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The bias in protein structure and function space resulting from experimental limitations and targeting of particular
functional classes of proteins by structural biologists has long been recognized, but never continuously quantified.
Using the Enzyme Commission and the Gene Ontology classifications as a reference frame, and integrating structure
data from the Protein Data Bank (PDB), target sequences from the structural genomics projects, structure homology
derived from the SUPERFAMILY database, and genome annotations from Ensembl and NCBI, we provide a quantified
view, both at the domain and whole-protein levels, of the current and projected coverage of protein structure and
function space relative to the human genome. Protein structures currently provide at least one domain that covers
37% of the functional classes identified in the genome; whole structure coverage exists for 25% of the genome. If all
the structural genomics targets were solved (twice the current number of structures in the PDB), it is estimated that
structures of one domain would cover 69% of the functional classes identified and complete structure coverage would
be 44%. Homology models from existing experimental structures extend the 37% coverage to 56% of the genome as
single domains and 25% to 31% for complete structures. Coverage from homology models is not evenly distributed by
protein family, reflecting differing degrees of sequence and structure divergence within families. While these data
provide coverage, conversely, they also systematically highlight functional classes of proteins for which structures
should be determined. Current key functional families without structure representation are highlighted here; updated
information on the ‘‘most wanted list’’ that should be solved is available on a weekly basis from http://function.rcsb.
org:8080/pdb/function_distribution/index.html.
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Introduction

The three-dimensional structure of a protein is an essential
component in elucidating the biological function(s) at the
molecular level and in understanding the details of molecular
recognition. Traditional structural biology supports a para-
digm in which biochemical evidence of function is confirmed
and further understood through the study of structure [1].
Structural genomics [2] has changed this paradigm, being
motivated by a variety of criteria, including a desire to
increase the coverage of known fold space [3]. Concomitantly,
complete genome sequences are becoming available at an
increasing rate and both putative functions and structures
defined for coding regions. Even given the limitations of these
assignments, it is an appropriate time to assess the current
coverage of protein structure space from a functional
perspective relative to the perceived functional coverage of
complete genomes, notably human. Further, the registering
of structural genomics targets (sequences subject to structure
determination) by most projects worldwide [4] provides an
excellent opportunity to assess what the perceived coverage
of functional space by structure will likely be going forward.
This paper makes this assessment, discusses where a change of
strategy in selecting targets may be appropriate, and reports
on functional classes that are well represented in the human
genome but without the existence of structures—the so-called
‘‘most wanted list.’’

Many authors have noted the structural and functional bias
in the Protein Data Bank (PDB), but few have attempted to

quantify it [5–8]. Rather, general statements are made that
refer to the limitations associated with structure determi-
nation methods, such as the propensity for small, globular,
soluble proteins solved by X-ray crystallography and nuclear
magnetic resonance. Beyond physical limitations, there is a
bias toward proteins identified as potential drug targets and a
historical bias toward structures that, without the benefit of
modern techniques, were, from the point of view of protein
isolation and structure determination, the most tractable.
Where does that put us today, and how can we estimate this
bias? A problem that has thwarted such studies is the lack of a
common reference frame. This problem has been partially
addressed by systems of consistent nomenclature; notwith-
standing, depth of coverage is neither complete nor
consistent across protein families. Recently, the Enzyme
Commission (EC) classification has been used to study the
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relationships among sequence, structure, and functions [9–
15]. Similarly, the Gene Ontology (GO) [16], while still
evolving, provides a consistent view of molecular function,
biological process, and cell component beyond enzymes.
Further, with consistent sequence annotation as a common
feature between resources describing structure and human
genetic disease, structure–disease relationships can be in-
ferred. Inference requires that care must be taken to assess
the statistical significance of the outcome. Using EC and GO
to define a common functional framework and highly
significant sequence relationships to infer relationships
between structure (either solved or under study) and disease,
we can measure the biased nature of the PDB and the
structures under consideration by structural genomics and
suggest protein structures that should be determined to
further our understanding of structure and function space.

Results/Discussion

The relationship between protein structures and their
function(s) is complex. A single structure superfamily often
displays variations in function. Conversely, the same function
can be achieved by proteins with different structures [10,11].
Domain recombination and shuffling leads to further func-
tional diversity [17–19]; hence, this study is undertaken at the
level of both single domain and whole protein to provide an
in-depth view of the functional distribution of protein
structures. Single-domain coverage is defined such that at
least one domain in the protein has structural information
available from the PDB, structural genomics, or homology
models. Whole-protein coverage means that structure in-
formation for all domains, including their organization, can
be directly or indirectly inferred. Similarities between func-
tional distributions from the human genome and from
experimental structures or theoretical models are measured
with Kendall’s tau correlation, which ranges from�1.0 to 1.0.
A large positive value indicates that two measurements have

similar ranks. The structure–function relationship analysis is
based on non-redundant sequence clusters with less than
40% sequence identity and 90% overlap, since functional
similarity usually breaks down below these thresholds [10,15].

The Functional Bias of PDB Structures
As stated, several studies have noted structural and func-

tional bias in the PDB [5–8]. In general, protein domains such
as transmembrane domains, low complexity regions, and
disordered regions, which are not suited to current structure
determination methods by X-ray crystallography and nuclear
magnetic resonance, are highly underrepresented in the PDB.
The columns labeled ‘‘PDB/Genome’’ in Tables 1–4 quantify
this bias relative to the known functional classification within
the human genome using EC (Table 1) and GO (Tables 2–4)
classifications. This bias is examined from the perspective of
both a single domain and the whole structure, since many
proteins have intracellular and extracellular domains that
have been solved without their domain spanning regions. For
example, proteins associated with transporter activity (Table
2) have the lowest coverage at the domain level (21.0%), but
are further underrepresented at the structure level (12.1%)
because of the presence of transmembrane domains. Proteins
with two or more contiguous domains, where each of the
domains has structure information available, may result in
different structures when those domains are swapped. This
impacts the observed relationship between values of coverage
and correlation computed with Kendall’s tau (see Materials
and Methods) for single domains versus whole structures, as
will be described subsequently.
Beyond obvious experimental limitations, skewed func-

tional distributions of PDB structures are observed for almost
all types and levels of EC and GO classifications (Tables 1–4).
For example, consider classification by EC number at all
levels (only the top-level EC classification is given in Table 1,
but current values for all levels of the EC hierarchy are
available from the Web site). The correlation coefficients by
Kendall’s tau between the genome sequences and PDB
structures with single-domain coverage for EC: *.*.*.* (all),
2.*.*.* (transferases), EC 2.7.*.* (transferring phosphorous-
containing groups), and EC 2.7.1.* (phosphotransferase with
an alcohol group as acceptor) are 0.867, 0.889, 0.806, and
0.383, with coverage of 29.9%, 25.4%, 28.7%, and 32.1%,
respectively. Thus, even for one of the most structurally
studied superfamilies, the protein kinase-like superfamily (all
belong to EC 2.7.1), the structures of the majority of atypical
kinases (proteins that phosphorylate a variety of substrates)
have not been determined, and the protein kinase family
itself is slightly underrepresented. The Kendall’s tau correla-
tion coefficient is only 0.383 and 0.192 for single-domain and
whole-protein coverage, respectively, for the protein kinase-
like superfamily.
The functional bias of PDB structures is also notable when

using GO molecular function annotations that extend beyond
enzyme activity. A total of 16,211 proteins within the human
genome can be annotated at this time. As shown in Table 2,
according to their Kendall’s tau at the whole structure level,
several subcategories are underrepresented, notably trans-
porter activity (already noted) and structural molecule
activity. Looking deeper (refer to http://function.rcsb.
org:8080/pdb/function_distribution/index.html), there are 16
GO subcategories of molecular function associated with
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Synopsis

The sequencing of the human genome provides biologists with new
opportunities to understand the molecular basis of physiological
processes and disease states. To take full advantage of these
opportunities, the three-dimensional structures of the gene
products are needed to provide the appropriate level of detail.
Since protein structure determination lags behind protein sequence
determination, an important and ongoing question becomes: what
degree of coverage of the human proteome do we have from
experimental structures, and what can we infer by modeling? Or,
turning the question around: what structures do we need to
determine (the ‘‘most wanted list’’) to further our understanding of
the human condition? This paper addresses these questions through
integration of existing data resources correlated using comparative
functional features, namely the Gene Ontology, which describes
biochemical process, molecular function, and cellular location for all
types of proteins, and the Enzyme Commission classification for
enzymes. Genetic disease states are linked through the Online
Mendelian Inheritance in Man resource. Readers can ask their own
questions of the resource at http://function.rcsb.org:8080/pdb/
function_distribution/index.html. The resource should prove partic-
ularly useful to the structural genomics community as it strives to
undertake large-scale structure determination with a goal of
improving the understanding of protein functional space.



Table 1. Coverage/Kendall’s Tau Correlations for Major Categories of Enzyme for Both Single Domains and Whole Proteins

EC Classification Number of Gene Clusters PDB/Genome SG/Genome Model/Genome

Domain Structure Domain Structure Domain Structure

1. Oxidoreductases 804 0.274/0.641 0.215/0.616 0.308/0.436 0.173/0.495 0.536/0.737 0.350/0.628

2. Transferases 3,995 0.254/0.889 0.176/0.766 0.310/0.915 0.213/0.915 0.489/0.889 0.304/0.944

3. Hydrolases 3,718 0.369/0.884 0.237/0.899 0.322/0.884 0.201/0.841 0.577/0.873 0.351/0.873

4. Lyases 307 0.278/0.596 0.222/0.552 0.264/0.414 0.208/0.276 0.528/0.733 0.375/0.467

5. Isomerases 347 0.268/0.931 0.244/0.931 0.293/0.966 0.195/0.966 0.610/1.000 0.488/0.733

6. Ligases 638 0.194/0.414 0.081/0.775 0.339/0.690 0.194/0.645 0.629/1.000 0.226/0.745

Current values for nodes of these major branches can be determined from http://function.rcsb.org:8080/pdb/function

_

distribution/index.html.

DOI: 10.1371/journal.pcbi.0010031.t001

Table 2. Coverage/Kendall’s Tau Correlations for Major Categories of GO Molecular Function for Both Single Domains and Whole
Proteins

GO Molecular Functiona Number of Gene Clusters PDB/Genome SG/Genome Model/Genome

Domain Structure Domain Structure Domain Structure

Binding (GO 5488) 5,997 0.487/0.729 0.329/0.672 0.360/0.727 0.220/0.654 0.575/0.816 0.303/0.826

Catalytic activity (GO 3824) 4,117 0.336/0.912 0.251/0.857 0.297/0.826 0.165/0.850 0.593/0.941 0.351/0.805

Enzyme regulator activity (GO 30234) 466 0.595/0.753 0.419/0.834 0.419/0.612 0.311/0.636 0.689/0.897 0.432/0.739

Signal transducer activity (GO 4871) 1,509 0.392/0.913 0.155/0.913 0.270/1.000 0.182/1.000 0.541/1.000 0.155/0.913

Structural molecule activity (GO 5198) 559 0.400/0.643 0.400/0.651 0.600/0.706 0.533/0.561 0.400/0.700 0.333/0.581

Transcription regulator activity (GO 30528) 970 0.542/0.636 0.333/0.799 0.750/0.925 0.625/0.828 0.750/0.833 0.417/0.854

Transporter activity (GO 5215) 1,123 0.210/0.671 0.121/0.608 0.304/0.623 0.112/0.453 0.327/0.717 0.164/0.626

Current values for nodes of these seven major branches and other eight minor categories can be determined from http://function.rcsb.org:8080/pdb/function

_

distribution/index.html.
a Eight minor categories are not listed in the table, and can be browsed from the Web site.

DOI: 10.1371/journal.pcbi.0010031.t002

Table 3. Coverage/Kendall’s Tau Correlations for Major Categories of GO Biological Process for Both Single Domains and Whole
Proteins

GO Biological Processa Number of Gene Clusters PDB/Genome SG/Genome Model/Genome

Domain Structure Domain Structure Domain Structure

Behavior (GO 7610) 62 0.538/0.672 0.231/0.696 0.077/0.468 0.000/0.000 0.615/0.504 0.077/0.468

Cellular process (GO 9987) 7,133 0.484/1.000 0.355/1.000 0.426/1.000 0.280/1.000 0.667/1.000 0.377/1.000

Development (GO 7275) 1,171 0.376/0.798 0.257/0.638 0.468/0.882 0.231/0.705 0.688/0.803 0.321/0.825

Physiological process (GO 7582) 4,483 0.503/0.795 0.371/0.682 0.435/0.841 0.304/0.828 0.654/0.932 0.369/0.787

Regulation of biological process (GO 50789) 395 0.455/0.909 0.321/0.815 0.312/0.679 0.205/0.605 0.607/0.889 0.268/0.780

Current values for nodes of these five major branches and other two minor categories can be determined from http://function.rcsb.org:8080/pdb/function

_

distribution/index.html.
a Two minor categories—viral life of cycle and biological process unknown—are not listed in the table, and can be browsed from the Web site.

DOI: 10.1371/journal.pcbi.0010031.t003

Table 4. Coverage/Kendall’s Tau Correlations for Major Categories of GO Cell Component for Both Single Domains and Whole Proteins

GO Cellular Locationa Number of Gene Clusters PDB/Genome SG/Genome Model/Genome

Domain Structure Domain Structure Domain Structure

Cell (GO 5623) 4,599 0.441/0.615 0.275/0.692 0.549/0.846 0.373/0.854 0.618/0.680 0.314/0.530

Extracellular matrix (GO 31012) 235 0.333/0.105 0.190/0.447 0.286/0.738 0.143/0.598 0.524/0.800 0.190/0.359

Extracellular region (GO 5576) 639 0.200/0.400 0.200/0.400 0.000/0.000 0.000/0.000 0.600/0.516 0.200/0.400

Organelle (GO 43226) 4,104 0.444/1.000 0.350/1.000 0.538/1.000 0.402/1.000 0.718/1.000 0.444/1.000

Protein complex (GO 43234) 1,203 0.306/0.357 0.214/0.352 0.410/0.550 0.249/0.468 0.520/0.532 0.295/0.431

Current values for nodes of these five major branches and other two minor categories can be determined from http://function.rcsb.org:8080/pdb/function

_

distribution/index.html.
a Two minor categories—virion and cell component unknown—are not listed in the table, and can be browsed from the Web site.

DOI: 10.1371/journal.pcbi.0010031.t004
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structural molecule activity. Twelve of them have been
mapped to the human genome. The most structurally
underrepresented proteins include the structural constituent
of ribosome (two structures but 180 annotations), of myelin
sheath (zero structures and two annotations), of epidermis
(zero structures and six annotations), of tooth enamel (zero
structures and five annotations), of bone (zero structures and
three annotations), of chorion (zero structures and one
annotation), and of cell wall (zero structures and one
annotation).

Table 3 provides the distribution of protein domains and
whole structures according to the subcategories of GO
biological process. A total of 14,876 proteins within the
human genome can be annotated at this time. Thus,
biological process is less well characterized than molecular
function, presumably since molecular function cannot
necessarily be related to a role in a complex biological
process. Notwithstanding, both single-domain and whole-
protein structures with an identified role in cellular process
are underrepresented.

Table 4 provides the distribution of protein domains
according to the subcategories of GO cell component.
Overall, the distribution between PDB structures and the
human genome is comparable, with a Kendall’s tau of 0.714;
however, proteins identified within the cell (GO 5623) are
underrepresented at both the structure and domain levels.
Coverage is not as favorable as distribution: only 38.3% of the
subcategories of cell location have at least one structure
domain representative. Of those, the vast majority are
annotated as cell (4,599 out of 8,936 gene clusters). Under
cell (see http://function.rcsb.org:8080/pdb/function_distribu-
tion/index.html), there are 12 subcategories that have been
assigned to the human genome, five have no structure
representation and seven have at least one structure domain
representative (membrane [3,354 gene and 236 structure
clusters], intracellular [1,237 gene and 169 structure clusters],
cell surface [23 gene and four structure clusters], cell
projection [26 gene and one structure cluster], cell fraction
[621 gene and 75 structure clusters], apical part of cell [six
gene and one structure cluster], and basal part of cell (two
gene and one structure cluster]). As expected, membrane is
structurally underrepresented, and intracellular and cell
fraction is structurally overrepresented. There is no struc-
tural information available for five small subcategories of cell:
site of polarized growth (three gene clusters), periplasmic
space (three gene clusters), midbody (one gene cluster),
external encapsulation (two gene clusters), and cell soma
(one gene cluster).

Structural Coverage of Human Genetic Diseases
Three-dimensional protein structures are important in

understanding the mechanisms of human genetic diseases
[20], predicting the effect of non-synonymous single nucleo-
tide polymorphisms [20,21], and developing new personalized
medicines [22]. For example, a recent study highlights the
application of PDB structure and homology models in
understanding a predisposition to breast and ovarian cancer
[23]. However, the current identification and coverage of
human genetic disease space, as identified by the Online
Mendelian Inheritance in Man (OMIM), is limited: 218 non-
redundant human genome sequence clusters, 46 structure
clusters, and 34 structural genomics target clusters. The PDB

currently covers 69.9% of the disease categories described by
OMIM, but the distribution based on class of disease is
uneven. For example, diseases of the central nervous system
have the largest single representation (20 structure clusters)
with a disproportionately large number of structural ge-
nomics targets (23 target clusters). Blood and lymph based
diseases have a disproportionate number of ten solved
structures, but an underrepresentation of targets (three
clusters). Conversely, diseases of the ear, nose, and throat
are underrepresented (six structure and seven target clusters).
Overall, cancers have an appropriate level of structures and
targets; however, digging deeper reveals a different situation.
For example, there are no structures available for the five
human proteins that have been associated with prostate
cancer, although homology models can be inferred for
domains such as prostate specific kallikrein of serine
proteases [24]. Data showing measurable differences in
protein and gene regulatory networks between the early-
and the late-stage prostate cancer [25] only highlight the need
to further understand the structural basis of this disease.
Human genetic disease distributions, while limited, are
undoubtedly influenced by historical precedent, preventative
and treatable conditions, and social and, hence, funding
pressures.

The Contributions of Homology Modeling
While the number of three-dimensional structures of

proteins has increased close to the near-exponential rate
predicted by Dickerson in 1978 as number of structures ¼
exp(0.19 3 year) [26], there are still a vast number of protein
sequences without structure information available. Homology
modeling can potentially provide putative structure infor-
mation for these sequences to facilitate our understanding of
their function and evolution [27,28]. Reliable homology
modeling usually requires that the query sequence share at
least 30% sequence identity with the template structure for
each domain [27]. Domain rearrangements and lack of
domain structures reduce the effectiveness of homology
modeling for whole structures, as shown in the columns
labeled ‘‘Model/Genome’’ in Tables 1–4. In almost all EC and
GO classifications, coverage and distribution falls for whole
structures versus domains. From a biological perspective,
modeling of only a subset of domains within a structure limits
the value of modeling.
As expected, the distribution of homology models is highly

correlated with the availability of PDB structures. Single-
domain coverage across the whole human genome indicates
that our ability to provide homology models for domains in
the different GO molecular function categories varies from
32% to 75%. For the modeling of whole proteins, coverage
drops, varying from 16% to 41%. Transporter activity and
signal transducer activity is the most difficult to model at the
whole-protein level. GO functional coverage for signal
transducer activity drops from 0.541 to 0.155. Thus, while
catalytic domains involved in signal transduction are well
represented and can be modeled in 54% of cases, these data
quantitatively show that the associated non-transmembrane
domains of the whole protein are significantly underrepre-
sented, thereby limiting our ability to model whole proteins
in 38% of cases.
Considering enzymes alone, our ability to homology model

single domains is fairly evenly distributed across all major
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classes (Table 1). At the whole-protein level, this picture
changes. Retaining a high Kendall’s tau even as coverage
drops significantly could imply that functional diversity
comes primarily from domain recombination rather than
from new domains that cannot be modeled. Indeed, it has
recently been reported that contemporary ligases evolved by
domain fusions [29], a fact supported by a relatively small
drop in Kendall’s tau from 1.000 to 0.745 for single domains
versus the whole protein.

Low correlation within a functional class implies that
homology models can be inferred from structures in different
functional subclasses and other species. For example, in the
oxidoreductases (EC 1.x.x.x ), five classifications (1.7, acting
on other nitrogenous compounds as donors; 1.9, acting on a
heme group of donors; 1.10, acting on diphenols and related
substances as donors; 1.17, acting on –CH2 groups; and 1.97,
other oxidoreductase) are not structurally covered at all.
However, with the exception of 1.97, other oxidoreductase,
the proteins in the four remaining subclasses can be modeled
from structural templates present in the other functional
subcategories, implying a close evolutionary relationship
within this functional class.

Conversely, experimental structural coverage is more
critical for functional classes with more distinct evolutional
origins, such as the protein kinase-like superfamily, which is
in the transferase category. It has been suggested [30] that
atypical kinases diverged early in evolution from protein
kinases; therefore, homology models of atypical kinases
derived from protein kinases are likely insufficient to infer
their functional and evolutional roles. In 13% of cases, while
the homology model is identified to belong to the protein
kinase-like superfamily, the specific family cannot be deter-
mined.

The Contribution of Structural Genomics
One approach to the selection of structural genomics

targets has been to focus on increasing the coverage of fold
space [31–33]. A recent review suggests that the first phase of
structural genomics has been successful in this regard [34]. It
is anticipated that functional roles will be given greater
precedence in future phases of the project [35–37]. If so, a
question to address is: does the current complement of
structural genomics targets and the structures solved by these
projects reduce the functional bias present in the PDB? The
short answer is yes, but only significantly in some functional
categories (Tables 1–4, columns labeled ‘‘SG/Genome’’) and
assuming two to three times the number of structures than we
have now (based on the relative numbers of clusters between
structure genomics targets and PDB structures, given a 40%
sequence identity cutoff).

Within the enzymes (Table 1), ligases will benefit the most
and lyases the least. Based on GO molecular function (Table
2), structural molecule activity and transcription regulator
activity (single domain) will be impacted the most; binding,
catalytic activity, signal transducer activity, and transporter
activity the least. In terms of GO biological processes (Table
3), structural genomics will contribute almost nothing to our
understanding of behavior and about equally to cellular
processes, development, physiological processes, and regu-
lation of biological processes. Finally, current structural
genomics targets will not contribute to our understanding
of extracellular region of cell component (Table 4). The most

notable impact of structural genomics overall is in our
potential understanding of transcription regulator activity,
which shows an improvement in coverage from 0.542 to 0.750
and an improved Kendall’s tau of 0.636 to 0.925 for a single
domain.
Drilling down into one of these categories, the previously

described structurally underrepresented GO class for molec-
ular function—namely, structural molecule—becomes better
populated such that targets will increase the coverage of the
structural constituent of tooth enamel (one structure but five
annotations), of myelin sheath (one structure and two
annotations), and of ribosome (48 structures and 180
annotations). There remains no anticipated experimental
structure information for the structural constituent of
epidermis, bone, chorion, and cell wall (total 11 annotations).
Given these findings, it is timely to consider the choice of

structural genomics targets. It has been suggested that solving
the structures of proteins from the 5,000 Pfam families will
cover more of fold space than focusing on a single genome
[38]. Here, we look at target selection from a functional
perspective and provide a tool for comparing the functional
coverage by the existing PDB and what the existing comple-
ment of structural genomics targets do to that functional
coverage. The remainder of the paper considers one
application of the tool in providing a strategy for selecting
structures that could be used to maximize our understanding
of structure–function relationships with respect to the
human genome.

Defining Structures That Should Be Determined
To date, approximately 50% of human genes (16,211 terms

for GO molecular function, 14,876 terms for GO biological
process, and 13,322 terms for GO cell component) have at
least one GO annotation. However, approximately 70% of
these GO molecular function categories are yet to be covered
by experimental structures with even one identifiable
domain. The structural coverage of the human genome is
even lower with respect to sequence space: approximately
10% coverage by structure at 40% sequence identity. Stated
another way, 5% of the human genome, which covers 30% of
functional space, has structure representation for at least one
domain in a protein. If all current structural targets were
determined, it is estimated that coverage of the human
genome and functional space would increase to 20% and
50%, respectively. Homology modeling would increase
genome and functional coverage to 40% and 60%, but what
these putative high-throughput models add to our under-
standing of molecular function remains questionable. When
taking domain recombination into account, the functional
coverage of the human genome by existing experimental
structures and anticipated structures being determined by
structure genomics decreases to approximately 25% of the
functional space.
This lack of coverage perhaps calls for a new strategy to

select targets for structure determination. Here, one such
strategy is outlined for choosing targets to increase the
coverage of functional space. It is based on the following
criteria: (1) functional categories are preferred where
proteins with experimental or theoretical three-dimensional
models are underrepresented; (2) from (1), proteins without
SCOP superfamily assignments are preferred; (3) if the
protein is identified as being associated with a disease or is

PLoS Computational Biology | www.ploscompbiol.org August 2005 | Volume 1 | Issue 3 | e310226

Functional and Structural Space



identified in multiple functional categories, it has a higher
priority; and (4) less experimentally tractable proteins—for
example, those with transmembrane segments—can be
filtered out.

From our initial analysis, approximately 2,000 non-redun-
dant human genes with GO annotation have no experimental
structure in the PDB, nor are they identified structural
genomics targets or amenable to homology modeling. Of this
2,000, approximately 50% include transmembrane domains.
After removing transmembrane and low-complex regions,
about 1,800 include at least one domain that is potentially
solvable. The most understudied proteins of this 1,800 are
various types of transporters and receptors. It should be
noted that it requires fewer targets to cover this functional
space than the equivalent sequence space.

Ranked by the size of the cluster of proteins, examples
of the most pressing biological molecule functions for
which structural representation is needed and soluble
structure domains are probably present are listed here
(Tables 5 and 6) and at http://function.rcsb.org:8080/pdb/

function_distribution/index.html, which is updated regularly.
For catalytic activity, most of them are involved in protein
syntheses and gene regulation. For binding, most of them are
involved in signal transduction and have additional benefit as
potential drug targets.
Several genes without experimental structures and not

found in the structural genomics target list are annotated by
both GO and disease terms (see http://function.rcsb.org:8080/
pdb/function_distribution/index.html). For example, congen-
ital adrenal hyperplasia is associated with three gene clusters.
Two of them are annotated with oxygen binding (GO ID:
19825), and one with steroid 11-beta-monooxygenase activity
(GO ID: 4507).

Table 5. Most Wanted Structures According to EC Numbersa

EC Class Number

of Gene

Clusters

Function

2.3.1.51 12 1-acylglycerol-3-phosphate O-acyltransferase

3.6.3.1 10 Phospholipids-translocating ATPase

2.4.99.6 10 N-acetyllactosaminide alpha-2,3-sialyltransferase

3.1.13.4 6 Poly(A)-specific ribonuclease

1.3.99.5 5 3-oxo-5-alpha-steroid 4-dehydrogenase

3.6.1.6 5 Nucleoside-diphosphatase

1.5.99.2 5 Dimethylglycine dehydrogenase

3.1.3.56 4 Inositol-polyphosphate 5-phosphatase

1.13.11.40 4 Arachidonate 8-lipoxygenase

2.7.7.13 4 Mannose-1-phosphate guanylyltransferase

3.4.11.2 4 Membrane alanyl aminopeptidase

3.6.3.28 3 Phosphonate-transporting ATPase

2.4.1.68 3 Glycoprotein 6-alpha-L-fucosyltransferase

3.4.24.61 3 Nardilysin

2.4.1.69 3 Galactoside 2-alpha-L-fucosyltransferase

3.6.1.5 3 Apyrase

3.5.4.6 3 AMP deaminase

3.6.3.19 3 Maltose-transporting ATPase

1.3.3.2 3 Lathosterol oxidase

1.5.99.1 3 Sarcosine dehydrogenase

3.1.3.4 3 Phosphatidate phosphatase

2.4.99.7 3 (Alpha-N-acetylneuraminyl-2,3-beta-galactosyl-1,3)-N-

acetyl- galactosaminide 6-alpha-sialyltransferase

2.4.99.1 3 Beta-galactoside alpha-2,6-sialyltransferase

2.1.1.62 3 mRNA (29-O-methyladenosine-N(6)-)-methyltransferase

3.6.1.15 3 Nucleoside-triphosphatase

2.8.2.23 3 (Heparan sulfate)-glucosamine 3-sulfotransferase 1

2.4.1.109 3 Dolichyl-phosphate-mannose—protein

mannosyltransferase

3.6.3.30 3 O-fucosylpeptide 3-beta-N-acetylglucosaminyltransferase

1.3.1.70 3 Delta(14)-sterol reductase

2.4.1.102 3 Beta-1,3-galactosyl-O-glycosyl-glycoprotein beta-1,6-N-

acetylglucosaminyltransferase

1.5.1.2 3 Pyrroline-5-carboxylate reductase

3.1.21.7 3 Deoxyribonuclease V

The proteins are clustered with 40% sequence identity.
a Data for clusters of fewer than three can be obtained from http://function.rcsb.org:8080/pdb/function_distribution/

index.html.

DOI: 10.1371/journal.pcbi.0010031.t005

Table 6. Most Wanted Structures According to GO Classificationa

GO GO ID Number

of Gene

Clusters

Function

15171 15 Amino acid transporter activity

Molecular

function

5328 12 Neurotransmitter:sodium symporter activity

45028 8 Purinergic nucleotide receptor activity,

G-protein coupled

5338 7 Nucleotide-sugar transporter activity

16526 7 G-protein coupled receptor activity,

unknown ligand

30165 7 PDZ domain binding

30280 6 Structural constituent of epidermis

8717 6 D-alanyl-D-alanine endopeptidase activity

4985 6 Opioid receptor activity

4500 5 Dopamine beta-monooxygenase activity

4012 5 Phospholipid-translocating ATPase activity

8508 5 Bile acid:sodium symporter activity

8518 5 Reduced folate carrier activity

4994 5 Somatostatin receptor activity

8503 5 Benzodiazepine receptor activity

15321 5 Sodium-dependent phosphate

transporter activity

8158 5 Hedgehog receptor activity

4993 5 Serotonin receptor activity

4579 5 Dolicyl-diphospholigosaccharide-protein

glycotransferase activity

4709 5 MAP kinase kinase kinase activity

17022 5 Myosin binding

15520 5 Tetracycline:hydrogen antiporter activity

Biological

process

15893 10 Drug transport

7026 10 Negative regulation of microtubule

depolymerization

46777 9 Autophosphorylation

15711 8 Organic anion transport

7214 7 Gamma-aminobutyric acid signaling pathway

42832 6 Defense response to pathogenic protozoa

46803 6 Reduction of virulence

15780 5 Nucleotide-sugar transport

6829 5 Zinc ion transporter

15904 5 Tetracycline transport

Cell

component

5852 7 Eukaryotic translation initiation factor 3 complex

5747 6 Respiratory chain complex I

5883 5 Neurofilament

5678 5 Chromatin assembly complex

922 5 Spindle pole

The proteins are clustered with 40% sequence identity.
a Data for clusters of fewer than five can be obtained from http://function.rcsb.org:8080/pdb/function_distribution/

index.html.

DOI: 10.1371/journal.pcbi.0010031.t006
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In summary, by using common annotation as found in the
GO and the EC classification scheme, we have been able to
correlate the biological functions of proteins and their
constituent domains for both experimentally derived struc-
tures and those under determination by structural genomics
projects worldwide. Further, by using empirical sequence
limitations known from homology modeling experiments and
by clustering human genome sequences according to
sequence identity, we can estimate the impact that current
structure determination strategies will have on our under-
standing of structure–function relationships from homology
modeling. Finally, by introducing relationships between gene
products and known disease states, we have provided pointers
for choosing structures to be determined to have the
maximum impact on our understanding of human genetic
disease. To facilitate these choices, a Web resource has
been established at http://function.rcsb.org:8080/pdb/
function_distribution/index.html to allow readers to make
their own assessments of the progress of structural biology.
The resource will be updated on a weekly basis to provide a
current view. The resource itself will be the subject of a
separate publication.

Materials and Methods

Date sources and annotation mapping. The human genome
sequences (version 26.35.1) were downloaded from Ensembl database
[39]. Wild-type sequences associated with PDB structures were
generated by associating the structural sequence with that from
UniProt [40] using database cross references records. Subsequently,
all wild-type PDB sequences of the human proteins were mapped to
the genes in the human genome through sequence alignment using
Blast [41]. A gene was considered to have a structure representation if
it had 100% sequence identity with the wild-type sequence of the
PDB structure. Structural genomics targets were taken from targetdb
[42], the worldwide repository of all sequences representing
structures being attempted. Among more than 5,000 registered
human target sequences, there were 3,141 and 4,784 targets mapped
to the 3,200 and 4,218 Ensembl human genes with sequence identity
100% and greater than 90%, respectively. The 4,784 targets with
sequence identity above 90% were used in our analysis, with 2,180 of
them having GO or EC terms assigned.

Sequences were assigned GO terms from the EBI GOA resource
(http://www.ebi.ac.uk/GOA). The query sequence was aligned with the
UniProt GO annotated sequence with Blast [41]. If the Blast sequence
identity was above 40%, and the overlap was above 90%, the
annotated GO terms were mapped to the query gene (16,211 for GO
molecular function, 14,876 for GO biological process, and 13,322 for
GO cell component). The threshold is based on the observation that
below 40% sequence identity with global alignment, the functional
similarity relationship breaks down [10,15]. Sequences were also
mapped to enzyme classification numbers with the annotations and
sequences in the UniProt database as the reference. The 40%
sequence identity and 90% overlap threshold was also applied to EC
mapping.

Genome sequences were masked for low-complexity regions,
coiled-coils, and transmembrane helical domains, using SEG [43],
Coils [44], and TMHMM [45], respectively. SCOP superfamily
domains [46] of unmasked regions of human genome sequences were
assigned with HMMER [47]. A set of hidden Markov Models of SCOP
domains was taken from SUPERFAMILY 1.65 [48]. Given the current
stage of homology modeling, the model was usually reliable when the
sequence identity was above 30% between the query sequence and
the template structure [25]. Thus, only those assigned domains with

sequence identity above 30% in the alignment were considered as
homology models. The sequence regions that were not assigned by
SCOP domains were further parsed with Pfam 16.0 [49]. The
remaining unmasked sequence segments that were not annotated
by either SCOP or Pfam but longer than 30 residues were considered
as novel domains. Moreover, for contiguous domains, their orders
were recorded in the database. The two domains were considered as
contiguous with each other if they were not separated by the filtered
sequence segments.

All genome sequences were clustered with 40% sequence identity
and 90% overlap using CD-HIT [50].

For PDB structures and structural genomics targets, SCOP
domains and their arrangements were computed with the same
procedure as for genome sequences.

The original mapping of structures to OMIM numbers was taken
from SWISS-PROT [51]. The mapping of genome sequences to OMIM
numbers was from NCBI [52]. These mappings were recorded and
used from the PDB beta site [26].

Data analysis. For each functional or structural category, the
number of sequence or structure clusters in the subcategory was
normalized with that of sequence clusters from the genome. The
overall similarity between two distributions—for example, the PDB
structure and the human genome—was measured with Kendall’s tau
correlation coefficient s [53]. For N pairs of measurements (xi, yi),
each of them has N(N�1)/2 pairs of data points. s is computed as:

s ¼ con� dis
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðconþ disþ eyÞðconþ disþ exÞ

p

con is defined as the number of pairs where (xi, xj) ranks the same as
(yi, yj). dis is the number of pairs where (xi, xj) ranks the opposite to
(yi, yj). ey is the number of pairs where yi¼ yj, and ex is the number of
pairs where xi¼ xj.

Kendall’s tau correlation coefficient ranges from�1.0 to 1.0. If two
measurements have the similar ordering, it will be close to 1.0. The
opposite ordering will give values close to�1.0. The coverage was also
computed and defined as the ratio between the number of functional
categories that have at least one structure representative and all
functional categories.

Data access. Data were warehoused in a single relational database
where relations represent the mappings between the individual data
sources. From a user’s perspective, data appear in a multi-dimen-
sional space. Each of the functional or structural categories is
considered one dimension in the multi-dimensional space. A PDB
structure or a genome sequence occupies a cube in this space. Any
combination of two dimensions can be selected, and the distributions
corresponding to the selected dimensions are calculated and
displayed. The dimensions are organized in a hierarchal fashion
according to their functional or structural taxonomies. Thus, data
mining tasks such as drill-down or roll-up are supported. The
database is accessible from http://function.rcsb.org:8080/pdb/
function_distribution/index.html.
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