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Abstract

Human immunodeficiency virus type 1 (HIV-1) exploits a diverse array of host cell functions in order to replicate. This is
mediated through a network of virus-host interactions. A variety of recent studies have catalogued this information. In
particular the HIV-1, Human Protein Interaction Database (HHPID) has provided a unique depth of protein interaction detail.
However, as a map of HIV-1 infection, the HHPID is problematic, as it contains curation error and redundancy; in addition, it
is based on a heterogeneous set of experimental methods. Based on identifying shared patterns of HIV-host interaction, we
have developed a novel methodology to delimit the core set of host-cellular functions and their associated perturbation
from the HHPID. Initially, using biclustering, we identify 279 significant sets of host proteins that undergo the same types of
interaction. The functional cohesiveness of these protein sets was validated using a human protein-protein interaction
network, gene ontology annotation and sequence similarity. Next, using a distance measure, we group host protein sets
and identify 37 distinct higher-level subsystems. We further demonstrate the biological significance of these subsystems by
cross-referencing with global siRNA screens that have been used to detect host factors necessary for HIV-1 replication, and
investigate the seemingly small intersect between these data sets. Our results highlight significant host-cell subsystems that
are perturbed during the course of HIV-1 infection. Moreover, we characterise the patterns of interaction that contribute to
these perturbations. Thus, our work disentangles the complex set of HIV-1-host protein interactions in the HHPID, reconciles
these with siRNA screens and provides an accessible and interpretable map of infection.

Citation: MacPherson JI, Dickerson JE, Pinney JW, Robertson DL (2010) Patterns of HIV-1 Protein Interaction Identify Perturbed Host-Cellular Subsystems. PLoS
Comput Biol 6(7): e1000863. doi:10.1371/journal.pcbi.1000863

Editor: Christophe Fraser, Imperial College London, United Kingdom

Received March 6, 2010; Accepted June 21, 2010; Published July 29, 2010

Copyright: � 2010 MacPherson et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: JIM is funded by a BBSRC CASE studentship with industry partner Pfizer, and JED by a Wellcome Trust studentship. JWP is supported by a University
Research Fellowship from the Royal Society. Thanks also to the Apple Research and Technology Support scheme for support. The funders had no role in study
design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: david.robertson@manchester.ac.uk

Introduction

Acquired immunodeficiency syndrome (AIDS), caused by HIV-

1, is responsible for millions of deaths every year. Therefore,

research into HIV-1 biology is of critical importance and research

efforts are significant and ongoing. In order to replicate, HIV-1,

like all viruses, must use host-cellular machinery and induce

production of viral genomic material, viral proteins and ultimately

new virions. This hijack and control over host cell processes is

mediated by HIV-1 proteins through a complex network of

molecular events, including virus-host protein-protein interactions

(PPIs) [1]. Therefore, by developing our knowledge of the virus-

host interaction network, we can improve our current model of

HIV-1 infection and host-cell perturbation and use this informa-

tion to aid development of new antiviral treatments. One example

of a successful antiviral treatment that has come from under-

standing HIV-host cell interaction is the drug maraviroc [2].

Maraviroc is an entry-inhibitor that binds the CCR5 co-receptor,

inhibiting gp120:CD4:CCR5 complex formation and, thus, entry

into the host cell. Targeting a host protein in this way

demonstrates that the number of possible HIV-1 therapeutic drug

targets is not limited to the small viral proteome and that

understanding the virus-host interface can lead to the development

of novel-acting therapeutic agents.

Our knowledge of HIV-1-host PPIs is extensive in relation to

other pathogens [3]. A major source of HIV-1-host protein

interaction data is the HIV-1, Human Protein Interaction

Database (HHPID) [1,4,5]. This database holds over 5000

interactions involving over 1400 human proteins, curated from

primary literature on small-scale protein interaction studies. In the

HHPID, an impressive level of detail is recorded, including a short

description of each interaction outcome, e.g., ‘phosphorylates’,

‘binds’, ‘activates’ etc. However, there are several problems

associated with this data set:

(i) Interactions in the HHPID come from a large number of

separate publications over a wide date range and are

derived from a diverse array of experimental procedures,

such that the quality of the data is varied and the

proportion of false-positive interactions, though presum-

ably minimised by the small-scale nature of the contrib-

uting works, is difficult to estimate.

(ii) The manual curation step introduces a potential for

inconsistency and some anomalies have been identified [6].

(iii) The database contains a large amount of redundant data,

where the same interaction has been reported more than

once in two separate records. For example, in the HHPID

there are 27 entries describing interaction between the
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HIV-1 Tat protein and the human CDK9 protein,

including five that describe binding and five more that

describe complexing, two describing activation and three

describing stimulation, although from these data it is not

clear whether more than one interaction actually occurs.

(iv) A second level of redundancy exists due to downstream

consequences of interactions. For example, the finding that

HIV-1 gp120 interaction with CD4 alters the activity of

transcriptional regulators and cytokine transcription [7] is

present as nine entries in the HHPID, when this activity

can be explained through a direct interaction at the cell

surface, causing downstream effects in the T cell receptor

signaling pathways. However, by simply taking direct

interactions from this database to determine host cell

perturbation, important regulatory effects may not be

considered or alternatively, perhaps falsely extrapolated.

Due to these reasons, while the HHPID is a unique, detailed

source of individual PPI interactions that represents a large

proportion of the knowledge in the published literature, it does not

immediately provide a logical and functional map of HIV-1-host

interaction.

Recently, three high-throughput HIV-human protein interac-

tion data sets have been published that are the result of individual

genome-scale siRNA gene knockdown screens [8–10]. These

studies each identify over 200 host-cellular factors that are

necessary for HIV-1 replication, termed ‘HIV-dependency factors’

(HDFs) [8]. A thorough meta-analysis of HDFs has been

performed by Bushman et al. [11]. Though the pairwise

intersection of genes between the three sets of HDFs is statistically

significant in all cases [11], the number of genes confirmed by

more than one study is only 34 and just three genes are present in

all sets. This seemingly small overlap is largely thought to be due to

differences in experimental procedure, including cell-type, choice

of time points analyzed and choice of filtering thresholds [1,9–11].

Despite the apparent small overlap between HDF sets, Bushman

et al. demonstrate that certain cellular subsystems are mutually

identified, such as DNA repair and nuclear transport associated

proteins. This indicates the validity of the screen results and the

value that can be gained by combining these data to identify

essential host-cellular functions required by HIV-1 for replication.

In addition, their study shows that intersections between HHPID

data and the HDF sets, while significant are quite small at 39 [8],

54 [9] and 39 [10] genes. However, while the work of Bushman

et al. successfully consolidates information between HDF sets and

validates these sets against the HHPID, the underlying differences

between the HHPID and siRNA screen results have not been

explored in detail. In particular, cellular subsystems prevalent in

the HHPID, but not present among HDFs, have not been

identified.

Our previous visualisations of the HIV-human PPI network

show that there are noticeable clusters of host proteins that take

part in multiple interactions with the same set of HIV-1 proteins

[4,12]. These groups possibly represent multiple interactions with

biologically related proteins, e.g., from functional pathways or

protein complexes. In addition, highly connected subnetworks of

host proteins, where some proteins are involved in multiple HIV-

human interactions, have also been identified using a combination

of human-human PPI data and HIV-human interaction data

[9,11]. These subnetworks represent specific biological activities

including the ubiquitin-proteasome pathway, transcription, nucleic

acid binding and nuclear import; all thought to be important in

facilitating the early stages of HIV-1 infection [9]. However, in all

of these studies, different types of HIV-1-host interaction are not

taken into consideration in the clustering method, despite the

potential for interactions to be quite dissimilar. For example,

subnetwork PPIs may include direct binding interactions, indirect

regulatory interactions and those with opposing actions, e.g.,

inhibition and activation, such that no systematic outcome is

identifiable.

In this work, we explicitly utilise host-virus interactions and

interaction types, as provided in the HHPID, to identify significant

patterns of viral perturbation of the host cell. This permits us to

gain meaningful insights into HIV-1 infection. Specifically, using a

biclustering approach, we define sets of host proteins that take part

in a common set, or ‘profile’, of HIV-1 interactions. Using a

distance method to cluster these units, we identify higher-level

groupings. We show that these higher-level groups of proteins map

to specific biological subsystems in the host cell. By considering

patterns of interaction with host cell proteins, evidence within

primary literature and by assessment of support from global

siRNA screens, we are able to infer the biological importance of

these subsystems in terms of HIV-1 replication, host cell

perturbation and regulation of the immune response. Thus, our

work extracts a coherent functional map of core HIV-1-host

interactions from the HHPID and consolidates findings from the

major HIV-1-host PPI data sets.

Results/Discussion

Patterns of HIV-1-host interaction
We retrieved 1434 human proteins and 3939 distinct HIV-1-

human PPIs from the HHPID. In order to precisely reflect

findings from HHPID source papers and to maximise our

capability to discern patterns within the data, all 19 HIV-1

proteins were used in our analysis. Not surprisingly, types of HIV-

human PPI are not uniformly distributed among HIV-1 proteins,

due to the different molecular functions of these proteins. We

found that 18 from 19 HIV-1 proteins (all except Pol) take part in

one or more interaction type with a frequency greater than

expected by random chance (pv0:001). These over-represented

interactions include 47 of the 68 interaction types given in the

HHPID and 60 distinct interaction-type/HIV-1 protein combi-

Author Summary

HIV-1 is responsible for millions of deaths every year by
causing acquired immunodeficiency syndrome (AIDS).
Therefore, research is ongoing in order to better under-
stand and counter HIV-1 infection. Like any virus, HIV-1
must enter host cells and use cellular machinery to
replicate. To do this, proteins of the virus interact with
the proteins of the cell. Many studies have identified
specific virus-host protein interactions and a database
known as the HIV-1, Human Protein Interaction Database
was created for reference and further study to understand
HIV-1 infection. In this work, we use the HHPID to find
significant patterns of HIV-host interaction in order to
identify core processes that are active during infection and
also to highlight host cellular subsystems that are affected
by HIV-1. We discuss the importance of these subsystems
and associated interactions—in particular, whether the
host proteins are supported by other recent data sets that
were designed to find host factors essential for HIV-1
replication. We highlight mechanisms from essential steps
in the viral life cycle as well as perturbations of the host
immune response. Our work provides an accessible insight
into HIV-1 infection.

The Core Host-Subsystems Used by HIV-1
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nations. To give some examples: (i) The HIV-1 protein retropepsin

is a protease required in the HIV-1 life cycle to cleave viral

polyproteins [13]. In addition, retropepsin cleaves proteins of the

host cell [14–17], hence, retropepsin is responsible for all but one

of 61 distinct ‘cleaves’ interactions. (ii) The HIV-1 accessory

protein Nef can impact expression levels of multiple genes during

the viral life cycle including proteases, cell-surface proteins,

kinases, cyclins and transcription factors [18,19]. Hence, Nef is

responsible for a greater proportion of both upregulatory and

downregulatory interactions than would be expected by random

chance (p~2:5e{5). (iii) HIV-1 Tat is a transcriptional regulator

that does not function alone [20], rather Tat works by recruiting

other regulators [21,22] and hence takes part in a greater

proportion of interactions with type ‘recruits’ (p~1:1e{7) and

‘binds’ (p~1:1e{4). This over-representation analysis indicates

that simple patterns of interaction (linking certain HIV-1 proteins

to certain interaction types) are present in the HIV-1-host

interaction network.

To computationally identify more complex patterns of virus-

host interaction, we investigated human proteins that take part in

more than one distinct PPI with HIV-1 proteins. An outline of our

method for analysis of HIV-1 interaction is given in figure 1. As a

first step towards identifying key host functions known to be

involved in HIV infection, we use biclustering to define groups of

human proteins that share a common set (or ‘profile’) of HIV-1

interactions, in terms of HIV-1 protein interactant and interaction

type (figure 2). The binary interaction matrix contained 1434

rows, 1292 columns and 3939 positive values, corresponding to

human proteins, all types of HIV-1 interaction and all HIV-1-

human PPIs, respectively. Biclustering of this matrix yielded 1306

biclusters that include a minimum of two human proteins, each

with a minimum of two distinct HIV-1 interactions. We identified

279 from 1306 biclusters that were statistically significant

(pv0:001) by Monte Carlo simulation. A table with details of all

significant biclusters, including their constituent human proteins,

HIV-1 proteins, interaction types and links to the HHPID are

given in supplementary Table S1.

These biclusters define significant profiles of HIV-1 interaction

and a corresponding set of human proteins, or termed differently,

significant sets of human proteins that undergo similar perturba-

tions during HIV-1 infection. Included in the significant biclusters

were 246 human proteins, 18 proteins of HIV-1 (all except p6) and

1665 distinct HIV-1-human PPIs. According to the classes of

bicluster, defined according to relationships between interactions,

we found 122 independent, 137 mixed, 11 parental, 9 family and

no sibling significant biclusters. Both independent and mixed

biclusters, according to our interactions hierarchy (see supple-

mentary Text S1), include a minimum of two unrelated types of

PPI between every HIV-human protein pair. This indicates that

our study of multiple interactions is informative and potentially

valuable, as in w90% of cases, bicluster interaction profiles

include two or more types of interaction that provide distinct,

additional information regarding the perturbation of the human

proteins.

We expected significant biclusters to be enriched for well-

studied, high-confidence interactions, since they are likely to

correspond to identifiable units of biological function and well

established modules that have been investigated more thoroughly

than smaller, insignificant biclusters or singleton interactions. This

hypothesis was tested by counting publications that support the

interactions, as given in the HHPID. Whilst we do not regard

publication count to be an ideal measure, it is a reasonable and

accessible estimate for confidence in a given PPI. We found that

interactions within significant biclusters had a mean of 2.94

supporting publications, while other interactions with human

proteins that could potentially be in biclusters (these take part in at

least two distinct interactions with HIV-1 and are referred to as

‘potential bicluster proteins’ or PBPs) have a mean of 2.46 and

interactions with all non-biclustered interactions had a mean of

2.29. Mann-Whitney U tests performed on the publication count

distributions of biclustered interactions versus PBP interactions

and biclustered interactions versus all non-biclustered interactions,

demonstrated that the distributions were significantly different

(pv0:001, in both cases). While we do not suggest that

interactions outside of these biclusters are false positives and that

all interactions within these biclusters are of elevated importance,

this finding does indicate that the overall patterns of interaction

defined by significant biclusters that we discuss in this work, are

likely to be biologically valid.

HIV-1 interaction profiles define biologically cohesive
sets of human proteins

To validate the biological significance of host protein sets and

their associated interaction profiles (as defined by biclusters), we

determined whether human proteins from within significant

biclusters were more biologically similar to one another than

expected by chance, assessed according to three measures: PPI

network clustering to infer a greater then expected frequency of

PPIs; semantic similarity in terms of shared Gene Ontology (GO)

annotation [23] to infer shared biological roles; and sequence

similarity to infer homologous relationships, as functional modules,

such as protein complexes, are known to have a tendency to

include paralogs [24]. These similarities were determined by

comparing the host protein groupings to randomly selected sets

sampled from 692 PBPs. Results for these measures are discussed

below, followed by a summary of the three measures. In addition,

detailed results, per significant bicluster, are given in supplemen-

tary Table S2.

PPI network clustering
Integrating human proteins from significant biclusters into a

human PPI network, we identified 38 biclusters where the proteins

share a greater number of interactions, 24 where the proteins form

a bigger largest connected component (LCC) and 38 where the

proteins have a smaller average shortest path length than would be

expected by random chance (pv0:05). A total of 66 biclusters

appear in the union of these three measures and figure 3A gives

details of their intersection.

These results show that HIV-1 has a tendency to interact in

similar patterns with host proteins that share interactions with one

another, indicating the presence of multiple HIV-1 interactions

with host protein complexes or other closely associated host

network modules. There are several prominent examples of

complexed proteins that constitute all of the host proteins defined

by significant interaction patterns including: class II major

histocompatibility complex (MHC), general transcription factor

IIH (TFIIH), casein kinase II, adaptor-related protein complex 1,

protein phosphatase 2A, N-methyl-D-aspartate receptor, micro-

tubule subunits and RNA polymerase II (RNAP II). In some cases

HIV-1 interaction patterns with these complexes become

significant due to the number of subunits that undergo a set of

interactions. For example, one significant combination of

interactions acts upon nine subunits of the RNAP II complex,

hence, these proteins have more shared edges than would be

expected at random. In this case, the interactions are general,

pertaining to the complex rather than being subunit specific, e.g.,

upregulation of RNAP II due to HIV-1 gp120 [25]. However, we

also identify peptides from complexes that undergo subunit-

The Core Host-Subsystems Used by HIV-1
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specific interactions with the proteins of HIV-1. For example, one

such bicluster involves HIV-1 Tat binding and regulation of

specific polypeptides of TFIIH [1,4,5]. Yet, there are five other

transcription-related host proteins within this interaction combi-

nation. In this case Tat interactions affect a functional module in

the human PPI network (involving 18 interactions among the nine

proteins, forming a single connected component) that corresponds

to proteins of transcriptional regulation.

Figure 1. Summary of methodology. This diagram provides an outline of our method, steps are numbered according to the order in which they
are discussed in the main text.
doi:10.1371/journal.pcbi.1000863.g001

The Core Host-Subsystems Used by HIV-1
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Semantic similarity
Biclustered proteins are more similar in terms of their GO

annotation than would be expected by random chance in all

ontologies: molecular function, cellular component and biological

function (pvv0:001). Semantic distance distributions for human

protein pairs from within biclusters and all other PBP pairings, for

each ontology are shown in figure 4, graphs A to C. We identified

75 significant biclusters that include human proteins that are

significantly similar in their GO annotation, for at least one

ontology, from a possible 204 significant biclusters that include two

or more genes with GO annotation (pv0:05). Details of the

intersection between results for each ontology are given in

figure 3B.

These results show that HIV-1 interacts in a similar pattern with

proteins that have similar GO annotation. We are able to observe

these similarities in all GO ontologies. For example, protein kinase

C (PKC) isoforms that comprise all human proteins of one

bicluster are annotated with the molecular function ‘protein kinase

C activity’. Some cellular component GO terms refer directly to

protein complexes. Certain biclusters involving complexes are

therefore linked via common annotation, such as one that

corresponds to RNAP II, annotated with GO term ‘RNA

polymerase complex’. Interestingly, we are also able to observe

HIV-1 interaction patterns that act upon specific biological

processes including the immune response, protein kinase cascades,

lipid modification, transcription, nuclear import and microtubule-

based movement. The combinations of interaction that affect these

processes can highlight the molecular methods through which

HIV-1 infection perturbs cellular processes.

Sequence similarity
Human protein pairs within significant biclusters are more

similar in their protein sequence than would be expected by

random chance (pvv0:001). Distributions for sequence identity

between human protein pairs from within biclusters compared to

random pairings are shown in figure 4D. We identified 101

significant biclusters where the human proteins were more similar

in their sequences than would be expected by random chance

(pv0:05). No biclusters were significantly less similar in their

human protein sequences than would be expected.

We identify 58 biclusters for which a group of homologous

proteins comprises more than half of the members of that cluster.

We defined these homologous relationships by performing single

linkage clustering on proteins, where proteins are linked if they

share w40% sequence identity. This cutoff was chosen as previous

work has demonstrated that 40% sequence identity can accurately

infer homology without the inclusion of an unacceptable

proportion of false positives [26]. We found that significant

biclusters with greater than expected sequence similarity among

their host proteins (pv0:05) were also more likely to have at least

one direct physical HIV-1 PPI (p~7:81|10{5) and the mean

average proportion of direct HIV-1 PPIs among this group of

biclusters was 25.5%, as opposed to 11.8% for all other significant

biclusters.

These results show that paralogous groups of host proteins have

a tendency to be subject to the same combinations of regulatory

and physical HIV-1 interaction. Regulatory effects of HIV-1

interaction may be maintained across these groups, perhaps

through stimulation of specific pathways. For example, isoforms of

PKC, a kinase found to act in many signaling cascades [27], are

the only host proteins among three particular significant biclusters.

HIV-1 gp120 has been shown to upregulate multiple isozymes of

PKC, possibly through classical signal transduction pathways [28],

induced by binding to cell-surface receptors such as CCR5 [29].

However, the prominence of direct physical interactions among

these homologous sets of proteins implies that there are conserved

binding domains on members of closely related homologous

groups, to which a HIV-1 protein can bind. For example, HIV-1

Vpr is designated in the HHPID to bind both importin-a 1 and 2

isoforms; as these proteins are w40% similar in a pairwise

alignment, it seems likely that Vpr would bind a particular

conserved domain of these proteins. However, various members of

protein families can exert distinct phenotypic responses. In the

case of PKC isoforms, cellular localisation and activation input can

be controlled by the specific domain structure [27]. Different

members of protein families may also exert distinct phenotypic

responses due to their cellular background, caused by differential

expression, but also by activating downstream targets to different

quantitative levels, as shown for receptor tyrosine kinases [30,31].

Therefore, to precisely determine HIV-1 perturbation, it remains

important to distinguish what protein isoforms and family

members are dysregulated and in what cell type this activity

occurs.
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Figure 2. An example portion of the interactions matrix used in
biclustering. (A) Shows an example portion of the interactions matrix.
‘1’ represents the presence of a given interaction, while ‘0’ the absence of
that interaction, between a human protein interactant (shown left) and
an HIV protein; the interaction having a given outcome (shown above).
The entire matrix was biclustered to identify sets of host proteins that
undergo the same set of HIV-1 interactions. (B) Shows an example
bicluster that would be found in the portion of matrix given in (A).
doi:10.1371/journal.pcbi.1000863.g002
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Summary for measures of biological cohesiveness
A summary of results from the three measures of biological

relationship between proteins, in terms of the number of

significant biclusters, is given in figure 3C. We find 151 from

279 biclusters are significant by one or more measure. Therefore,

these measures are not mutually exclusive. In fact, in some cases,

overlap may be due to a single biological phenomenon, e.g.,

homologous proteins that form a single complex are likely to be

involved in the same biological process, in the same cellular

compartment, possibly with the same molecular functions. For

example, transcriptional regulators CREB binding protein (CBP),

E1A binding protein (p300) and cyclin T1 are all found in one

such bicluster whose interaction profile includes binding of these

proteins to HIV-1 Tat and Vpr. CBP and p300 are w60%
identical in local pairwise alignment, however, rather than binding

Tat individually, they form a dimer (known as PCAF) [32]. Cyclin

T1 shares only a low level of sequence similarity (v30% identity in

local pairwise alignment) to the other two proteins. Therefore

among these three host proteins there is a known PPI, a

homologous relationship and all are transcriptional regulators

involved with Tat mediated transactivation of the HIV-1 LTR

[33] and hence have some common GO annotation. Furthermore,

gene annotations including GO and PPIs may be attributed based

on homology to genes with experimentally validated actions, for

example, GO evidence code ‘ISA’, stands for ‘inferred from

sequence alignment’ and is one of six codes describing computa-

tional assignment of annotation. Hence, the measures used here

are linked. Some annotation is electronically inferred without any

manual curation and as a result is error-prone [34]. In addition,

false positive annotations can be propagated electronically [35,36].

However, we chose not to select manual annotation alone as the

potential reduction in false-positives is offset by an increase in

false-negatives. For example, more than half GO annotations of

human genes have the evidence code ‘IEA’ meaning ‘inferred

from electronic annotation’ (see http://www.geneontology.org/

GO.current.annotations.shtml).

We do not identify significant biological relationships among

128 biclusters. These biclusters include significantly fewer human

proteins on average (�xx~2:32) than the 151 biologically cohesive

biclusters (�xx~4:14) (p~2:2|10{16, Mann-Whitney U test).

Therefore, power to detect statistically significant biological

relationships (despite their possible existence) among human

proteins of these biclusters, is diminished, especially where

annotation is lacking. For example, two subunits of the casein

kinase II complex (alpha 1 and beta) are found in one such

bicluster. At the time of performing this work neither of these

subunits were GO annotated, they are not more than 30% similar

by local pairwise alignment and though they interact, this is

insufficient to be called statistically significant. However, in some

cases, no biological relationship can be discerned, even on

inspection. Yet, of these 128 biclusters, 125 include fewer than

three human proteins and none include more than four. This

indicates that our combination of methods for detecting

biologically cohesive human protein sets via biclustering, and

detecting biological relationships among these biclusters, performs

well in terms of quality, where the number of human proteins is

four or greater.

Figure 3. Venn diagrams showing biological cohesiveness
among proteins within significant biclusters, using three
measures. Counts refer to the number of biclusters that include
human proteins that are significantly biologically related (pv0:05) from

a possible 279. (A) Displays three network clustering measures: shared
edge count, average shortest path and largest connected component.
(B) Displays semantic similarity in terms of the three GO ontologies. (C)
Displays the overlap of all three measures of biological cohesiveness:
semantic similarity, network clustering and sequence similarity.
doi:10.1371/journal.pcbi.1000863.g003

The Core Host-Subsystems Used by HIV-1
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Host functions among HIV-1-host interaction
combinations

Owing to the specific biclustering method that we used for

defining significant profiles of HIV-1-host interaction, multiple

biclusters arise from slight differences between protein sets that are

essentially similar in their interaction profile. This is partly due to

differently annotated interactions, interactions that are not

maintained across a group of otherwise similarly interacting

proteins, or even to missing interactions that have not been

experimentally proven or are missing from the HHPID, i.e., false

negatives. For example, in the case of two biclusters that include

homologs of Akt (also known as protein kinase B), one pertains to

homologs 1 and 2, the other to homologs 1, 2 and 3. These two

biclusters occur because homologs 1,2 and 3 have been shown to

share similar interactions with HIV-1 gp120 and Vpr. However,

while homologs 1,2 and 3 are activated by Tat, only homologs 1

and 2 are shown to be upregulated by Tat in the HHPID [1,4,5].

Therefore, by combining biclusters according to shared informa-

tion, we can form an overview of HIV-1 interactions with a given

set of host proteins.

Higher-level relationships between biclusters were identified

using a distance measure based upon overlap between biclusters.

Using the resulting pairwise distances a tree was constructed using

the neighbor joining method [37] (see figure 5). This tree has been

partitioned into sections, representing 37 biological subsystems

within the host cell that are named according to over-represented

GO terms, or after a specific protein (see materials and methods

for more detail). In the tree representation we can observe

subsystems that undergo a complex set of interactions during HIV-

1 infection. These have a large number of terminal branches,

representing many distinct but related HIV-host interaction

combinations, where a single and clear pattern of interaction

can not be simply defined, or does not exist, e.g., the cytokine activity

subsystem. Conversely, the v-akt subsystem is relatively well

defined including just two closely related HIV-host interaction

combinations.

The identified subsystems and their associated patterns of

interaction take place at a variety of levels within the host cell,

including interactions at the cell surface and with specific

biological components such as the proteasome. Cellular processes

and pathways, including intracellular signaling cascades, apoptosis

pathways and stimulation of the immune response, better describe

other subsystems. In addition, some subsystems can be directly

mapped to specific steps in the viral life cycle, including viral

budding and transport of viral RNA across the nuclear membrane.

Supplementary Table S3 gives details of each subsystem, including

the number of biclusters, host and virus proteins. Supplementary

Table S1 links individual biclusters and interactions to these

subsystems.

Among these subsystems, there appears to be a central pathway

of T cell signaling interactions that are perturbed by the proteins of

HIV-1 at multiple levels in the cell. This pathway begins with

Figure 4. Comparison of protein pairs within significant
biclusters to other protein pairs. Panels A, B and C show the
semantic distance distributions for the three GO ontologies: biological
process, cellular component and molecular function, respectively, for (i)
human protein pairs from significant biclusters (shown in grey) and (ii)
all other human protein pairs from PBPs (shown in black). Panel D
shows the pairwise sequence similarity distributions for (i) and (ii). These
charts show that human proteins from within significant biclusters are
more similar in their GO annotation and sequence than other protein
pairs (pv0:001 in a Mann-Whitney U test, in all cases).
doi:10.1371/journal.pcbi.1000863.g004
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inhibition of cell-surface receptor mediated signaling. For

example, HIV-1 gp120 binding to CD4 prevents typical host-host

cell-surface interactions, such as MHC-class II response to antigen

binding [38], CD28-mediated co-signaling [39], and CD3-induced

leukocyte-specific protein tyrosine kinase (Lck) and phospholipase

C activation [40,41]. In addition, HIV-1 Nef downregulates CD4,

CXCR4, CCR5, CD28, CD71, CD80, CD86 and MHC class I

molecules via endocytosis [42–47].

Figure 5. Tree showing the relationship between significant biclusters and higher-level host subsystem groupings. Individual
biclusters are represented by terminal branches. Relationships are derived using a distance measure based on the proportion of shared interactions
between significant biclusters and the tree was drawn using the neighbor joining method. The tree is divided into sections that show the higher-level
host subsystems, largely derived using the tree structure. Subsystems of w2 biclusters are colour coded (see key). Biclusters not labelled are those
that have been placed in a biologically related group not adjacent on the tree.
doi:10.1371/journal.pcbi.1000863.g005
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We find continued perturbation of T cell signals at other cellular

locations. For example, in the MAP kinase subsystem we find Lck, a

component of TCR signaling and an activator of other cell signal

transduction proteins including the ERK family of MAP kinases

[48–51], is activated through gp120 binding to CD4 [52–54].

HIV-1 Nef also plays a role in the activation of the classical MAP

kinase pathway via binding and activation of Lck [55,56] and also

Vav, causing downstream activation of JNK MAP kinases [57,58].

Stimulation of these signaling cascades by proteins of HIV-1

influences a variety of cellular responses that include activation of

transcription factors, for example [54,59]. The nuclear factor

subsystem includes nuclear factors of activated T cells (NFATs),

transcriptional regulators that induce production of cytokines

[60,61]. We observe that NFATs are enhanced or activated at

several levels within the host cell, by HIV-1 proteins Vpr, Tat, Nef

and gp120, causing dysregulation of cytokine production [62–67].

Altered cytokine signals will then be received by cell-surface

receptors, thus, completing a cycle of viral perturbation.

To summarise the interactions between cytokines and proteins

of HIV-1, we produced networks of both upregulation and

downregulation, taking interactions from the cytokine activity

subsystem, including interactions that are supported by more

than one publication, as given in the HHPID (see figure 6). These

networks illustrate the complexity of cytokine dysregulation by

HIV-1. From 53 distinct HIV-protein, host-protein pairings in

these networks, 30 pairs involve only cytokine upregulation, 12

pairs involve only cytokine downregulation and 11 pairs involve

both cytokine upregulation and downregulation, in response to the

HIV-1 protein interactions. Cytokine dysregulation is likely to

have major pathogenic effects on the host system. For example, an

increase in plasma levels of multiple cytokines during acute HIV-1

infection, coined an ‘early cytokine storm’, is associated with peak

viral loads and immunopathological consequences [68].

In these network visualisations there are distinguishable patterns

of cytokine regulation by HIV-1, such as, the largely stimulatory

effects of gp120, Tat and Nef; upregulation of TNF-alpha and

Interleukins 1 and 6; the repressive action of Vpr and gp160; and

downregulation of interleukin 2 and interferon-c. However, the

overall picture of cytokine regulation during HIV-1 infection

remains unclear. Future cytokine-wide studies of HIV-1 infected

cells, ideally representing multiple different stages of infection and

possibly even a variety of HIV-1 strains, coupled with an accurate

model of cytokine action on the host system could improve our

understanding of HIV-1 pathogenesis and potential intervention

targets, particularly if key HIV-host interactions are identified.

To present distilled views of the HHPID and provide an

interpretable network of HIV-1-host interaction, two HIV-1-host

PPI networks were constructed. Both networks include 37 nodes

that represent the characterised subsystems. The first network,

shown in figure 7, has 18 nodes that represent the proteins of HIV-

1. The second network, shown in figure 8 has 49 nodes that

represent interaction types. The edges in these networks represent

HIV-1-host interactions that contribute to significant biclusters,

the width of each edge is proportional to the number of distinct

interactions that are represented. Due to the condensed host

functions and filtering out of patterns of interaction that are not

statistically significant we can observe recognisable patterns of

interaction in these networks. For example, (i) the relationship

between HIV-1 Tat and regulators of transcription that are

stimulated, activated and recruited by HIV-1 in the process of

viral transcription. (ii) The multiple sources of perturbation of T

cell activation from HIV-1 Nef, Tat and the envelope proteins.

And, (iii) the large number of regulatory interactions between

proteins of HIV-1 and host cytokines.

Support for host subsystem functions among global
siRNA data sets

To assess support for the 37 host subsystems from HDFs

identified by global siRNA screens [8–10], we defined subsystem

annotations that consist either of defining over represented GO

terms or a regular expression that encapsulates a common protein

Figure 6. Cytokine regulation networks. These networks represent the pattern of cytokine regulation in the cytokine-activity host subsystem
that were defined through identifying significant patterns of HIV-host interaction. Edges represent PPIs. Edge width is proportional to the number of
PPIs being represented. For clarity, we only show PPIs that are reported more than once in the HHPID. These networks show that cytokine
dysregulation due to HIV-1 infection is wide reaching and complex, affecting many host cytokines, both via upregulation (left) and downregulation
(right).
doi:10.1371/journal.pcbi.1000863.g006

The Core Host-Subsystems Used by HIV-1

PLoS Computational Biology | www.ploscompbiol.org 9 July 2010 | Volume 6 | Issue 7 | e1000863



name. Subsystem annotations are given in supplementary Table

S3. We found that 10 from 37 subsystem annotations also define

statistically over-represented groups among either all HDFs

combined or a single HDF study (pv0:05). We find that 21 from

37 subsystems include at least one protein that is also present

among HDFs and only in three cases is the intersection statistically

significant (see supplementary Table S3 for more details).

Cellular subsystems supported by HDF sets
The 10 subsystems that are supported by HDFs are: proteasome

core complex, regulation of apoptosis, mRNA transport, endosome, RNA

polymerase activity, peptidase activity, regulation of transcription, ubiquitin,

cAMP-dependent protein kinase complex and v-akt.

Subunits of the proteasome core complex are present among two

of the three siRNA screens [8,9]. A meta-analysis of these HDF sets

that incorporates data from the HHPID, showed that the proteasome

is an important cellular component for HIV-1 replication [11]. The

role of the proteasome in HIV-1 replication remains unclear.

However, the interactions that we highlight between HIV-1 Tat and

the beta-8 and beta-10 subunits may be important for determining

proteasome composition, towards formation of the immunoprotea-

some, a change that may cause increased presentation of subdom-

inant epitopes [69,70].

Apoptosis is widely accepted as a mechanism for T cell depletion

in HIV-1 infected individuals [71]. By reviewing relevant literature,

we find that several subsystems may have a role in controlling

apoptosis including: regulation of apoptosis, glutamate receptor activity, v-akt,

lactate dehydrogenase activity and peptidase activity. HDFs found by one

siRNA screen [10] are enriched for regulators of apoptosis.

However, in our results, we only identify one HDF, Cytochrome

C that is GO annotated as a regulator of apoptosis in addition to Akt

and components of the glutamate receptor. We speculate that

Figure 7. HIV-1-host interaction patterns, by HIV-1 protein. This network illustrates core patterns of HIV-host interaction. The human host is
depicted as a series of cellular subsystems, represented by orange circular nodes, where the diameter of the node is proportional to the number of
host proteins within that subsystem. HIV-1 is depicted by the viral proteome (blue triangles). Interactions between HIV-1 proteins and host
subsystems are represented by edges, where the edge width is proportional to the number of interactions. For clarity, only those interactions that are
shared by over half of the host proteins in a subsystem are shown. *Indicates a host subsystem whose subsystem annotation corresponds to a
statistically significant group among HDFs (pv0:05). { Indicates a statistically significant intersection between the subsystem proteins and HDF set
(pv0:05).
doi:10.1371/journal.pcbi.1000863.g007
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prevention, rather than induction of apoptosis, is an essential part of

HIV-1 infection, in order to maintain a viral reservoir in the host

[72]. In this case, HDFs may not include the pro-apoptotic host

proteins that we observe in these interaction patterns. In addition,

proteins such as Akt and Cytochrome C have roles outside of

apoptosis [73,74]. Therefore, the necessity for such proteins in HIV-

1 replication is not necessarily apoptosis related. However, we

identify subsystems from the HHPID that can be linked to positive

regulation apoptosis, such as regulation of apoptosis that includes the

activation of pro-apoptotic caspases by multiple HIV-1 proteins.

The intensity of research to elucidate key interactions responsible

for T cell loss, via apoptosis, in HIV-1 infected individuals is

demonstrated by the prominence of pro-apoptotic HIV-host

interactions in our results. However, we suggest that a greater

range of interactions between proteins of HIV-1 and host regulators

of apoptosis need to be investigated, particularly involving those

host factors that are present among HDFs but not identified in our

results.

Interactions in the mRNA transport subsystem all involve HIV-1

Rev. One of the roles of Rev is to facilitate export of HIV-1 RNA

from the nucleus to the cytoplasm. A nuclear export signal present

in the Rev protein binds to exportin 1, while an argenine-rich

domain (ARD) in Rev binds to a Rev-response-element (RRE)

present in viral RNA. To undergo nuclear export, an exportin-

Rev-RNA complex docks at a nuclear pore complex (NPC), an

interaction mediated by nucleoporins [75]. In the mRNA transport

subsystem we find interactions that are specific to this process

including but not limited to: binding [76] and recruitment [77] of

Figure 8. HIV-1-host interaction patterns, by interaction type. This network illustrates core patterns of HIV-host interaction. The human host
is depicted as a series of cellular subsystems, represented by orange circular nodes, where the diameter of the node is proportional to the number of
host proteins within that subsystem. The action that HIV-1 has on these subsystems is depicted by a series of interaction outcomes (blue diamonds).
Interactions between HIV-1 and host subsystems are represented by edges where the edge width is proportional to the number of interactions. The
directionality of the interaction is implicit in the description of the interaction outcome. For example, the edge linking the MHC protein complex
node and the ‘upregulates’ node represents ‘HIV-1 upregulates the MHC protein complex’, whereas the edge linking the cytokine activity node and
the ‘activated by’ node represents ‘HIV-1 is activated by cytokine activity’. For clarity, only those interactions that are shared by over half of the host
proteins in a subsystem are shown. *Indicates a host subsystem whose subsystem annotation corresponds to a statistically significant group among
HDFs (pv0:05). { Indicates a statistically significant intersection between the subsystem proteins and HDF set (pv0:05).
doi:10.1371/journal.pcbi.1000863.g008
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exportin 1 by Rev; and direct interactions between Rev and two

nucleoporin proteins [78], including Rev mediated recruitment of

these host factors to the nucleus [79]. We find that there are a

statistically significant proportion of host factors involved in

mRNA transport in two of the three global siRNA studies

(references [8,9]). Furthermore, all host genes that make up this

subsystem (a total of five) are found among HDFs (p~0:00014).

Down-modulation of these host factors, either in small-scale

experiments or by global siRNA screen, apparently inhibits the

interactions described in this subsystem, thereby preventing Rev-

mediated RNA nuclear export and successful viral replication.

We observe two other subsystems that appear to have a role in

transport of HIV-1 material into the nucleus, nuclear import and heat

shock protein 70kDa. Briefly, the nuclear-import subsystem involves a

variety of interactions with members of the karyopherin family and

heat shock 70kDa chaperone protein (Hsp70). Karyopherins bind

sequence motifs called nuclear localisation signals (NLS) of proteins,

causing the protein to be directed into the nucleus [80]. We observe

that HIV-1 Integrase, Matrix, Tat and Rev proteins are bound or

imported into the nucleus by members of the karyopherin family. In

the case of Integrase and Matrix, these interactions may relate to

karyopherin mediated nuclear import of HIV-1 preintegration

complexes (viral ds-RNA and associated proteins known as PICs)

[81], a mechanism that may also involve HIV-1 Vpr. Several

isoforms of the heat shock 70kDa chaperone protein (Hsp70)

promote PIC import, possibly by stimulating interaction between

PIC complexes and karyopherin [82]. These two nuclear import

subsystems include support from siRNA screens. One of the three

studies identified karyopherin-b [9] and two studies [8,9] identified

transportin 3 (TNPO3), a less definitively characterised member of

the importin-b/karyopherin-b superfamily, as HDFs. More recent-

ly, TNPO3 has been reconfirmed by yeast-two-hybrid pull-down as

a binding partner of Integrase, to be an early-stage HDF in the viral

life cycle by siRNA screen and a clear promoter of HIV-1 PIC

import [83], though subsequent work has shown that HIV-1

requirement for TNPO3 maps to interaction with Capsid rather

than the Integrase protein [84]. Therefore, current experimental

data indicates that TNPO3 is essential for PIC import, whereas the

role for karyopherin-b in this process remains unclear. Requirement

for karyopherin-b observed in [9] could be indirect, perhaps for

transport of another HDF.

Budding, the release of the viral particle from the host cell

plasma membrane, is an essential step in the HIV-1 life cycle. We

identify two subsystems that have a role in budding: protein

localisation and ubiquitin. Both of these groups include interactions

involving HIV-1 p6, a region of the Gag protein that contains a

late domain (L-domain). L-domains recruit host-cellular factors

required by HIV-1 for budding. Our results indicate that p6 (along

with other viral proteins) is ubiquitinated at the L-domain by three

forms of ubiquitin (B, C and D). The p6 L-domain also interacts

with subunits of the ESCRT-I complex, possibly via direct

interaction with AIP-1/ALIX. These interactions, though not fully

understood, have been shown to be important for HIV-1 budding

[85] and are found in our results. These host factors are not

identified among HDFs. However, HDFs include both ubiquitin-

conjugating enzymes and ubiquitin-protein ligases. Therefore, it

appears that ubiquitination plays an important role in HIV-1

replication that can be linked to viral budding.

In our results we define four subsystems where the host proteins

and interactions contribute to HIV-1 provirus chromosomal

integration and HIV-1 RNA transcription, namely, regulation of

transcription, DNA helicase, RNA polymerase activity and DNA integration.

The largest of these groups is regulation of transcription that includes

many direct binding and co-stimulatory interactions between HIV-

1 proteins Tat and Vpr, and host transcriptional regulators

including: cyclin-dependent kinase 9 and cyclin T1 that form the

Positive Transcription Elongation Factor b complex, general

transcription factors TFIIF and TFIIH; NFkB; TATA box binding

protein; cyclin-dependent kinase 9; CREB binding protein; p300;

and p300/CBP-associated factor [86,87]. Both the size of the

intersection between this subsystem and HDFs and the proportion

of genes annotated by GO as regulators of transcription is

statistically greater than expected by random chance (p~0:0034
and p~0:0038, respectively). Transcriptional regulators we identify

that are also among HDFs include cyclin t1, NFkB, p300, TFIIF

and TFIIH, as well as subunits of the RNA-polymerase II complex,

as found in the RNA polymerase activity subsystem. Therefore, these

host factors appear to form an essential functional module, with a

clear pattern of interaction required for HIV-1 replication.

The DNA integration subsystem includes interactions between

HIV-1 Integrase and three host proteins: LEDGF, a transcrip-

tional activator; hSNF5, a subunit of the SWI/SNF ATP-

dependent chromatin-remodeling complex; and embryonic ecto-

derm development (EED) protein. Integrase is involved in binding

interactions with both LEDGF and hSNF5. LEDGF binds to

Integrase and tethers it to host chromatin, an interaction identified

as essential to HIV-1 infectivity [88,89]. However, LEDGF is not

found among HDFs, perhaps because this host factor is only

required at a very low level, thus, eluding identification by siRNA

knockdown screening [89]. This highlights the possibility that

more host proteins shown to be essential for HIV-1 replication in

specific, small-scale experiments may not be found among HDFs.

By cross referencing host proteins involved in significant

patterns of interaction from the HHPID we have found support

among siRNA screen data for host subsystems that can be linked

to viral transcription, viral budding, PIC integration, transcription

of viral RNA, changes to proteasome composition, export of viral

RNA from the nucleus and regulation of apoptosis. However, of

these, all but regulation of apoptosis and changes to proteasome

composition might be considered an essential molecular mecha-

nism for HIV-1 replication. Moreover, from our results it is

unclear whether pro-apoptotic interactions are essential.

Lack of support for T cell signaling and immune-related
subsystems among HDFs

The remaining subsystems are not well supported by data from

siRNA screens, in particular, those pertaining to cytokine

dysregulation caused by HIV-1 infection. We do not find that

HDFs are enriched for components of the TCR or for proteins

involved in T cell activation. However, we do find that CD4 and

CXCR4 have both been identified by our interaction patterns and

by two siRNA screens, probably as these receptors were essential for

virus entry in the two studies using HeLa cell lines [8,10], whereas in

the third study, CD4 and CXCR4 were not identified, presumably

because an engineered mechanism for viral entry was employed [9].

There is little support for proteins involved in MAP kinase or

PI3K-mediated intracellular signaling among global siRNA data

sets. We find no HDFs that are GO annotated as having MAP

kinase activity and just one HDF with lipid kinase activity

(phosphatidylinositol-4-phosphate 5-kinase type-1-c), though we

find two HDFs with PKC activity (PKC-g and serine/threonine-

protein kinase N2). These findings indicate that knock-downs of

single proteins from these cascades are generally insufficient to

significantly inhibit HIV-1 replication. However, we surmise these

central cascades are able to maintain signal transduction through

multiple routes, with the KEGG representation of the MAP kinase

cascade supporting this possibility [90–92]. Furthermore, HIV-1

interaction with these cascades is largely regulatory, rather than the
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result of direct interactions. Therefore, HIV-1 may not require any

one specific protein from a central signal transduction cascade, such

as a particular MAP kinase, for HIV-1 replication. Yet transduction

of virally induced signals through the host cell is almost certainly an

important mechanism in the proliferation of HIV-1.

We do not find that the subsystem annotations of any of cytokine

activity, interleukin, interferon-c and nuclear factor subsystems represent

statistically significant sets among HDFs. However, among HDFs,

we do find five genes that are designated by GO as having

cytokine activity including IL-1, chemokine-like factor, two

additional interleukins (IL-18 and IL-22) and Interferon-related

developmental regulator 2. These results indicate some cytokines

and chemokines are likely to enhance HIV-1 replication.

However, in our results cytokines form a far larger and more

prominent set of host proteins and interactions. We suggest that

this disparity is because while in vivo cytokines play a key part in

modulation of viral replication, by providing a pool of cells for

infection [93], immune system activation via cytokine release may

not be essential for viral replication within any given cell. Indeed,

in vitro, HIV-1 regulation of cytokines is likely to be of diminished

importance as there is no functional acquired or innate immune

system for the virus to interact with, either for the purpose of

evasion or hyper-stimulation. Furthermore, small scale in vitro

studies that have been explicitly designed to test the significance of

HIV-1 protein interactions with cytokines and in vitro siRNA

screens that test for HIV-1 dependence on host factors on a global

scale, are unlikely to reach the same conclusion, regarding the

relevance of cytokines to HIV-1 infection. The diminished

importance of cytokines among HDFs is also indicated by the

lack of support for the NFATs that promote cytokine transcription.

Innate cellular immune responses, such as APOBEC activity,

the interferon system and TRIM22-induced interferon activation

will be important in vitro [94–97]. Though as these innate immune

factors exert a negative effect on HIV-1 replication, they are

unlikely to be highlighted among HDF sets.

Conclusion
By capturing the published knowledge of HIV-host interactions,

the HHPID represents a hugely valuable resource for HIV-1

research. However, redundancy and heterogeneity of the PPI data,

in terms of experimental methods, age of findings and quality of

data, make the HHPID a difficult data set from which to draw

conclusions about the overall system of HIV-1 infection, such as

the identification of specific host functions and processes that are

essential for HIV-1 replication. Using the strategy presented here,

we identify significant patterns of HIV-host interaction, defined as

sets of host proteins that take part in similar, enriched

combinations of interactions during the course of HIV-1 infection.

We have confirmed that these host protein sets, linked by their

HIV-1 interaction profiles, are biologically related, tending to

include proteins with common biological processes, proteins that

share a high number of interactions with one another, subunits of

the same complex and paralogs. In addition, we find that by

identifying significant interaction patterns, we select for higher-

confidence, well-studied interactions, based on the number of

supporting journal articles. Hence, the identified higher-level

groups, based on shared interactions, represent significant cellular

subsystems used by HIV-1. Notably, our method incorporates the

biological action of each PPI. Therefore, unlike other studies that

identify cellular subsystems important to HIV-1 [1,9,11], the

subsystems presented here, respect specific activity-related patterns

of viral perturbation.

By assessing these subsystems using scientific literature and

support from three global siRNA screen HDF sets, we have been

able to describe systems of interaction that are invoked by HIV-1

to hijack host functions in order to successfully replicate including

virus entry, mechanisms for viral gene transcription, export of viral

RNA from the nucleus, viral budding and control of the

proteasome. In addition, we also highlight mechanisms through

which HIV-1 infection perturbs host processes at multiple cellular

levels through a cycle of interactions that are not necessarily

essential for viral replication, and appear detrimental to the

human host by damaging the host immune response through

dysregulation of cell surface receptor mediated signaling, signal

transduction pathways, host gene expression, cytokine release and

cell death.

Our approach permits a detailed study of the overlap between

significant patterns of HIV-host interaction in the HHPID and

HDFs. The modest overlap may be attributed to the fundamental

difference in the methods of construction between the source data

sets. The siRNA screens do not explicitly identify host cell proteins

that undergo direct physical interactions with the proteins of HIV-

1 or whose expression is altered during HIV-1 infection, as with

many of the host cell proteins given in the HHPID. Rather, these

screens are designed to identify host-cellular proteins that are

required by the virus for replication. Therefore, HDF sets will not

necessarily capture host proteins that are misregulated during

HIV-1 infection, i.e., may perturb normal cellular responses, or

host proteins that are potentially detrimental to HIV-1 infection,

such as APOBEC3G [94]. In addition, each study has its own

intrinsic bias. Particularly, the HHPID will be subject to study bias

[98], where aspects of perceived medical importance, such as T

cell depletion, receive greater attention. Whereas methods

employed in each siRNA screen will be better tailored to picking

certain host proteins over others. For example, one siRNA screen

was specifically designed to discover host factors involved in the

early stages of HIV-1 replication [9], while another used a viral

strain that expresses a truncated Vpr protein and does not express

Nef or Vpu [8]. In addition, the stage in the viral life cycle is also

likely to be an important factor in determining the activation of

PPI modules in the host cell [99], therefore, not all studies may

capture the same results. Hence, the lack of overlap between these

small and global-scale data sets is not unexpected.

The direct intersection between any one HDF set and the

HHPID probably represents a small set of high-confidence HIV-1

interacting host proteins important to HIV-1 replication. Howev-

er, analysis of this intersection alone is unlikely to provide a

thorough insight into host defense mechanisms, perturbations

caused by HIV-1 infection, or proteins that are essential to virus

replication. We suggest that future experimental work could

expand the core knowledge presented here. In particular, we

suggest that proteins and pathways that are indicated by siRNA

screen to be essential for HIV-1 replication, though otherwise

poorly understood, are studied in greater detail to continue to

bridge the knowledge gap between high and low throughput data

sources. A successful example of this approach is conformation of

TNPO3 as an essential protein for HIV-1 PIC import [83,84] after

initial identification as an HDF by [8,9].

The HHPID data set has been used previously to validate HDF

sets. Specifically HHPID interactions and host factors have been

used in conjunction with HDFs to aid identification of well-

connected subnetworks, corresponding to certain host cell

functions prevalent among HDFs [9,11]. Several of these

subnetworks represent functions identified in our results including

the proteasome and transcriptional regulation. However, we are

not aware of any other work in which core host cell functions,

represented in HHPID data, have been assessed in terms of their

presence among HDFs.
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In this study, we have used a computational approach to

disentangle a complex set of interactions to provide an accessible

map of core HIV-1-host interaction patterns for virologists. Our

methodology can be generalised and take PPI data from any

source. Hence, our work will contribute to defining core host

subsystems for other pathogens, particularly as a reference against

which results from increasingly prevalent high-throughput data

sources might be compared. In addition, aiding prediction of

currently undiscovered host-virus PPIs using interaction profiles

may be possible. This could be done by taking the interaction

profile of a given human protein, i.e., a ‘subject profile’, and

comparing it with interaction profiles from other human proteins,

i.e., a set of ‘query profiles’ to look for common interactions that

are missing for the subject profile that are common to many other

similar profiles (the distance measure in our work would be a

method to quantify this commonality). However, this would form

just part of such a prediction process and other established

biological phenomena that impact upon PPI activity, such as

interaction interfaces and cellular localisation, would also have to

be considered to make successful predictions. Notably, our results

and the potential predictive power to which we refer, are reliant

upon an accessible and structured description of biological action

for each PPI, as supplied in the HHPID. We have, thus,

demonstrated that the inclusion of concise annotation in large-

scale data can enhance resolution and allow greater depth of

computational analysis.

Materials and Methods

Data collection
HIV-human PPI data were obtained from the HHPID on 1st

May 2009. Specifically, distinct PPIs based upon: (i) the HIV-1

protein interactant, (ii) the human protein interactant and (iii) the

type of interaction, one of 68 short descriptions that characterise

the PPI outcome, were obtained [4,5]. In cases where multiple

transcripts of the same gene take part in the same interaction (with

respect to HIV-1 protein and interaction type), only a single

instance of the transcribed gene and interaction were used

throughout our analyses.

To test whether interaction types are uniformly distributed

among HIV-1 proteins, interaction types for each HIV-1 protein

were counted and p-values were calculated using two-tailed

Fisher’s exact tests and corrected for multiple tests using the

Benjamini and Hochberg [100] method.

Bicluster identification
In order to perform biclustering, a binary matrix was created

with one row per human protein and one column per HIV-1

interaction. We define an HIV-1 interaction to include both the

HIV-1 interactant and the interaction type, e.g., ‘capsid activates’

is one such interaction. The presence of a given HIV-1 interaction,

for a given protein, was represented in the matrix by a one and the

absence by a zero (figure 2). To find sets of human proteins that

share the same set of HIV-1 interactions in this matrix,

biclustering was performed using the Bimax algorithm [101].

The significance of biclusters was determined by Monte Carlo

simulation. Specifically, the HIV-human PPI network was rewired

at random, while the degree of each protein and interaction type

frequencies were maintained. The resulting network was used to

produce a new matrix for biclustering. The matrix was biclustered

using Bimax and interaction types, HIV-1 proteins and the

number of human proteins in each bicluster were recorded.

50 000 iterations of this process were carried out. Using these

simulations, we were able to empirically calculate the probability

of randomly finding a bicluster involving a given number of

human proteins and the same (or larger) set of HIV-1 interactions.

Biclusters were deemed significant if they had a p-value of

v0:001, after correction for multiple tests using the Benjamini

and Hochberg [100] method.

Bicluster classification
All interaction types from the HHPID were organised into a

hierarchy (see supplementary Text S1). This hierarchy included

new parent terms. For example, a parent term ‘physical’ was

created, the child terms of which all refer to more specific forms of

physical interaction. In addition, every interaction was designated

a direction, polarity and control. Direction refers to whether it is the

HIV-1 protein acting upon the human protein or vice versa, e.g.,

‘Tat inhibits p53’ has a forward direction, ‘Tat is inhibited by p53’

has a backward direction and ‘Tat interacts with p53’ has a neutral

direction. Polarity refers to the biological action of the interaction,

e.g., ‘Vpr activates p53’ has a positive polarity, ‘Vpr inhibits p53’

has a negative polarity and ‘Vpr interacts with p53’ has a neutral

polarity. Control refers to regulation within the interaction,

additional to the polarity, e.g., ‘Tat decreases phosphorylation of

retinoblastoma 1’ has a positive polarity but due to the verb

‘decrease’ has a negative control, while ‘Tat increases phosphor-

ylation of retinoblastoma 1’ has a positive control. For those

interaction types with no additional control, we set control as null.

This information was used to classify biclusters according to the

hierarchical relationship between their interactions. We defined three

types of relationship between interactions: two positive relationships,

parental and sibling, and one non-relationship, independence.

Positive relationships refer to the same biological event within a

given interaction, described using a different and perhaps more, or

less specific term. Independence, denotes that two interactions

describe distinct events, both providing additional information.

For any two interactions to be part of a positive relationship,

they must link the same two protein interactants, their directions

must not be opposing, i.e., forward and backward, their polarities

must not be opposing and the control must be the same. Parental

interaction relationships are formed when one interaction is the

descendant of another, e.g., ‘Tat binds p53’ is a descendant of the

interaction ‘Tat interacts with p53’. Sibling interaction relation-

ships are formed when both interactions have the same direct

parent term, e.g., ‘Tat activates Cdk2’ is a sibling of ‘Tat enhances

Cdk2’, as the parent term for both interaction types is ‘protein

regulation’. Interaction pairs that do not conform to parental or

sibling relationships have an independent relationship. These

relationship classifications give rise to five classes of bicluster: (i)

Independent, where all interactions have independent relationships.

(ii) Parental, where all of the interactions are descendants of one

another. (iii) Sibling, where two or more interactions are siblings of

one another in the ontology, e.g., ‘Tat activates Cdk2’ is a sibling

of ‘Tat enhances Cdk2’ (iv) Family, where all of the interactions

form a ‘family’ of parental and sibling relationships. (v) Mixed,

where independent interactions and sibling or parental interac-

tions form a bicluster.

Bicluster biological validation
We established a group of 692 proteins from the HIV-1

interacting set that could appear in the bicluster results. These

proteins are limited to those that have more than one distinct

HIV-1 interaction. This set of proteins are important to our

statistical analyses and will be referred to as potential bicluster

proteins (PBPs).

A human PPI network was created using protein interactions

derived from multiple sources: BioGRID [102], BIND [103] and

The Core Host-Subsystems Used by HIV-1
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HPRD [104]. All interactions were cross-referenced using the

‘gene_info’ file provided by the Entrez Gene database (ftp://ftp.

ncbi.nlm.nih.gov/gene) to maintain consistent accession labeling.

These data sets were obtained in July 2009. The human PPI network

contained only one node per human gene, a maximum of one edge

between two nodes and a total of 9000 nodes and 30478 edges.

The number of shared edges, average shortest path length and

largest connected component (LCC) for the set of human protein

nodes defined by each significant bicluster were calculated from this

network and statistical significance was calculated by Monte Carlo

simulation. In a single iteration of this simulation, a group of nodes

numbering the same as the bicluster in question were selected at

random using rejection sampling in order to maintain the group

degree distribution. Following this, shared edge count, average

shortest path length and LCC were recorded. 10000 iterations of

this simulation were carried out per bicluster. The results of the

simulation were used to estimate the probability that a more tightly

clustered set of nodes, of given size and degree distribution would be

found by random chance, p-values were corrected for multiple tests

using the Benjamini and Hochberg [100] method.

To analyze similarity between proteins within biclusters, we

performed local protein sequence alignments between all PBPs

using the Smith-Waterman algorithm [105] with a gap open cost

of 10, a gap extension cost of 0.1 and the BLOSUM62 substitution

matrix. To analyze similarity in annotation between proteins

within biclusters, we carried out a semantic similarity measure-

ment [106] between all PBPs using GO annotation for all three

ontologies: molecular function, biological process and cellular

component. The GO data was downloaded from the Gene

Ontology on the 9th December 2008. We defined the distance

between two genes using the method given in [26], using the

semantic distance measurement defined in [106]. For both of these

measures we compared the value distribution for protein pairs that

appear in the same significant bicluster to the equivalent

distribution for proteins that do not appear in the same significant

bicluster using a Mann-Whitney U test. We also calculated p-

values for each significant bicluster, for both of these measures,

using Monte Carlo simulations. For a given bicluster of size n and

a mean average alignment score, or semantic similarity, s, 100000

and 10000 simulation iterations, for the pairwise alignment and

semantic similarity simulations, respectively, were performed. In

each iteration we selected a non-redundant random set of n
proteins from PBPs and calculated the average alignment score or

semantic similarity and counted whether this value was greater

than, or less than s. By this method we were able to calculate the

probability of finding a set of proteins, by random chance, with

greater similarity than the proteins of a bicluster, both in terms of

sequence and GO annotation. We corrected the p-values for

multiple tests using the Benjamini and Hochberg [100] method. In

addition, we identified groups of similar human protein sequences

within significant biclusters using single-linkage clustering; linking

pairs of proteins that have w40% sequence identity, determined

by sequence alignments and selecting connected components.

Defining subsystems
The distance between any two biclusters, a and b, was

calculated using the formula:

d a,bð Þ~1{
2|DA\BD
DADzDBD

Where A and B are the set of interactions in biclusters a and b,

DAD and DBD are the number of interactions in sets A and B and

DA\BD is the size of the intersection between sets A and B.

Therefore, for two identical biclusters d a,bð Þ~0, while for two

biclusters that have no common interactions d a,bð Þ~1. Distances

between all biclusters were calculated, cubed to obtain a greater

range of values and the resulting distances were used to define

relationships between biclusters using neighbor joining [37].

Meaningful groups were determined, by examining bicluster

proteins and interactions. These groups were characterised and

named using one of the following two methods: (i) Selecting one or

more over-represented GO term (pv0:001), calculated using

Fisher’s exact tests corrected for multiple tests using the Benjamini

and Hochberg [100] method. (ii) In the case where the proteins of

a subgroup are all homologs or isoforms of the same product and

no specific GO term pertaining to that protein product exists, a

regular expression encapsulating the protein name was used to

characterise the group and that group was named after the

protein. The method used to define each group is specified in

supplementary Table S3.

Comparison with siRNA screen data
Proteins from three siRNA studies [8–10], were cross referenced

against the identified host subsystems. These studies include 281

[8], 295 [9] and 290 [10] genes. The genes not expressed in T cells

or macrophages, designated group ‘H’ in one study (reference

[10]) were not included. The number of successful hits against

each subsystem and the direct intersection was counted for each of

the three studies and p-values for these counts were calculated

using chi-square tests, using all genes annotated in the gene

ontology as the population, corrected for multiple tests using the

Benjamini and Hochberg [100] method. HIV-1-host PPI networks

were constructed and visualised using Cytoscape [107].

Supporting Information

Table S1 Table of significant biclusters and their HIV-host

interactions. A table of significant biclusters. Each row represents a

single HIV-host interaction within a significant bicluster. The

biclusters are divided in to higher-level groups, known as sub-systems,

based on shared interactions and labeled according to the biological

role of the included host proteins. From right to left, the columns

show: name of the sub-system; bicluster id; p-value for the bicluster;

corrected p-value, calculated using the Benjamini and Hochberg

FDR correction method; entrez gene id corresponding to the human

protein interactant; name of the human protein interactant; entrez

gene id corresponding to the HIV-1 protein interactant; a string

identifier for the interaction type, consisting of a short HIV-1 protein

name and a description of the interaction outcome, separated by an

underscore; the relationship of that interaction to other interactions

within the same bicluster; id for the corresponding interaction in the

HHPID; the HHPID description of the interaction.

Found at: doi:10.1371/journal.pcbi.1000863.s001 (2.80 MB XLS)

Table S2 Table of biological cohesiveness measures for

significant biclusters. A table of biological cohesiveness measures.

Each row represents a significant bicluster. Sequence similarity,

semantic similarity and network clustering are measures pertaining

to the proteins of a given bicluster. From right to left, the columns

show: bicluster id; p-value for sequence similarity; corrected p-

value for sequence similarity, calculated using the Benjamini and

Hochberg FDR correction method; number of proteins found in

the largest protein cluster, within that bicluster, determined by

single linkage clustering, using a linkage cut-off of 40% sequence

similarity; as in the latter but using a cut-off of 80% sequence

similarity; p-value for human PPI network shared edge count;

corrected p-value for human PPI network shared edge count,
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calculated using the Benjamini and Hochberg FDR correction

method; p-value for human PPI network largest connected

component; corrected p-value for human PPI network largest

connected component, calculated using the Benjamini and

Hochberg FDR correction method; p-value for human PPI

network average shortest path length; corrected p-value for human

PPI network average shortest path length, calculated using the

Benjamini and Hochberg FDR correction method; p-value for

semantic similarity using the GO biological process ontology;

corrected p-value for semantic similarity using the GO biological

process ontology, calculated using the Benjamini and Hochberg

FDR correction method; p-value for semantic similarity using the

GO cellular component ontology; corrected p-value for semantic

similarity using the GO cellular component ontology, calculated

using the Benjamini and Hochberg FDR correction method;

p-value for semantic similarity using the GO molecular function

ontology; corrected p-value for semantic similarity using the GO

molecular function ontology, calculated using the Benjamini and

Hochberg FDR correction method.

Found at: doi:10.1371/journal.pcbi.1000863.s002 (0.09 MB XLS)

Table S3 Table of host subsystem details. A table of host

subsystem details. Each row represents a host subsystem. From right

to left the columns show: the name of the subsystem; the number of

biclusters included in the subsystem; the number of human genes in

the subsystem; the intersection between the subsystem and the Brass

et al. (2008) siRNA screen; p-value for the latter; corrected p-value

for the latter, calculated using the Benjamini and Hochberg FDR

correction method; the intersection between the subsystem and the

Konig et al. (2008) siRNA screen; p-value for the latter; corrected p-

value for the latter, calculated using the Benjamini and Hochberg

FDR correction method; the intersection between the subsystem

and the Zhou et al. (2008) siRNA screen; p-value for the latter;

corrected p-value for the latter, calculated using the Benjamini and

Hochberg FDR correction method; the type of subsystem

annotation used to identify the subsystem; the details of the

subsystem annotation; the number of human genes from the sub-

system that fit the subsystem annotation; the p-value for the

subsystem annotation; a corrected p-value for the subsystem

annotation, calculated using the Benjamini and Hochberg FDR

correction method; number of genes from the Brass et al. (2008)

siRNA screen that fit the subsystem annotation; p-value for the

latter; corrected p-value for the latter, calculated using the

Benjamini and Hochberg FDR correction method; number of

genes from the Konig et al. (2008) siRNA screen that fit the subsystem

annotation; p-value for the latter; corrected p-value for the latter,

calculated using the Benjamini and Hochberg FDR correction

method; number of genes from the Zhou et al. (2008) siRNA screen

that fit the subsystem annotation; p-value for the latter; corrected p-

value for the latter, calculated using the Benjamini and Hochberg

FDR correction method.

Found at: doi:10.1371/journal.pcbi.1000863.s003 (0.04 MB XLS)

Text S1 Hierarchy of protein interaction types. A hierarchy that

incorporates all of the interaction types found in the NCBI HIV-1,

host protein interaction database (HHPID) with the addition of

parent terms for these types. HHPID interaction types have a

unique id, and polarity, direction and control attributes. These

attributes are explained in detail in the methods section in the

main text of this article. Interaction types found in the HHPID are

present as instance elements, parent terms are designated as

interactionType elements.

Found at: doi:10.1371/journal.pcbi.1000863.s004 (0.01 MB

XML)
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