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Abstract

Natural proteins often partake in several highly specific protein-protein interactions. They are thus subject to multiple
opposing forces during evolutionary selection. To be functional, such multispecific proteins need to be stable in complex
with each interaction partner, and, at the same time, to maintain affinity toward all partners. How is this multispecificity
acquired through natural evolution? To answer this compelling question, we study a prototypical multispecific protein,
calmodulin (CaM), which has evolved to interact with hundreds of target proteins. Starting from high-resolution structures
of sixteen CaM-target complexes, we employ state-of-the-art computational methods to predict a hundred CaM sequences
best suited for interaction with each individual CaM target. Then, we design CaM sequences most compatible with each
possible combination of two, three, and all sixteen targets simultaneously, producing almost 70,000 low energy CaM
sequences. By comparing these sequences and their energies, we gain insight into how nature has managed to find the
compromise between the need for favorable interaction energies and the need for multispecificity. We observe that
designing for more partners simultaneously yields CaM sequences that better match natural sequence profiles, thus
emphasizing the importance of such strategies in nature. Furthermore, we show that the CaM binding interface can be
nicely partitioned into positions that are critical for the affinity of all CaM-target complexes and those that are molded to
provide interaction specificity. We reveal several basic categories of sequence-level tradeoffs that enable the compromise
necessary for the promiscuity of this protein. We also thoroughly quantify the tradeoff between interaction energetics and
multispecificity and find that facilitating seemingly competing interactions requires only a small deviation from optimal
energies. We conclude that multispecific proteins have been subjected to a rigorous optimization process that has fine-
tuned their sequences for interactions with a precise set of targets, thus conferring their multiple cellular functions.
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Introduction

Proteins engage in numerous protein-protein interactions,

which together regulate the outcome of all biological processes

in the cell. By some estimates, over a third of all mammalian

proteins participate in two or more highly specific protein-protein

interactions [1]. Proteins that can interact with a large number of

partners play a central role in the modular organization of protein

interaction networks [2]. Such proteins, usually referred to as

protein hubs, tend to be more essential than others for cell survival

[3] and usually exhibit slower rates of evolution [4]. Moreover, the

comprehensive biological activity of these proteins typically

requires them to recognize a precise set of targets in a specific

way. For example, each subfamily of G protein regulators interacts

with only a specific subset of G proteins [5]. Proteins with diverse

binding capacity have also been termed multispecific proteins [6,7].

The central function of multispecific proteins within interaction

networks imposes constraints on their amino acid sequences,

especially in their protein-protein interfaces, i.e., the regions that

are used to mediate intermolecular interactions with various

targets. There exist only a few studies that have characterized in

great detail the molecular and structural features of multispecific

protein interfaces [8]; this is mostly due to sparse representation of

such protein-protein complexes in the Protein Data Bank (PDB). A

thorough understanding of atomic-level principles governing

multispecific interactions is extremely important not only for the

advancement of basic science but also for the design of new

pharmaceuticals that modify protein-protein interactions. Further-

more, such molecular insights will provide critical feedback for

systems biology research, which views protein-protein interactions

from a high-level network approach [9].

Calmodulin (CaM) is a paradigm of a multispecific protein, with

more than three hundred CaM targets identified to date [10]. CaM

is the central player in the Ca2z signaling pathways that control

gene transcription, protein phosphorylation, nucleotide metabo-

lism, and ion transport. This Ca2z sensor protein translates the

changes in Ca2z concentration into activity of many downstream

targets, including kinases, phosphatases, enzymes, and ion channels

[11]. Remarkably, CaM targets display considerable variability in

sequence and structure. CaM-binding regions within target proteins

are generally rich in hydrophobic and positively charged residues.

Nevertheless, no consensus CaM-binding sequence exists for all

CaM target proteins (Figure 1C). Recent structural studies have

revealed that there are several binding modes accessible to CaM,
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allowing this protein to interact with its targets in a Ca2z-saturated

state (4 Ca2z ions bound to CaM) [12,13], in a partially-saturated

Ca2z state (2 Ca2z ions bound to CaM) [14], and in a Ca2z-free

state [15,16]. In the Ca2z-saturated form, CaM usually binds to a

stretch of *25 amino acids that is unfolded in the absence of CaM

and becomes helical upon interaction with the protein [11]. In this

‘‘conventional’’ binding mode, CaM undergoes a conformational

change and embraces the target helix with its two globular domains,

burying a substantial hydrophobic surface area and providing

favorable hydrogen bond and salt bridge interactions with the target

(Figure 1A,B). Ca2z-saturated CaM binds to its targets with high

affinity, displaying Kd values in the 10{10 to 10{9 M range [17].

This affinity is reduced at least 1000-fold in the absence of Ca2z,

allowing for quick dissociation of CaM from its targets when Ca2z

is depleted.

The multitude of binding constraints placed on CaM during

evolution is likely to have produced a sequence that may not be

optimal for binding to any particular CaM target, but rather

presents a compromise essential for interaction with a large

number of partners. In this study, we employ a computational

design approach [18] to understand how the compromises

required for functional promiscuity [19] are achieved both on

the level of amino acid sequences and on the level of binding

energetics. First, we computationally ‘‘evolve’’ CaM to interact

with single targets; second, we evolve this protein to bind to

multiple partners simultaneously. Recently, a similar analysis was

performed on twenty multispecific proteins, whose interactions

with two to seven targets were considered [6,7]. In contrast to

those works, we report a much more comprehensive investigation

of a single multispecific protein, CaM. We examine interactions in

sixteen different CaM-target complexes that exhibit the conven-

tional binding mode. Using the structures of these complexes, we

perform 697 separate CaM design calculations to obtain *70,000
low energy CaM sequences optimal for either a single target or

some combination of the targets. Rigorous quantitative and

statistical comparisons of the designed CaM sequences and their

energies allows us to draw conclusions regarding CaM evolution

and to suggest strategies for the design of binders that are both

promiscuous yet highly specific. In particular, we characterize the

CaM binding interface by partitioning its residues into those that

are critical for binding affinity and those that are important for

multispecificity. Furthermore, we analyze the sorts of sequence

compromises required to yield proteins with promiscuous

interactions and show how this fits with past explanations for the

ability of CaM to accommodate many targets. Finally, we examine

the energetic compromises inherently crucial for multispecificity

[20], and we find that our results also shed light on the unexpected

findings of previous experimental protein design research.

Results

For our study, we used all available (sixteen) high-resolution

structures of CaM-target complexes that exhibit the conventional

binding mode (Figure 1A,B). Note that the conformation of CaM

in complex with these peptides is somewhat variant; the pairwise

Ca RMSD between the CaM molecules ranges from 0.84 to 7.7 Å.

For each CaM-target complex, we defined the residues in the

CaM binding interface. We then selected the common binding

interface, a set of twenty residues, each of which interacts with the

target in at least 75% of the chosen CaM-target complexes

(Figure 1A). Note that, for each particular CaM-target complex,

the majority of the selected residues in fact interact with the

respective target (from 65–100%).

Using a protein design approach, we redesigned the CaM

binding interface to obtain one hundred best (lowest energy) CaM

sequences for each of the sixteen selected CaM targets (‘‘single-

state’’ designs; see Figure 1D). In addition, a hundred best CaM

sequences were designed for all possible sets of two and three

targets simultaneously, resulting in 120 and 560 separate

calculations (‘‘two- and three-state’’ designs). Consideration of

more than three CaM targets in a combinatorial manner is

computationally prohibitive. Thus, we next proceeded to design a

hundred sequences best suited for binding all sixteen targets. In

total, we performed calculations for almost 700 design scenarios

(Figure 2) and predicted 100 sequences for each scenario. The

CaM sequences were designed with an atomic-level energy

function that included van der Waals, electrostatic, hydrogen

bonding interactions, and a surface-area-based solvation term

[21]. To overcome the high combinatorial complexity of the

design calculations, we utilized a number of search algorithms in

parallel to obtain the lowest energy CaM sequences: the first is

based on the dead-end elimination (DEE) theorem [22], the

second is based on belief propagation (BP) for probabilistic

graphical models [7], and the third was Monte Carlo simulated

annealing [23] (only for the 16-state design); see Methods for

details. The results from the various methods were combined to

compile a list of the hundred best CaM sequences designed for a

particular scenario. These hundred sequences were used to

calculate amino acid occurrence frequencies at each CaM

interface position (Figure 2).

To analyze the design results, we computed the evolutionary

profile for the residues belonging to the CaM binding interface

using the Homology-derived Secondary Structure of Proteins

(HSSP) database (Figure 2 , top). The CaM HSSP profile

(henceforth referred to as the evolutionary profile) revealed that

the interface is highly conserved through evolution and is

composed of predominantly hydrophobic amino acids supple-

mented by a few glutamates and a single glutamine. Surprisingly,

the defined interface has a pseudo two-fold symmetry, where the

same motif is utilized for target recognition in the CaM N- and C-

terminal domains (EEAFMLMMM), with the addition of L18 and

Q41 in the N-terminal domain.

Author Summary

In nature, some proteins are more social than others,
interacting with a large number of partners. These
‘‘promiscuous’’ proteins play key roles in cellular signaling
pathways whose disruption may lead to diseases such as
cancer. The amino acid sequences of such proteins must
have evolved to be optimal for combined interactions with
all natural partners. However, the evolutionary process
leading to this promiscuity is not fully understood. We
address this subject by predicting amino acid sequences
that would be most compatible for interaction with each
partner on its own and those most compatible for binding
multiple proteins. We find that these two types of
sequences are substantially different, the latter more
closely resembling the natural sequences of promiscuous
proteins. We also find that promiscuous proteins contain
certain regions that are necessary for interfacing with all of
their partners, while other regions convey specific
interactions with each particular target protein. We analyze
the tradeoffs required for such proteins to bind multiple
partners and find that only some degree of compromise is
typically needed in order to permit interactions that are
seemingly antagonistic. We conclude that the simulations
reported here mimic well the natural evolution of proteins
that associate with multiple partners.

Design of Promiscuous Proteins
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Figure 1. Redesigning CaM-target interactions. (A) CaM-target complex exhibiting the conventional binding mode, where CaM is shown in
pink and the target peptide in violet (PDB 3BXL). The common CaM-binding interface (20 positions in total) is highlighted in magenta, and Ca2z ions
are indicated as pink spheres. (B) Free CaM (center) can bind each of the 16 studied targets in the binding mode shown in panel A. (C) Multiple
sequence alignment (ClustalW) and conservation logo of 16 peptide targets of CaM, for each of which the solved structure shows the conventional
binding mode depicted in panel A. PDB codes and target descriptions are as listed. Note that the target peptides of 2BE6 and 2F3Y are derived from
the same protein; however, we used both of them since they are of different lengths and the Ca RMSD between the CaM molecules is significant
(1.15 Å). (D) We methodically optimize CaM to bind each target (1-state), pairs of targets (2-state), and triplets of targets (3-state). Multiple-target
design is implemented by minimizing the sum of the CaM sequence energies in each structure, with the constraint (denoted by arrows) that the
same amino acid sequence be predicted for all structures.
doi:10.1371/journal.pcbi.1000627.g001

Design of Promiscuous Proteins
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Figure 2. Sequence profiles for the CaM binding interface designed for interactions with one, two, three, and all sixteen targets.
Amino acids found in the 100 best CaM binding interface sequences optimized for one (1-state), two (2-state), three (3-state), and sixteen (16-state)
targets simultaneously, compared to the evolutionary profile of CaM (HSSP). The size of the displayed amino acid is proportional to its frequency of
occurrence. Color coding: black - hydrophobic amino acids, green - polar non-charged, purple - amide, red - negatively charged, blue - positively
charged. Results for all sixteen one-state CaM designs are shown. For clarity, only 15 out of 120 calculations and 14 out of 560 calculations are shown
for the two-state and three-state designs, respectively. Numbers in parentheses denote the mean positional dissimilarity score (calculated according
to Eq. 1) compared to HSSP, where lower values indicate greater similarity to the evolutionary profile.
doi:10.1371/journal.pcbi.1000627.g002

Design of Promiscuous Proteins
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Similarity between the designed and native CaM
sequences

First, we assessed the similarity of our designed CaM interface

sequences to the native CaM sequences. The number of mutations

predicted in the single best CaM sequence, designed for

interaction with one target, ranges from four to sixteen with a

mean value of 9.5 (Figure 3A). When two CaM targets are

included in the design, the number of predicted mutations ranges

from 3 to 13 with a mean of 7 mutations. The distribution of

predicted mutations further shifts to the left when three CaM

targets are incorporated into the design, exhibiting a mean of 6

mutations. Incorporation of all sixteen states in the design

procedure resulted in only 4 mutations. Next, we compared the

distribution of amino acids obtained from the one hundred CaM

sequences designed for interactions with one, two, and three

targets. This was done by calculating the Jensen-Shannon

divergence (JSD, see Methods) between the evolutionary profile

of CaM and the amino acid distribution obtained after CaM

redesign. A JSD score of 0 corresponds to identical distributions,

while a JSD score of 1 corresponds to completely discordant

distributions. We henceforth refer to the JSD score as the

‘‘dissimilarity score’’. A comparison of the hundred CaM interface

sequences designed for one, two, and three targets (Figure 3B)

showed the same trend as observed for the single best CaM

sequences. The highest dissimilarity scores were obtained for

single-state designs (mean value of 0.48), medium scores were

obtained for two-state designs (mean value of 0.37), lower scores

were obtained for three-state designs (mean value of 0.35), and the

lowest score was obtained for sixteen-state design (0.24).

Analysis of the single-state design scenarios
We next compared the hundred best CaM sequences designed

for interactions with the various single targets. For each of the

interface positions, we calculated the dissimilarity score between

the distribution of designed amino acids and the evolutionarily-

derived distribution (Figure 4A). Our analysis revealed that, at

some of the CaM interface positions, our design calculations

predicted a distribution very similar to the evolutionary profile for

the majority of the CaM-target complexes (columns with lighter

boxes, Figure 4A). On the other hand, at other positions, the

design methods predicted amino acid distributions very different

from the evolutionary profile (columns with darker boxes). Among

the 16 different CaM-target complexes, the average per-position

dissimilarity score was very diverse and ranged from 0.276 to

0.741 (mean of 0.48), so that some structures inherently predict

profiles much more similar to the evolutionary profile than others.

These scores slightly decreased (numbers in parentheses) if we

excluded from our analysis the CaM positions that belong to the

common CaM binding interface but do not interact with the target

in the particular CaM-target complex. We also noticed that the

designed CaM sequences are more similar to the evolutionarily-

defined CaM sequences for the targets that interact with a larger

number of CaM residues. Figure 4B shows that there is an inverse

correlation (R~0:58) between the dissimilarity with the evolu-

tionary profile and the number of the designed CaM positions that

are in the binding interface for a particular CaM-target complex.

In addition, not unexpectedly, the designed CaM sequences come

out somewhat more similar to the native profile if the WT CaM

sequence is predicted to be strongly compatible with the CaM-

target complex structure. This is demonstrated in Figure 4C,

which shows a correlation (R~0:56) between the dissimilarity

with the evolutionary profile and the energy of the WT CaM

sequence in the context of a particular structure.

Next, we quantified the correlation among the hundred best

sequences designed for interactions with different single targets.

This was done by calculating the dissimilarity score between all

possible pairs of single-state designs at each of the design positions.

This type of analysis allowed us to identify the CaM binding

interface positions that, on the whole, exhibit similar amino acid

identities in all CaM-target complexes (affinity-defining positions:

19, 36, 71, 72, 92, 109) and the positions that display much greater

diversity among the single-state designs (specificity-defining

positions: 11, 14, 18, 39, 41, 84, 87, 112) (Figure 5A). In the

evolutionary profile of CaM, the affinity-defining positions are

Figure 3. Comparison of the lowest energy CaM sequences designed for one, two, or three targets with native and evolution-
derived CaM sequences. (A) The number of mutations from the WT CaM sequence observed in the single lowest energy sequence when
redesigning 20 positions in the CaM binding interface. The average number of mutations is 9.5 for single-state designs (52% native sequence
recovery), 7 for the two-state designs (65% recovery), 6 for the three-state designs (70% recovery), and 4 for the design of all sixteen states (80%
recovery). (B) Comparison of the 100 best designed CaM sequences to the evolutionarily observed sequences (HSSP profile of CaM). JSD dissimilarity
between distributions of 100 designed sequences and HSSP was calculated according to Eq. 1, where lower JSD values indicate greater similarity
between the predicted sequence profile and the HSSP profile. The average JSD is 0.48 for single-state designs, 0.37 for two-state designs, 0.35 for
three-state designs, and 0.24 for design of all sixteen states.
doi:10.1371/journal.pcbi.1000627.g003
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occupied by hydrophobic residues, either Met, Leu, or Phe. The

specificity-defining positions, on the other hand, are dominated by

hydrophilic amino acids (Glu and Gln) and, in some cases, are

occupied by Leu (Figure 5B). The affinity- and specificity-defining

positions are present in both the N- and the C-terminal domains of

CaM and are also distributed evenly throughout the CaM

structure (Figure 5C). In addition, we could not detect any

differential pattern in the way the targets interact with either class

of CaM positions (since the CaM targets do not exhibit distinctly

conserved motifs; see Figure 1C).

In an attempt to further understand the differences between

interactions defining affinity and specificity in native CaM, we

threaded the WT CaM sequence onto all sixteen selected CaM-

target complexes and calculated the energetic contribution of each

of the binding interface positions to the total energy. The energetic

contributions at each position were further separated into intra-

and intermolecular energies, corresponding to stabilization within

CaM and between CaM and the target, respectively. We further

averaged the per-position energetic contributions for the sixteen

CaM-target complexes. We saw that there is a distinct difference

in how the affinity- and specificity-defining positions stabilize the

WT CaM-target complexes. This difference is especially striking

for the intramolecular energy contributions (Figure 5D). The six

affinity-determining positions exhibit the highest intramolecular

contributions among all positions, being crucial for stabilization of

CaM in the target-bound conformation. The majority of the

specificity-determining positions, on the contrary, exhibit higher

than average, and sometimes even unfavorable, contributions to

the intramolecular energy. However, most of these specificity-

determining positions contribute more than average to the

intermolecular energies, being more important for direct interac-

tions with the target (Figure 5E).

We next investigated what happens to the energetic contribu-

tions in the CaM sequences designed for interactions with the

single targets (Figure 6). This was done by computing the total

energy contribution of each designed position first for the single

best designed sequence and then for the WT CaM sequence, for

each of the sixteen CaM-target complexes. The per-position

energetic contributions were then averaged over the sixteen cases.

Figure 6 shows that, at all design positions, the energetic

contribution is either unchanged or is improved for the designed

sequences compared to that of the WT CaM sequence. An

unchanged value is observed at positions that are highly optimized

for interaction with the target, including most of the affinity-

defining positions. Large improvements in the energetic contribu-

tions from the WT to design are observed for positions where the

WT energies were less favorable, including the majority of the

specificity-defining positions.

Sequence comparison of single-state and two-state
designs

CaM needs to achieve a certain compromise to obtain a

sequence compatible with binding each of the two targets.

Comparison of the CaM sequences designed for interactions with

each of the two single targets (single-state designs) and the

combinations of these two targets (two-state designs) revealed that

the compromise could be achieved via five different scenarios.

This is demonstrated in Figure 7 using the examples of CaM-

target complexes, corresponding to the PDB codes 2F3Y and

3BXL. In the most trivial scenario, CaM sequence profiles

designed for the two single targets have an identical or very similar

amino acid distribution at a particular position (e.g., position 145

in Figure 7B). This amino acid distribution remains the same when

CaM is designed to interact with both of these targets (‘‘Kept

Figure 4. Sequence comparison of single-state CaM designs and the evolutionary profile of CaM. (A) For each position in the CaM
binding interface (horizontal axis), dissimilarity with the evolutionary profile of CaM (HSSP) is calculated using the JSD score. Black - positions with the
largest dissimilarity between the design and the HSSP. White - positions showing the largest similarity between the design and HSSP. Red boxes
indicate positions that are not in the binding interface for a particular CaM-target complex but were included in the calculation as part of the
common binding interface. On the right, the average per-position dissimilarity is given for the 20 interface positions in the particular CaM-target
complex. In parentheses, the same number is calculated with the boxed (non-relevant) interface positions excluded, so that the dissimilarity tends to
decrease for these more ‘‘relevant’’ positions. (B) Correlation between the number of relevant interface positions in a particular CaM-target complex
structure and dissimilarity of the designed sequences with the evolutionary profile, as calculated by the mean per-position JSD score (right side of
panel A, numbers in parentheses). (C) Correlation between the energy of the WT sequence threaded onto a particular CaM-target complex structure
and dissimilarity of the designed sequences with the evolutionary profile, as calculated by the mean per-position JSD score (right side of panel A).
doi:10.1371/journal.pcbi.1000627.g004
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same’’ in Figure 7A). In the second scenario, two different amino

acid distributions are observed for the single-state designs.

However, the sequence profile designed for both targets is similar

to both of the two distributions resulting from the single-state

designs, since it combines them in some form (‘‘Combined’’ in

Figure 7A and e.g., position 87 in Figure 7B). In the third scenario,

two different amino acid distributions are observed for the single-

state designs, while in the two-state design, one of these

distributions dominates (‘‘Preferred one’’ in Figure 7A and

position 124 in Figure 7B). In the fourth scenario, two different

amino acid distributions are again observed for the single-state

designs. In the two-state design, however, a new amino acid

distribution appears; this distribution is significantly different from

those observed for both single-state designs (‘‘New aa’’ in Figure 7A

, position 18 in Figure 7B). In the fifth scenario, an identical amino

acid distribution is observed for the single-state designs. Interest-

ingly, a new amino acid distribution appears in the two-state

design (‘‘despite same’’ in Figure 7A , position 14 in Figure 7B).

This scenario, however, occurs only very infrequently throughout

our design calculations. Expectedly, the affinity-determining

positions in CaM (19, 36, 71, 72, 92, 109) tend to exhibit the

‘‘Kept same’’ category of compromise, while the specificity-

Figure 5. Prediction of affinity- vs. specificity-determining positions. (A) Dissimilarity between all pairs of sequence profiles designed for a
single structural state was calculated for each of the interface position by computing the JSD dissimilarity score (Eq. 1). The results were binned for
histogram analysis. Positions that exhibit low pairwise JSD scores with higher frequency (red) are most conserved between the various CaM single-
state designs and hence are predicted to be affinity-defining. Positions that exhibit high pairwise JSD with higher frequency (cyan) differ for each
single-state design and hence are specificity-defining. (B) Evolutionary logo with specificity and affinity-defining positions marked. (C) Structure of a
CaM-target complex (PDB 3BXL) with affinity and specificity positions marked in red and cyan, respectively, and the target peptide is colored in violet.
(D) Intramolecular and (E) intermolecular energetic contributions for the WT CaM sequence at each of the 20 interface positions. The intra- and
intermolecular contributions were calculated in each of the 16 CaM-target complexes and were averaged over all cases. Positions are colored as
above, and the dotted line indicates the average energy contribution for all positions.
doi:10.1371/journal.pcbi.1000627.g005
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determining positions (11, 14, 18, 39, 41, 84, 87, 112) tend to select

the ‘‘Preferred one’’ category.

We next investigated if the compromises required to achieve

multispecificity bring the CaM sequence closer to its evolution-

arily-derived sequence profile. For this purpose, we compared the

amino acid distributions resulting from the single-state designs

with those from the two-state designs, all in relation to the

evolutionary profile (Figure 8). Here, we discarded the scenarios

where the two-state design produced results similar to both single-

state designs (‘‘Kept same’’, ‘‘Combined’’), since these scenarios do

not result in changes relative to the evolutionary profile of CaM.

Interestingly, for most of the designed positions, CaM sequences

optimized for two targets were more similar to the evolutionary

profile than those optimized for single targets (‘‘Benefit’’ in

Figure 8A and position 112 in Figure 8B). In a few cases, no

significant change was observed vis-a-vis the evolutionary profile

(‘‘No Change’’ in Figure 8A , position 18 in Figure 8B), while in

some cases the amino acid distribution becomes more different

from the evolutionary profile compared to that of the single-state

designs (‘‘Loss’’ in Figure 8A , position 14 in Figure 8B).

It is interesting to see how the overall amino acid composition

(calculated for all 100 best sequences) changes from the CaM

interface sequences designed for interaction with a single target to

the sequences designed for multispecificity (either two-state or

three-state design). Figure 9 shows several significant differences

between the two situations. Methionine dominates the composi-

tions of the CaM-binding interface for single-state designs. They

become even more frequent when CaM is designed for

interactions with two or three targets. In addition, we noted a

significant increase in the number of Leu, Gln, Ser, Gly, and Val

when introducing additional interaction constraints on the CaM

sequence. On the other hand, all aromatic amino acids (Phe, Trp,

Tyr), as well as Arg, become significantly less abundant when

more than one CaM target is considered in the design.

Energetics of the designed CaM-target interactions
In this study, we designed 100 CaM binding interface sequences

for each of 697 design scenarios (1-state, 2-state, 3-state, and 16-

state). We computed the energy of each of these sequences in the

context of all sixteen structures of the CaM-target complexes.

Each design scenario was assigned an energy value in each

structure; this energy value was the minimum of the energies

obtained by the 100 sequences designed in this scenario. We next

analyzed how these energies vary as additional targets are either

introduced into, or removed from, the design procedure

(Figure 10). Note that the frequency histograms in Figure 10 are

Figure 6. Comparison of per-position energies between WT
and single-state design sequences. Total energies (intramolecu-
lar+intermolecular energies) for each of the 20 interface positions are
averaged in all 16 structures for the native sequence (green bars) and
the single-state design lowest energy sequences (blue bars). The dotted
lines indicate the respective average energy contributions for all
positions. The affinity- and specificity-determining positions are boxed
in red and cyan, respectively.
doi:10.1371/journal.pcbi.1000627.g006

Figure 7. Categories of multistate sequence compromise. (A) In comparing the amino acid distributions at each of the CaM interface positions
obtained in single-state designs with those resulting from 2-state design calculations, five scenarios were observed. Dark blue - both individual states
have similar profiles and the 2-state design chooses this profile. Light blue - two-state design yielded a profile that is a combination of the two
distributions obtained for each single-state design. Green - two-state design yielded a distribution of amino acids that was similar to that of only one
of the single-state designs. Orange - an amino acid distribution for the two-state design was chosen that is different from that of both of the
individual single-state designs. Maroon - Despite the individual states having similar profiles, the two-state profile is different. Interface positions are
marked on the horizontal axis. The analysis was performed only for cases where the particular position is in the binding interface for both of the
combined CaM-target complexes (the number of such cases is shown in brackets below the interface position number). (B) Logos of sequence
profiles individually optimized in the context of CaM-target complex structures with PDB identifiers 2F3Y and 3BXL (1-state design), compared to the
profile resulting from simultaneous optimization for interaction with both targets (2-state design). Positions that demonstrate compromise scenarios
are outlined in colors as in panel A.
doi:10.1371/journal.pcbi.1000627.g007
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Figure 8. Effect of multispecific compromise on the similarity of the designed sequences with the evolutionary profile. (A) For each
position in all 2-state designs, its dissimilarity with the evolutionary profile (JSD score with HSSP) is compared to the JSD dissimilarity with the
distribution that is the average of the two respective 1-state design strategies (JSD score for 1-state design results). For each position, we only
analyzed the scenarios in which the predicted profile preferred only one of its constituent states or contained novel amino acids (the number of such
cases for each position is shown in brackets on the bottom). Three main outcomes were tallied: Gray - no significant change in the dissimilarity score.
Blue - the two-state design significantly improves the JSD of the single-state designs, i.e., two-state design is beneficial. Red - the two-state design
performs significantly less well than the single-state designs in recovering the HSSP profile, i.e., two-state design results in greater dissimilarity with
the evolutionary profile. Interface positions are marked on the horizontal axis. (B) Logos of sequence profiles individually optimized for CaM
interaction states 2F3Y and 3BXL (1-state design) and simultaneously optimized for both states (2-state design), compared to the evolutionary profile
(HSSP). Mean dissimilarities with the evolutionary profile (JSD from HSSP) are noted in parentheses. Positions that demonstrate the effect of the
multispecific compromise, vis-a-vis HSSP, are outlined in colors as in panel A.
doi:10.1371/journal.pcbi.1000627.g008

Figure 9. Amino acid composition of CaM interface designed for one, two, and three targets and that designed by evolution.
Asterisks mark those amino acids with frequencies that significantly differ (pv10{3, t-test with Bonferroni correction) between 1-state and both
multistate designs, and change monotonically from 1-state to 2-state to 3-state (within a threshold of 90%).
doi:10.1371/journal.pcbi.1000627.g009
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based on up to 7000 comparisons of energies between design

scenarios.

We denote by A, B, C, and D any four arbitrary CaM states,

i.e., complexes of CaM with different targets. Firstly, we asked how

incorporating additional CaM-target interactions affects the

stability of the newly incorporated CaM-target complex, as

opposed to performing the same design without this complex

(Figure 10A). For example, B?AzB denotes that energies in

state A were compared for the sequence resulting from design in

state B and the simultaneous design in states A and B (A+B). As

expected, adding a state (A) to the design procedure, when already

designing for a different state (B), yields a significant increase in the

stability of the designed CaM sequence in state A (with w25%
increase in stability for almost half of all such cases). Similar gains

in the stability of a newly incorporated state (A) were observed in

the transition from one state (C) to a total of three states (A+B+C,

middle panel of Figure 10A). On the other hand, when already

designing for two states (B+C), incorporating an additional state A

(A+B+C) yielded much lower gains in stability for that state

(leftward shifted distribution, bottom panel). This is due to the fact

that performing 2-state design for B+C already predicts a sequence

somewhat compatible with A (middle panel of Figure 10B).

Next, we examined the necessity of actually including a

particular state in the design process (Figure 10B). For example,

if two CaM-target interactions were very similar in nature (due to

relatedness of the targets), then simply designing for one of these

interactions would suffice in stabilizing the other. We did not find

this to be the case for our sixteen targets, as designing for one state

(B) results in sequences that are highly unstable in state A (B vs. A).

Such sequences are w25% sub-optimal for almost half of all cases

(top panel). However, designing for two states (B+C) or three states

(B+C+D) yields sequences that are significantly more compatible

with the binding of target A (middle and bottom panels).

Thirdly, we investigated the effect of incorporating other states

into multispecific design on those states that are already included

in the design process (Figure 10C). Expectedly, we found that

incorporating an additional state (B) into the design process (top

panel) resulted in CaM sequences that are less optimized for

interaction with the first target (A). Incorporating two additional

states (B+C) yielded sequences with an additional decrease in

Figure 10. Energetic compromise of the designed and WT interface sequences due to introduction of multispecificity. We evaluate
the compatibility of various sequences with the structure of CaM in complex with target A (denoted as ‘‘state A’’), where the choice of A ranges over
all sixteen CaM-target complex structures; B, C, and D denote the structures of other CaM-target complexes. The sequence energies compared in the
context of CaM in complex with A are those predicted by our protocol while considering CaM interactions with various combinations of targets, e.g.,
A+B. Each plot is a histogram of changes in energy resulting from the comparison between such design scenarios. All energy differences are
normalized relative to the lowest energy sequence designed for interactions with target A and capped at 25% for purposes of depiction. (A) Gain in
stability of state A due to its incorporation in multispecific design. Top: B?AzB indicates that energies in state A were compared between the
sequences resulting from CaM design that considers only interactions with target B and the design that simultaneously considers interactions with A
and B. Middle: C?AzBzC compares the sequences designed for state C and those designed for states A+B+C. Bottom: BzC?AzBzC
compares those designed for B+C with those designed for A+B+C. (B) Energetic non-optimality of state A not included in a particular multispecific
design scenario. The energy differences are calculated between sequences designed for interactions with the marked combination of targets (B, B+C,
and B+C+D, respectively) and those designed only for interaction with target A. (C) Loss of stability of state A due to incorporation of additional states
in the design. Top: A?AzB compares the energies of the sequences designed for interaction with target A alone with those designed for both
A and B simultaneously. Middle: A?AzBzC compares the sequences designed for A with those designed for A, B, and C. Bottom:
AzB?AzBzC compares the sequences designed for both states A and B with those designed for A, B, and C. (D) Energetic non-optimality of the
WT CaM sequence in state A, as compared to the lowest energy sequence predicted in the respective design scenario, including designing only for
interactions with A (top), for interactions with A and B (middle), and for interactions with A, B, and C (bottom).
doi:10.1371/journal.pcbi.1000627.g010
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stability when interacting with target A. On the other hand, when

already designing for two states (A+B) and adding a third state

(A+B+C), the resulting CaM sequences exhibit a smaller decrease

in optimality for target A. Thus, overall, we found that a large

decrease in stability occurs when incorporating one additional

state, but adding a third state does not have the same effect (top vs.

bottom panels).

Finally, since the WT sequence is optimized to bind all sixteen

targets studied here, we expected it to posses sub-optimal stability in

the complex with any particular single target. Indeed, our analysis

showed that the WT CaM sequence, when threaded onto the

structures of all sixteen CaM-target complexes, always obtains a

substantially higher energy compared to that of sequences

optimized for these structures (Figure 10D , top panel). Note that

a related phenomenon was also observed above for individual

design positions (Figure 6). However, the relative sub-optimality of

the WT sequence in a particular interaction (with target A)

progressively decreases when compared to sequences optimized for

interactions with two targets (A+B, middle panel) and three targets

(A+B+C, bottom panel). Thus, WT sequences seem to be most

energetically similar to sequences optimized for multispecificity.

Discussion

How good are the designed CaM sequences?
The CaM interface sequences that we designed to best interact

with single targets have an average of 9.5 mutations, correspond-

ing to a 52.5% wild-type recovery rate (Figure 3A). Our WT

recovery rates for single-state CaM designs are very similar to

those observed, on average, when redesigning protein cores (51%)

[24] and somewhat lower than that observed in our previous

study, where the interface of a very high-affinity protein-protein

complex was redesigned (62%) [25]. These results are reasonable,

since CaM interactions with its targets are mostly conveyed by

buried residues; the affinities of CaM-target complexes, while high,

are not among the highest measured in nature. On the other hand,

our WT recovery rates for single-state designs are considerably

higher than those observed by Humphris et al. when redesigning

the interfaces of twenty multispecific protein-protein complexes

[6]. In many of their examples, however, a significant fraction of

the redesigned positions do not interact with the target in each

particular protein complex under design and are thus likely to

mutate without any constraints. Moreover, we demonstrated that

the WT recovery rate for design of the CaM interface is

proportional to the number of residues directly interacting with

the target (Figure 4B). Having more interface residues results in

the addition of intermolecular contacts to the network of

molecular interactions [26], better reproducing the environment

within the native CaM interface. Hence, our higher WT recovery

rates for single-state CaM designs, as compared to those reported

by Humphris et al., are easily explained by the high fraction of the

designed CaM positions being found in direct interaction with the

target for each CaM-target complex considered (85% or more for

all but 2 of the complexes). Interestingly, CaM interface sequences

designed using NMR structures as templates gave significantly

higher dissimilarity scores with the CaM evolutionary profile

(2BBN and 1SY9 in Figure 4A) than those sequences obtained

using X-ray structures as templates (all others); note that these

structures also have the fewest of the commonly defined interface

positions interacting with their respective targets. The lower rates

of native sequence recovery in design calculations using NMR

structures imply that these structures may be less optimal

templates for protein design calculations, in agreement with recent

findings by Schneider et al.[27].

When optimizing the CaM binding interface for two, three, or

sixteen targets simultaneously, our WT sequence recovery rate

increases from an average of 52% to an average of 65%, 70%, and

80%, respectively. These WT recovery rates are similar to those

observed previously when redesigning multispecific proteins by

considering several partners together [6]. Our high-level sequence

analysis of the design predictions demonstrates that the native

CaM binding interface sequence is not optimal for interaction with

each target on its own but fits well the multispecific requirements

imposed by nature. Moreover, our novel design procedure, which

includes progressive incorporation of additional targets into the

design, provides a plausible scheme for CaM evolution in nature.

Specifically, when designing CaM to possess binding affinity to all

16 targets studied here, the predicted interface sequence is quite

similar to that resulting from evolution (Figure 3). In theory, we

expect the WT recovery rate for the CaM binding interface

sequence to approach 100% if all native CaM targets were taken

into account. Deviation from this number would result from

inaccuracies in the energy function used for design (see below), or

possibly from other constraints that this technique does not

currently incorporate, e.g., sequence composition preferences for

the organism.

When evaluating our designed CaM interface sequences, we

noticed that many of these sequences are more positively charged

than the evolutionary profile of CaM (Figure 9). This increase in

positive charge on the CaM interaction surface could, in principle,

bring about a reduction in affinity between the redesigned CaM

and its targets. Nonetheless, our previous experimental studies of

CaM interactions with two separate targets revealed that carefully

designed charge-reversal mutations in the CaM binding interface

do not reduce CaM affinity to targets and, in some cases, even

increase the affinity [17,28]. In addition, these charge-reversal

mutations help to increase CaM binding specificity [28]. Still, it is

also possible that our design calculations are slightly biased toward

incorporating Lys and Arg residues, which have many atoms to

participate in more interactions and a larger number of rotamers;

hence, they may be chosen more often than other amino acids.

The energy function and molecular models we used for CaM

design might not realistically portray all atomic interactions,

although they have been experimentally verified for many cases,

e.g., [17,21]. It has recently been pointed out that some

inaccuracies in energy functions can be overcome by averaging

the results of many protein design calculations [29]. In this work,

we tried to minimize the effect of possible errors by designing 100

sequences compatible with each design scenario and by averaging

the results obtained from all possible combinations of two- and

three-state CaM designs. Additional sources of modeling errors

include the use of both a fixed protein backbone and rigid amino

acid side chains (rotamers). Some contemporary research has

attempted to overcome these limitations by permitting the

backbone to be flexible [30–33], the side chains to move more

continuously [34], or both [35]; however, introduction of

additional flexibility is computationally expensive and hence

would be incompatible with our high-complexity 700 design

scenarios. In short, while our calculations could be inaccurate in

some particular instances, overall they fit well with similar

computational and experimental work and should be reliable in

predicting general and unbiased trends in CaM evolution.

Lessons on the evolution of multispecific proteins
The per-position analysis of amino acid compromises required

for achieving multispecificity in CaM followed several scenarios,

two of which are especially interesting (Figure 7A). In the first

situation, a new amino acid appears in the two-state design that is
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different from amino acids observed in both single-state designs

(‘‘New aa’’). This amino acid, while not optimal for interaction

with each target on its own, was predicted to be the best

compromise satisfying interactions with both targets. Interestingly,

in the majority of cases where such a scenario was observed, the

new amino acid was more similar to the evolutionary profile of

CaM (e.g., position 112 in Figure 8B). This scenario demonstrates

how the native CaM sequence has acquired its identity. In another

interesting (but rare) scenario, we observed that the amino acid

distribution in the two-state CaM design was different from that in

both single-state designs in spite of the latter distributions being

identical (‘‘despite same’’, position 14 in Figure 7B). This scenario

is likely to be due to correlated mutations. For example, positions

14 and 18 in Figure 7B are coupled to each other. Thus, in spite of

the fact that Glu dominated position 14 in both single-state

designs, the appearance of Glu18 in the two-state design forces the

appearance of Arg at position 14.

In this work, we classified the CaM binding interface residues as

either affinity- or specificity-defining [36,37]. Our predictions were

derived solely from sequence comparisons, with affinity-determin-

ing residues being very similar to each other among all single-state

designs and specificity-determining residues differing the most.

Previous studies found that the residues that maximally contribute

to protein-protein interactions (hot-spots) are also more evolution-

arily conserved [38] and tend to be grouped into spatially distinct

clusters with strong interactions within the clusters [39,40]. In

agreement with these findings, the CaM interface positions that

are most ‘‘conserved’’ among the designs (affinity-determining) are

also very stabilizing for the native CaM-target complexes, and

these six ‘‘hot-spot’’ positions are clustered into three pairs (19 and

36; 71 and 72; 92 and 109; see Figure 5C). Unexpectedly, the

strong energetic contributions of the hot-spot residues were largely

mediated by intramolecular interactions (Figure 5D), meaning that

the affinity-defining residues in CaM mostly stabilize it in the

target-bound conformation. On the other hand, the specificity-

determining residues often have an unfavorable effect on CaM

intramolecular energies but provide favorable interactions with

each particular target (Figure 5E). Thus, the coupling between

evolution and energetics is very strong in CaM, and the pattern of

this coupling can even be used to infer that large conformational

changes accompany target recognition by CaM. This finding is

consistent with the population shift model [41–44], which asserts

that an unbound protein samples a multitude of conformations;

the equilibrium is shifted towards the bound state upon addition of

the binding partner. Our results suggest that the affinity-

determining positions enable the transition to each of the bound

CaM states, while the specificity-determining positions lock CaM

into a target-specific conformation. We postulate that an

analogous scenario should be detected for other multispecific

proteins that undergo conformational changes upon binding.

Finally, we also validated our positional classifications using the

INTREPID web server for predicting functionally important

residues (based on evolutionary sequence conservation) [45]. For

the 142 CaM positions, the 6 affinity-determining residues were

among the 14 ranked most important for function, while the 8

specificity-determining residues were ranked significantly lower

than average. The latter is not unexpected, since these positions

convey distinct favorable interactions with various targets and are

hence not conserved at higher levels in the evolutionary hierarchy

(not shown).

The energetic analysis of the WT and designed sequences in the

context of all sixteen structures revealed a few interesting

conclusions. Firstly, we demonstrate that, from an energetic

perspective, the CaM interface is optimized for binding multiple

partners but sub-optimal for interaction with each particular target

(Figure 10D , top vs. middle and bottom). This result is in accord

with previous studies, which have shown that binding promiscuity

results in weaker affinity toward targets [46]. Additionally, we find

that designing the CaM interface for additional functions requires

a notable tradeoff in stability that escalates as more functions are

simultaneously added (Figure 10C , top and middle). This finding

is consistent with conclusions from mutational studies of enzymes,

where function-stability tradeoffs were observed in positions that

are highly constrained by the catalytic mechanism [19,20].

Nevertheless, the loss of binding stability associated with acquiring

a second binding partner is only minor when balancing it with the

huge gain in CaM’s favorable interactions with this new target

(Figure 10C vs. Figure 10A). Finally, it is of great interest that,

when gaining the ability to bind a third partner, the energetic

penalty imposed on the interactions of CaM with its original two

partners is not that great (Figure 10C , bottom vs. top). This could

explain why the transition from three-state to sixteen-state designs

does not bring about a very large difference in predicted mutations

(Figure 3). Furthermore, these results would suggest that the

evolution of multispecific proteins may be subject to a phenom-

enon of positive feedback, where once a protein becomes

somewhat promiscuous, it can be virtually uninhibited in the

expansion of binding partners similar to the ones it already binds

[47]. This phenomenon could partially contribute to the high

connectivities of hub proteins (such as CaM), which result in the

scale-free nature of protein-protein interaction networks [48].

Comparison of the general amino acid composition of the CaM

binding interface sequences designed for interaction with one or

more targets provides valuable insight into the evolutionary

processes resulting in the contemporary CaM sequence. For

example, Met residues, so abundant in the CaM binding interface,

were frequently postulated to be key to its ability to interact with

multiple targets. Met possesses a long and flexible side chain that

can, in principle, adjust for interaction with any target [49,50]. In

agreement with these observations, we show that the methionine

content increases as we introduce additional interaction partners

in our design procedure (Figure 9). We found a number of similar

cases where the progression from single-state to multistate design

converges on a sequence composition more similar to that of the

evolutionary profile. For instance, the reduction in Arg content in

multistate designs might result from the need for CaM to satisfy

salt-bridge interactions with a number of targets. These targets

show different, yet mostly positive, charge distributions; hence an

Arg would be more difficult to place without destabilizing one of

the CaM-target complexes. The reduction in aromatic residue

content might be due to the fact that these residues need to fit in

the hydrophobic pockets between CaM and the target. Since such

pockets could be located in different places for the different CaM-

target complexes, it would thus be difficult to provide sufficient

space for aromatic amino acids in all contexts. In such cases, the

compromise sequences might replace the aromatic amino acids

with hydrophobic residues, such as Leu, Met, or Val, whose

content increased in the transition to multistate design.

Lessons for redesign of multispecific proteins
The results of our computational design experiments on CaM

can provide useful strategies for the experimental redesign of any

multispecific protein [47]. To improve the affinity of a

promiscuous protein to a particular target, we should not touch

the affinity-defining positions, since these positions are already

highly optimized and attempts to improve them are likely to fail.

On the contrary, the specificity-defining positions in multispecific

proteins are usually occupied by non-optimal amino acids. For
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proteins that undergo a large conformational change upon

binding, energetic improvements in the intramolecular interac-

tions at these positions (Figure 5D) should result in enhanced

affinity by stabilization of the protein in the target-bound

conformation [28,51]. Improvement of the intramolecular ener-

gies, however, is not likely to bring about an increase in binding

specificity if interactions with different targets are conveyed

through the same binding mode [52]. Optimizing the charged

positions for a particular target, on the contrary, is bound to

increase the protein binding specificity. Such optimization was

previously used to drive the correct assembly of 4-helix bundles

[53] and to substantially increase CaM binding specificity [28]. In

addition, proper placement of charged residues is likely to be used

by proteins to prevent folding into non-native structures [54] and

to determine substrate specificity for enzymes [36].

The energetic analysis of all of the designed sequences

(Figure 10), in the context of the sixteen CaM-target complex

structures, helps to explain our previous experimental results on

substantially increasing CaM binding specificity [17,28]. In these

experiments, we optimized CaM for interaction with a single

target without incorporating an explicit negative design procedure,

i.e., considering CaM interactions with alternative, undesirable

targets. Unexpectedly, in the majority of cases we observed a

significant decrease in CaM affinity to these other targets. There

has been some controversy if one should consider negative design

when designing a protein to be compatible with certain

conformations [17,54–59], since, as a designer, one wants to

prevent the constructed sequence from folding into an alternative

conformation. Our present analysis (Figure 10B , top) shows that

the optimization of twenty CaM binding interface residues for a

particular target is sufficient for substantially increasing (worsen-

ing) the interaction energy with other targets. Nevertheless, the

necessity of incorporation of negative design is highly dependent

on the problem [47]; optimizing a large number of residues and

considering more dissimilar states increases the chances that

positive design will suffice.

In conclusion, our simulations give valuable insights as to how a

prototypical multispecific protein, CaM, has evolved in nature to

recognize a large number of binding partners. We uncovered both

sequence and energetic tradeoffs that are imposed by multi-

specificity. Specifically, as additional CaM targets were explicitly

incorporated in the design procedure, the resulting sequences were

more similar to the native sequence (Figure 11A). Conversely, the

energies with which these sequences bind the targets most closely

resemble that of the WT sequence (Figure 11B). These

compromises are likely to represent authentic trends in the

Figure 11. Summary of results. (A) Designing CaM for binding an increasing number of partners progressively yields more native-like sequences.
(B) The WT sequence has binding energies most similar to those of CaM sequences designed for multiple interactions. (C) We find that intramolecular
interactions are critical for binding affinity, whereas intermolecular interactions determine specificity toward the various targets.
doi:10.1371/journal.pcbi.1000627.g011
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evolution of proteins with a large number of binding partners. Our

analysis also uncovered two classes of CaM interface positions: the

affinity-determining positions, which stabilize the intramolecular

interactions; and the specificity-determining positions, which

interact strongly (but distinctly) with the various targets

(Figure 11C). Our computational results will help in guiding

future experiments on the redesign of CaM and other multispecific

binders. Additional biochemical and structural studies of promis-

cuous proteins should be used to validate our findings and provide

greater detail about the mechanisms employed by these proteins in

achieving their diverse biological functions.

Methods

CaM structures and multispecific design
A thorough search of the PDB revealed 24 solved structures of

CaM-target complexes. Of these, 16 were of high resolution (less

than 2.5 Å for X-ray structures) and exhibited the conventional

CaM-target binding mode (Figure 1A). For each structure, the

interface positions were determined as those that are within 4 Å of

the respective target peptide. The CaM positions found in the

interface for at least 75% of the 16 structures were defined as the

common binding interface, 20 in total: 11, 14, 15, 18, 19, 36, 39,

41, 51, 71, 72, 84, 87, 88, 92, 109, 112, 124, 144, and 145. All

CaM structures were drawn using PyMOL [60], and sequence

logos were generated using TeXshade [61] and WebLogo [62].

For the multispecific design, the goal was to predict the 100

CaM interface sequences that minimize the sum of total

energies in the target structures of the respective design scenario

(i.e., 1-, 2-, 3-, or 16-state designs). Thus, there were 16 single-

state designs (one for each CaM-target interaction), 120 two-

state design scenarios (one for each pair of the 16 CaM-target

interactions), 560 three-state designs (one for each threesome of

interactions), and one design of all sixteen states; this yielded

697 design scenarios in all. In each design scenario, the energies

of the multiple states were uniformly weighted; for full details,

see [7]. For all energy calculations, we used the ORBIT protein

design force field [21] with the parameters previously used for

redesign of CaM-target interactions [17]. In all subsequent

design calculations, all positions were allowed to mutate to all 20

amino acids except cysteine and proline. In addition, for all

structures, the peptides were allowed to vary their side chain

conformations. Amino acid rotamers were defined based on the

backbone-dependent rotamer library of Dunbrack and Karplus

[63], with sub-rotamers added at + one standard deviation

around the mean x1 value; native sequence rotamers were

included as well.

We used a combined algorithmic strategy for finding the

lowest energy sequences, employing the tBMMF algorithm

[7,64] and the HERO module of ORBIT [22] and then

extracting the best hundred sequences from their aggregated

output. Briefly, the tBMMF algorithm provides a framework for

predicting successive low energy sequences compatible with

multiple protein structures. Firstly, a probabilistic graphical

model is built that simultaneously models multiple protein

structures of the same molecule (by requiring that the sequences

predicted for the multiple structures be identical). Then,

tBMMF iteratively performs energy minimization (using max-

product belief propagation) within a particular sub-space of

amino acid sequences in order to find the next lowest energy

sequence. It then partitions this sub-space into two sub-spaces,

such that subsequent low energy sequences can be readily

determined; for full details, see [7,64]. Note that only the

tBMMF algorithm was capable of efficiently handling the 560

three-state designs. For the single case of 16-state design,

tBMMF did not converge or yield reliable results. Therefore, the

search over the sequence space was performed using a Monte

Carlo simulated annealing (MCSA) algorithm [23]; at each step,

a sequence was evaluated in each of the 16 complexes by

calculating its minimal conformational energy using belief

propagation [65]. This MCSA algorithm was repeated 10

times, for 2000 sequence steps each, and the 100 top-scoring

sequences were extracted. Although we have previously shown

that MCSA is often less successful at finding low energy

sequences than the tBMMF algorithm [64], it seems to have

performed reasonably well in this case.

Native sequence and evolutionary profiles
The native interface sequence was extracted from the CaM

structures. Evolutionary profiles were obtained by downloading

and parsing the homologous sequence hits from the HSSP

(Homology-derived Secondary Structure of Proteins) database

[66] for each of the 16 structures and concatenating these profiles,

yielding over 2100 homologues for the 20 CaM interface positions.

Jensen-Shannon divergence (JSD) for measuring
similarity between profiles

To quantitatively compare amino acid probability distributions

(for a particular design position), we use the symmetric Jensen-

Shannon divergence (JSD). JSD, or dissimilarity scores, were used to

measure correlation either between design results and HSSP (e.g.,

Figure 2) or between various design scenarios (e.g., Figure 5). The

JSD score ranges from 0 (identical) to 1 (‘‘distant’’ distributions), so

that lower JSD scores reflect higher similarity between distributions

[7,67]. The JSD between distributions P and Q is given by:

JSD (P,Q)~
1

2
DKL(PjjR)z

1

2
DKL(QjjR) ð1Þ

where R~
1

2
(PzQ) is the average distribution, and

DKL(A,B)~
X

x

a(x) log2

a(x)

b(x)
ð2Þ

is the Kullback-Leibler divergence between distributions A and B.

In all cases (except where noted), the mean JSD from the

evolutionary profile (HSSP) for a particular CaM-target complex

was calculated by averaging the JSD from the HSSP profile for all

20 interface positions.

Prediction of residues important for affinity and
specificity

To delineate CaM interface positions critical for either target

affinity or target specificity, we compared the best sequences

designed for interactions with the 16 single targets. This was done

by calculating the JSD dissimilarity score between all 120 pairs of

the 16 single-state designs at each of the design positions. Positions

for which at least 50% of the pairs have a JSD dissimilarity v0:25
were defined as affinity-determining, and those where at least 50%

of the pairs have a JSD dissimilarity w0:75 were labeled

specificity-determining. For each CaM position, the results shown

(Figure 5A) are for those pairs of structures for which the position

interacts with the target in both structures; results were similar

when considering all pairs of structures (not shown). Per-position

energy contributions (e.g., Figure 5D,E) were calculated using the

EANAL module of the ORBIT program.
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Quantifying multistate sequence compromise
For a particular 2-state design scenario, the profile based on its

100 lowest energy sequences was compared to those designed for

interactions with the same two single targets (1-state designs). The

comparison was performed at each of the 20 design positions. For

each position, the multistate sequence compromise was catego-

rized (Figure 7) based on a JSD comparison between the two 1-

state designs and between the same 1-state designs and the 2-state

design. We defined 5 intuitive categories: ‘‘Kept same’’ - the 1-

state designs predicted similar results (pairwise JSDv0:3) and the

2-state design was similar to both of them (both pairwise

JSDv0:5); ‘‘Combined’’ - the 1-state designs were dissimilar

(pairwise JSD§0:3), but the 2-state design was similar to both of

them (JSDv0:5); ‘‘Preferred one’’ - 2-state design was similar to

only one of the 1-state designs (JSDv0:5); ‘‘New aa’’ - the 1-state

designs predicted dissimilar results (pairwise JSD§0:3) and the 2-

state design was different from both of them (both pairwise

JSD§0:5); ‘‘despite same’’ - despite the 1-state designs predicting

similar results (pairwise JSDv0:3), the 2-state design was different

from both of them (JSD§0:5).

For positions where the 2-state design ‘‘preferred one’’ of the 1-

state designs or chose a new profile altogether (‘‘New aa’’, ‘‘despite

same’’), we quantified to what degree this affected the biological

quality of the sequence results (Figure 8). To do this, we first

calculated the per-position JSD scores comparing the 2-state profile

to HSSP. Then, we constructed the profile resulting from averaging

the two 1-state design profiles and calculated its per-position JSD

scores from HSSP. For a particular position, the difference between

these JSD values (d ) was used to define the effect of multistate

compromise: ‘‘No Change’’ - jdjƒ0:1; ‘‘Benefit’’ - dv{0:1;

‘‘Loss’’ - dw0:1. Recall that lower JSD scores from HSSP indicate

greater similarity to the evolutionary profile, so that a decrease in

JSD is termed beneficial. We chose to represent the performance of

the two 1-state design scenarios using their average profile since,

barring any external information, the most logical procedure would

be to simply combine these two profiles as a proxy to the low energy

sequence space compatible with both targets. For all calculations,

we show results for those pairs of structures for which the position

interacts with the target in both structures; results were similar when

considering all pairs of structures.

Energetic compromise for multistate design
To characterize the tradeoff in energetic stability required for

promiscuity, we quantified the changes in sequence energy resulting

from the inclusion or exclusion of additional target states in the

multispecific design procedure (Figure 10). Recall that the design

results in this paper are based on the 100 lowest energy sequences

for each of the 697 design scenarios detailed above, yielding a total

of *70,000 sequences. Firstly, we calculated the energy of each of

these sequences in each of the 16 target structures (over 106

calculations in total). To efficiently perform these calculations, we

utilized belief propagation (and Monte Carlo simulated annealing if

the belief propagation algorithm did not converge, see [64]) to

calculate the lowest energy rotamer conformation of each such

sequence threaded onto the structure of each CaM-target complex.

For each structure, the energy of a particular sequence was

normalized by the absolute value of the energy of the best sequence

designed for that structure. Then, for each combination of design

scenario and structure, we chose the sequence with lowest

normalized energy when threaded onto the structure, among the

100 sequences designed for that scenario. This yielded the final

110,152 normalized energies (corresponding to 697 sequences|16

structures) utilized for plotting Figure 10 and Figure 11C.

Now, denote by A, B, C, and D any four arbitrary CaM states,

i.e., complexes of CaM with different targets. For all 12 histograms

in Figure 10 (3 rows|4 columns), we enumerate all possible

choices of the corresponding CaM states. For each such choice, we

calculated the designated differences in normalized energy, and all

resulting values were plotted in the respective histogram. For

example, in the bottom panel of Figure 10 (row 3, column 2),

consider each of the 16 CaM-target complexes as state A. Then,

consider all triples of other possible states as B+C+D. Finally,

calculate the difference in normalized energy in state A, between

the sequence resulting from the simultaneous design of B, C, and

D and the sequence resulting from the exclusive design of A. This

difference, necessarily positive, was one of the 7280 values (16

choices for A |455 choices for B+C+D) used in creating this

frequency histogram.
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