of retroviral integration.
doi:10.1371/journal.pcbi.1000144.g001

Author Summary

Understanding how retroviral vectors (such as Moloney
Leukemia Virus–based vectors) integrate in the human
genome became a major safety issue in the field of gene
therapy, since a concrete risk of developing tumors
associated with the integration process was assessed in
the clinical setting. Moloney Leukemia Virus–based vectors
are apparently characterized by a non-random integration
pattern, with a preference for the vicinities of active gene
transcription start sites. We approach the problem of non-
random retroviral integration from a probabilistic point of
view. We model a normalized integration distance from
the transcription start site of the nearest upstream or
downstream gene. From this model, we derive a simple
and straightforward testing procedure to estimate how the
transcription start site of a given gene may or may not
attract integration events. Our approach overcomes the
issues of different gene length, gene orientation, and gene
density, which are often critical in analyzing integration
distances from transcription start sites. The approach is
tested on real experimental data retrieved from human
hematopoietic stem/progenitor cells.

Retroviral Integration in the Human Genome
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similar to that of MLV in Figure 1. This is not counter-intuitive

given the uneven distribution of gene lengths and distances in the

human genome. As a result, short IDs are more likely to be

observed, whereas large IDs can only be observed for long genes

and/or long intergenic distances; thus, they are less probable (see

Figure 4). In fact, it can be proven that the exact distribution of Y is

a mixture of Uniform distributions having support over the

(signed) distances between two consecutive start sites. Thus,

different gene lengths and gene orientations per se produce the bell-

shaped ID distribution no matter what the integration preferences

are.

We next build a new testing procedure for non-randomness. We

start by normalizing the r.v. Y(X) (for simplicity hereafter denoted

by Y). We define the IDs from the nearest downstream (YD) and

upstream (YU) TSSs as:

YD~ X{Wj Xð Þ
�� ��, j Xð Þ~arg min

k:WkwX
Wk{Xj j

YU~ X{Wj Xð Þ
�� ��, j Xð Þ~arg min

k:WkvX
Wk{Xj j

ð2Þ

Let Y* be a new r.v. given by:

Y
1
~

YU

YUzYD

~1{
YD

YUzYD

ð3Þ

which describes the ID as a proportion of the total distance

between the start sites of two consecutive genes. Notice that Y*

now becomes independent of gene length, gene orientation, and gene

Figure 2. Example of integration distance calculation for one integration site mapped on Chromosome 4 (CB-RV51 insertion site in
[20] dataset). Notice that in this particular case the transcription start site (TSS) of the nearest gene coincides with the nearest downstream (39) TSS.
doi:10.1371/journal.pcbi.1000144.g002

Figure 3. Distribution of 1,250,000 integration distances (kb) from the transcription start site (TSS) of the nearest gene (Y)
randomly generated from a Uniform distribution. The solid line is the kernel density estimate plotted within a 630 kb window for a better
graphical visualization of the ’’bell-shape’’ curve.
doi:10.1371/journal.pcbi.1000144.g003
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density, being always 0#Y*#1. In statistical terms, we assume as a

convenient distribution for Y* the Beta distribution, which is one of

the most widely used in clinical, biological, and genetic settings

(Bayesian frameworks [14,15]). In fact, Beta distribution models

events are constrained to take value within a finite interval (Text

S1, Remark 2). This includes as a particular case the Uniform

distribution on support [0,1], which coincides with our null

hypothesis of random integration. For these reasons, the Beta

distribution looks very suitable to describe, within the same

parametric family, the integration preferences. This distribution

family depends on two free parameters, p and q. The probability

density function is given by:

BY � p,qð Þ~PY � y�; p,qð Þ~ 1{y�ð Þp{1
y�q{1

B p,qð Þ

~
C pzqð Þ
C pð ÞC qð Þ 1{y�ð Þp{1

y�q{1

ð4Þ

with 0#Y*#1 and 0 otherwise, p.0, q.0.

The main aim of the modelling is the estimation of the

parameters p and q. The null hypothesis ‘‘X is distributed

uniformly over the whole genome’’ corresponds to ‘‘Y* is uniformly

distributed in [0,1]’’, that is equivalent to a Beta distribution with

both p and q equal to one. The parameter estimates have also a

practical interpretation: different values of p and q reflect different

integration preferences as in Figure 5. This can also be easily

visualized: a ‘‘U’’ shape in the distribution of Y* indicates that

integrations land close to a TSS with higher probability (TSS

attracts integrations). This occurs when both the beta parameters p

and q are less than 1. On the contrary, p and q greater than 1

means that integration around a TSS is disfavoured. A straight line

for Y* distribution (p = q = 1) indicates that integrations are

randomly located with respect to a TSS.

In summary, we can now redefine the null hypothesis of random

distribution of IDs in terms of values of the parameters (p,q), since

the uniform distribution is a particular case of Beta, that is:

Hypothesis system
H0 : p~q~1

H1 : p=1 or q=1

�
ð5Þ

To test the null hypothesis in Equation 5, we use Maximum

Likelihood Estimators (MLEs; see Text S1, Remark 4) for the joint

estimate of the parameters (p,q).

Method-of-Moments Estimates (MMEs) are also provided since

it is well known that MMEs can be quickly and easily calculated

(see Text S1, Remark 3), whereas the MLEs often involve more

complex procedures (see Text S1, Remark 4). Typically, values for

MLEs are obtained numerically by means of the Newton-Raphson

method applied to the log-likelihood function (Figure 6). For more

detailed comparison between the MMEs and MLEs for the

parameters of a Beta (p,q) distribution, see [16,17].

Comparison between observed and fitted IDs distribution to assess

goodness of fit is performed by the Kolmogorov-Smirnov test.

Confidence intervals of 95% are built on Bootstrap 50,000

replications [18]. We consider as an overall significance level a = 0.05.

Statistical analyses were performed with R-statistical software

(ver. 2.6.1) [19].

Results

We apply the testing procedure described in Equation 5 to a

real experimental dataset. This includes 595 integrations retrieved

from human hematopoietic stem/progenitor cells (CD34+ popu-

Figure 4. Integration distance (ID) from the nearest gene transcription start site (TSS). In this picture, six hypothetical genes with different
length and orientation (blue arrows) are scattered along a chromosome (x-axis). The purple piecewise linear function represents the distance from
the TSS of the nearest gene. This function has discontinuities exactly in the middle of the intervals between two consecutive genes. Even assuming a
series of random integrations in this setting, we obtain a distribution of distances from TSSs (projected on the y-axis, gray plot) which is a mixture of
Uniform distributions. As a consequence, the bell-shape curve is observed. Notice that the ID distribution is asymmetric around zero, since gene
orientations and gene lengths determine which is the TSS to be considered in computing the distances (a symmetric distribution would be observed
plotting the distance from the nearest TSS instead of the nearest gene TSS, data not shown).
doi:10.1371/journal.pcbi.1000144.g004
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lation) isolated from umbilical cord blood and infected in vitro

with MLV-based retroviral vectors (RV and SIN-RV datasets in

[20]). Integration analysis was performed 2 weeks after transduc-

tion, extracting genomic DNA from cells that underwent a

maximum of 6 cell doublings (see [20] for more details about data

and experimental procedures). The short-term culture period is a

fundamental requirement to exclude a clonal selection effect,

which indeed can occur in long-term culture or in vivo. This makes

the dataset very suitable for investigating the integration preferences

per se without confounding. The observed distribution of the ID from

the TSS of the nearest genes is in accordance to the literature.

In Figure 7, the observed distribution and fitted Beta distribution

are plotted together. Goodness of fit for Beta distribution is assessed

Figure 5. Beta probability distribution functions for different parameter combinations. Solid black line represents the case of Uniform
distribution (p = q = 1). Other curves are all consistent with the alternative hypothesis in H1: p?1 or q?1.
doi:10.1371/journal.pcbi.1000144.g005

Figure 6. Loglikelihood function related to the distribution of
Y* observed in human hematopoietic/stem progenitor cells
showing the Maximum Likelihood Estimator (MLE) for the
parameters p and q.
doi:10.1371/journal.pcbi.1000144.g006

Figure 7. Comparison between the observed Y* distribution
and the fitted distributions of Method of Moments Estimators
(MMEs, red dashed line) and Maximum Likelihood Estimators
(MLEs, blue dashed line). Goodness of fit was assessed by
Kolmogorov Smirnov test (MME p-value = 0.909, MLE p-value = 0.8012).
doi:10.1371/journal.pcbi.1000144.g007
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by Kolmogorov-Smirnov test (p-value = 0.8012). The ‘‘U’’ shape

shown by a graphical investigation in Figure 7 suggests some

evidence against random integration hypothesis. According to the

hypothesis system, we estimate integration preferences by MMEs

obtaining separate confidence intervals for p̃ and q̃ and by MLEs (p̂

and q̂) to obtain p-values for the joint test in Equation 5. Estimation

results are reported in Table 1. Parameter estimates are always less

than 1 with an associated p-value,0.0001, leading to rejection of the

hypothesis of uniformity of Y* in favour of the hypothesis that the

TSS ‘‘attracts’’ integrations.

Discussion

Tumorigenesis induced by slow-transforming retroviruses occurs

by insertional activation or deregulation of cellular proto-oncogenes

by viral LTRs. Recent observations from gene therapy trials and

pre-clinical models pointed out that MLV-derived retroviral vectors

still retain this transforming ability, even if at a lower extent. Such

genotoxic risk is augmented by MLV tendency to integrate near the

TSS of host genes, where LTR transactivation can be more

effective. For safety reasons, it becomes therefore crucial to

understand the basis for retroviral integration site selection.

The goal of this paper is to provide a simple statistical tool to test

whether integration data are distributed randomly over mamma-

lian genome, in particular with respect to the transcription start

site of genes surrounding integration events.

Our starting point is that integration distances generated in silico

from a Uniform distribution show a bell-like shape as a consequence

of different gene lengths and intergenic distances over the genome.

Thus, when such shape is observed, it cannot automatically be

interpreted as evidence of non-random integration distribution.

We propose a new method based on modelling the probability

distribution function of IDs between two consecutive start sites. The

normalized distance is assumed to follow a Beta distribution, both for

statistical tractability and for suitability to the biomedical framework.

This method differs from the commonly used simulation techniques

to the extent that it models fully parametrically the ID distribution,

with no need for a computationally demanding procedure. A big

advantage of the proposed approach with respect to simulation

procedures derives from the natural interpretation of Beta

parameters. As seen in Figure 5, we can investigate how the TSS

influences integration site selection: both ‘‘TSS attraction’’ (p and q

less than 1) and ‘‘TSS repulsion’’ (p and q greater than 1) can now be

tested. Notice that this information is not provided by the non-

parametric Kolmogorov-Smirnov test for homogeneity of distribu-

tions, which verifies only whether two distributions are different but

is not able to measure in which direction.

Estimation results derived from real experimental data show a

U shape of the Beta distribution with a higher probability assigned

to values in proximity of the TSS. Our statistical analysis confirms

(also in human hematopoietic stem/progenitor cells) the prefer-

ence of MLV-derived vectors to integrate in promoter-proximal

regions, suggesting that the viral integrating machinery interacts

preferentially with factors bound in the proximity of gene TSSs.

Supporting Information

Text S1 Supplementary Material

Found at: doi:10.1371/journal.pcbi.1000144.s001 (0.04 MB PDF)
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