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Abstract

The question of which strategy is employed in human decision making has been studied extensively in the context of
cognitive tasks; however, this question has not been investigated systematically in the context of perceptual tasks. The goal
of this study was to gain insight into the decision-making strategy used by human observers in a low-level perceptual task.
Data from more than 100 individuals who participated in an auditory-visual spatial localization task was evaluated to
examine which of three plausible strategies could account for each observer’s behavior the best. This task is very suitable for
exploring this question because it involves an implicit inference about whether the auditory and visual stimuli were caused
by the same object or independent objects, and provides different strategies of how using the inference about causes can
lead to distinctly different spatial estimates and response patterns. For example, employing the commonly used cost
function of minimizing the mean squared error of spatial estimates would result in a weighted averaging of estimates
corresponding to different causal structures. A strategy that would minimize the error in the inferred causal structure would
result in the selection of the most likely causal structure and sticking with it in the subsequent inference of location—
‘‘model selection.’’ A third strategy is one that selects a causal structure in proportion to its probability, thus attempting to
match the probability of the inferred causal structure. This type of probability matching strategy has been reported to be
used by participants predominantly in cognitive tasks. Comparing these three strategies, the behavior of the vast majority of
observers in this perceptual task was most consistent with probability matching. While this appears to be a suboptimal
strategy and hence a surprising choice for the perceptual system to adopt, we discuss potential advantages of such a
strategy for perception.
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Introduction

Human performance in perceptual tasks is often benchmarked

by optimal strategies. An optimal strategy is one that performs best

with respect to its objectives or maximizes expected reward or

equivalently, minimizes a cost function [1,2]. Previous studies have

investigated whether performance in perceptual tasks is consistent

with normative models that use maximum likelihood estimation

(MLE) [3–5], Bayesian inference [6–8], signal detection theory

[9–11], or other computational frameworks. These previous

studies either implicitly or explicitly assume a certain cost/utility

function that defines the optimal decision. In contrast, the question

of which utility/cost function is used by the nervous system for

perceptual tasks has not been systematically investigated [but see

12,13].

In this study we aim to computationally characterize human

perceptual decision making strategies. As different strategies may

be used across individuals, we characterize the strategy used by

each individual observer instead of modeling the behavior of an

‘‘average observer’’. We used a spatial localization task, as it is

simple and fundamental to perceptual processing. While spatial

localization has been studied extensively, it has not been

investigated in the context of decision making strategies. In

nature, at any given moment, we are typically exposed to both

visual and auditory stimuli, and scene perception and analysis

requires simultaneous inference about the location of auditory and

visual stimuli (as well as other sensory stimuli such as tactile, and

olfactory). Therefore, multisensory spatial localization represents a

task that the perceptual system is implicitly engaged in at all times.

This task is particularly useful for probing decision-making

strategies because it involves an automatic causal inference about

the sources of stimuli, and distinct patterns of behavior

corresponding to different strategies. For each observer we

examined which of three plausible decision making strategies best

accounts for their performance. We use a Bayesian causal

inference model of multisensory perception [14] to quantify

subjects’ responses as one of three strategies as well as compare

them to qualitative predictions of such strategies.

One strategy tested was the objective of minimizing the mean

squared error. This is a commonly used loss function in normative

models of human behavior [3,4,7,15,16]. It assumes that the

nervous system tries to minimize the squared error on average.
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This utility function in the context of our task implies model

averaging, i.e., weighted averaging of the estimate derived from two

different causal structures [14]: a common cause hypothesis and

an independent causal hypothesis, each weighted by their

respective probability (see Figure 1c).

Another strategy we tested was to minimize the error in the

inferred causal structure as well as the error in the spatial estimate.

This strategy in the context of our task translates into model selection

[17,18]. This strategy also maximizes the consistency in the

inference process [13]. In our task, model selection maximizes

consistency between the causal structure chosen and the estimate

of location. In this strategy, the estimate of location is purely based

on the causal structure that is deemed to be most likely (see

Figure 1d).

The third strategy tested is probability matching [19–22]. This

strategy has been reported to be used by humans in a variety of

cognitive tasks. In these tasks, probability matching refers to the

phenomenon in which observer’s probability of a given response

matches the probability of appearance of the given target. For

example, if the task is to predict which one of two colored lights

will be presented in each trial, in an experiment in which each

color is presented with a certain probability, then the participant’s

frequency of predicting each color will be consistent with the

relative frequency of the presentation of the color. For a situation

where a green light is presented 70% of the time, and a blue light

30% of the time, probability matching behavior would predict the

green light on approximately 70% of trials. This strategy is

considered to be sub-optimal in terms of economic and utility

theory because once it is known that the green light is presented

more often, observers should predict the green light on all trials to

maximize their utility or gain (.70 proportion correct vs.

.706.70+.306.30 = .58 proportion correct). Therefore, probability

matching has not received much attention in the study of

perception—which is generally considered to be highly optimized

by evolution [but see 23–25 for evidence in visual selective

attention]. Nonetheless, because of its implication in the decision

making literature, we included this strategy in our analysis. In our

task, this strategy would translate into choosing a causal structure

according to the probability of the underlying causal structure.

Thus, this strategy is one step removed from matching the

probability of response outcomes but rather matches the

probability of the implicit causal structure (see Figure 1e).

Methods

Ethics Statement
This study was conducted according to the principles expressed

in the Declaration of Helsinki. All participants in the experiment

provided written informed consent in approval with the UCLA

Institutional Review Board.

Participants, Procedure and Stimuli
One hundred and forty six subjects participated in the

experiment. We used a large sample because we wanted to be

able to detect even small subpopulations (e.g., a small percentage

of observers) who may adopt a different strategy. Participants sat at

a desk in a dimly lit room with their chins positioned on a chin-rest

52 cm from a projection screen. The screen was a black

acoustically transparent cloth subtending much of the visual field

(134u width660u height). Behind the screen were 5 free-field

speakers (568 cm, extended range paper cone), positioned along

azimuth 6.5u apart, 7u below fixation. The middle speaker was

positioned below the fixation point, and two speakers were

position to the right and two to the left of the fixation. The visual

stimuli were presented overhead from a ceiling mounted projector

set to a resolution of 128061024 pixels with a refresh rate of

75 Hz.

The visual stimulus was a white-noise disk (.41 cd/m2) with a

Gaussian envelope of 1.5u FWHM, presented 7u below the fixation

point on a black background (.07 cd/m2), for 35 ms. The visual

stimuli were always presented so that their location overlapped the

center of one of the five speakers behind the screen positioned at

213u, 26.5u, 0u, 6.5u 13u. Auditory stimuli were ramped white noise

bursts of 35 ms measuring 69 dB(A) sound pressure level at a distance

of 52 cm. The speaker locations were unknown to the participants.

In order to familiarize participants with the task, each session

started with a practice period of 10 randomly interleaved trials in

which only an auditory stimulus was presented at a variable

location, and subjects were asked to report the location of the

auditory stimulus.

Practice was followed by 525 test trials that took about 45 minutes

to complete. 15 repetitions of 35 stimulus conditions were presented

in pseudorandom order. The stimulus conditions included 5

unisensory auditory locations, 5 unisensory visual locations, and all

25 combinations of auditory and visual locations (bisensory

conditions). On bisensory trials, subjects were asked to report both

the location of auditory stimulus and the location of visual stimulus in

sequential order. The order of these two responses was consistent

throughout the session, and was counter-balanced across subjects.

Subjects were told that ‘‘the sound and light could come from the

same location, or they could come from different locations.’’ As a

reminder, a blue ‘S’ or green ‘L’ was placed inside the cursor to

remind subjects to respond to the sound or light respectively.

Each trial started with fixation cross, followed after 750–

1100 ms by the presentation of the stimuli. After 450 ms, fixation

was removed and a cursor appeared on the screen vertically just

above the horizontal line where the stimuli were presented and at

a random horizontal location in order to minimize response bias.

The cursor was controlled by a trackball mouse placed in front of

the subject, and could only be moved in the horizontal direction.

Participants were instructed to ‘‘move the cursor as quickly and

accurately as possible to the exact location of the stimulus and click

Author Summary

For any task, the utility function specifies the goal to be
achieved. For example, in taking a multiple-choice test, the
utility is the total number of correct answers. An optimal
decision strategy for a task is one that maximizes the
utility. Because the utility functions and decision strategies
used in perception have not been empirically investigated,
it remains unclear what decision-making strategy is used,
and whether the choice of strategy is uniform across
individuals and tasks. In this study, we computationally
characterize a decision-making strategy for each individual
participant in an auditory-visual spatial localization task,
where participants need to make implicit inferences about
whether or not the auditory and visual stimuli were caused
by the same or independent objects. Our results suggest
that a) there is variability across individuals in decision
strategy, and b) the majority of participants appear to
adopt a probability matching strategy that chooses a value
according to the inferred probability of that value. These
results are surprising, because perception is believed to be
highly optimized by evolution, and the probability
matching strategy is considered ‘‘suboptimal’’ under the
commonly assumed utility functions. However, we note
that this strategy is preferred (or may be even optimal)
under utility functions that value learning.

Probability Matching as a Perceptual Strategy
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the mouse’’. This enabled the capture of continuous responses

with a resolution of 0.1 degree/pixel.

Causal Inference Model
We used a Bayesian causal inference model of multisensory

perception augmented with one of the three decision strategies

described above to classify the decision making strategy used by

each participant. Details of the model can be found elsewhere [14],

but in summary, each stimulus or event, s, in the world causes an

underlying noisy sensory estimate, xi, of the event (where i is

indexed over sensory channels). Similar to [14], the sensory estimate

for our task is the perceived location of the auditory and visual

stimuli. We use a generative model to simulate experimental trials

and subject responses by performing 10,000 Monte Carlo

simulations per condition. Each individual sensation is modeled

using the likelihood function p(xi Ds). Trial-to-trial variability is

introduced by sampling the likelihood from a normal distribution

around the true sensory location, analogous to having auditory and

visual sensory channels corrupted by independent Gaussian noise

with parameters sA and sV respectively. We assume there is a prior

bias for the central location, as modeled by a Gaussian distribution

centered at 0u. The strength of this bias, sP, is a free parameter. The

causal inference model infers the underlying causal structure, C, of

the environment based on the available sensory evidence and prior

knowledge using Bayes’ rule shown in Equation 1.

p(CDxV ,xA)~
p(xV ,xADC)p(C)

p(xV ,xA)
ð1Þ

Figure 1 shows a schematic example for a bimodal stimulus

presentation. The competing causal structures are shown in

Figure 1-B, where either the sensations could arise from a common

cause (C = 1, Figure 1-B left), or from independent causes (C = 2,

Figure 1-B right). The optimal estimates for the visual and auditory

locations are given in Equation 2 for the common cause model, and

Equation 3 for the independent model.

ŝsA, C~1~ŝsV , C~1~

xA

s2
A

z
xV

s2
V

z
mP

s2
P

1

s2
A

z
1

s2
V

z
1

s2
P

ð2Þ

Figure 1. Illustration of the three different decision strategies for producing an auditory estimate of location. (A) A schematic example
of sensory representations on a trial with a certain discrepancy between the auditory and visual stimuli. The lightbulb and speaker symbols represent
the visual and auditory stimulus locations, respectively. The visual and auditory likelihoods are shown in magenta and blue, respectively. For the sake
of simplicity, here we assume that the prior distribution is non-informative (uniform). Therefore, in the case of a common cause (C = 1), i.e., when the
two sensory signals are fused to obtain an estimate, a single Gaussian posterior distribution is obtained which is shown in black. The estimate of the
location of sound, ŝsA is the mean of the black distribution. In contrast, in the independent cause scenario (C = 2), this estimate is the mean of the blue
distribution. (B) The generative model for the causal inference model. C = 1: One cause can be responsible for both visual and auditory signals, xV and
xA. C = 2: Alternatively, two independent causes may generate the visual and auditory cues. The probability of each causal structure can be computed
using Bayes’ Rule (see Eq. 1). Hypothetical posterior probabilities for the stimuli in (A) are given at the bottom of each causal structure. For model
averaging (C), the final auditory estimate would be a weighted average of the two estimates, with each estimate weighted by the probability of its
causal structure. For model selection (D), an estimate is derived based on the most probable model, in this case the independent model (C = 2). For
probability matching (E), the final auditory estimate in this example would be equal to the independent model estimate (C = 2) 70% of the time, and
equal to the common cause model estimate (C = 1) 30% of the time. Visual estimates are produced likewise.
doi:10.1371/journal.pcbi.1000871.g001

Probability Matching as a Perceptual Strategy
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ŝsA,C~2~

xA
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z 1
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, ŝsV ,C~2~

xV

s2
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z mP

s2
P

1

s2
V

z 1

s2
P

ð3Þ

The difference in our modeling compared to [14] is in producing

the final spatial location estimates. The goal of the nervous system is

to come up with the best estimates of stimulus locations, ŝsA and ŝsV .

If the objective is to minimize mean squared error of the spatial

estimates, then the optimal estimates are obtained by model

averaging:

ŝsA~p(C~1DxV ,xA )̂ssA, C~1z(1{p(C~1DxV ,xA))̂ssA, C~2

ŝsV~p(C~1DxV ,xA )̂ssV , C~1z(1{p(C~1DxV ,xA))̂ssV , C~2

ð4Þ

where ŝsA, C~1 is the optimal estimate of auditory location given

there is a single cause (Eq. 2), and ŝsA, C~2 is the optimal estimate of

auditory location given there are independent causes (Eq. 3) (see

Figure 1-A). The final estimate ŝsA is a weighted average of the two

estimates each weighted by the posterior probability of the

respective causal structure (Figure 1-C). ŝsV is computed likewise.

In model selection strategy (Figure 1-D), on each trial, the

location estimate is based purely on the causal structure that is

more probable given the sensory evidence and prior bias about the

two causal structures:

ŝsA~
ŝsA, C~1 if p(C~1DxV ,xA)w:5

ŝsA, C~2 if p(C~1DxV ,xA)~v:5

�
ð5Þ

For probability matching (Figure 1-E), location estimates are based

on selecting a causal structure based on the inferred posterior

probability of the structure. In other words, the selection criterion

is stochastic and no longer deterministic. This can be achieved by

using a variable selection criteria, j, that is sampled from a

uniform distribution on each trial.

ŝsA~

ŝsA, C~1 if p(C~1jxV ,xA)wj

where j [ ½0 : 1� uniform distribution

ŝsA, C~2 if p(C~1jxV ,xA)~vj

and sampled on each trial

8>>><
>>>:

ð6Þ

All three models described above have four free parameters: the

standard deviation of the auditory and visual likelihoods sA and

sV, the standard deviation of the prior over space, sP, and the

prior probability of a common cause, p(C = 1) = pcommon. We fit

subject responses to the causal inference model for each of the

three strategies and determine the best strategy based on the

maximum likelihood fit for each subject (see Supplementary Text

S1 for a detailed description of the fitting procedure).

The three decision strategies produce distinct patterns of

responses across trials and stimulus conditions. Figure 2 shows

response distributions for each of the three strategies generated by

Monte Carlo simulations for a few stimulus conditions. For these

simulations, we used parameter values that are typically found

when fitting human observers data. Because vision has a much

higher precision in this task than hearing, visual estimates are not

affected much by sound. Therefore, we focus our attention on the

auditory responses shown in blue. In general, the model averaging

strategy mostly has unimodal response distributions, and in

conditions with moderate conflict between the visual and auditory

Figure 2. Simulated response patterns. Simulated response distributions for the three strategies: model averaging (A), model selection (B), and
probability matching (C). Distributions are created from 10,000 samples per condition, using mean subject parameters [sV = 2.5u sA = 10.1u sP = 33.0u
pcommon = 0.57], and only changing the decision strategy. Five bimodal conditions are shown for each strategy with the visual stimulus to the far
left, and the auditory stimulus growing in discrepancy from the left to the right columns. Vertical blue and magenta dotted lines along with the
speaker and lightbulb icons show the true location of the auditory and visual locations, respectively. The predicted log-probability of response is
shown by the shaded bars for both the visual (magenta) and auditory (blue) response distributions, with overlaps shown in a darker shade of blue.
doi:10.1371/journal.pcbi.1000871.g002

Probability Matching as a Perceptual Strategy
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stimuli, the auditory responses are shifted in the direction of the

visual stimulus (Figure 2-A). In contrast, for the model selection

strategy, the auditory responses are mostly bimodal and consistent

with either unisensory auditory responses, or complete fusion of

the stimuli (Figure 2-B). The probability mass around each peak

varies consistently with the expected probability of each causal

structure. In other words, for conditions in which the discrepancy

between visual and auditory locations is large, and thus the

probability of a common cause is low, there is a large probability

mass at the auditory location, and in conditions where the conflict

is small, and thus the probability of common cause is high, there is

a much larger probability mass around the visual capture location

(i.e., location shifted towards visual stimulus). The fixed selection

criterion results in distinct separation between the two auditory

response distribution modes. For any probability of a common

cause greater 0.5, the auditory response will be fused with the

visual response. Similarly, the probability matching strategy also

shows bimodal auditory response distributions (Figure 2-C).

However, in contrast with model selection, the modes are not as

distinct. Due to the variable model selection criteria (j), even when

the probability of a common cause is high, there is a small

probability of providing an auditory response consistent with the

independent causal structure. Due to the high uncertainty in the

auditory signals (i.e., large variance of auditory likelihood), this can

even be observed when the stimulus locations are identical (left

column).

Results

For each participant, each of the decision strategy models was

fitted to the data, and the observer was classified by the strategy

that explained the data best. In order to be highly confident in the

classifications, for an observer to be included in the sample we

required that the log-likelihood difference between the best-fitting

model and the second best-fitting model exceed a value of 3—

which is considered substantial evidence for the support of one

model vs. another [26]. In Table 1, we report the results from 110

participants whose data met this criterion. Among these

participants, on average the log-likelihood difference between

the top two best-fitting models was 24.6 (median 17.6), which is in

the range considered as decisive evidence for a model relative to

another model [26]. On average, the best fitting model accounted

for 83% of the variance in the individual participant’s data

(generalized coefficient of determination [27]: R2 = 0.8360.11).

The model fits for the probability-matching group data is also

shown for all stimulus conditions in Supplementary Figure S1.

Therefore, the best-fitting model fitted the data very well, and the

classifications were highly reliable.

The number of participants classified as utilizing the matching,

selection, or averaging strategy is provided in Table 1. Probability

matching is the decision strategy used by the vast majority of

observers (82/110). Model averaging was second followed by

model selection. The proportion of males and females is not

significantly different for each strategy (two-sample test for equality

of proportions, p.0.05). The difference in distribution of ages

among the three groups was also statistically insignificant (two-

sample Kolmogorov-Smirnov test, p.0.05). It should be pointed

out that these results are not sensitive to the subject exclusion

criterion described above. The results remain qualitatively the

same even if we do not exclude any participants at all: N = 146,

matching = 64%; selection = 18%; averaging = 18%, or if we use

other exclusion criteria (e.g., margin of 10 instead of 3: N = 82,

matching = 79%; selection = 5%; averaging = 16%).

We also tested whether the model selection strategy could

explain the data better than the other two strategies if we allow a

bias in choosing a model (i.e., if the criterion can take on any value

as a free parameter, rather than fixed at .5 as in Equation 5).

Despite the additional free parameter for this model, we find

similar proportions of categorization: N = 110, matching = 72%;

selection = 13%; averaging = 15% – and after applying Bayesian

Information Criteria regularization for the additional free

parameter: matching = 72%; selection = 11%; averaging = 17%.

Discussion

We aimed to gain insight into the decision making strategy used

in a perceptual task, by comparing three strategies and testing

which one accounts best for the observers’ data. Our computa-

tional modeling tools allow us to perform this type of analysis for

each individual observer. Perceptual functions, in particular the

basic ones that are shared across species (and arguably key to the

survival of the organism) such as spatial localization, are often

thought to be optimal. Perceptual functions are evolutionarily old

and thus, it is argued that there has been sufficient amount of time

for them to have been optimized by evolution [28], and indeed

several studies have shown a variety of perceptual tasks to be

‘‘statistically optimal.’’ For the same reason, it is also expected that

the optimized and automated perceptual processes to be largely

uniform across individuals.

We examined the decision strategies in an auditory-visual

spatial localization task on a large sample of observers consisting of

110 individuals. First, we found that not all observers appear to

utilize the same strategy. This variability across individuals

suggests that this localization process is not predestined or hard-

wired in the nervous system. More importantly, the vast majority

of participants seem to use a probability matching strategy. This

finding is surprising because this strategy is not statistically optimal

in the conventional sense.

Why should the majority of individuals use a ‘‘suboptimal’’

strategy in this basic task? To address this question, it is best to step

back and re-examine the notion of optimality. While a probability

matching strategy may not be optimal in a static environment, it

may be optimal or close to optimal in a dynamic one [29], and

especially useful in exploring patterns in the environment.

Humans instinctively have the tendency to search for regularities

in random patterns [30–33], and it has been suggested that

probability matching results from the addition of an ‘‘informatic’’

utility that considers learning and exploring an important

component in survival and ecological rationality [34]. Thus, while

probability-matchers might look irrational in the absence of

predictable patterns, they would have a higher chance of finding

patterns if they exist [19]. In the context of our experiment,

although the stimuli were uniformly random, perhaps the

matchers subconsciously explore for patterns within the stimuli.

The observed probability matching behavior suggests that the

nervous system samples from a distribution over model hypotheses on

Table 1. Summary of participant strategy classification.

All subjects Females Males Age (m±SD)

Matching 82 (75%) 57 (75%) 25 (74%) 20.963.0

Selection 10 (9%) 7 (9%) 3 (9%) 20.462.1

Averaging 18 (16%) 12 (16%) 6 (17%) 21.563.3

Total 110 76 34 20.963.0

doi:10.1371/journal.pcbi.1000871.t001

Probability Matching as a Perceptual Strategy
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each trial. Sampling-based representational coding has been

proposed to account for neurophysiological phenomena such as

spontaneous neural activity [35] and variability in neural responses

[36], as well as other stochastic perceptual phenomena such as

bistability [37,38]. Alternatively, it is conceivable that a case-based

selection rule [39] that, on each trial, chooses the most appropriate

model from an earlier experience (not necessarily from the current

experiment) resembling the current sensations, would produce this

behavior.

While probability matching was the modal response strategy

found in the current study, we are not claiming that probability

matching is used in all perceptual tasks, or even in all spatial tasks.

Optimal performance in perceptual tasks has been reported by

some previous studies. A recent study found observers’ behavior to

be consistent with the expected loss function in a visual

discrimination task [40], however, the results are ambiguous with

respect to the specific decision making strategy utilized (averaging,

selection, and probability matching) as they would make similar

predictions. Knill, in a study of perception of slant from

compression and binocular disparity cues [41], reported optimal

performance. In this study, which used an almost identical

structure inference model to the one used here, observers’

responses were explained well by model averaging. However,

probability matching was not considered, and regarding model

selection vs. averaging, the author points out that determining

exactly which strategy was used by the participants is difficult.

Perhaps most relevant to our current findings is a previous study of

auditory-visual spatial localization in which the observers’

performance was found to be consistent with model averaging

[14]. Although model selection and probability matching were not

tested, the response profiles were unimodal and thus, inconsistent

with these strategies. The sample size was relatively small in this

study (N = 19), yet together with the aforementioned studies, these

findings raise the question of what are the factors that influence the

decision-making strategy adopted by observers. It is likely that the

specific strategy used by participants depends on the context,

instruction, prior experience, and many other factors [42]. Landy

et al. [43] found that stimulus variability and unpredictability from

trial to trial can result in adoption of a variety of suboptimal

strategies by participants in a texture orientation perception task.

Even for a given context, stimuli, and instruction (as in this

experiment), some subjects’ construal of the task may affect their

utility/cost function. The specific computational constraints such

as criteria of speed and accuracy could also favor the use of one

strategy over another. Also in our study, subjects had to make

sequential reports of both modalities requiring responses to be held

in working memory, which has been suggested to have a role in

the decision process [19,32,44]. The specific factors influencing

perceptual decision making strategies is an open question for

future studies.

Probability matching has been shown to happen when people’s

response probability matches the relative frequency of the

presented stimuli. Here we show that the nervous system can

even match the probability of a more abstract construct such as the

probability of causal structure of the stimuli which is one step

removed from the stimuli themselves. This finding suggests that

probability matching may be a general decision-making strategy

operating at multiple levels of processing. The results of this study

altogether suggest that the nervous system does not necessarily use

the commonly assumed least squared error cost function in

perceptual tasks, and underscore the importance of considering

alterative objectives when evaluating perceptual performance.

Supporting Information

Text S1 Model fitting and goodness of fit procedure.

Found at: doi:10.1371/journal.pcbi.1000871.s001 (0.03 MB

DOC)

Figure S1 Model fits to probability matching group. Shaded

areas show the log-probability of response for the 82 subjects

classified as using a probability matching strategy. Thick lines

show the model fits averaged across individual subject fits. Vertical

blue and magenta dotted lines show the location of the auditory

and visual stimulus, respectively. The first row shows the five

unimodal auditory conditions, ordered from leftmost to rightmost

positions along the azimuth as shown by the blue vertical dotted

line. The first column shows the five unimodal visual conditions,

ordered from leftmost (top) to rightmost (bottom) as shown by the

magenta vertical dotted line. The central 25 plots show data from

the bisensory conditions with both the visual (magenta) and

auditory (blue) response distributions.

Found at: doi:10.1371/journal.pcbi.1000871.s002 (2.70 MB TIF)
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