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Abstract

When a perturbation is applied in a sensorimotor transformation task, subjects can adapt and maintain performance by
either relying on sensory feedback, or, in the absence of such feedback, on information provided by rewards. For example,
in a classical rotation task where movement endpoints must be rotated to reach a fixed target, human subjects can
successfully adapt their reaching movements solely on the basis of binary rewards, although this proves much more difficult
than with visual feedback. Here, we investigate such a reward-driven sensorimotor adaptation process in a minimal
computational model of the task. The key assumption of the model is that synaptic plasticity is gated by the reward. We
study how the learning dynamics depend on the target size, the movement variability, the rotation angle and the number
of targets. We show that when the movement is perturbed for multiple targets, the adaptation process for the different
targets can interfere destructively or constructively depending on the similarities between the sensory stimuli (the targets)
and the overlap in their neuronal representations. Destructive interferences can result in a drastic slowdown of the
adaptation. As a result of interference, the time to adapt varies non-linearly with the number of targets. Our analysis shows
that these interferences are weaker if the reward varies smoothly with the subject’s performance instead of being binary.
We demonstrate how shaping the reward or shaping the task can accelerate the adaptation dramatically by reducing the
destructive interferences. We argue that experimentally investigating the dynamics of reward-driven sensorimotor
adaptation for more than one sensory stimulus can shed light on the underlying learning rules.
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Introduction

Transformations that map sensory inputs to motor commands

are referred to as sensorimotor mappings [1]. While sensorimotor

mappings are already formed at early stages of development [2],

they are subject to modifications, since the brain, the body and/or

the environment are constantly changing. Plasticity in sensorimo-

tor mappings has been extensively studied in situations where

subjects receive sensory feedback during the task, allowing them to

correct their motor actions and to adapt to the induced

perturbation. These include visuomotor rotation [3], reaching

movements under forcefields [4], adaptation in a smooth pursuit

eye movements [5], prism adaptation [6], and pitch perturbation

in songbirds [7] and in humans [8].

Although these studies involve different sensory modalities and

different effectors, they are similar in the sense that they all have

sensory goals (targets) and a motor gesture is made to reach the

target. They consist of three phases namely a standard phase, in

which subjects perform the task under regular conditions followed

by an adaptation phase, where subjects perform the same task

under the perturbed condition and a washout phase during which

the perturbation is removed, and the subject readapts toward

baseline. Remarkably, in all these three phases, movements display

substantial trial to trial variability. Recent theoretical as well as

experimental studies suggested that this variability plays a crucial

role in sensorimotor learning and adaptation processes [9–11].

Another issue concerns the ability of subjects to generalize the

adaptation from one context condition to a different context. This

has been investigated by testing how subjects perform upon

presentation of sensory stimuli that were not present during the

adaptation phase [12,13]. Generalization is usually good for

sensory stimuli that are similar to the one used during adaptation

and degrades as the sensory stimuli become different [3,14].

Remarkably, subjects can even perform worse than in baseline

(negative generalization) for sensory stimuli which are very

different from those which was presented to the subject during

adaptation. This has been observed, for instance, in motor

reaching tasks, when the tested stimulus is presented in a direction

which is opposite to the adapted direction [4,14].

The above mentioned studies implicitly assumed that the neural

mechanisms for adaptation are driven by a sensory feedback,

which supplies a continuous error signal to the subject. Yet, recent

studies show that adaptation is possible even without any sensory

feedback, when only a binary reward that informs on a success or

a failure of a trial is provided to the subject [15–17]. Moreover,

recent experimental works suggest that reward based mechanisms
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also affect the adaptation dynamics in sensorimotor tasks even

when a sensory feedback is available [18,19].

However, and not surprisingly, adaptation relying solely on

rewards at the end of a trial is more difficult than when a sensory

feedback on the performance is provided continuously during the

task, as adapting with sensory feedback conveys more information

regarding errors. For instance, when visual feedback is available in

visuomotor rotation tasks, subjects adapt to large perturbation (e.g.

30 degrees) in a few dozen trials [3,20], while in the absence of

such feedback, but with binary (success or a failure) reward

feedback, subjects find it notoriously difficult to adapt. Recent

studies, nevertheless, have shown that it is possible to adapt to

large perturbations relying solely on rewards if the size of the

perturbation is slowly increased between rewarded blocks of trials

[17,21]. The fact that progressively increasing the amount of

perturbation makes it possible to adapt, even when the perturba-

tion is large, is reminiscent of the classical shaping strategy [22]. In

shaping, the difficulty of the task is increased gradually in order to

accelerate learning, or to even make it possible. Although shaping

is routinely used in laboratories when training animals to perform

complex sensorimotor and cognitive tasks [23–25], it is only in

recent years that it started to be explored in a theoretical

framework [26–28].

What neural mechanisms could be involved in this reward

based learning? Recent experimental evidence [29–31] indicates

that rewards modulate local synaptic plasticity via global

neuromodulatory signals, e.g. dopamine. When combined with

the popular idea that synapses are modified according to Hebbian

rules, this leads to the hypothesis that reward signals interact with

local neuronal activity to modulate synaptic efficacies [32,33]. This

theoretical paper aims to provide qualitative as well as quantitative

insights into the conditions in which sensorimotor adaptation

relying solely on rewards can take place. More specifically, we

assume that a local learning rule based on the coactivation of pre

and postsynaptic neurons is gated by a binary reward signal is the

neural basis for modifications of synaptic efficacies [32,34,35].

We focus here on adaptation to a rotation during reaching

movements where subjects are asked to move a cursor on a screen

to bring it within a circular target while the cursor trajectory is

rotated (perturbed) by some angle with respect to the hand

trajectory. These perturbation tasks are classically used in

behavioral studies of sensorimotor adaptation [3]. We consider a

simplified network model of this task where adaptation relies solely

on binary rewards [17]. The simplicity of the model allows us to

analytically study several aspects of the adaptation dynamics.

Combining these results with numerical simulations enables us to

investigate the ways in which the learning dynamics depend on the

model parameters. The key question is how the dynamics of

adaptation are affected when the task involves multiple targets.

Four main findings are reported: interferences can occur when

adapting to multiple stimuli, interferences can slow down the

adaptation dynamics dramatically, this depends on the (binary,

stochastic) reward, and the slow down can be overcome by using

shaping strategies.

Results

We consider the classical rotation experiment [3] in which a

subject has to move a cursor on a screen to bring it within a

circular target with a radius of
ffiffi
E
p

; see Figure 1A. At the beginning

of the experiment there is no discrepancy between the movement

of the hand and the movement of the cursor. We assume that the

subject is able to generate the appropriate hand movement to

perform the task correctly. A perturbation is then introduced, so

that the cursor trajectory is rotated by an angle c with respect to

the hand trajectory. The subject has to adapt his movements to

this new condition.

In the present work, we focus on the case where the subject

receives no visual feedback about the trajectory of the cursor. The

only information on performance is a reward provided by the

experimentalist at the end of a trial, according to the location of

the cursor with respect to the desired target.

Our simplified model for a network which generates the

reaching movement is depicted in Figure 1B. Its input layer

consists of sensory neurons tuned to the location of the target. It

has the geometry of a ring: the preferred direction (between 0o and

360o) of a neuron corresponds to its location on the ring (see

Eq(2)). Hence, when a target appears, the population activity

profile in the input layer peaks around a location which is also the

target direction. For simplicity we assume that the tuning curves of

all the neurons have the same shape. Therefore, the shapes of the

population activity profile and the tuning curves are identical. In

particular, the tuning width, r, is also the width of the activity

profile.

The output layer consists of two linear units. Their activity

encodes the (r1,r2)~r coordinates of the endpoint of the hand

movement in the two dimensional environment. The connectivity

matrix implementing the sensorimotor mapping between the input

and the output layer is denoted by W[R2|N . In addition to their

feedfoward inputs from the first layer, the output units also receive

a Gaussian noise, j*N (0,s2I) (see Eq(4)), where s is the SD of

the noise (also referred to hereafter as the noise level). The vector

representing the endpoint of the cursor is obtained by rotating the

output vector of the second layer, r, by an angle c (262 rotation

matrix- Dc).

The reward, R, delivered at the end of the movement, depends

on the distance between the cursor and the target. Unless specified

otherwise it is binary: R~1 for a successful trial, i.e. if the squared

distance is smaller than the target size, and R~0, otherwise. The

Author Summary

The brain has a robust ability to adapt to external
perturbations imposed on acquired sensorimotor transfor-
mations. Here, we used a mathematical model to
investigate the reward-based component in sensorimotor
adaptations. We show that the shape of the delivered
reward signal, which in experiments is usually binary to
indicate success or failure, affects the adaptation dynamics.
We demonstrate how the ability to adapt to perturbations
by relying solely on binary rewards depends on motor
variability, size of perturbation and the threshold for
delivering the reward. When adapting motor responses to
multiple sensory stimuli simultaneously, on-line interfer-
ences between the motor performance in response to the
different stimuli occur as a result of the overlap in the
neural representation of the sensory stimuli, as well as
the physical distance between them. Adaptation may be
extremely slow when perturbations are induced to a few
stimuli that are physically different from each other
because of destructive interferences. When intermediate
stimuli are introduced, the physical distance between
neighbor stimuli is reduced, and constructive interferences
can emerge, resulting in faster adaptation. Remarkably,
adaptation to a widespread sensorimotor perturbation is
accelerated by increasing the number of sensory stimuli
during training, i.e. learning is faster if one learns more.

Sensorimotor Adaptations with Rewards
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target size is controlled by the parameter [ and therefore [ is

referred to as the target size in the text.

Following trial t, the network adapts to the rotation by

modifying the connectivity matrix, W , according to the reward-

gated synaptic plasticity rule [32,36–38]:

W(t)~W(t{1)zgR(t)j(t)FT (h(t))

where g is the learning rate, j is the noise in the output layer and

F(h) is the activity of the input layer in response to the

presentation of a target in direction h. We will assume that the

initial value of the connectivity matrix is such that without noise,

the network performs the task perfectly for all target directions

when c~00 (See Eq(9)). More details about the model are given in

Materials and Methods.

The simplicity of the model allows for analytical calculations in

the limit of small targets and a better understanding of the learning

dynamics. However, the results reported here are grounded on the

assumption of a reward-modulated learning rule and are

qualitatively independent of the simplifying assumptions used to

construct the model. For instance, as shown in Figure S2, the

results still hold qualitatively in a more complicated network

architecture with a different decoding scheme.

The learning dynamics for one target
We first consider the case where the network has to adapt to a

rotation of the cursor when only one target is presented. Figure 2A

(left) plots the evolution of the error (see Eq.(5)) with the number of

trials, hereafter referred to as the learning curve, while the network

adapts to an imposed rotation with an angle c~30o. On the right

panel we plotted for the same parameters the learning curve of the

directional error, which takes into account only the direction of the

movement.

The error is large at the beginning of the process and decreases

with the number of trials. Importantly, the dynamics strongly

depend on the noise. For a low noise level (Figure 2A, s~0:1), the

error remains large for many trials and learning is slow. When the

noise level is higher (Figure 2B, s~0:2) the error declines faster.

However, this comes at the cost of increasing the error after

learning: the median of this error, called hereafter the final error (see

Materials and Methods), is larger when the noise level is larger.

Similarly, the probability that the network will perform the task

successfully, improves more rapidly with the number of trials for

s~0:2 than for s~0:1, but at very long time it is larger in the

latter (0:824+0:001) than in the former (0:443+0:004) case.

The learning curves plotted in Figure 2A–B were obtained for

particular realizations of the noise, j(t). To provide a statistical

characterization of these dynamics, we estimated the distributions

of the logarithm of the learning duration (tL) over many

realizations of the noise (see Materials and Methods). As shown

in Figure 2D, this distribution shifts toward longer learning

duration as the noise level decreases.

Figures 2A and 2C plot the learning curves for E~0:05 and

E~0:1 for the same noise level. The learning is substantially faster

for E~0:1 but the final error is larger in this case. This is because

when the target size is large, a reward might also be delivered for

Figure 1. Schematic description of the sensorimotor adaptation task and the model. A. The rotation task. From left to right: 1) A circular
target (red circle) of radius

ffiffi
E
p

appears on the screen at direction h (here h~00) to instruct the subject where to move the cursor. 2) The subject
moves the cursor, which is invisible to him, toward the target (blue arrow). The only information available to the subject on his performance is the
reward, delivered only if the cursor falls within the target. 3) A perturbation is introduced: the cursor is rotated by an angle c with respect to the
direction of the subject’s hand movement (black arrow). 4) A learning phase follows where the subject progressively adapts to the perturbation,
reducing the distance between the cursor endpoint and the target. B. Schematic description of the model. When the target appears, the activity
profile of the input layer (red neurons) peaks around the target direction. The parameter r controls the width of the activity profile. The connectivity
matrix between the input and the output (blue neurons) layers is denoted by W . A Gaussian noise with zero mean and a standard deviation of s is
added to the output layer of the network. The two-dimensional output vector rotated by the matrix Dc represents the cursor endpoint. A reward is
delivered if the distance between the cursor endpoint and the center of the target is smaller than

ffiffi
E
p

. The connectivity matrix W is then changed
according to a reward-modulated plasticity rule (see Eq(8)).
doi:10.1371/journal.pcbi.1003377.g001

Sensorimotor Adaptations with Rewards
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less precise movement, i.e., for large errors. Figure 2E plots the log

learning duration and the final error averaged over 1,000
realizations vs. the target size: when increasing the target size,

the learning duration rapidly decreases, whereas the final error

increases.

When the noise level or the target size are increased, the

dynamics are typically faster because the probability of generating

rewarded trials at the beginning of the learning is larger. As this

probability increases, the time for the network to generate a

rewarded trial decreases, leading to more updates in the

connectivity matrix W ; hence the probability of the following

trials to be rewarded increases further. This argument can be

made more quantitative if one considers how the time to get the

first reward depends on s and E. It has a geometrical distribution

with a parameter p1 (see Eq.(10)), which is the probability to get

the first reward. Lower values of p1 increase the expectation time

to the first reward, and thereby the learning duration. When the

noise level is low and the initial error is larger than the target size,

the network explores a small region of the two dimensional space

and the probability of getting a reward is small. In contrast, for

very large noise the target is missed most of the time. The

probability p1 therefore varies non-monotonically with the noise

level (Figure 2F). The dependency on target size is simpler: p1

increases monotonically with target size, as it is more likely to

reach a larger target.

Performance depends on the learning rate para-

meter. Obviously, the number of trials required to adapt also

depends on g, which scales the increment in synaptic strength

following a rewarded trial. If the rate is too small, the adaptation

will be extremely long, even for large noise or big target size. On

the other hand, if this rate is too large learning is likely to be

impossible.

Figure 2. Learning dynamics when the network adapts to the rotation for one target. A. An examples of a learning curve for E~0:05, s~0:1.
Left: the error is calculated as the squared distance between the cursor endpoint and the target (see Eq. (5)) and plotted as a function of the trial number.
The rotation perturbation is applied on trials following t = 0. For display purposes, only one in four trials is displayed. The solid line represents the error,
smoothed with a 100 trials sliding median window. Final error of 0:02+0:001 (mean6 SE, computed as explained in Materials and Methods). Dashed
purple line: Target size. Right: as in left, but only the directional part of the error is plotted against the trial number. The shaded area corresponds to the
target size. B. Same as in the left panel of A. but with E~0:05,s~0:2 and corresponding final error of 0:06+0:001. C. Same as in the left panel of A. but
with E~0:1, s~0:1 and a corresponding final error of 0:03+0:001. D. Probability density function (p.d.f.) of the logarithm of the learning duration. The
learning duration (tL) is defined as the number of trials it takes to learn the task (see: Materials and Methods). Target size is E~0:05. E. Trade-off between
learning duration and final error. Average of log10 tL distribution (green) and the final error (blue) are plotted against the target size. The shaded area
around the averages corresponds to half SD of the distributions. Solid lines: s~0:1. Dashed lines: s~0:2. F. The probability of getting the first reward, p1

(see Eq. (10)), vs. the noise level, s for two values of the target size. In all the panels: c~300 .
doi:10.1371/journal.pcbi.1003377.g002

Sensorimotor Adaptations with Rewards
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To analyze how g affects the learning of the task it is convenient

to decompose the error at trial t, Ej(t), (Eq.(5)) into:

Ej~E0z2jT E0zDDjDD2

where E0~DDE0DD2 (Eq.(6)) on trial t does not depend on the noise,

j(t) (for more details, see Materials and Methods). We therefore

refer to E0 as the noiseless error. Changes in the noiseless error are

due to updates in the connectivity matrix, W , and only occur after

rewarded trials. In particular, the noiseless error rarely changes at

the beginning of learning, when the probability of getting a reward

is low (Figure 3A). The two other terms depend on the noise at

trial t.

We also define the noiseless performance after learning as the

probability that the noiseless error will be smaller than the target

size at large time. In Figure 3A, the noiseless performance

corresponds to the number of trials (red circles) that fall below

target size, divided by the number of trials (see also Materials and

Methods), when the number of trials is large.

Figure 3B plots the performance (blue) and the noiseless

performance (red) for E~0:1 and s~0:2 vs. the normalized learning

rate, �gg~ga (where a is a constant; see Materials and Methods).

The noiseless performance is perfect for �ggv1. It quickly

deteriorates when �gg increases beyond 1, until it becomes extremely

small around �gg~2. Performance decreases monotonically with �gg
until it reaches 0 around �gg~2. Similar qualitatively results were

obtained for other values of E and s (results not shown).

To better understand how the noiseless performance changes

with �gg, we solved the learning dynamics in the limit of small target

size ([?0) analytically. In this limit, the time between rewarded

trials diverges. Using the fact that when a trial t is rewarded, the

noise, j(t), is uniquely determined in this limit, we computed the

trajectory of the noiseless error analytically as a function of the

number of rewarded trials; see Materials and Methods. In

particular, the noiseless error goes to zero for a large number of

trials if �gg is smaller than 2 and diverges for �gg larger than 2.

When E=0 the noiseless error continues to fluctuate with time

(as in Figure 3A) in the range (0, Emax), where Emax depends on E
and �gg. This maximal value can be calculated analytically as shown

in Materials and Methods:

Emax~

E �ggƒ1
E

(2=�gg{1)2
1v�ggv2

? �gg§2

8>><
>>:

The dependency of noiseless performance with �gg (Figure 3B) stems

from this result. When �ggv1 the noiseless error is always smaller

than the target size (see example in Figure 3C). Therefore the

noiseless performance is always 1. For �gg~1 the distribution of the

noiseless error, can be calculated analytically (the proof is beyond

the scope of this paper). It is uniform in the range (0,E) (blue line in

Figure 3C). For 1v�ggv2 the noiseless error can be larger than the

target size (see example in Figure 3C) and noiseless performance is

no longer perfect. In fact as �gg increases, the distribution becomes

wider (its SD increases) and noiseless performance decreases

monotonously. Finally, when �ggw2 the above equation predicts

that the support of the noiseless error distribution is unbounded,

and simulations show that it becomes wider; hence the probability

of getting a reward is substantially smaller than for �ggv2.

While noiseless performance is always perfect for �ggv1,

performance can be improved by taking smaller values of �gg
(Figure 3B). This is because the distribution of the noiseless error is

sharper when �gg is smaller. However, decreasing �gg has the obvious

consequence of increasing the learning duration. Figure 2 shows

that for �gg~0:3 it takes only a few dozen trials to adapt perfectly if

the target size is E~0:1. Nevertheless, for smaller E the number of

trials increases dramatically. For instance, for E~0:02 this number

becomes extremely large (much larger than 108) even if �gg~0:3.

Accelerating the adaptation by shaping the task or the

reward. Shaping is a well-known strategy in the context of

operant conditioning, which allows a subject to learn difficult tasks

in a reasonable amount of time [22]. In shaping strategies, the

difficulty of the task is progressively increased. For a given degree

of difficulty, the subject has to learn to perform the task, his

performance is monitored, and when it is considered sufficiently

satisfactory by the experimentalist, the difficulty of the task is

increased. A shaping strategy has recently been successfully

applied to allow subjects to learn the sensorimotor rotation task

relying solely on a reward signal in the absence of visual feedback

[17]. In this section, we apply shaping strategies in our model to

examine to what extent learning can be facilitated or accelerated.

Figure 3. Performance and noiseless performance after
learning depends on the learning rate. A. An example of the
variations of the error (blue) and the noiseless error (red) with the
number of trials for E~0:05 (purple dashed line), s~0:15 and a
normalized learning rate (�gg~ag, see Eq. (12)) of 0.3. For display
purposes, only one in four trials is displayed. B. The performance (blue),
i.e., the probability that EjvE and the noiseless performance (red), i.e.,
the probability that E0vE are plotted against the normalized learning
rate. These quantities were estimated from simulations of 107 trials,
while excluding the transient learning phase. Note that for �ggv1 the
noiseless performance is perfect. The standard error of the mean is too
small to notice. C. Distribution of the noiseless error, E0 , at the end of
the learning phase. For �gg~0:3, the support of the distribution is
bounded by E. For �gg~1, the distribution is uniform for E0vE and zero
otherwise. For �gg~1:5 the support of the distribution is bounded but
extends beyond E. In B and C: E~0:1; s~0:2.
doi:10.1371/journal.pcbi.1003377.g003

Sensorimotor Adaptations with Rewards
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In the specific case of our sensorimotor adaptation task, the

difficulty of the task depends on the target size, the rotation angle

and the noise level. For fixed noise level and rotation angle,

learning can be shaped by initiating the adaptation process with a

large target size and then reducing the size progressively until it

becomes as small as desired. This can be implemented as follows.

The learning process begins with an initial value of the target size

E~E0, which is large enough for adaptation to be easy and fast.

The target size is kept constant, while monitoring the running

average of the reward. When the latter approaches a steady state,

the target size is decreased by DE (and the running average of the

reward is reinitialized to zero). We repeat this step until the target

size reaches the desired value Ed . An example of such a shaping

strategy is depicted in Figure 4A. Here we plot the learning curve

for Ed~0:02, when the adaptation is performed in the presence of

very small noise (s~0:05), starting with E0~0:2. Within fewer

than 200 trials the network has adapted and reached a

performance of 0:893+0:001. In fact, if the adaptation had been

performed with fixed value of E~Ed~0:02, the probability of

getting the first reward in fewer than 108 trials would essentially be

zero (Pr(tLv108)~10{8), making the network unable to adapt

without a tremendous number of trials.

Another example of acceleration by shaping is depicted in

Figure 4B. Here, as in Figure 4A, the network has to adapt to a

rotation of 300. We used similar parameters as in [17] (E~0:027,

corresponding to a target with a 30 radius and s~0:05).

Adaptation is performed using a constant target size, but at the

beginning of the learning the angle of the rotation is small and is

progressively increased with steps of Dc~4:20 every block of 25

trials. The figure shows that the network adapts in fewer than 200

trials. However, in some of the realizations the network was unable

to follow the gradual rotation (see inset). To avoid such cases, one

can take smaller rotation steps for longer block of trials, as in [17].

Another possibility is to monitor the running average reward and

to change the rotation angle when the latter approaches a steady

state, similarly to what we did with the adaptive target size above.

Binary rewards, as typically used in operant conditioning,

provide the subject with a limited amount of information about his

performance. For instance, in our model, a binary reward does not

convey any information regarding the exact distance between the

cursor and the center of the target in case of a miss nor in the case

of a success. One way to accelerate adaptation is to shape the

reward, i.e., to perform the learning using a reward that depends

smoothly on the error. One possibility is to use a deterministic

reward given by

R~
1

1ze
(Ej{E)=T

ð1Þ

where T is a smoothing parameter. Figure 5A plots the learning curves

for T~0:01 (top panel) and T~0:05 (bottom panel), for fixed

values of target size and noise level (E~0:05, s~0:1). The network

improves substantially faster in the latter case than in the former.

However, after the error has stabilized, it is comparable in both

cases. Figure 5B plots the average logarithm of the learning

duration as a function of T. It shows that the learning duration

increases rapidly for T?0, the limit where the reward becomes

binary. Note that the learning duration varies non-monotonically

with T (it is minimum at T~0:05). This is because the learning

duration also increases for large T since a reward which is overly

smoothed is less informative.

Remarkably, performance remains very close to 0.8 up to

T~0:05. Therefore, using a smooth reward with T~0:05

reduces the learning duration substantially without affecting the

performance of the network. For T above 0.05 performance drops

rapidly and the learning duration becomes larger. Hence, in this

case T^0:05 is optimal. We found similar behavior for other

values of noise level and target size (not shown).

Another way to provide more information to the subject on his

performance, still relying on a binary reward as traditionally used

in operant conditioning, is to deliver it stochastically with a

probability decreasing smoothly with the error. This can also

accelerate adaptation as shown in Figure 5B (dashed lines). Here

the reward is a Bernoulli random variable with a parameter

1=(1ze
Ej{E

T ).

Altogether, our modeling study predicts that reward shaping

strategies, e.g., providing a reward that is a smooth function of the

error, as well as other shaping strategies, should be efficient in

Figure 4. Shaping the task allows the network to adapt to a
large rotation angle (here c~300) even if the target size and the
noise level are extremely small. A. Shaping by decreasing the
target size, as explained in the text. Parameters: E0~0:2; Ed~0:02;
DE~0:018; s~0:05. Blue: The error is sampled every 3 trials (dots) and
smoothed with a 50 trials median sliding window (line) vs. the number
of trials. Purple: The size of the target. B. Reach angle (in degrees) as a
function of the trial number when the rotation angle is progressively
increased (see Results). The target size is fixed: E~Ed~0:0027. At t~0,
c~00. The rotation angle is increased by 4:20 every 25 trials up to
c~{300 . The shaded area corresponds to the target size (+30 around
the target center). Inset: the network is unable to follow the gradual
rotation for a different realization of the noise with the same
parameters. In both panels: s~0:05.
doi:10.1371/journal.pcbi.1003377.g004
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enabling or accelerating such reward-driven sensorimotor

adaptation.

Generalization error. How does the network generalize the

rotation for movement toward targets that were not presented

during the adaptation process? To investigate this question we

computed the generalization error, G:E: (see Materials and

Methods) as a function of the angular distance, Dh, between the

target to which the network had adapted and a test target to which

it did not adapt. For small target size G:E: can be calculated

analytically (Eq. (20)). Figure 6A plots the results for different

widths of the tuning curves, r. For narrow tuning curves (dashed-

dotted line), G:E: is almost one (i.e., perfect generalization) only

when the learned and the test targets are very close. When they are

far apart, G:E: is almost zero. This is because the ability to

generalize depends on the overlap, âa(Dh) (see Eq. (21)), between

the activity profiles in the input layer of the network upon

presentation of the learned and test targets. When the tuning

curves are narrow, âa(Dh) is substantially different from zero only

for very close targets and when they are far it is essentially zero.

The range in the angular distance in which the generalization

error is positive becomes broader when r increases (solid line).

However, for wide tuning curves, G:E: is negative when the

targets are far apart. This means that the network performance on

far targets deteriorates compared to what it was before adaptation.

Note that for intermediate values of r the generalization error can

vary non-monotonically with Dh (dashed lines).

The generalization error described here reveals possible

interactions between the learning processes for two distinct targets,

since adapting for a rotation in one target modifies performance

toward others. In what follows, we evaluate the impact of such

interactions when adapting the reaching movements to two targets

simultaneously and dissect the mechanisms underlying on-line

positive and negative interactions.

The learning dynamics for two targets
What is the learning dynamics when the subject has to perform

the task for two targets ? How does learning the task for one of the

Figure 6. The generalization error (G:E:) for a new target
(defined as the test target), presented after the network has
adapted to one target. G:E: is plotted as a function of the angle of
the test target after adaptation to a target in direction h~00. Perfect
generalization is when G:E:~1. Lines: Analytical result for E?0 (see
Eq.(19)). Circles: Simulation results for E~0:01. For clarity, the results are
displayed for test targets sampled every 15 degrees. The generalization
error was averaged over 200 realizations of the noise. Shaded area
represents one SD around the averages. Gray line: zero G:E:. The
mapping between r and the half-bandwidth, h1

2
, is given in Eq. (3). For

instance, r~0:1 corresponds to h1
2
^200 and r~1 to h1

2
^650.

Parameters: s~0:14; c~300 .
doi:10.1371/journal.pcbi.1003377.g006

Figure 5. Shaping the reward function accelerates adaptation without impairing performance. A. The reward is given by

R~
1

1ze(Ej{E)=T
. Top: learning curve for a reward function that changes abruptly around target size (T~10{2). Bottom, main panel: learning curve

for a gradual reward function (T~5|10{2). Note the change in the abscissa scale. Inset: The reward function vs. the error. The target size is dashed
purple line. B. The learning duration and the performance vs. the smoothing parameter, T. Solid lines: Deterministic smooth reward function as in A.
Dashed lines: Stochastic binary reward delivered with a probability that depends on Ej (see Results). In A and B: E~0:05; s~0:1.
doi:10.1371/journal.pcbi.1003377.g005
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targets affect learning the other one? We addressed these questions

in numerical simulations, in which two targets were presented at

an angular distance, Dh, at consecutive times. Similar results were

obtained when the targets were presented in a random order with

equal probability.

Delayed learning. The top panel of Figure 7A plots an

example of the learning curves when the two targets are presented

in opposite directions and the noise level is s~0:1. Note that since

this noise level and the target size are the same as in the bottom

panel of Figure 2A, one might expect that learning the task would

be fast. Remarkably, this is not the case here. The error for one of

the targets decreases in fewer than 50 trials, beyond which it keeps

fluctuating, most of the time below E. The corresponding

performance (see Eq. (26)) is 0:835+0:005. This is in contrast to

what happens for the other target, for which the error increases

rapidly and keeps fluctuating for the whole duration of the

simulation (1000 trials) around a mean that is much larger than E.
Therefore, in this example, the network is able to adapt in a

reasonable amount of time to only one of the targets, in spite of the

symmetry of the task with respect to target identity.

Increasing the noise has a dramatic effect, as shown in

Figure 7A. For s~0:14 (middle panel), the network is able to

learn the task for both targets within 600 trials, but learning the

second target is delayed. We term this effect throughout this paper:

delayed learning. When increasing the noise level further (s~0:18),

the network adapts almost simultaneously to the two targets

(bottom panel).

This effect of the noise in suppressing delayed learning is

confirmed in Figure 7B, where the statistics of the logarithm of the

learning durations over many realizations of the noise are

Figure 7. Delayed learning for two targets in opposite directions. A. Learning curves plotted against the number of trials for each of the
targets, sampled every 10 trials. For the target that is learned first (resp. second) the curve is plotted in blue (resp. green). Top: s~0:1. Middle:
s~0:14. Bottom panel: s~0:18. B. Distribution of learning duration for two opposite targets for different noise levels. Solid lines: The probability

density functions of log10 t
(1)
L (blue) and log10 t

(2)
L (green) for the two targets (solid lines) where t

(1)
L (resp. t

(2)
L ) is the learning duration for the target

that is learned first (resp. second). Dashed lines: Distributions of log10 t
(1)
L and log10 t

(2)
L assuming that t

(1)
L and t

(2)
L are independent random variables.

The distributions were estimated over 1,000 realizations of the noise. Simulations were long enough for the network to eventually adapt to both

targets. Top: s~0:12. Bottom: s~0:18. C. The average and the SD of the distributions of log10 t
(1)
L (blue) and log10 t

(2)
L (green) vs. the noise level. D.

The distribution of the ratio
t

(2)
L

t
(1)
L

for the two noise level values in B.

doi:10.1371/journal.pcbi.1003377.g007
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depicted. The learning duration for the first (resp. the second)

learned target is denoted by t(1)
L (resp. t(2)

L ). Obviously, the target

for which adaptation occurs first depends on the specific

realization of the noise. The distribution of log t(2)
L (green) is

shifted to the right with respect to the distribution of log t(1)
L (blue),

as for each realization t
(2)
L wt

(1)
L , by definition. As a consequence of

delayed learning, this shift is larger than would be expected if the

task had been learned independently for the two targets (dashed

lines). For low noise level this shift is even larger (top panel).

Figure 7C shows the averages of the distributions of log t(1)
L and

log t
(2)
L vs. s. As it was the case for the average of log tL for a single

target (Figure 2C), these averages increase for low noise levels.

However, the increase is faster for the second target.

The delayed learning effect is also clear in Figure 7D which

plots the distribution of the ratio: t(2)
L =t(1)

L , for the same values of s
as in Figure 7B. For the highest noise level, in half of the

realizations t(2)
L =t(1)

L v2. By contrast, for low noise level in more

than half of the realizations the learning of the second target is at

least 34 times longer than the first one. Overall, delayed learning is

reduced when the noise level is increased.

Destructive and constructive interference. This delayed

learning can be understood with a geometrical argument, as

explained in Figure 8. When the network generates a rewarded

trial for one of the targets, it affects the outcome of the second

target. Hence, when the targets are in opposite directions, and if

the tuning curves are sufficiently broad, this results in an increase

in the error of the second target (see also Figure 7A). In other

words, the learning processes for the two targets interfere

destructively. As a result, the probability of generating a rewarded

trial for the second target is reduced. Note that according to this

argument if the targets are sufficiently close, the interference

becomes constructive.

To further analyze the interference in adaptation to the two

targets, we considered the correlations between the errors at

consecutive presentations of the targets. For that purpose, we

estimated the time dependent correlation coefficient (CC(t)) of the

errors over different realizations (see Materials and Methods). A

destructive interference corresponds to negative correlations,

whereas a constructive interference corresponds to positive

correlations. Figure 9A shows how the sign and the time course

of the CC change with the angular distance, Dh. For the first few

trials, usually none of the presentations of the targets are rewarded

and, therefore, the matrix W does not change. Hence, during the

first trials, CC^0. For a sufficiently large number of trials the

network adapts to the two targets and DCC(t)D reaches some

stationary value.

The results in Figure 9A show that the temporal profiles of

CC(t) are qualitatively similar for Dh~180o and Dh~80o, but in

the latter case CC(t) is less negative, indicating a reduction in the

destructive interference. By decreasing the angle further to

Dh~600 the shape of CC becomes biphasic. In the latter case

the nature of the interference changes during adaptation from

constructive to destructive. Finally, for sufficiently small Dh, the

interference is always constructive. For the parameters in

Figure 9A, this is already the case when Dh~300.

Figure 8. Geometric intuition for the destructive and constructive interferences. Following the perturbation, the cursor is rotated with
respect to the output of the network, hence inducing a large noiseless error (black vector in panel 1.). The noise in the output layer (green vector in
panel 2) helps the network to explore the 2D environment, until the cursor falls inside one of the targets (panel 2). This trial is rewarded and therefore
the connectivity matrix is updated, affecting the output of the network for the next trials. This decreases the noiseless error, for the target for which
the trial has been rewarded, as the rotated output of the network is now closer to it (by adding the vector �ggj, panel 3). This update moves the rotated
output away from the target in the opposite direction since the vector �ggâa(Dh)j is away from it. This results in an increase in the error, referred to as
destructive interference. The probability of a rewarded trial for this target is now substantially reduced, delaying learning for that target. A similar effect
occurs when the two targets are sufficiently far apart. However, when they are close (panel 5) the interference becomes constructive, since after the
update of the matrix, the rotated output gets closer to both targets. Note that the overlap, âa(Dh), depends on the width of the tuning curves (see
Materials and Methods).
doi:10.1371/journal.pcbi.1003377.g008
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Figure 9B plots the extremum of CC(t), CC�, against Dh, for

different widths of the tuning curves. For broad and sharp tuning

curves, CC� varies monotonously with Dh (Figure 9B, purple and

green lines). For intermediate degrees of tuning (blue line), CC�

can display non-monotonous variations with Dh (see also the inset

in the figure). In fact, it reveals that the interference can vary non-

monotonously with the angular distance, depending on the width

of the tuning curves. This non-monotonicity can be grasped from

the geometric intuition in Figure 8. The interference is more

destructive when Dh is large; however, as Dh increases, âa(Dh)
becomes smaller, making the interference less effective. A more

rigorous proof is given in Material and Methods.

Similarly, the interference for fixed Dh depends on r as the

overlap, âa(Dh), becomes smaller when r decreases. This is

depicted in Figure 9C, where we plot CC(t) in the case of two

targets in opposite directions, for three values of r. Decreasing the

width of the tuning curves results in smaller values of DCC�D. For

very sharp tuning curves, interferences are minimal and CC(t)
remains very small during the whole learning process. In fact, in

the limit r?0, the adaptation process to each of the targets is

independent.

Finally, Figure 9D displays CC(t) for three values of noise level.

The same qualitative behavior is observed in all these cases;

however, CC� is less negative and CC(t) recovers faster when the

noise is stronger. This is because increasing the noise decorrelates

the adaptation process for the different targets, thus reducing the

destructive interference. This is in line with the results displayed in

Figure 7.

Destructive interferences are reduced by shaping the task

or the reward. Increasing the target size (Figure 9E), as well as

reducing the rotation angle (Figure 9F) reduces DCC�D, and hence

the destructive interference, when adapting for two targets in

opposite directions. Therefore, we expect that shaping strategies

which gradually manipulate these parameters can help overcome

the delayed learning effect. Figure 10 shows that this is indeed the

case, when changing the target size adaptively during the

adaptation. The running average of the reward signal for each

target was monitored separately and E was decreased by DE only

when both running averages reached a steady state. In this case,

the network adapts to both targets quickly and simultaneously.

Similarly, shaping the task by increasing the rotation angle

progressively reduces the destructive interference and accelerates

the learning (data not shown).

Finally, there is less interference if learning is performed with a

reward which depends smoothly on the error (Eq. (1)). As depicted

in Figure 10B, this results in a suppression in delayed learning.

Increasing the smoothing parameter reduces DCC�D. For instance,

for the parameters of Figure 10B, DCC�D^0:4 for T~10{1,

whereas DCC�D^0:8 for T~1:2 10{2. Similar results are found if

the reward is binary but stochastic, with a probability that is a

function of Ej (not shown).

Learning faster by learning more
How does the learning duration, i.e., the time to learn the task

for all the presented targets, vary with the number of targets? We

simulated the learning of m targets, whose directions were evenly

distributed between 0o and 360o. We took a small target size

(E~0:01), so that up to 36 non-overlapping targets could be

considered (for targets presented on a circle with radius 1).

Figure 11A plots the average time to learn the entire task in

terms of the total number of target presentations for a fixed noise

level and different values of tuning widths. It shows a non-

monotonic dependency with the number of targets. This contrasts

the monotonically increasing learning duration when targets are

Figure 9. Destructive and constructive interferences are a function of the model parameters. The correlation coefficient, CC(t),
characterizes the strength and the nature of the interference during learning of the rotation task for two targets. A. CC(t) for different values of the
angular distance between the targets. The interference becomes constructive when Dh decreases. B. The extremum of CC(t) over t, CC� , plotted
against Dh for different values of r. Purple: r~1. Blue: r~0:4. Green: r~0:2. The width of the curve was chosen to correspond to the SD of CC� ,
estimated by bootstrap. Note the slight non-monotonicity for r~0:4. Inset: CC(t) for Dh~900, Dh~1200 , Dh~1800 for r~0:4 (same color code as
for the dots on the main figure in this panel). Parameters: E~0:1, c~400, s~0:14. C–F CC(t) is plotted for different values of s (C), E (D), r (E) and c
(F). In all these figures, CC(t) was calculated over 1,000 repetitions. The result was low-pass filtered to suppress fast trial-to-trial fluctuations for the
sake of clarity. Consequently, there is a causality artifact around t~0 and CC=0, although it should be. The standard errors estimated by bootstrap
are small and are not plotted.
doi:10.1371/journal.pcbi.1003377.g009
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learned independently with the same noise level and target size

(dashed line).

Narrow tuning curves. When the tuning curves are narrow

(black and blue curves) and for small values of m, the overlap âa(Dh)
is essentially zero; therefore, there is no interference and the

network adapts independently to the different targets. An example

is depicted in Figure 11B.1 for r~0:1. In this figure, the noiseless

error for all three targets is plotted against the number of rewarded

trials. Independence is indicated by the fact that abrupt changes in

the noiseless error for one of the targets do not affect the noiseless

error for the other targets. The overlap only becomes significant

when the targets are close enough, resulting in constructive

interference (see also Figure 9A). In fact, when m increases, the

adaptation for close targets interferes constructively, as depicted in

Figure 11B.2 for m~6. In this example, learning target 1 (see

color coding in the figure) does not affect the learning of targets 3,

4 and 5 within the first 200 rewarded trials. It does, however,

reduce the noiseless error for the closer targets, i.e., 2 and 6. The

constructive interference is also noticeable for the rest of the

targets. This constructive interference between close targets

facilitates adaptation and explains why the learning duration

decreases for larger m, and the overall non-monotonicity of the

learning duration with m.

Wide tuning curves. For wider tuning curves, interferences

are already present for a small number of targets, but they can be

destructive when the targets are far apart. For instance, for r~0:4
and m~3, improvements for one target result in an increased

noiseless error, above the initial error, for the other targets

(Figure 11B.3). However, as in this case r is not too large,

adaptation is almost independent with m~2 (green curve in

Figure 11A). Similar to the case of narrow tuning curves,

constructive interference between close targets emerges when m

is increased. A representative example of adaptation with m~6
and r~0:4 is plotted in Figure 11B.4. Learning target 1 reduces

the noiseless error for the two close targets, whereas the error for

the other three targets, which are farther apart, becomes larger

than their initial values. In this case, constructive interference

among the close targets competes with destructive interference

between targets that are far apart.

The drop in the learning duration when increasing m, both for

wide and narrow tuning curves, implies that learning more targets

might be faster than learning only a few. For instance, learning 6

targets for r~0:4 is six times faster than learning only three of

them (the 3 that are separated by 120o).

Adaptation is in the close-to-far order when the tuning

curves are broad. In Figure 11B.4 (r~0:4) the network

learned the task in a specific close-to-far order: after it had learned

the first target, it learned the two closest targets (separated by

+60o), and then the far targets (separated by +120o and finally

the 180o target). Therefore, in this case the targets were learned in

an ordered way. In contrast, in the example plotted in Figure 11B.2,

the tuning curves are narrow (r~0:1) and the learning of the

targets is not ordered. This difference stems from the fact that

broadening the tuning curves increases the amount of both

destructive and constructive interference. As a result, by learning

one target, the error of the closer targets is already reduced,

whereas learning is delayed for the far targets. Increasing r
thereby results in more ordered learning. To better characterize

how the tuning width controls whether adaptation is ordered or

not, we estimated the probability of this occurring as a function of

r. Figure 11C depicts the results for m~6. It shows that the

fraction of the realizations for which learning is ordered increases

monotonically with r.

Figure 10. Shaping the task or the reward reduces the delayed
learning effect. A. Learning curves for two targets in opposite
directions. The task is shaped by reducing the target size. Parameters:
Ed~0:02; E0~0:25; s~0:05. The running averages of the reward were
monitored for the two targets separately. When both averages reached
a steady state the target size was decreased by DE~0:018. The error
was sampled every 3 trials. B. Adaptation with a smooth reward
function, Eq. (1). Top: T~1:210{2. Middle: T~610{3 . Bottom:
T~10{1 . Parameters: E~0:1; s~0:1. The error was sampled every 10
trials.
doi:10.1371/journal.pcbi.1003377.g010
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Generalization error for multiple targets. Figure 12A

plots the generalization error after the network has adapted to 2 or

3 targets for r~1. The generalization is essentially one for all

tested targets as soon as the network has adapted for three targets

(green line). How does the generalization error depend on m and

r? Figure 12B plots the noiseless performance (see Eq. (25))

averaged over all the test targets (denoted by Pt), for different

values of m and r. For wide tuning curves, as in Figure 12A,

learning the task with only 3 targets is sufficient for almost perfect

performance on all the test targets (blue line, Pt^1). Therefore,

there is no added value in adapting to more targets as far as

generalization is concerned. However, as explained above, this can

substantially accelerates learning. In fact, for the parameters used

in Figure 12A the average learning duration is about 170 times

shorter for m~6 than for m~3. When the tuning curves are

narrower, the network only generalizes perfectly to all directions

for large m (green and black lines in Fig 12B). Nevertheless, here it

is also advantageous for the network to adapt to more targets than

required for perfect generalization, since this can accelerate

adaptation.

Discussion

We explored the reward-based component in adaptation

processes in a setting in which a subject has to adapt reaching

movements to a rotation when the only information available is

the location of the target and a binary reward signal indicating

success or failure on a trial [17]. The subject thus has to adapt to

the perturbation by relying solely on the reward. In the framework

of a simplified model of a neural network learning the task, we

investigated the ways in which the adaptation dynamics depend

on the noise level in the network, the target size, the size of the

perturbation and the shape of the reward function. The key

finding is that if the network has to adapt simultaneously to

several target locations, constructive or destructive interferences

between the different movements may occur. Such destructive

interferences may result in a severe slowdown in the adaptation

process, but this slowdown can be mitigated if the reward

changes more gradually from a success to a failure around the

target.

If the motor variability is not large enough with respect to the

target size and the amount of perturbation (Figure 2), it takes a

long time for the network to generate rewarded trials and to

update its connectivity matrix. This results in slow adaptation and

may be the reason why adaptation in the absence of visual

feedback is notoriously difficult for subjects when the rotation

angle is too large. For example, at the noise level and target size

reported in [17], the probability to generate a rewarded trial in less

than 108 trials for a rotation of 300 is essentially zero.

The time to adapt also depends on the size of the change in

synaptic strength on each rewarded trial; i.e., on the learning rate

parameter. We showed that perfect adaptation to one target (i.e.

100% performance in the absence of noise) is possible only when

the (normalized) learning rate is smaller than 1. A high learning

rate leads to decreased performance and eventually fully impedes

adaptation (Figure 3). Therefore, the extent to which adaptation

can be accelerated by choosing a large learning rate is limited.

Figure 11. Adaptation to multiple targets. A. Average total number of target presentations required to learn the entire task vs. the number of
presented targets, m. The targets are evenly distributed (between 00 to 3600). Black: r~0:05. Blue: r~0:1. Purple: r~0:3. Green: r~0:4. Dashed
black line corresponds to learning the targets independently from the p.d.f. of tL, which was estimated from adapting to one target. B. Examples of
the noiseless error during the learning, plotted vs. the number of rewarded trials. The target direction is color coded. Dashed gray lines: The initial
noiseless error for c~300. B.1 and B.2 are examples of the noiseless error for narrow tuning curves (r~0:1) in the case of 3 and 6 targets
respectively. The plateau in the noiseless errors indicates that there is no interference between the targets. B.3 and B.4 are examples of the noiseless
error for wider tuning curves (r~0:4) in the case of 3 and 6 targets respectively. The increase in the noiseless error above the initial error for some of
the targets is the result of the destructive interference between far targets. C. The fraction of ordered realizations when m~6 as function of r.
Chance level is 13:2%. An ordered realization is defined as learning the targets in a close-to-far order, as in the example in B.4. The statistics were
calculated over 500 realizations. For all the results presented in this figure: s~0:14.
doi:10.1371/journal.pcbi.1003377.g011
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Adaptation is faster for large noise. On the other hand, if the

noise is too large, final performance is impaired. Interestingly,

motor areas display high variability at the early stages of learning,

which becomes smaller afterward. This has been observed in

reaching tasks in monkeys [39], as well as in song acquisition in

songbirds [40]. Our study suggests that this change in noise level

during learning can be functionally important to making a

compromise between fast adaptation and good performance.

We showed that when adapting to multiple targets, learning the

task for one target can impair performance on other targets due to

destructive interference. As a result, the probability that the

network will generate a rewarded trial for these targets decreases.

Therefore, in this case the same noise level that allows exploration

of one movement direction is insufficient when adapting to two or

more targets, resulting in a delayed learning effect. Interestingly,

when the network starts to adapt to the perturbation to the second

target, it does not deteriorate the performance of the network on

the first target that was already learned. This is because the

network keeps generating rewarded trials for the first target and

prevents the connectivity matrix from changing in the wrong

direction for the first target.

We also showed that there are cases where the interference that

occurs when multiple targets are presented is constructive. In fact,

the strength and the nature of the interference depend on the

similarities in the distance between the targets (the physical stimuli)

and in the overlap of the tuning curves (the neural representations

of the stimuli). Adding more targets creates constructive interfer-

ence and therefore can accelerate adaptation.

Generality of the results
Models of sensorimotor control and learning frequently assume

minimizing a squared error function. This is convenient because of

analytical or computational simplicity [13,14]. However, it was

shown that although these models can be a good approximation

they tend to penalize large errors excessively [41]. In contrast, we

chose to explore adaptation with a binary reward function, as used

in experiments. Our results and predictions stem from the shape of

the reward function. Specifically, they do not depend qualitatively

on the specific choice of the distance error used, but are based

primarily on the fact that the reward function varies sharply with

the distance to the target center. The dynamics of the adaptation

to more than one target depend on the overlap between the tuning

curves of the input neurons. However, the precise shape of the

tuning curves is not crucial and the results are unchanged if one

replaces the Von Mises function we used here with any other

tuning curve function, such as a cosine tuning curve (see e.g. Eq.

23).

As a matter of fact, the results we describe are the outcome of

the following: 1) the same system is used to learn the task for

several targets, leading to interference which depends on the way

in which the targets differ physically as well as in their neuronal

representation and 2) learning the task for one target can

deteriorate performance on another target such that the informa-

tion provided by the reward when attempting to learn the task for

it becomes small, thereby delaying the learning. These two

properties of the learning process are not specific to the simple

model we investigated here.

In our model, the latter property stems from the fact that the

reward varies sharply with the error. The learning rule we used is

part of a general family of gradient-like reinforcement learning

rules; i.e., learning rules that on average form a gradient ascent on

the reward function [35–37]. In fact, learning with an on-line

Gradient Ascent algorithm with a sigmoidal cost function can

result in similar effects (Text S1; Figure S1). It might be claimed

that plasticity also occurs when no reward is delivered [42].

Therefore, we also verified that the phenomenology of the model

remains qualitatively the same when R[f{1,1g instead of using a

0{1 reward function (unpublished data). Note that to avoid a drift

of the output vector which occurs when R[f{1,1g, the synaptic

weights must be normalized in this case after each trial. Another

extension of our model would be to use a reward prediction error

instead of an instantaneous reward; e.g., by subtracting a running

average of the reward from the instantaneous reward. Delayed

learning also occurs with this type of learning rule (results not

shown). In fact, previous works have argued that this modification

does not affect most of the qualitative behavior of the algorithm

[32,36]. However, it should be noted that in the case of multiple

targets, computing the running average of the rewards over all

targets is an additional source of interference, as shown recently in

[35]. To avoid this, the running average of the reward needs to be

monitored for each target separately.

We focused on the learning dynamics in a feed-forward network

of linear neurons with only two layers. We chose this architecture

for the sake of simplicity. However, we verified that similar

Figure 12. Generalization error (G:E:) and performance when adapting to multiple targets. A. The generalization error vs. the location of
the test targets, estimated from simulations as in Figure 6. Shaded area represents one SD around the averages. Tuning width: r~1. B. The noiseless
performance (see Eq(25)), averaged over all the tested targets (Pt) is plotted vs. the number of trained targets. See Materials and Methods for details
about how this quantity was estimated. Blue: r~1. Green: r~0:1. Black: r~0:05. Dashed gray: zero G:E: Parameters: E~0:01, s~0:14.
doi:10.1371/journal.pcbi.1003377.g012
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qualitative behaviors in terms of interference and delayed learning

occur in a network model in which an intermediate layer

consisting of nonlinear neurons was added, and in which a

decoder provides the angle of reach movement instead of a vector

(Text S1, Figure S2 and unpublished data). Note that in the

framework of this more complex model, the noise can be

unambiguously related to neuronal variability whereas in the

simplified two-layer model considered in our paper, the noise is in

the decoder.

One limitation of our work is that we did not model the

trajectory of the movement and/or the muscle activation patterns

needed to produce movements [43]. However, we expect that

delayed learning and interferences also occur in a more detailed

model of movement production, such as the one used in

Legenstein et al. [34].

Relation to previous works and predictions
A reward-based component in a sensorimotor task was shown to

be involved in adaptation to rotations even when detailed spatial

information regarding the error was provided to the subject

[18,19]. We investigated the ways in which neural possible

mechanisms that reinforce successful actions affect adaptation

dynamics. This type of reward-based mechanism was also studied

in [17]. In this experiment, subjects adapted without visual

feedback to a gradually increasing rotation of 10 every 40 trials, up

to an 80 rotation. Our modeling results are in line with these

experiments (Figure 4B). We thus predict that shaping the reward

also accelerates adaptation.

Besides demonstrating that adaptation relying on rewards is

possible by utilizing a gradual rotation paradigm, the Izawa and

Shadmehr [17] results suggested that there is no change in the

perceived sensory consequences of the motor commands; i.e.,

there should be no change in a ‘‘forward model’’. Therefore, in

[17] adaptation was modeled by an action selection rule. Our

model is similar to the latter, as we focused on the reward-based

component during adaptation. However, our model differs in that

it is value-free, whereas in [17] it involved value-based reinforce-

ment learning. Nevertheless, our model can also account for the

experimental results reported in [17] for one target (see Text S1,

Figure S3). Moreover, it allowed us to investigate the generaliza-

tion curve and possible interference during adaptation for multiple

targets.

The learning algorithm. Reward modulated learning rules

have been used in previous modeling studies of sensorimotor tasks,

such as birdsong acquisition [10] and motor learning in primates

[34]. Similar rules have also been implemented in models of

decision making [32,35,44] and association tasks [45]. The reward

modulated rule we used here is a special case of REINFORCE

learning rules. As shown by Williams [36], REINFORCE learning

rules are equivalent on average to a gradient ascent algorithm on

the average reward function. In fact, the gradient ascent dynamics

with the average reward function (Eq.(10), averaged over the

different movement directions) can be computed analytically.

However, for finite g the actual trajectories can deviate

substantially from the gradient ascent trajectory. In particular,

delayed learning and the reduction in learning duration with the

number of targets occurs for finite g but these phenomena

disappear when g?0 (unpublished data).

Shaping. Shaping strategies are used to teach subjects to

perform operant conditioning tasks in a reasonable amount of

time [22]. They were recently applied in the context of

Reinforcement Learning by either increasing the complexity

of the task [27,46] or by shaping the reward function [26,27,47].

In the context of our model we showed that adaptation to one

target can be accelerated if the target size or the rotation angle

are progressively changed. This also reduces destructive interfer-

ences, thereby accelerating adaptation to multiple targets as well.

We also showed that reward shaping can efficiently suppress

destructive interferences and accelerates adaptation without

compromising on performance.

To the best of our knowledge there are only a few theoretical

works that have addressed shaping strategies in computational

models in neuroscience (see e.g. [28]). Fiete et al. [10] used an

adaptive threshold for reinforcement that adapts to performance.

This is equivalent to the adaptive target size used here (Figure 4A).

Smooth reward functions have been used in previous models of

sensorimotor learning [34,35], but the ways in which the shape of

the reward function affects learning were not addressed.

Interference, delayed learning and generalization. The

delayed learning effect exhibited by our network when it adapts

to several targets is reminiscent of the slowing down that occurs in

the model of birdsong learning in Fiete et al. [48]. In that model,

a gradient ascent on a quadratic error function is performed by

the network to learn a time dependent signal. The slowing down

is due to destructive interferences in learning different temporal

chunks of this signal. In fact, the presentation of multiple targets

that involved a target in each trial, can be considered a discrete

time dependent signal, and interferences when learning multiple

targets can thus be seen as similar to interferences in different

temporal chunks of the signal. However, in contrast to Fiete et al.

[48], our network learns with a stochastic online learning rule,

rather than a deterministic batch rule, and a different reward

function is utilized.

Fiete et al. [48] suggested that to avoid interferences the avian

brain exploits sparse neural representations. This solution is

qualitatively similar to narrowing the tuning curves in our model.

Similarly, Tanaka et al. [13] showed that narrow tuning curves

can explain the independent learning of multiple targets in the

context of a visuomotor rotation task with visual feedback.

However, narrowing the tuning curves is not the only way to

suppress destructive interferences, in that we showed here that

they can also be suppressed by increasing the noise level,

increasing the number of targets, and shaping the task or the

reward.

Similarly to previous theoretical works on sensorimotor

adaptation, we also showed that the shape of the generalization

curve depends on the width of the tuning curves of the input

neurons [4,13,14,49]. In [17] it was shown that generalization in a

reward-based rotation task falls to half of its maximum value

already at 100 apart from the adapted direction. However,

generalization above 300 was not explored in this study. We

therefore did not limit our model to a specific tuning width, as

further experiments should be conducted to determine the

generalization in the case of adaptation with rewards.

Negative generalization have been experimentally observed,

both in adaptation to reaching movements under force-fields [4]

and in visuomotor rotations with visual feedback [14]. In the latter

study, the authors demonstrated that generalization curves are

task-dependent, and showed how subjects negatively generalize

the adaptation when targets that are far from the adapted target

are presented. In fact, this study showed that generalization curves

can even be non-monotonic. We predict here that this can also

occur in the case of adaptation without sensory feedback.

As far as we can ascertain,, delayed learning in sensorimotor

adaptation has not been reported before. For delayed learning to

occur in our model, adaptation to one target needs to impair the

performance on other targets and the reward must change

abruptly around the target from a success to a failure. Under the
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assumptions we made, the shape of generalization curves can hint

at on-line interferences that can be expected during adaptation.

Therefore, because negative generalization was reported in a

visuomotor adaptation task when the subject receives a continuous

error [14], one might expect to find on-line interferences as well

when visual feedback is available. However, in this case the error

function does not change abruptly with respect to the distance to

the target, as subjects are aware of the cursor location. Hence,

when subjects receive visual feedback, we do not expect that

interferences will result in substantial delayed learning or that

learning will accelerate when the number of targets is large. We

verified this expectation in the case of a quadratic error [13]. In

particular, the learning duration increases monotonically with the

number of targets and saturates when this number is large (Text

S1; Figure S4).

On the other hand, in the case of adaptation with binary rewards,

we do expect that if there are angles for which generalization is

negative, delayed learning will be noticeable, as the reward function

changes abruptly from a success to a failure (Figure 10).

Conclusions and perspectives
The key finding of this theoretical work is that if a reward-

modulated learning rule underlies adaptation, interferences are

likely to be observed when learning multiple targets with a binary

reward. It would be valuable to explore whether such effects

occur in reward-based sensorimotor adaptation experiments with

multiple sensory stimuli. We predict that for a binary reward

function, destructive interferences will be observed if the neurons

that encode the stimuli have broad tuning curves. These

interferences are a dynamical counterpart of the generalization

function and might result in a dramatic slowdown because of the

abrupt change in the reward from success to failure around target

size. We also predict that adding more targets should accelerate

adaptation (Figure 11). From the learning curve of adaptation to

one target, the rate and variability in which subjects adapt can be

estimated. We predict that at parity of variability, subjects with

larger learning rates will tend to display more destructive

interferences and therefore slower adaptation to two targets (see

Eq. (23)). By contrast,if the tuning curves are very narrow,

destructive interferences are unlikely to be found. However, even

in this case, when the stimuli are sufficiently close, constructive

interferences should be observed. In this case as well, adding

more targets should accelerate the adaptation.

Another prediction is that if adaptation is driven by reward

modulated plasticity rules similar to the one we used here,

smoothing the reward function should reduce interferences. In our

model, this stems from the assumption of a reward modulated

learning rule and not from the simplifying assumptions we made in

constructing the model. Therefore, we suggest that testing this

prediction could shed light on the synaptic mechanisms underlying

adaptation tasks.

Finally, the location of the reward-based mechanism involved in

adaptation could be the cortex-basal-ganglia network. As a matter

of fact, there is evidence for the involvement of this network in

pitch shift adaptation in songbirds. Although the neural correlates

for adaptation in songbirds are unknown, when an auditory

feedback is available to songbirds (by using miniature headphones

[7]), the anterior frontal pathway, which is the avian homologue of

the cortex-basal-ganglia network [50], is essential for adaptation

based solely on binary rewards [15,16]. Thus, exploring the

behavioral and neural differences in auditory feedback versus

binary reward adaptations in pitch shift experiments in songbirds

may help reveal the neural mechanisms for reward-based

adaptation.

Materials and Methods

The task
We consider a motor reaching task (see Figure 1A) in which a

subject manually controls the location of a cursor on a screen to

bring it within a circular target of radius
ffiffi
E
p

[16]. The target

location is characterized by a two dimensional vector r̂r of norm 1

(we assume that the target is always at distance 1 from the center of

the screen) and direction h. In a standard block of trials, the

direction of motion of the cursor and the hand are the same. We

assume that the subject is able to perform the task perfectly in this

case. In a rotation block of trials a perturbation is introduced: the

movement of the cursor on the screen is now rotated by an angle c
with respect to the hand movement. To overcome this perturba-

tion the subject must move his hand in a direction {c with respect

to the target. Here we focus on the case where there is no visual

feedback (the cursor is not on the screen): the only information the

subject receives about his performance is provided by a reward

signal delivered by the experimentalist [17].

The network model
We consider a simplified computational model of a network

performing this reaching task, see Figure 1B. The input layer of

the network encodes the sensory information regarding the

direction of the target, h. It is composed of N directionally tuned

neurons labeled by their preferred direction, hi~
2p
N

i (i~1,2:::N).

For simplicity, we assume that the shape of the tuning curves is the

same for all neurons: upon presentation of a target in direction h
the activity of neuron i is f (hi{h). We take:

f (hi{h)~C exp(
cos(hi{h){1

r
) ð2Þ

where r characterizes the width of the tuning curve and C is the

peak response of a neuron. The width of the tuning curves at half

of its maximal activity relative to the baseline (half bandwidth) in

this case is:

h1
2
~arccos(r log(

1ze
r
2

2
){1) ð3Þ

The second layer of the network encodes the location of the

endpoint of the hand movement. It consists of two output units

whose activities, r1 and r2, represent the two components of the

hand position, r. Upon presentation of a target in direction h:

r(h)~
1

N
WF(h)zj ð4Þ

where W[R2|N is the connectivity matrix between the two layers,

F(h) denotes the N dimensional vector of the input layer with

components Fi(h)~f (hi{h), and j*N (0,s2I) is a Gaussian

noise. The location of the cursor at the end of the movement is

related to r by a 2|2 rotation matrix, Dc, of angle c. Therefore,

the squared distance between the endpoint location of the cursor

and the center of the target is:

Ej~DDEjDD2~DD̂rr{DcrDD2~DD~rr{rDD2 ð5Þ

where ~rr~DT
c r̂r. This quantity will be used to measure the error

with which the network performs the reaching task. It is also useful
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to define the noiseless error:

E0~DDE0DD2~DD̂rr{DcyDD2~DD~rr{yDD2 ð6Þ

where y~ 1
N

WF. This quantity measures the error if the noise is

suppressed.

Upon presentation of a target in a direction h at trial t, the

network performs the task and a reward R is delivered according

to the outcome:

R~
1 EjvE

0 otherwise

�
ð7Þ

The matrix W is then modified according to a reward-

modulated learning rule:

W(t)~W(t{1)zgR(t)j(t)FT (h(t)) ð8Þ

where g is the learning rate. This learning rule can be derived in a

REINFORCE framework [36].

We assume that at the beginning of learning (t~0), when there

is no rotation, the network is able to perform the reaching task

with zero noiseless error for all targets. When all the Fourier

components of f (hi{h) are non-zero, this constraint fully

determines W j(0):

W j(0)~
1

Df1D
cos(hj)

sin(hj)

� �
ð9Þ

where f1 is the first Fourier component of the tuning curves. To

get Eq. 10, one needs to calculate the Fourier expansion of W j(0)

by using the constraint:

W(0)F(h)~
cos(h)

sin(h)

� �

for each of the N possible target directions, h. When some of the

Fourier coefficients of the tuning curve function are zero, e.g.

when using a cosine tuning curves, W is determined up to the

Fourier coefficient that are irrelevant to the above constraint. This

does not affect the learning dynamics.

Analysis of the model for adaptation to one target
Probability to generate a rewarded trial. The probability

of generating a rewarded trial given the noiseless error at the end

of the previous trial is:

p1(E0(t))~Pr(R~1DE0(t))~
1

2ps2

ð ð
Ej(t)vE

dje
{

DDjDD2

2s2

~
1

s2
e
{

E0
2s2

ð ffiffi
E
p

0

e
{ r2

2s2 I0(
r
ffiffiffiffiffiffi
E0

p
(t)

s2
)rdr

ð10Þ

where In(x) is the modified Bessel function of the first kind of order

n [51]. The transition from the second to the third equation is

done by a change of variables to polar coordinates, followed by the

integration over the angle. Using this equation, we can calculate

the probability to get the first reward in a given number of trials

for an initial noiseless error, E0(t~0). This probability is given by

a geometrical distribution with a parameter p1(E0(0)) (defined as

p1 for simplicity). When E0(0)wE, the expectation value of this

distribution, 1=p1, diverges for small values of E and s.

Learning dynamics in the limit E?0. In the limit E?0, the

probability of a trial to be rewarded decreases and thus the

number of trials between rewarded trials diverges (see Eq. 10).

However, one can still characterize the dynamics in terms of the

evolution of the error as a function of the number of rewarded trials.

The condition that the network generates the kth rewarded trial

fully determines the noise:

j(k)~~rr(h){
1

N
W(k{1)F(h):E0(k{1) ð11Þ

The connectivity matrix is then updated according to:

W(k)~W(k{1)zgE0(k{1)FT (h)

E0(k)~(1{�gg)E0(k{1)

where the normalized learning rate is defined by:

�gg:ga ð12Þ

with a~ 1
N

DDF(h)DD2. Solving the above recursion, one finds:

j(k)~(1{�gg)kE0(0)

W(k)~W(0)z
1{(1{�gg)k

a
E0(0)FT (h)

The error and the squared Frobenius norm of W

(DDW DD2~
P

ij W 2
ij ) are then:

E0(k)~2(1{cos c)(1{�gg)2k

DDW(k)DD2~DDW(0)DD2z
2N

a
(cos c{1)(1{(1{�gg)k)(1{�gg)k

where we use the fact that E0(0)~2(1{cos c).

The sequences j(k), W(k) and E0(k) converge when k?? if:

�ggv2 ð13Þ

Their limiting values are then:

j(?)~0

W(?)~W(0)z
1

a
E0(0)FT (hS)

E0(?)~0

DDW(?)DD2~DDW(0)DD2 ð14Þ
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Therefore, after enough rewarded trials the noiseless error goes

down to zero. Note that there is no need to normalize the

connectivity matrix after each update in this case, since in the large

k limit the norm of the matrix returns to the value it had at k~0.

The support of the noiseless error distribution is

bounded. When E is finite, the noiseless error after a rewarded

trial is:

E0(k)~DDE0(k)DD2~DDE0(k{1){�ggj(k)DD2 ð15Þ

where j(k) is such that the constraint in Eq. (7) holds, i.e.,

DDE0(k{1){j(k)DD2vE. This constraint implies that j(k) can be

written as:

j(k)~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E0(k{1)

p
êeE0

zĵj(k) ð16Þ

where êeE0
is the unit vector in the direction of E0(k{1) and ĵj(k)

is a vector with a maximal norm
ffiffi
E
p

. Inserting Eq. (16) into Eq.

(15) one finds:

E0(k)~E0(k{1)(1{�gg)2z�gg2jjĵj(k)jj2{

2�gg(1{�gg)
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E0(k{1)

p
jjĵj(k)jjET

0 (k{1)ĵj(k)
ð17Þ

The noiseless error for a large number of trials is a random

variable with a probability P(E0) on the support (0,Emax). For

vector y to be close to the target, the maximum value of the

noiseless error, Emax, needs to be as small as possible. To estimate

Emax, we compute the realization of ĵj(k) which maximizes the

noiseless error, Eq. (18), at each rewarded trial k.

When �ggv1, E0(k) is maximal if ET
0 (k{1)ĵj(k)~{1 and

DDĵj(k)DD~
ffiffi
E
p

. One then gets:

ffiffiffiffiffiffiffiffiffiffiffi
E0(k)

p
~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E0(k{1)

p
(1{�gg)z�gg

ffiffi
E
p

Solving the recursion gives:

ffiffiffiffiffiffiffiffiffiffiffi
E0(k)

p
~

ffiffiffiffiffiffiffiffiffiffiffi
E0(0)

p
(1{�gg)kz�gg

ffiffi
E
p Xk

i~1

(1{�gg)i{1

and therefore after a long time we get:

Emax(�ggv1)~E

For �ggw1, E0(k) in Eq(17) is maximal if ET
0 (k{1)ĵj(k)~1 and

DDĵj(k)DD~
ffiffi
E
p

. This leads to:

ffiffiffiffiffiffiffiffiffiffiffi
E0(k)

p
~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E0(k{1)

p
(�gg{1)z�gg

ffiffi
E
p

Solving the recursion and taking the limit k??, one gets that for

1v�ggv2:

Emax(1v�ggv2)~
E

(2=�gg{1)2

and when �ggw2:

Emax(�ggw2)~?

To summarize:

Emax~

E �ggƒ1
E

(2=�gg{1)2
1v�ggv2

? �gg§2

8><
>:

In particular, if �ggv1 the noiseless error is guaranteed to always be

smaller than E at large time.

Generalization error after adaptation to one target. Let

us assume that the network has adapted to the rotation of the

target presented in direction h. To measure the ability of the

network to generalize to targets in other directions, we calculate

the noiseless error for test target (Etest), presented in a direction

h’=h and define the generalization error by:

G:E:~1{Etest=E0 ð18Þ

In the limit E?0 (assuming �ggv2), Etest can be computed

analytically, as function of Dh~h{h’. Using Eq. (15) one finds:

Etest~2(1{cos c)(1{2âa(Dh)cosDhzâa2(Dh))

and

G:E:~2âa(Dh)cosDh{âa2(Dh) ð19Þ

where âa(Dh) is:

âa(Dh)~
1

Na
FT (h)F(h’) ð20Þ

depends on h and h’ only via Dh. Note that âa(0)~1. Specifically,

in the limit of large N and when using the tuning curve function in

Eq. (2), one gets:

âa(Dh)~
I0(x=r)

I1(2=r)
ð21Þ

where x~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2(1zcos(Dh))

p
.

Adaptation to two targets
How does a reward affect the next trial?. Here we

consider the case where the network adapts to two targets in the

direction h and h’ presented in alternation. If a rewarded trial

occurs for one of the targets, the connectivity matrix is updated,

affecting the noiseless error on the next trial when the other target

is presented.

This noiseless error can be computed in the limit E?0. It is a

good estimate for the noiseless error in the beginning of the

adaptation with finite E, where the error is still big with respect to

the target size. Let us assume that on trial k a target in direction h
is presented and that it is rewarded. This condition fully

determines the realization of the noise on trial k, ĵj(k). The

noiseless errors for the two targets following the rewarded trial,

denoted Eh
0 (k) and Eh’

0 (k), can be determined analytically. One

finds:
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Eh
0 (k)~(1{�gg)2E0(k{1)

Eh0
0 (k)~jjEh0

0 (k{1){�ggâa(Dh)Eh
0(k{1)jj2

~Eh0
0 (k{1)zffiffiffiffiffiffi
Eh

0

q
(k{1)�ggâa(Dh)(�ggâa(Dh)

ffiffiffiffiffiffi
Eh

0

q
(k{1){

2

ffiffiffiffiffiffiffi
Eh0

0

q
(k{1)cosDh)

ð22Þ

If �ggv2, Eh
0 (k)vEh

0 (k{1), that is, the noiseless error for the

target that has been rewarded decreases following the update of

the connectivity matrix. For the other target (direction h’), the

effect of this update on the noiseless errors depends on the sign of

the expression in parentheses in the second equation. If the two

targets are in opposite directions, it is always positive and

Eh’
0 (k)wEh’

0 (k{1). Thus, while the network performs better for

one of the targets it performs worse for the other target. We term

this situation destructive interference. On the other hand, if the

targets are close such that the expression in parentheses is

negative, Eh’
0 (k)vEh’

0 (k{1). In other words, if the network

improves for one of the targets it also improves for the other target.

We term this situation constructive interference.

In particular, for the first rewarded trial, using Eh
0 (0)~Eh’

0 (0),

we get:

Eh’
0 (kz1)~Eh’

0 (k)(1{Q(�gg,r,Dh))

where:

Q(�gg,r,Dh)~2�ggâa(Dh) cosDh{�gg2âa2(Dh) ð23Þ

We expect a constructive interference for Q(�gg,r,Dh)w0 and

destructive interferences otherwise. Note that for �gg~1 the

interference function equals to the generalization error function

(Eq. (20)). The transition between the constructive and destructive

regimes is given by:

cos(Dh)~
�ggâa(Dh)

2

The quantity Q(�gg,r,Dh)) characterizes the strength of the

interference. It can be a non-monotonous function of Dh. To

show this, we calculate the derivative of Q(�gg,r,Dh) with respect to

Dh, using Eq. (22). This derivative changes sign when:

cos(Dh)zrr
I0(r=r)

I1(r=r)
{

I0(r=r)

I0(2=r)
~0 ð24Þ

For instance, when �gg~0:3 and rv0:73 the function Q(�gg,r,Dh)
depends non-monotonically on Dh. In other words, for sufficiently

narrow tuning curves, the interference varies non-monotonically

with the angular difference. However, this non-monotonicity effect

can be very small: if the tuning curves are too narrow, Q(�gg,r,Dh)
quickly reaches zero when increasing Dh.

Numerical simulations
In the numerical simulations described in this paper, the input

layer consists of N~100 neurons. We normalized the tuning

curves (parameter C in Eq. (2)) such that a remains constant

(a~0:36) when changing r. This was done to guarantee that the

time to learn one target does not depend on the tuning width.

Learning duration and final error. We define the final

error of the network as the median of the error over the last 1,000
trials of the simulation for each realization. We then determine the

learning duration, tL, as the trial number at which the filtered

signal (median filter with a window length of 50 trials) crosses a

threshold, defined to be 5% above the final error. In order to avoid

boundary problems of the filter at time 0 (the discontinuity in the

error when we induce the rotation), we calculate the error at tv0
while assuming that the cursor is already rotated (even though it

did not). In the figures we plot the actual error before the rotation,

which is small. Similar results were obtained using a linear filter.

Time dependent correlations between the errors for two

targets. When the network adapts to a rotation for two targets

presented in alternation in consecutive trials, the learning

processes for the two targets interfere. This interference can be

quantified by considering the correlations between the errors on

two consecutive trials:

CC(t)~
S(Ej(t){SEj(t)T)(Ej(tz1){SEj(tz1)T)Tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Var(Ej(t))Var(Ej(tz1))
p

The brackets denote the average over repetitions of the adaptation

process, which differ by the realization of the noise. Negative

CC(t) indicates that if the network improves for one target it

deteriorates for the other target (destructive interference). Positive

CC(t) corresponds to constructive interference.

Performance and noiseless performance. We ran long

simulations of 107 trials to estimate the performance and noiseless

performance after the transient learning phase. The performance

is given by:

SH(E{Ej(t))Tt ð25Þ

and the noiseless performance is given by:

SH(E{E0(t))Tt ð26Þ

where H(x) is the Heaviside function and the average is over time,

when the transient learning phase was excluded.

Supporting Information

Figure S1 Delayed learning effect with an on-line gradient

ascent algorithm. A. Delayed learning in a reward function that

varies abruptly with the error (T~0:04). B. The delayed learning

is reduced for a smoother reward function. (T~0:05). C. The

delayed learning almost disappears when the reward function is

smoothed even further (T~0:067). Note the change of scale in the

abscissa. Parameters: ĝg~0:1, c~0:05, r~1.

(EPS)

Figure S2 Delayed learning effect in a 30o rotation for two

targets in the 3-layer network. The reach angle (in degrees) is

plotted as a function of the trial number. The shaded area

corresponds to the target size. Initial conditions as explained in the

text. Parameters: s~0:2, E~0:1, g~0:1, r~1.

(EPS)

Figure S3 Gradual adaptation for an 80 rotation. A. Reach

angle (in degrees) as a function of the trial number when the

rotation angle is increased by 10 every 40 trials up to 80. The

shaded area corresponds to the target size (+30 around the target

Sensorimotor Adaptations with Rewards
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center). s~0:06. B. The generalization error, given as the change

in reach angle. The learned target is at 00. Circles : simulation

results. For clarity, the results are displayed for test targets sampled

every 2.5 degrees. Solid line: analytical results. Shaded area

corresponds to the standard deviation in generalization error in

numerical simulations estimated over 100 repetitions. Number of

neurons in the input layer: N~500. C. The shape of the tuning

curves that was used in (A) and (B): f (hi{h)~

C(azexp(
cos(hi{h){1

r
)), where C is a normalization constant

(see Materials and Methods), a~0:14, r~0:005.

(EPS)

Figure S4 Learning duration when adapting to multiple targets

varies monotonically with the number of learned targets when

using a gradient descent on a quadratic error function. Total

number of target presentations required to learn the entire task vs.

the number of presented targets, m. The targets are evenly

distributed (between 00 to 3600). Learning duration was calculated

as the trial number at which learning curve crossed a threshold of

15 10{4. Color coded as in Figure 11 in the Results. Black:

r~0:05. Blue: r~0:1. Purple: r~0:3. Green: r~0:4. Dashed

black line corresponds to learning the targets independently.

Compare with Figure 11 in main text.

(EPS)

Text S1 This document is a supporting text for the supplemen-

tary figures.

(PDF)
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