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Abstract

Actin filament assembly by the actin-related protein (Arp) 2/3 complex is necessary to build many cellular structures,
including lamellipodia at the leading edge of motile cells and phagocytic cups, and to move endosomes and intracellular
pathogens. The crucial role of the Arp2/3 complex in cellular processes requires precise spatiotemporal regulation of its
activity. While binding of nucleation-promoting factors (NPFs) has long been considered essential to Arp2/3 complex
activity, we recently showed that phosphorylation of the Arp2 subunit is also necessary for Arp2/3 complex activation. Using
molecular dynamics simulations and biochemical assays with recombinant Arp2/3 complex, we now show how
phosphorylation of Arp2 induces conformational changes permitting activation. The simulations suggest that
phosphorylation causes reorientation of Arp2 relative to Arp3 by destabilizing a network of salt-bridge interactions at
the interface of the Arp2, Arp3, and ARPC4 subunits. Simulations also suggest a gain-of-function ARPC4 mutant that we
show experimentally to have substantial activity in the absence of NPFs. We propose a model in which a network of auto-
inhibitory salt-bridge interactions holds the Arp2 subunit in an inactive orientation. These auto-inhibitory interactions are
destabilized upon phosphorylation of Arp2, allowing Arp2 to reorient to an activation-competent state.
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Introduction

Spatial and temporal control of the assembly and disassembly of

actin filaments is crucial for a number of distinct cell processes,

including endocytosis and cell migration [1]. The spontaneous

assembly of actin filaments from a pool of actin monomers

requires the formation of an unstable actin trimer nucleus, from

which further polymerization is thermodynamically favorable [2].

Fast filament assembly is achieved by several classes of proteins

that act as actin nucleators, constituting one level of regulation.

Formins and the spire proteins nucleate unbranched filaments

[3,4] and the Arp2/3 complex facilitates assembly of branched

filaments by nucleating a new ‘‘daughter’’ filament from the side of

an existing ‘‘mother’’ filament [5,6]. Branched filament networks

generated by the Arp2/3 complex are required to build many

cellular structures, and Arp2/3 complex is the primary nucleator

of new actin filaments in most crawling cells (reviewed in [1,7,8]).

Aberrant Arp2/3 complex function has been implicated in a

number of disease conditions, most notably cancer metastasis

[7,9].

Direct regulation of the nucleating activity of the Arp2/3

complex leads to a second level of control over actin filament

assembly. The Arp2/3 complex is composed of seven subunits: the

actin-related proteins Arp2 and Arp3, and ARPC1–5. While

binding of the mother filament contributes significantly to

activation [10], full activity of the Arp2/3 complex also requires

ATP binding to Arp2 and Arp3 [11,12] and binding of a

nucleation promoting factor (NPF), such as WASP [13,14], N-

WASP [15], SCAR/WAVE [16,17], and the pathogenic proteins

ActA from Listeria monocytogenes [18] and RickA from Rickettsia

[19,20]. NPF binding to actin monomers facilitates the nucleation

reaction, and NPFs couple Arp2/3 complex activity to that of

Rho-family GTPases [21,22].

The structures of the apo and nucleotide-bound states of Arp2/3

were revealed by X-ray crystallography [23,24,25], and these lead

to the hypothesis that activation required large structural changes

[25]. The structure of the active Arp2/3 complex at the junction of

the mother filament and the newly nucleated daughter filament

(the branch junction) was recently revealed in reconstructions from

electron micrographs of negatively-stained specimens [26,27]. In

support of the hypothesized structural changes, docking of the

inactive Arp2/3 complex crystal structure into the branch junction

density revealed substantial rearrangements of subunits, particu-

larly of the Arp2 and ARPC3 subunits [27]. For the Arp2/3
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complex to incorporate into the daughter filament and increase

filament assembly, Arp3 and Arp2 appear to undergo a large

change in their relative orientation from their arrangement in the

inactive crystal structure to their conformation in the branch

junction density, in which they appear to mimic the short-pitch of

an actin dimer [25,27].

An additional, more recently identified requirement for

activating nucleation by the Arp2/3 complex is threonine or

tyrosine phosphorylation of the Arp2 subunit [28]. Mass

spectrometry of purified Arp2/3 complex revealed phosphoryla-

tion of Arp2 T237 and T238. Although no phosphorylated

tyrosine was identified by mass spectrometry, mutagenesis studies

suggested Arp2 Y202 as the likely phosphorylation site. Mapping

of the Arp2 phosphorylation sites onto the crystal structure reveals

that these residues are near the interface of Arp2, Arp3, and

ARPC4, and we predicted that phosphorylation of these residues

could play a role in the large conformational changes predicted

upon activation [28]. Consistent with this prediction, our

biochemical assays suggested that Arp2 phosphorylation primes

the complex for activation to allow conformational changes

predicted to be necessary for activation [28]. However, the

mechanism by which phosphorylation permits activation of the

Arp2/3 complex remains poorly understood.

Computational studies have the potential to elucidate aspects

of Arp2/3 complex function and regulation. While the impact of

computation in this regard has been limited thus far due to the

large system size, molecular dynamics simulations have been

used to examine dynamics of the ATP binding cleft in Arp2 and

Arp3 [29,30]. In addition, homology modeling of the structures

of the Arp2/3 complex from different species has generated

hypotheses about functionally important surfaces [31]. Recently,

steered molecular dynamics simulations were used to investigate

potential pathways of Arp2/3 complex in the absence of

phosphorylation [32], and molecular dynamics and protein-

protein docking was used to generate a model of mother filament

bound to the Arp2/3 complex, which was then validated

experimentally [33]. Computational methods, molecular dynam-

ics methods in particular, have also been used previously to study

conformational changes of other proteins upon phosphorylation

(reviewed in ref. [34]). Examples include the study of structural

changes caused by phosphorylation in the activation and glycine-

rich loops of protein kinases [35,36,37,38], changes in peptide

conformations [39,40], and in membrane proteins such as

phospholamban [41].

Here, we use unbiased molecular dynamics simulations to

determine how phosphorylation at Arp2 T237 and T238 may

change the structure of the Arp2/3 complex and permit

activation by NPFs. We find large conformational changes in

the Arp2/3 complex upon phosphorylation, including the

reorientation of Arp2 relative to Arp3, toward the short-pitch

dimer orientation. Our simulations suggest a mechanism by

which a complex network of positively and negatively charged

amino acids at the Arp2/Arp3/ARPC4 interface holds the

complex in an inactive configuration, and phosphorylation

disrupts these auto-inhibitory interactions. To test this prediction,

we designed, based on further computational simulations,

mutations of the Arp2/3 complex that we predicted would

disrupt the auto-inhibitory interactions. Biochemical assays reveal

that this mutant, R105/106A ARPC4, does in fact show

nucleation activity even in the absence of NPFs.

Results

Phosphorylation of Arp2 at T237/238 or Y202 is required
for full Arp2/3 complex nucleation activity

We previously reported that phosphorylation of Arp2 T237/

238 or Y202 is necessary for activation of the Arp2/3 complex in

the presence of NPF [28]. Phosphorylation of T237/238 in

endogenous Arp2 was confirmed by mass spectrometry, and

heterologous expression of Arp2 with alanine substitutions in

T237/238 and Y202 inhibits membrane protrusion. We tested

nucleation activity of a mutant Arp2/3 with these residues

mutated to alanine using recombinant Arp2/3 complex generated

in a baculovirus expression system and purified as previously

described [42]. We mutated all three residues because we

previously showed that phosphorylation of these sites acts as a

logical ‘or gate’ with either being necessary for activation [28].

Subunits of the wild type (WT) and mutant Ala-substituted T237/

238-Y202 Arp2 (T237/238A-Y202A) Arp2/3 complex were

expressed independently in Spodoptera frugiperdas (Sf21) insect cells,

and were confirmed to assemble the seven-subunit complex with

equimolar stoichiometry (Fig. 1a). We also confirmed that

binding to NPF (N-WASP-VCA) (Kd = 0.5 mM) and actin

filaments (Kd = 1.2–1.3 mM) is similar for WT and T237/238A-

Y202A Arp2 rArp2/3 complex (Fig. S1a,b).

The rate of assembly of pyrene-labeled actin into filaments, an

index of Arp2/3 complex nucleation activity, was similar with

WT rArp2/3 (0.193 nM filament ends) and with Arp2/3

complex purified from bovine thymus (0.209 nM filament ends

at concentrations of 5 nM Arp2/3 complex with 4 mM actin)

(Fig. 1b and Fig. S2a). In the presence of NPF (C-terminal

VCA domain of N-WASP), assembly rates increased 19-fold and

were 3.30 nM and 2.51 nM filament ends for recombinant and

native Arp2/3 complex respectively (Fig. S2a). We previously

showed that native Arp2/3 complex from bovine thymus and

WT rArp2/3 purified from insect cells are phosphorylated, and

that native Arp2/3 complex pretreated with the dual specificity

alkaline phosphatase Antarctic phosphatase (AP) is not activated

by NPFs [28]. We confirmed that nucleation by native Arp2/3

and WT rArp2/3 complex in the presence of NPFs was reduced

after treatment with AP to levels similar to untreated rArp2/3

Author Summary

The Arp2/3 complex consists of seven associated protein
subunits including Arp2 and Arp3 that play a central role in
the formation of actin filaments. Filament formation by the
Arp2/3 complex drives important cell processes such as
cell movement and endocytosis. The function of the Arp2/
3 complex is highly regulated, and improper regulation of
its activity has been linked to cancer metastasis. One level
of regulation is post-translational phosphorylation, in
which a 22 charged phosphate group is added to the
uncharged amino acids threonine 237 and 238 of Arp2. We
use molecular dynamics simulations and biochemical
studies to show that Arp2 phosphorylation results in large
structural changes of the Arp2/3 complex consistent with
low-resolution structural studies. The simulations suggest
phosphorylation allows the complex to reorient to an
activation competent state by destabilizing interactions
that hold Arp2 in an inactive position. Further simulations
suggested that mutation of the Arp2/3 complex could
allow complex activation, and we verified this gain-of-
function mutation biochemically. We propose a model for
Arp2/3 complex activation in which phosphorylation
destabilizes the inactive state of the complex, allowing
structural changes that are permissive for activation by
nucleation-promoting factors and binding to the mother
filament.

Arp2/3 Complex Activation by Phosphorylation
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complex in the absence of NPF (Fig. 1b and Fig. S2a). These

data indicate that the activity of WT rArp2/3 in the absence and

presence of NPF is similar to that of native Arp2/3 complex and

that dephosphorylation inhibits NPF-induced activity.

In the absence of NPF, the rate of actin filament assembly and

the concentration of filament ends with mutant rArp2/3

complex containing T237/238A-Y202A Arp2 (t1/2 = 500 s,

0.260 nM) were similar to native and WT complexes (Fig. 1c
and Fig. S2b). In the presence of NPF, although the rate of

filament assembly with the mutant decreased to t1/2 = 348 s, it

was 4-fold slower than the rate of t1/2 = 84 s with WT rArp2/3

and similar to that of NPF-stimulated WT rArp2/3 complex

pretreated with AP. The concentration of filament ends for AP-

treated Arp2/3 complex and the mutant was similar in samples

with or without NPF (Fig. S2a and S2b). Pretreating the

mutant with AP completely blocked the increased rate of

filament assembly in the presence of NPF, and rates were similar

to WT and mutant in the absence of NPF. These findings

indicate that phosphorylation of T237/238 or Y202 of the Arp2

subunit is necessary for maximal nucleation activity of the

Arp2/3 complex. However, mutant rArp2/3 complex contain-

ing T237/238A-Y202A Arp2 retains some residual activity that

is abolished by AP.

To nucleate a new actin filament, the Arp2/3 complex binds to

filament pointed ends, which reflects its capping activity. We used

actin seeds capped at the barbed end with gelsolin to measure

pointed end capping by WT and mutant Arp2 rArp2/3 complex.

Gelsolin-capped actin filaments elongated from their pointed ends

in the presence of 4 mm actin (Fig. 1d). Addition of WT rArp2/3

complex slowed filament assembly from the pointed end. The

rArp2/3 complex containing mutant Arp2 also slowed filament

assembly, although markedly less than with WT. The measured

affinity of the mutant for the pointed end decreased approximately

8-fold (Table S1). These data suggest that phosphorylation of

T237/238 or Y202 in Arp2 is necessary for rArp2/3 complex to

efficiently bind the pointed end of actin filaments.

Figure 1. Phosphorylation site mutant Arp2/3 complex (T237/238A-Y202A Arp2) nucleates actin filaments less efficiently than
recombinant WT. (a) Recombinant Arp2/3 complex WT (rWT) and T237/238A-Y202A Arp2 expressed and purified from sf21 cells. (b) Pyrene actin
assembly assays comparing nucleation activity of native (nWT) and rWT Arp2/3 complex in the absence and presence of the VCA domain of the NPF
(N-WASP-VCA) and with and without pretreating the Arp2/3 complex with the alkaline phosphatase Antarctic phosphatase (AP). (c) Pyrene actin
assembly assays comparing nucleation activity of rWT and T237/238A-Y202A Arp2 rArp2/3 complex in the absence and presence of the VCA domain
of N-WASP and with and without AP pretreatment. (d) Pointed end capping assay with actin alone (black), rWT (red) and T237/238A-Y202A Arp2
(orange) Arp2/3 complex.
doi:10.1371/journal.pcbi.1002226.g001

Arp2/3 Complex Activation by Phosphorylation
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Computational simulations reveal that phosphorylation
induces large conformational changes in the Arp2/3
complex

We previously hypothesized that phosphorylation may induce a

conformational change that allows activation by mother filament

and NPF [28]. To test this hypothesis, we performed molecular

dynamics simulations on phosphorylated and unphosphorylated

wild-type Arp2/3 complex, using the inactive conformation

observed in the crystal structure [25] as a starting point

(Fig. 2a). We reasoned that, if our hypothesis were correct, the

unphosphorylated wild-type structure should remain relatively

unperturbed during the molecular dynamics simulation, while

phosphorylated Arp2/3 should show conformational changes

caused by the strong electrostatic perturbation associated with

introducing the phosphate groups.

Due to the large size of the Arp2/3 complex, the simulations

required substantial computational resources on a supercomputer.

We performed simulations only with Arp2 T237 and T238

individually phosphorylated, as well as the unphosphorylated

‘control’ simulation. For each of these systems, we ran duplicate

30 ns molecular dynamics simulations to control for simulation

dependence on the initial conditions and stochastic fluctuations.

Observing large conformational changes using molecular dynam-

ics simulations is difficult because of the gap between experimental

and computationally feasible timescales, and we do not expect to

see the full range of structural change in these simulations.

Nonetheless, large conformational changes were observed for

Arp2/3 when phosphorylated on either T237 or T238 of Arp2.

Backbone root mean square deviations (RMSDs) following global

alignment of simulation snapshots to the starting model revealed

modest conformational changes of 3–4 Å RMSD for the unpho-

sphorylated simulations compared with larger conformational

changes of 4–8 Å for the phosphorylated simulations (Fig. 2b). In

general, the directionality of the conformational changes relative

to the unphosphorylated simulations with pT237 (phosphorylated

T237) or pT238 were qualitatively similar, as were the results in

the two duplicate simulations for each system (Fig. S3b). The

conclusions we draw are supported by all of the simulations,

although the precise details of the dynamical behaviors differed.

The unphosphorylated simulations show convergence over the last

20 ns of simulation time. Therefore, the last 20 ns were used in the

analyses below. This convergence with regard to simulation time

does not indicate equilibrium convergence; it is possible and even

likely that the full range of structural changes in the phosphor-

ylated simulation in particular have not been realized (see

Discussion). It should also be noted that these structural changes

were not due to artifactual steric effects of adding phosphate

groups to construct the phosphothreonine side-chains. The

phosphate groups were added without causing any steric clashes

with surrounding residues (data not shown). The starting structure

of Arp2 subdomains 1 and 2, which are disordered in all but one

crystal structure, which was stabilized with glutaraldehyde [24],

were homology modeled based on the actin monomer structure

(PDB 1ATN [43]).

The conformational changes induced by phosphorylation were

dominated by changes in the orientation of Arp2, ARPC1, and

ARPC3 relative to other subunits (Fig. S3). In particular,

phosphorylation induced motion of the Arp2 subunit relative to

the Arp3 subunit toward its active position as a mimic of an actin

short-pitch dimer [27], a conformation required for polymeriza-

tion of actin (Fig. 3A and Fig. S4). To quantify this motion, we

used the model of active Arp2/3 obtained by orienting Arp2 and

Arp3 as in an actin short-pitch dimer, with no changes in the

structure or orientation of other subunits [B. Nolen, personal

communication]. Specifically, we computed the Ca root mean

square deviation (RMSD) of the Arp2 subunit between individual

snapshots over the last 20 ns and Arp2 in the starting (Fig. 3b) or

active orientation (Fig. 3c) with respect to Arp3 following

Figure 2. Arp2 phosphorylation induces structural changes in simulations of wild-type Arp2/3 complex. (a) Starting model used for
simulations, based on the crystal structure of Robinson, et al. [25]. Residues colored red were not present in the crystal structure and were built in.
The atoms of Arp2 T237 and T238 are represented as green spheres. (b) Global backbone root-mean square deviation as a function of time after
global backbone alignment for simulations of unphosphorylated (black), phosphorylated T237 Arp2 (blue-gray), and phosphorylated T238 Arp2 Arp2/
3 complex.
doi:10.1371/journal.pcbi.1002226.g002

Arp2/3 Complex Activation by Phosphorylation
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alignment of experimentally resolved Ca atoms of Arp3

subdomains 1 and 2. Phosphorylation of either T237 or T238

caused conformational changes away from the starting inactive

state relative to that observed in the simulation of unpho-

sphorylated Arp2/3. Phosphorylation also appears to cause

conformational changes that lower the RMSD of the Arp2

subunit to the active orientation, although further large confor-

mational changes are required for full activation (Fig. 3d). This

may be in part to the relatively short timescale of the simulations.

However, phosphorylation is not expected to induce a conforma-

tional change to the fully active state because our biochemical

determinations (Fig. 1b and [28]) indicate phosphorylation is

necessary but not sufficient for full activation, which also requires

binding of the mother filament and NPFs.

Analyzing the Ca RMSD of each residue of Arp2 after

alignment of Arp3 subdomains 1 and 2 reveals that the largest

changes in Ca position of Arp2 occur in the C-terminal tail as well

as in subdomains 1 and 2, which are disordered in most

unphosphorylated Arp2/3 complex crystal structures (Fig. S5a)

[23,24,25]. Larger structural changes are induced in the

phosphorylated simulations than in the unphosphorylated simu-

lations across the entirety of Arp2. Substantial increases in the

Arp2 per-residue RMSD after alignment of Arp3 subdomains 1

and 2 compared with those after alignment of the Arp2 Ca atoms

suggest that the motion of Arp2 largely consists of a rigid-body

movement (Fig. S5b). Phosphorylation induces the loss of

contacts between Arp2 and Arp3 subunits, potentially allowing

the reorientation of these subunits (Fig. 2e).

The results of the molecular dynamics simulations are consistent

with the hypothesis that phosphorylation induces conformational

changes that contribute to adopting a nucleation-competent form

[28]. We examined the vicinity of the phosphorylation sites in detail

to identify the interactions mediating these structural changes. In

the unphosphorylated state, T237 and T238 are located near the

interface between Arp2 and ARPC4, and are also close to the

interfaces with Arp3 and ARPC2. The interactions between Arp2

and ARPC4 in the vicinity of T237/238 are dominated by salt

bridges, several of which are highlighted in Fig. 4a and Fig. S6a.

In particular, the complex electrostatic network involves E39, R71,

E99, R105, R106, and K107 on ARPC4; E236 and K232 on Arp2;

and R409 and E121 on Arp3. Unphosphorylated T237 and T238

do not participate in the side-chain hydrogen-bonding network.

By contrast, these interactions were dramatically rearranged with

phosphorylation of either T237 or T238 (Fig. 4b and Fig. S6b).

LeClaire, et al. hypothesized that R105 and R106 of ARPC4

mediate the effects of phosphorylation at T237 and T238 of Arp2,

respectively [28]. The molecular dynamics simulations support this

hypothesis but also suggest a much more complex rearrangement of

the electrostatic network driven by introduction of the phosphate

charge. The strengths of salt bridge interactions between phos-

phorylated amino acids and lysine/arginine side chains are stronger

than those between aspartate/glutamate and lysine/arginine, with

phosphate-arginine interactions being particularly stable [44].

Thus, unsurprisingly, the phosphorylated amino acids form both

transient and stable interactions with arginine residues in the

simulations, such as between pT237 of Arp2 and R105 of ARPC4

(Fig. 4b) and between pT238 of Arp2 and R106 of ARPC4 (Fig.
S6b). The incorporation of pT237 and pT238 into the electrostatic

network necessitates that other salt bridging interactions are

disrupted and a new set of interactions are formed, either as a

direct consequence or as an indirect result of the induced

conformational changes (Fig. S7).

Because T237 and T238 are near the interfaces with several

other subunits, perturbations to the electrostatic network induced

by phosphorylation can cause large conformational changes. We

hypothesized that mutating key residues that interact with pT237

and pT238 would abolish the ability of phosphorylation to induce

these conformational changes, and hence activation of the

nucleation activity. This hypothesis is based on studies of

phosphorylation-mediated activation in systems such as protein

kinases, in which attractive interactions with arginine residues that

interact with phosphorylated residues drive conformational

changes key to phospho-activation [45]. In particular, the

simulations predicted that R105 of ARPC4 would form a specific

and stable ion pair with the phosphate on T237 of Arp2. To test

this hypothesis, we constructed R105A ARPC4 mutants with

unphosphorylated and phosphorylated T237 in silico, and

generated two independent 30 ns molecular dynamics simulations

for each.

Contrary to our expectations, simulations of the unpho-

sphorylated Arp2/3 complex with the R105A ARPC4 mutation

produced a similar, but somewhat smaller, structural change to

that induced by phosphorylation at T237 or T238 Arp2 (Fig. 5a
and 6). This result suggested that the R105A ARPC4 mutation

could allow partial activation of Arp2/3 even in the absence of

phosphorylation. Phosphorylation of T237 Arp2 in the context of

the R105A ARPC4 mutant produced even larger structural

changes than phosphorylation of T237 or T238 Arp2 alone

(Fig. 5b and 6). It should again be noted that the structures at the

end of these simulations likely do not represent the full range of

conformational change of these complexes due to the short

timescales available to MD simulation. However, the large

conformational changes away from the inactive, initial state

observed at these short timescales are similar to the conforma-

tional changes caused by phosphorylation, suggesting increased

activity of these mutants.

rArp2/3 complex with R105/106A ARPC4 is active in the
absence of an NPF

To test predictions from our molecular dynamics simulations on

the role of arginines in ARPC4, we generated rArp2/3 complex

with R105 and R106 of ARPC4 mutated to alanine (R105/106A

ARPC4). While we did not simulate structural changes associated

with the R106A ARPC4 mutation, the simulations indicated that

R106 ARPC4 upon T238 phosphorylation played a role

analogous to that of R105 ARPC4, forming a stable interaction

with the phosphate group (Fig. S6b). The mutant R105/106A

ARPC4 rArp2/3 complex purified from Sf21 cells showed subunit

stoichiometry (Fig. 7a), binding to NPF (Kd = 0.06 mM), and

binding to actin filaments (Kd = 1.5 mM) (Fig. S1) similar to WT.

In the absence of NPF, the rate of actin filament assembly was

markedly faster with rArp2/3 complex containing R105/106A

ARPC4 (t1/2 = 173 s) than with WT (t1/2 = 539 s) (Fig. 7b) and

there was 2.5-fold more filament ends with 4 mM actin and 5 nM

Arp2/3 complex (Fig. S8), indicating that the mutant is

constitutively more active. In the presence of NPF, the rate of

assembly for the mutant (t1/2 = 71 s) and WT (t1/2 = 84 s) was

similar, as was the number of filament ends (Fig. S8), revealing

that the mutation has no effect on maximal NPF-induced Arp2/3

complex activity. Preincubating the mutant with AP decreased

actin nucleation rates but only slightly (Fig. 7b), and much less

than with AP treatment of WT complex. These data and our

molecular dynamics simulations suggest that mutating R105/106

disrupts auto-inhibitory interactions and releases the Arp2/3

complex structure to a conformation that is permissive for

nucleation activity.

Pointed end capping by the R105/106A ARPC4 rArp2/3

complex appeared similar to WT rArp2/3. Using gelsolin-capped

Arp2/3 Complex Activation by Phosphorylation
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Figure 3. Changes in Arp2-Arp3 orientation upon phosphorylation. (a) Arp3 and Arp2 subunits from snapshots from the last ns of the
unphosphorylated (Arp3-gray; Arp2-blue) and phosphorylated T237 Arp2 (tan, red) wild-type simulations are shown following alignment of Ca atoms
of subdomains 1 and 2 of Arp3. These and all other structural figures were produced using the molecular graphics program UCSF Chimera [56],
except where indicated. The other subunits of the complex from the snapshot of the unphosphorylated simulation, colored as in Fig. 2a, were
represented as transparent surfaces in order not to occlude the views of Arp2 and Arp3. (b) RMSD of Arp2 Ca atoms to their initial positions vs.
simulation time following alignment of subdomains 1 and 2 of Arp3. (c) RMSD of Arp2 Ca atoms to their positions in the model of the active short-
pitch dimer orientation (B. Nolen, personal communication) vs. simulation time following alignment of subdomains 1 and 2 of Arp3. (d) Distribution
of root-mean-square deviations (RMSD) of Ca atoms of Arp2 from the MD trajectory to Arp2 atoms in the active short-pitch dimer orientation after
alignment of subdomains 1 and 2 of Arp3 over the last 20 ns of simulations. (e) Distribution of number of contacts between Arp3 and Arp2 heavy

Arp2/3 Complex Activation by Phosphorylation
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actin seeds, the rate of pointed end elongation was not significantly

different between mutant and wild-type Arp2/3 complex, and

treating with AP only slightly attenuated capping activity of the

mutant (Fig. 7c and Table S1). Hence, the R105/106A ARPC4

mutation likely causes structural differences similar to those seen in

activated WT rArp2/3 complex, and phosphorylation of the

R105/106A mutant enhances this effect, consistent with the

simulations of the R105A ARPC4 mutant.

Discussion

Significance of conformational changes observed in
simulations

Our simulations revealed large structural differences between

the phosphorylated or mutant complexes and the unphosphory-

lated wild-type complex. These structural changes included the

movement of Arp2 toward the active short-pitch dimer orientation

atoms over the last 20 ns of simulations. In (b)–(e), coloring is as follows: U(black)- unphosphorylated; pT237(blue-gray) – phosphorylated T237 Arp2;
pT238(cyan) – phosphorylated T238 Arp2. RMSD of Arp2 Ca atoms in the initial model to their positions in the active orientation is 31.2 Å, and the
number of Arp3-Arp2 contacts in the initial model is 35. These values are indicated for reference in the appropriate plots with a green line.
doi:10.1371/journal.pcbi.1002226.g003

Figure 4. Interactions in the vicinity of the T237 Arp2 phosphorylation site. Stereoimages of the salt-bridge network between Arp2 (pink)
and ARPC4 (green) in simulations of wild-type (a) unphosphorylated or (b) phosphorylated Arp2 T237 Arp2/3 complex.
doi:10.1371/journal.pcbi.1002226.g004
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Figure 5. Structural changes induced by R105A ARPC4 mutants in the absence and presence of phosphorylation. Stereoimages of
changes in Arp2-Arp3 orientation in R105A ARPC4 mutant Arp2/3 complex from snapshots from the last ns of the unphosphorylated wild-type(Arp3-
gray; Arp2-blue) and the (a) unphosphorylated R105A ARPC4 mutant complex (pink, orange) or (b) phosphorylated T237 Arp2 ARPC4 R105A ARPC4

Arp2/3 Complex Activation by Phosphorylation
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relative to Arp3. However, the conformational changes observed

in these short molecular dynamics simulations are much smaller

than those assumed to occur upon full activation, and even with

longer simulations we would not expect the phosphorylated

complex to adopt the putative active conformation, since

phosphorylation is necessary but not sufficient for activation.

Rather, we propose a model in which phosphorylation destabilizes

the inactive state, leading to conformational changes that relieve

the auto-inhibition and thus are permissive for full activation by

NPF binding.

It is impossible to say whether the actual structural differences in

response to phosphorylation or mutation are realized at the end of

these simulations, but this is very unlikely. Each of the duplicate

simulations of the same state of the complex show differences, even

the dual simulations of the unphosphorylated state (see, for

example, the two peaks in the Arp2 RMSD to the active

orientation (Fig. 3d)), indicating that equilibrium convergence has

not been achieved even for the unphosphorylated, wild-type

complex. Consequently, we believe the structures at the end of

these simulations simply suggest that either phosphorylation or

mutation induces large conformational changes that shift Arp2

towards the active short-pitch dimer orientation – they are not a

prediction of the structure of the Arp2/3 complex upon

phosphorylation or mutation.

Besides the changes in the Arp2-Arp3 orientation, large changes

in the orientation of ARPC1 and ARPC3 relative to Arp3 were

observed upon phosphorylation (Fig. S3). We can only speculate

about the mechanism by which phosphorylation effects these

changes due to the long distance of these subunits from the

phosphorylation site. Similar to results from recent steered

molecular dynamics simulations [32], the movement of ARPC3

appears to be linked to changes in the bilobal structure of Arp3, and

the movement of ARPC1 appears to be linked to the change in

orientation of Arp2. Unlike their simulations however, we do not

observe large changes between ARPC2 and ARPC4 – these

changes may appear at larger changes in Arp2 orientation than are

observed in our simulations or on a longer timescale. The lack of

large changes in ARPC2 and APRC4 are consistent however with

the fact that mother filament binding is not increased relative to the

unphosphorylated state as ARPC2 and ARPC4 appear to be the

main sites of mother filament binding [33]. Additionally, while some

contacts between Arp2 and Arp3 were lost, Arp2 was not observed

to fully dissociate from Arp3 or ARPC4 (data not shown).

The findings here and previously [28] indicate that phosphor-

ylation is required for activation of the Arp2/3 complex. However,

crystal structures of the Arp2/3 complex from preparations found

to have nucleating activity do not show phosphorylation of Arp2.

We confirmed that phosphatase treatment rendered similar

preparations to those used in crystallographic studies inactive

(Fig. 1 and [28]). We confirmed that loss of activity was due to

dephosphorylation and not phosphatase binding to the complex or

ATP dephosphorylation of the subunits, and our findings suggest

that several populations of Arp2/3 complex exist in our

preparations (data not shown). It is possible that phosphorylated

Arp2/3 complex may not form crystals due to differences in

conformation.

mutant complex (cyan, magenta) simulations are shown following alignment of Ca atoms of subdomains 1 and 2 of Arp3. The other subunits of the
complex from the snapshot of the unphosphorylated simulation, colored as in Fig. 2a, were represented as transparent surfaces in order not to
occlude the views of Arp2 and Arp3.
doi:10.1371/journal.pcbi.1002226.g005

Figure 6. R105A ARPC4 mutant complexes alter Arp2-Arp3 orientation and contacts. (a) Distribution of root-mean-square deviations
(RMSD) of Ca atoms of Arp2 to Arp2 atoms in the active short-pitch dimer orientation (B. Nolen, personal communication) after alignment of
subdomains 1 and 2 of Arp3 over the last 20 ns of simulations. (b) Distribution of number of contacts between Arp3 and Arp2 heavy atoms over the
last 20 ns of simulations. Coloring is as follows: U(black) – unphosphorylated; R105A(orange) – unphosphorylated R105A ARPC4 mutant; and pT237/
R105A(magenta) – Arp2 T237 phosphorylated R105A ARPC4 mutant. Green line represents the corresponding RMSD (31.2 Å) and number of contacts
(35) for the unphosphorylated starting model as in Fig. 3.
doi:10.1371/journal.pcbi.1002226.g006
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Relief of auto-inhibition by phospho-regulation
In all cases in which phosphorylation is required for functional

activation, the unphosphorylated state can be considered auto-

inhibited. A common mechanism for converting from the auto-

inhibited to the activated state is one in which phosphorylation

induces attractive interactions between the phosphorylated residue

and other residues that are required for activating structural

changes. This is seen in Ser/Thr protein kinases, and also in more

traditionally auto-inhibited systems such as the phosphorylation of

the tail of Tyr protein kinases (reviewed in [45]).

In contrast, mutation of arginine residues in the Arp2/3

complex enhances activation by phosphorylation (Fig. 5 and 6).

This suggests a distinct mechanism to that discussed above.

Structurally, these results suggested that the effects of phosphor-

ylation are better understood as relieving an auto-inhibitory

interaction through repulsive forces rather than driving conversion

towards the active state via the formation of attractive interactions.

The introduction of phosphate groups with a 22 charge disrupts

the complex electrostatic network at the inter-subunit interfaces

near the threonine phosphorylation sites that hold the complex in

an inactive state. The destabilization of the interaction network

driven by the need to accommodate the electrostatic perturbation

leads to conformational changes that are permissive for full

activation by NPF binding. Mutation of ARPC4 R105 and R106

Figure 7. R105/106A ARPC4 mutant nucleates actin filaments without nucleation promoting factors. (a) Recombinant Arp2/3 complex
WT (rWT) and R105/106A ARPC4 expressed and purified from sf21 cells. (b) Pyrene actin assembly assays comparing nucleation activity of rWT and
R105/106A ARPC4 rArp2/3 complex. (c) Pointed end capping assay with actin alone (black), rWT (red) and R105/106A ARPC4 rArp2/3 (green), and
R105/106A ARPC4 rArp2/3 pretreated with Antarctic phosphatase (AP-R105/106A ARPC4) (purple).
doi:10.1371/journal.pcbi.1002226.g007
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constitutes an electrostatic perturbation that destabilizes the inter-

subunit interfaces akin to phosphorylation. Combining the

electrostatic perturbations of T237 or T238 phosphorylation and

mutation of ARPC4 R105/R106 appears to lead to larger

conformational changes (Fig. 5 and 6) and higher activity in the

absence of NPF (Fig. 7). In addition, several other salt-bridge

interactions are broken upon phosphorylation (Fig. S7). Other

mutations, particularly of positively charged amino acids such as

K232 Arp2, R409 Arp3, and R200 Arp2 that show strong

interactions in the unphosphorylated states that are then broken

upon phosphorylation, could constitute electrostatic perturbations

that would also magnify the destabilizing effects of phosphoryla-

tion. Further studies will have to determine the extent to which the

breakage of these other interactions can contribute to activation.

Based on the activation model laid forth by Dalhaimer and

Pollard [32], the phosphorylation-induced relief-of-autoinhibition

may provide a reduced energy barrier for conversion to the active

state upon mother filament and NPF binding, although there may

be thermodynamic effects such as stabilization of the active

complex that our current data do not reveal. In this model,

mutation of R105/R106 ARPC4 in the context of phosphoryla-

tion may further reduce the barrier to forming the fully active

complex such that binding to mother filament even in the absence

of NPF can still result in a substantial increase in the activation

kinetics, though our data indicate that NPF binding further

accelerates this process.

Due to the large computational expense of the simulations

(,500,000 cpu-hours during the course of this study), we were

unable to perform all of the potentially informative simulations.

For example, we have not investigated phosphorylation of Y202

on Arp2, which has been proposed as the site of tyrosine

phosphorylation and is located close to T237/238 Arp2. The

proximity of Y202 to the salt-bridge network around T238 leads

us to speculate that its phosphorylation would exert its effects by a

similar mechanism, but this hypothesis remains to be examined.

We have also not investigated dual phosphorylation of both T237

and T238 Arp2. Nonetheless, despite these limitations and the

short timescale probed by molecular dynamics, the simulations

suggested a structural mechanism for phosphoregulation of Arp2/

3 and predicted a gain-of-function mutation, which was confirmed

experimentally. As such, this study provides an example of how

computational simulations can be used to create testable models of

regulatory phosphorylation, which is valuable when it is difficult to

obtain direct, atomic-resolution structural information, as is often

the case. Here, we have provided a new model for Arp2/3

regulation in which a network of electrostatic interactions helps to

hold the complex in the inactive state, and this auto-inhibition

must be relieved by phosphorylation to permit activation.

Methods

Generation of mutant subunits
Plasmids encoding Arp2/3 complex subunits were obtained

from M. Welch (UC Berkeley) and were generated as described

[42]. Site directed mutagenesis was performed using a Quik-

Change Mutagenesis kit (Agilent Technologies) using the appro-

priate template. Primers used for T237/238A Arp2 mutation: 59

primer (GAGCAGAAACTGGCCTTAGAAGCCGCAGTATTAGTTGAATCTT-

ATACACTCCC) 39 primer (GGGAGTGTATAAGATTCAACTAATACTGCG-

GCTTCTAAGGCCAGTTTCTGCTC), primers for the Y202A Arp2

mutation 59 primer (CAAGCTACTTCTGTTGCGAGGAGCCGCCTTCAAC-

CACTCTGCTGATTTTGAAAC), 39 primer (GTTTCAAAATCAGCAGAG-

TGGTTGAAGGCGGCTCCTCGCAACAGAAGTAGCTTG). Primers used for

the R105/106A ARPC4 mutations: 59 primer (GAGAACTTCTT-

TATCCTTGCAGCGAAGCCTGTGGAGGGG), 39 primer (CTCTTGAAGAAA-

TAGGAAACGTCGCTTCGGACACCTCCCC).

Expression and purification of rArp2/3 complex
Recombinant Arp2/3 complex was expressed and purified as

described [42]. Briefly, Sf21 cells at a density 1.06106 cells/ml

were infected with baculoviruses containing cDNA encoding

subunits of the Arp2/3 complex at equal infection units. Cells were

grown in sf900 media in suspension for 48 hours and then

harvested by a 10 min 10006g centrifugation. Recombinant

Arp2/3 complex was affinity purified on Talon resin (Clonetech),

and fully assembled complex was collected after passage over a

Superdex 200 FPLC gel filtration column.

Actin polymerization
Pyrene actin polymerization assays were performed with 4 mM

monomeric actin containing 5% pyrene-labeled actin in KMEI

(50 mM KCl, 1 mM MgCl2, 1 mM EGTA, and 10 mM

imidazole, pH 7), 2.5 to 50 nM Arp2/3 complex, and 500 nM

N-WASP VCA domain. Measurements were made with an RF-

5301PC spectrophotometer (Shimadzu) at 1 s intervals. Growing

filament ends were calculated by determining the rate of actin

assembly at 80% of polymerization and using the relationship

R = k+[A][E] where R is the rate of actin assembly, k+ is the

association rate constant (10 mM21?s21), [A] is the concentration

of monomeric actin and [E] is the concentration of growing

filament ends as described previously [17]. The concentration of

Arp2/3 complex was varied from 0 to 50 nM and the number of

growing filaments calculated for each condition. Pointed elonga-

tion from gelsolin-capped actin filaments was measured as

described previously [6]. Gelsolin-capped actin filaments

(100 nM) were used for pointed end binding assays. F-actin

binding assays and in vitro dephosphorylation of the Arp2/3

complex were performed as described previously [28].

Quantification of Arp2/3 complex NPF and Actin binding
constants

Binding constants of Arp2/3 complex for NPFs were deter-

mined by using GST-NWASP VCA covalently coupled to

Activated CH-sepharose 4B (GE Healthcare, Piscataway, NJ).

GST-NPF-coupled beads were added to mock-treated or Antarctic

phosphatase-treated Arp2/3 complex and incubated at room

temperature for 30 min. NPF-coupled beads were spun at 7006g

for 5 min, the supernatant removed and beads resuspended in

SDS-PAGE sample buffer. Coomasie-stained gels were scanned

and quantified using a LabWorks imaging system and LabWorks

Software (UVI, CA). The data were plotted and fitted using

GraphPad Prism software (GraphPad Software, Inc., San Diego,

CA). Binding constants for Arp2/3 complex for actin filaments

were determined by actin co-sedimentation as described [46].

Molecular dynamics simulations
Systems were prepared for molecular dynamics simulations

starting from the crystal structure of the apo bovine Arp2/3

complex (PDB 1K8K [25]). A complete model of the unpho-

sphorylated, wild-type bovine Arp2/3 complex was generated

using the Protein Local Optimization Program (PLOP) [47,48,49]

by building in all atoms missing in the electron density (except

Arp2 subdomains 1 and 2). Subdomains 1 and 2 of Arp2 were

modeled in based on homology to the actin monomer structure

(PDB 1ATN [43]). The 15-residue unstructured extension at the

end of ARPC2 was energy minimized, as were residues 39–51 of

Arp3, residues 288–297 and 309–319 of ARPC1, and 41–43 and
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65–67 of the Arp2 model. All phosphorylated and mutant models

were generated from the unphosphorylated model by removing all

side chain atoms from the unmodified residue and optimizing the

positions of the side-chain atoms of the modified residue. These

models were then solvated in TIP3P water [50] and monovalent

counterions were added to neutralize the system using Maestro

(Schrodinger LLC).

The full system was then energy minimized using DESMOND

[51] (D.E. Shaw Research) in five stages with the following atoms

restrained to their positions in the starting model: 1) all heavy

atoms; 2) all backbone (N-CÆ-C-O) heavy atoms and experimen-

tally determined side-chain heavy atoms; 3) all experimentally

determined heavy atoms; 4) all experimentally determined

backbone atoms; 5) no restraints. Minimizations were performed

with at least 100 steps of Steepest Descent minimization followed

by L-BFGS optimization after reaching a gradient of 10.0 kcal?

mol21?Å21 up to a total of 10,000 steps or a gradient of

0.1 kcal?mol21?Å21. After full energy minimization of the system,

an equilibration was performed. First, the systems were annealed

to a temperature of 300 K using Langevin dynamics at constant

temperature and volume over 50 ps with all heavy atoms

restrained. Subsequently, Langevin dynamics at constant temper-

ature and pressure with a target temperature and pressure of

300 K and 1 atm were performed in stages: 1) 50 ps with all heavy

atoms restrained with 50 kcal?mol21?Å21 force constants; 2) 50 ps

with all backbone heavy atoms and experimentally determined

side-chain atoms restrained with 50 kcal?mol21?Å21 force con-

stants; 3) 150 ps with all experimentally-determined heavy atoms

restrained with force constants reduced over the course of the

simulation from 25 to 5 kcal?mol21?Å21; 4) 100 ps of simulation

restraining only the experimentally determined backbone heavy

atoms, over which the force constants of the restraints were

brought to 0 from 5.0 kcal?mol21?Å21; 5) 100 ps of the

unrestrained system. All Langevin dynamics simulations were

performed with a 100 ps21 damping constant.

Each system was then simulated for 30 ns using the Martyna-

Tobias-Klein integrator [52] with a reference temperature of

300 K and a reference pressure of 1 atm. The barostat mass was

set with a time constant of 2 ps and an equilibrium temperature of

300 K. The masses of all chain variables were set using a time

constant of 1.0 ps. Both the Langevin dynamics and standard

molecular dynamics simulations were performed with all bonds

involving hydrogens constrained, a 2 fs time step for the bonded

and short-range nonbonded interactions and updating of long-

range nonbonded interactions every 4 fs using the RESPA

multiple time step approach. Non-bonded interactions were

tapered using force-switching starting at a distance of 9.0 Å to

an interaction cutoff of 9.5 Å. Pairlists were constructed using a

distance of 10.5 Å and a migration interval of 12 ps. These

parameters were tested in short simulations in the NVE ensemble

to ensure good energy conservation. Coordinates of the full system

were added to the output trajectory every 10 ps.

Principal component analysis
Coordinates of the Ca atoms from the last 20 ns of each

unphosphorylated, Arp2 pThr237, and Arp2 pThr238 simulation

were collected into a single trajectory on which Principal

Component Analysis [53,54] was performed using the Bio3D

package for the R statistical software package [55]. All Ca
coordinates were used after superimposing the Ca atoms of Arp3

subdomains 1 and 2 resolved in the starting crystal structure

(residues 3–39, 51–151, 376–410) of each frame in each trajectory.

The first and second principal components (PCs) account for

62.4% of the variation in atomic coordinates, and the first 4

principal components account for 84.0% (Fig. S3a). The major

differences between the unphosphorylated and phosphorylated

simulations are largely localized to the first PC, with the second

PC capturing variation between the duplicate simulations of the

complex in the same phosphorylation state.

Calculation of number of Arp2-Arp3 contacts
A contact between the Arp2 and Arp3 subunits was defined as

the number of heavy atoms in Arp3 that were within 3.5 Å of any

heavy atom in Arp2. The number of contacts between the Arp2

and Arp3 subunits was calculated for every 10th frame (100 ps) of

each simulation. The results for the duplicate simulations of each

wild-type or mutant complex were then pooled and compared.

Supporting Information

Figure S1 NPF and F-actin binding affinities were
measured by pelleting assays with rArp2/3 complex.
(a) Arp2/3 binding to NPF was similar for WT, T237/238A-

Y202A Arp2, R105/106A ARPC1 Arp2/3 complex (b) Arp2/3

binding to filamentous actin was similar for WT, T237/238A-

Y202A Arp2, R105/106A ARPC1 Arp2/3 complex.

(TIFF)

Figure S2 Creation of new filament barbed ends upon
Arp2/3 complex activation. (a) Concentrations of filaments

from pyrene actin assembly assays plotted as a function of Arp2/3

concentrations comparing native and recombinant WT Arp2/3

complex either untreated or treated with Antarctic Phosphatase.

(b) Concentrations of filaments from pyrene actin assembly assays

plotted as a function of Arp2/3 concentrations comparing WT

and recombinant T237/238A-Y202A Arp2 Arp2/3 complex

either untreated or treated with Antarctic Phosphatase.

(TIFF)

Figure S3 Principal component analysis of dominant
differences between unphosphorylated and Arp2 T237 or
T238 phosphorylated Arp2/3 complex. (a) Scree plot

showing the proportion of variance in atomic displacement

accounted for by each principal component (PC), sorted from

highest to lowest eigenvalue. The total proportion of variance

accounted for by all PCs with equal or greater eigenvalue than a

given PC are indicated next to points on the plot. (b) Snapshots

from the last 20 ns of the duplicate unphosphorylated simulations

(black), Arp2 T237 phosphorylated simulations (slate blue), and

Arp2 T238 phosphorylated simulations (turquoise) were projected

onto the first and second principal components describing the

variation in atomic displacements. Discrimination of unpho-

sphorylated and phosphorylated states is achieved along the first

principal component, while the second principal component

exhibits variation between the two independent simulations in

each phosphorylation state. The projection of the starting crystal

structure (PDB 1K8K [25]) on this set of principal components is

shown as a red triangle. (c) Porcupine plot of the first principal

component showing large subunit rearrangements of Arp2,

ARPC1, and ARPC3 relative to the rest of the complex. The

Ca coordinates displaced by one standard deviation of the

conformer distribution from the average structure (of the unpho-

sphorylated, Arp2 pT237, and Arp2 pT238 simulations) along the

positive direction of PC1 are shown as a chain trace, and cones are

drawn to the Ca coordinates displaced by one standard deviation

of the conformer distribution in the negative direction of PC1.

Since the states sampled by the phosphorylated simulations sample

more negative values of PC1, the cones reflect the direction and

relative size of atomic displacements needed to progress from the
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unphosphorylated structural states to the phosphorylated struc-

tural states. This image was produced using the molecular graphics

program VMD [57]. Principal component analysis was performed

using the Bio3D package [55] for the R statistical software

program.

(TIFF)

Figure S4 Arp2-Arp3 orientation of starting model and
phosphorylated Arp2 T238 compared with the unpho-
sphorylated simulation. Stereoimages of Arp3 and Arp2

subunits from a snapshot from the last ns of the unphosphorylated

(Arp3-gray; Arp2-blue) simulation compared with (a) starting

model of unphosphorylated Arp2/3 complex based on the crystal

structure by Robinson, et al [25] (pink, purple) and (b) a snapshot

from the last ns of phosphorylated T238 Arp2 (yellow, green) wild-

type simulations are shown following alignment of Ca atoms of

subdomains 1 and 2 of Arp3. The other subunits of the complex

from the snapshot of the unphosphorylated simulation, colored as

in Fig. 2a, were represented as transparent surfaces in order not to

occlude the views of Arp2 and Arp3.

(TIFF)

Figure S5 Arp2 average RMSD by residue for wild-type
simulations. The per-residue Ca RMSD averaged over the last

20 ns after alignment of (a) Arp3 subdomains 1 and 2 or b) Arp2

backbone atoms. The colors are as follows: U(black)- unpho-

sphorylated; pT237(blue-gray) – phosphorylated T237 Arp2;

pT238(cyan) – phosphorylated T238 Arp2.

(TIFF)

Figure S6 Interactions in the vicinity of the T238 Arp2
phosphorylation site. Stereoimages of the salt-bridge network

between Arp2 (pink), ARPC4 (green), and Arp3 (blue) in the (a)

unphosphorylated and the (b) phosphorylated T238 Arp2

simulations, focused on the vicinity of T238. Portions of the

structure have been removed for clarity, including the backbones

of Arp2 residues K253 and R200.

(TIFF)

Figure S7 Distribution of hydrogen bond donor-accep-
tor distances in the vicinity of the T237 and T238 Arp2
phosphorylation sites. The distribution of minimum distances

between hydrogen bond donor and acceptor distances over the last

20 ns of unphosphorylated (black), T237 Arp2 phosphorylated

(blue-gray), and T238 Arp2 phosphorylated (cyan) simulations.

(a)–(g) show interactions in the vicinity of the T237 phosphory-

lation site, and (h)–(l) show interactions in the vicinity of the T238

phosphorylation site. In (f), the black line for the unphosphorylated

simulation superimposes with the cyan line for the phosphorylated

T238 Arp2 simulation. Please note that the scales on each plot

vary to clearly show similarities and differences within each

independent set of distributions.

(TIFF)

Figure S8 Comparison of actin filament end concentra-
tions as a function of Arp2/3 concentration. The plot

compares filament end concentrations of WT versus R105/106A

ARPC4 Arp2/3 complex either untreated or treated with

Antarctic Phosphatase in the absence or presence of N-WASP

VCA.

(TIFF)

Table S1 Affinity of Arp2/3 complexes to actin filament
pointed ends. The Arp2/3 complexes and their measured

affinities to actin filament pointed ends are shown for: wild-type

recombinant Arp2/3 complex (WT rArp2/3); Antarctic phospha-

tase treated wild-type recombinant Arp2/3 complex (AP-WT

rArp2/3); recombinant Arp2/3 complex with Arp2 T237A,

T238A, and Y202A mutations (T237/T238 Y202A Arp2/3);

recombinant Arp2/3 complex with ARPC4 R105A and R106A

mutations (R105/106A ARPC4 Arp2/3); and Antarctic phospha-

tase treated recombinant Arp2/3 complex with ARPC4 R105A

and R106A mutations (AP-R105/106A ARPC4 Arp2/3).

(DOC)
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