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Abstract

The specific binding of regulatory proteins to DNA sequences exhibits no clear patterns of association between amino acids
(AAs) and nucleotides (NTs). This complexity of protein-DNA interactions raises the question of whether a simple set of
wide-coverage recognition rules can ever be identified. Here, we analyzed this issue using the extensive LacI family of
transcriptional factors (TFs). We searched for recognition patterns by introducing a new approach to phylogenetic
footprinting, based on the pervasive presence of local regulation in prokaryotic transcriptional networks. We identified a set
of specificity correlations –determined by two AAs of the TFs and two NTs in the binding sites– that is conserved
throughout a dominant subgroup within the family regardless of the evolutionary distance, and that act as a relatively
consistent recognition code. The proposed rules are confirmed with data of previous experimental studies and by events of
convergent evolution in the phylogenetic tree. The presence of a code emphasizes the stable structural context of the LacI
family, while defining a precise blueprint to reprogram TF specificity with many practical applications.
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Introduction

The search for principles describing how specific nucleotide

sequences are recognized by proteins remains one of the most

fundamental problems to be solved in Biology [1–5]. The

relevance of this question is linked to the wide breadth of basic

cellular processes to be better understood with its resolution, like

how genomes respond to stress by accurately activating/inactivat-

ing groups of genes, or how cells differentiate into separate classes

following a program of precise spatio-temporal gene expression.

Additionally, these principles could turn into genuine rules to

engineer protein production, either in isolation or as part of

elaborated molecular circuits or networks, with many practical

applications.

Given the relevance of this search, when could one say that

principles have been actually identified, or that this goal failed?

Answers to these questions changed over the years, e.g., [2,6–10],

as the knowledge of how transcriptional factors (TFs) recognize

their cognate binding sites (BSs) did. Two mechanistic aspects of

this recognition are relevant in this regard [11–13], i.e., how

selected AA/NT binding partners determine specificity (direct

readout) and how specificity could be influenced by additional

structural features (indirect readout). Within this second aspect,

both the protein structural context in which the contacting AAs

are embedded [7,14,15] and the conformational characteristics of

DNA upon TF binding [11,12] appear as particularly important

modifiers.

In fact, the relative strength of direct and indirect readouts can

greatly influence the nature of the recognition rules to be

identified. The most simplistic situation could be one in which

(simple) direct readouts for the contacting positions were dominant

specificity determinants. In this case, one could conceive the

presence of deterministic codes of wide applicability. However, the

rich repertoire for AA/NT interactions, which includes hydrogen

or water-mediated bonds and also van der Waals contacts [16],

and the context dependence of these interactions rule out the

appearance of deterministic codes [6,7,17]. Instead, one should

rather look for probabilistic recognition codes restricted to similar

protein structures [3,8,14,18]. The applicability of these principles

to large protein groups might ultimately depend on the

conservation of the modifiers linked to indirect readouts.

Interestingly, some of these issues can be studied with the use of

mutational experiments –either in vivo [19,20] or in vitro

[8,10,21,22] – which start with a known TF/BS relationship to

characterize changes in specificity once selected AA and/or NT

positions are mutated. Since the number of possible sequences

grows exponentially with the number of positions to be explored,

this approach usually requires the use of large mutant libraries.

Consequently, even when the sequence space is explored in a

random way [8], or by screening methods [20], the positions to be

mutated are always selected among those corresponding to direct

readouts. Since the rest of positions remains fixed, the conserva-

tion of the structural context within the library directly follows.

This implies that any set of recognition rules deduced from the

mutational approach is restricted, in principle, to the library

elements.

The existence of a natural version of such synthetic code would

require a strong conservation of the mode of binding within the

PLoS Computational Biology | www.ploscompbiol.org 1 November 2010 | Volume 6 | Issue 11 | e1000989



family of proteins to which the focal mutated protein belongs –

despite the variability in the non-contacting positions [23,24].

Mutational studies can estimate this conservation only in an

indirect manner, by finding natural correspondences of some of

the synthetic AA/NT relationships studied [8,19]. Regardless of

the existence or absence of such correspondences, those mutants

with differential specificities could constitute useful tools for

Synthetic Biology [20,25].

An alternative approach to this problem, in which the role of

indirect readouts is evaluated, deduces the recognition rules by

using genomic tools applied to natural sequences of both TFs and

BSs [14,15,26–28]. In this case, each residue/base contact is

embedded in its own structural context and the possibility of family

codes can be explicitly examined. The finding of consistent

recognition rules, whereby the sequences of the contacting AAs

and NTs correlate, would imply that variations on the rest of

residues do not compromise the conservation of the binding mode

within the considered set. Moreover, such natural recognition code

would suggest that the evolution of new specificities is mainly

achieved by alteration of base contacting residues (direct readouts)

[14]. Recognition rules following this approach were formulated

for several sets which, in each case, involved a limited number of

related TFs [14,27,28].

In this work, we asked to what extent a natural wide-coverage

recognition code could exist. From the arguments before, this code

could be considered as such when it fulfills two important

requirements. First, the determinants of the indirect readout

should not prevent the identification of consistent sequence

correlations between the contacting AAs and NTs for a given

regulator family (or a substantial fraction of it). Second, most of

these natural associations should be reproducible by mutating the

specificity-associated AAs of a particular focal member of the

family. Note that these features do not include that the recognition

correlations should be expressed in terms of a few deterministic

rules –although strong general trends are expected.

We considered as a model system to approach this question the

extensive LacI family of transcriptional regulators [26], whose helix-

turn-helix (HTH) domain (Fig. 1.A) interacts with a set of cognate BSs

[29]. Within this set, we examined a dominant group (involving more

than half of the LacI family members) composed by regulators

exhibiting the sequence threonine-valine-serine-arginine (TVSR) in

the recognition helix of the HTH domain. We searched for

recognition rules by introducing a new strategy based on comparative

genomics and the use of a pervasive characteristic of prokaryotic

regulation: the local control of gene expression [30–34].

Figure 1. HTH binding mode. A) X-ray model for a LacI dimer bound to a palindromic BS (plotted with Jmol from the PDB structure 1lbg4). Only
the binding domain of each monomer is shown (in light/dark purple, respectively). The hinge-helix and the recognition helix of each monomer are
colored in yellow and red, respectively. B) Logo for the alignment of 2639 unredundant HTH-LacI domains. The AA coordinates of any particular
domain will be referred by its position in this alignment –they match the numbering of the first 71 AAs of Escherichia coli’s GalR and GalS regulators.
Helix-1, helix-2 (or recognition helix) and the intermediate residues constitute the HTH motif itself. C) Logo for the alignment of the set of BSs
associated to 370 LacI family members (BS sequences from RegTransBase [46]). In BS logos we avoided subscripts for left and right half sites
coordinates.
doi:10.1371/journal.pcbi.1000989.g001

Author Summary

Transcriptional factors (TF) are proteins that bind specific
short DNA sequences adjacent to the genes whose
transcription they regulate. Although the nucleotide
sequence recognized by a given regulator depends on
the amino acids contacting the DNA, the mode in which
amino acids and nucleotides interact is strongly influenced
by the overall protein structure. This prevents the
existence of a universal amino acid/nucleotide recognition
code. However, recognition rules could be formulated for
regulators sharing a similar structure, i.e., for a family or
subfamily of TFs. In fact, such rules have already been
described for several sets which, in each case, involved a
limited number of related TFs. In this study, we ask to what
extent a wide-coverage recognition code might actually be
found. To answer this question, we use the extensive LacI
family of transcriptional regulators. Our analysis suggests
that a set of relatively consistent recognition rules does
apply within a major subset of this family. These rules
could ultimately act as a blueprint for the synthetic
redesign of TFs with new specificities.

A Recognition Code within the LacI Family
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Our analysis suggests that the determinants of the indirect

readout are substantially conserved throughout the TVSR group,

in which a set of relatively consistent recognition rules applies.

Moreover, the phylogenetic tree associated to this group exhibited

several convergence events for the recognition relationships, i.e.,

distant proteins in the tree sharing the same recognition AA

sequence tend to bind similar NT sequences. The natural

recognition correlations identified could be reproduced with a

synthetic approach, as suggested by comparing the theoretical

predictions with previous mutational experiments [19,20] and by

the finding of natural BSs previously considered as simple

laboratory constructs [35].

Results/Discussion

Same binding patterns could be pervasive to the whole
LacI family

We aligned non-redundant HTH-LacI domain sequences using

information from MicrobesOnline [36], a database that contains

approximately one thousand prokaryotic genomes (Methods). The

resulting sequence logo (Fig. 1.B) suggested that the binding

patterns previously identified with structural studies could

potentially apply to the whole LacI family. Specifically, these

studies solved the binding-domain/DNA complex of Escherichia

coli’s LacI [37–39] and PurR [40,41], and Bacillus megaterium’s

CcpA [42], clearly distinguishing a contrast between structural and

DNA-binding residues in the corresponding domains.

Indeed, positions exhibiting a strong conservation in our

comparative analysis corresponded to proposed structural resi-

dues. In particular, the conservation of the hydrophobic residues

in AA-54 (mostly leucine, 82%) indicated that the BS pattern in

the family could be dominated by a conserved central CG group

(although we did not use this prior knowledge in our analysis). In

every structural study, this residue of the hinge-helix inserts into a

central CG group located in the minor groove and bends the DNA

(Fig. 1.A). The conserved alanine in AA-51 is similarly related in

these analyses to the hinge-helix/CG union by non-specific

interactions with the phosphate groups, or through direct contacts

with the bases [43]. Exceptions to this union are rare [44,45].

To identify the potential DNA-binding residues resolving BS

specificity, we selected those domains in the alignment which were

univocally associated to BSs in the RegTransBase v5 [46]

(370 domains). These BSs were aligned to produce the logo in

Fig. 1.C. Note the palindromic nature of this logo, which

manifests the symmetrical contacts made by the monomers

that constitute the dimeric regulators on the corresponding

left(L)/right(R) half site location of the BSs [in the following, we

usually simplify the notation of symmetrical positions, and

palindromic sequences, by those in the left half site, e.g.,

(NT{5L, NT{4L; NT{4R, NT{5R)~(TG; CA) as (NT-5,

NT-4) = TG].

We then calculated the mutual information (covariance

dependency) between the alignment of these 370 domains and

that of their corresponding BSs [47] (Fig. S1). This computation

identified three main patterns. First, the extensive linkage between

the non-conserved nucleotide pair (NT-5, NT-4) and the (AA-15,

AA-16) residues located in the recognition helix (this helix includes

residues AA-15 to AA-22, see Fig. 1.B). Second, the presence of a

strong connection between NT-6 and AA-20 (also in the

recognition helix); these coordinates exhibited no other apprecia-

ble interdependences suggesting a mode of recognition relatively

independent to the previously discussed pair. Finally, the

correlation of NT-2 with AA-55, AA-15 and AA-5, in decreasing

order of importance.

The mutual information analysis also generalized previous

experimental results obtained with a few members of the LacI

family, this time with respect to the proposed specificity residues.

In particular, the association of the pair (NT-5, NT-4) to (AA-15,

AA-16) was demonstrated by structural models [29] and

mutational studies [19]. The independent nature of the recogni-

tion interaction between NT-6 and AA-20 was also suggested by

previous mutational studies of E. coli’s LacI [19,29]. In addition,

the link between NT-2 and the hinge-helix residue AA-55 (Fig. 1.B)

was proposed in [41]. Moreover, although AA-20 was related to

recognition processes, it is a strongly conserved residue –with

arginine (R) linked to the presence of a guanine in NT-6

(x2~405:2, pv0:0001, Yates-corrected x2-test). This resulted in

the same AA sequence (a TVSR sequence for the range AA-17 to

AA-20) in 1490 instances of a total of 2639 included domains

(56:5%, Fig. S2). We thus restricted the following analysis to the

TVSR dominant subgroup.

From all the above, we hypothesized that the distinction among

the different BSs associated to the TVSR set would rely mostly on

the (AA-15, AA-16) pair. We further considered a stronger version

of this hypothesis assuming that regulators sharing the same (AA-

15, AA-16) sequence would tend to bind similar BSs regardless of

their evolutionary distance. In the following, we tried to confirm

these conjectures by analyzing the possible presence of a

recognition code assigning specific nucleotides (NT-5, NT-4) to

residues (AA-15, AA-16).

Autoregulation helps identify a recognition code
The search of a wide-coverage recognition code required a large

scale identification of the native BSs for each TF, with

independence of its location in the LacI family phylogenetic tree.

This requirement might become problematic if we were to apply

the standard protocols of BS search. These methods often rely on

the identification of orthologs of experimentally determined target

genes to look for conserved upstream BSs –for example, by

applying phylogenetic footprinting (PF) techniques [48]. As

evolutionary distance between TFs increases, this approach lacks

precision because of the complications to define orthologs, e.g.,

due to events of duplication and loss of genes [49].

We decided to use a complementary strategy to search for BSs.

This strategy was based on the hypothesis of the conservation of

binding mode and also on the widespread presence of local

transcriptional control in bacteria (including both auto- and

neighbor-regulation [34]). Thus, we first grouped regulators sharing

the same sequence of recognition residues (AA-15, AA-16), regardless

of the evolutionary distance among the full TF sequences. Within

each of these groups, or recognition classes, we looked for potential

BSs in the intergenic regions located before the operon encoding the

TF itself, and before the downstream operon, respectively (Fig. 2.A).

We applied PF for BS search on these sequences with a subsequent

refinement based on iterated position weight matrices (PWMs) (this

protocol was aimed to minimize the rate of false positives linked to

bioinformatic BS searches [49], see Methods).

We obtained in this way a nucleotide logo from each alignment of

BSs associated to a recognition class (Figs. 2.B–D and Appendix in

Text S1 for the complete set). We also computed the consensus logo

of the full TVSR group (Fig. 2.E), where the contrast between

conserved and non-conserved NTs is especially apparent. Although

we used uninformed priors in the BS-finding algorithms to avoid

circularity biases, the obtained consensus logo corresponded to the

one expected from a situation where the TF binding mode is

conserved (compare Fig. 1.C, computed from a previously known BS

set [46], to Fig. 2.E). Note the conservation of G in NT{6L (and C in

NT{6R), for we considered a group of domains with arginine in AA-

A Recognition Code within the LacI Family
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20. Computation of the familial binding profile [23,24] –a method

that can also suggest the conservation of the binding mode within a

TF family– for the TVSR set produced the same qualitative patterns

in the consensus logo.

Two contrasting scenarios to test for a wide-coverage
recognition code

Once we obtained the BS logos associated to each AA

recognition class, we could naively suppose that the presence of

logos with high information content in both NT-4 and NT-5

would confirm the hypothesis of a recognition code. In the same

vein, ambiguities in these nucleotides would reject the hypothesis

(for example, in the set V15A16, Fig. 2.B, where both T and A are

found in NT{5L). However, low-information positions could

alternatively be explained by degeneracies in the recognition

process, an expected attribute of extant codes [3]. In this latter

case, the code conjecture would still hold true.

How can we distinguish these contrasting situations? Imagine a

simplistic scenario in which a particular recognition AA sequence

corresponds to a (recognition) class uniquely constituted by two

different TFs. Imagine also that there were only two types of half site

with different (NT-5, NT-4) sequences in the BSs observed for this

TF class. Consequently, the corresponding BS logo would exhibit

low-information (NT-5, NT-4) positions. This ambiguity could be

caused because the particular (AA-15, AA-16) sequence for this class

showed some degeneracy in recognition (as discussed above; we

termed this intrinsic degeneracy), or because each TF exhibited a

precise specificity to either type of half site, i.e., the recognition AA

pair is not acting as the only determinant of specificity.

We can further illustrate this with the help of Figure 3. In

principle, the two species of half sites involved could be combined

into palindromic (P1, P2 in Fig. 3.A) or non-palindromic

architectures (M1, M2 in Fig. 3.A). When each TF monomer

had a high affinity for both half sites (Fig. 3.B left), they could bind

efficiently to P1, P2 and either mixture (we considered both

mixtures to have the same binding energy). In a second situation

(Fig. 3.B, center) both TFs had again similar affinities, but this time

the monomers bound preferentially to one type of half site and,

consequently, to one palindrome. Although a mixed configuration

could still be compatible with (weaker) regulatory tasks, the

probability of binding to the other palindrome strongly decreased.

These are two instances of intrinsic degeneracy. Finally, in a third

scenario each TF was very specific to a single half site type; so that

only P1 or P2 were accessible (no mixtures), an example of logo

ambiguity due to an extrinsic degeneracy (Fig. 3.B, right).

Ambiguities explained as intrinsic degeneracies are compatible

with our starting hypothesis and would only reflect a degenerate

code. The code hypothesis must be revised or even rejected when

extrinsic degeneracies are common. This would presumably reflect

critical changes in the determinants of the indirect readout.

Comparative data suggests the presence of a wide-
coverage code

A BS logo can thus be degenerate because i) the recognition

process is degenerate in itself (intrinsic degeneracy) or ii) the logo is

computed from BSs recognized by TFs with different specificities

(extrinsic degeneracy). To distinguish between these two scenarios,

we identified and classified degeneracies (Methods). Fig. 3.C shows

the notation used for the different degeneracies. One could

simultaneously observe several of these degenerate scenarios for

any alignment involving more than two different types of half sites.

Table S1 included all correlations obtained between the pair of

residues (AA-15, AA-16) and the nucleotides NT-4 and NT-5,

together with the corresponding degeneracies when observed. This

table contains 48 different recognition classes, involving a total of

38 intrinsic and 6 extrinsic degeneracies (some classes exhibiting

both). The different types of identified degeneracies corroborated

the potential of this protocol to detect distinct BSs within a TF

class. The extrinsic degeneracies observed constitute a small

number of exceptions to an otherwise consistent confirmation of

the code conjecture.

We showed a subset of these results, with only significant

palindromic combinations, in Fig. 4.A. Recognition sequences were

Figure 2. Autoregulation and the search of conserved binding
sequences. A) Local regulation at the core of phylogenetic footprint-
ing includes both autoregulation –which can be linked to the
regulation of an upstream divergent operon– and downstream
unidirectional adjacent regulation (BSs, white boxes). Red and green
lines for the respective strict and extended regions of BS search. B–D)
Examples of BS logos. Rest of cases in the Appendix of Text S1. Above
each logo: the recognition sequence (AA-15, AA-16) and a triad of
numbers (i/ii/iii) corresponding to i) the total number of TFs exhibiting
the recognition sequence, ii) the number of TFs for which at least a BS
was found, and iii) the total number of found BSs. E) Consensus-logo for
the BSs associated to the TVSR group. The inserted position NT-2bis for
the YQ-logo in C) has not been considered to build the consensus.
doi:10.1371/journal.pcbi.1000989.g002

Figure 3. Degeneracies in TF binding. A) Palindromic (P1 and P2)
and non-palindromic BSs (M1 and M2). Nucleotides (NTs) in positions 4
and 5 in both half sites and strands were only considered. Colors
distinguished different NTs pairs. Only the sense strand (black line) is
included in the alignment of BSs. Half sites separated by dots. B)
Scenarios for degeneracy. Spheres represent two different TFs sharing
the same recognition amino acids. Arrows indicate what BSs they can
bind. We considered both mixtures to have the same binding energy
and termed them simply as M. See main text for details. C) Notation
criterion for degeneracies uses different arrows between the corre-
sponding left semisequences (NT{5L,NT{4L) in the sense strand of
the palindromic combinations.
doi:10.1371/journal.pcbi.1000989.g003

A Recognition Code within the LacI Family
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sorted by the left semisequence of the palindromes they recognize,

and connected according to their resolved degeneracies. For instance,

R15S16 shows an extrinsic degeneracy between (NT-5, NT-4) = CA

and (NT-5, NT-4) = GG. The variability of the recognition

correlations in AA-15 became manifest also in this figure, a flexibility

previously pointed out by mutational studies [19]. Our genomic

approach confirmed then that the role of AA-16 as the strongest

determinant of specificity applies throughout the TVSR group [19].

Since the general mode of binding in the LacI family involves

DNA bending, one could expect that the direct readout of the

contacting residues would be strongly conditioned by the character-

istics of this specific type of indirect reading [11,12,50]. This would

directly imply that TFs with the same contacting residues could

recognize different NT sequences. However, the small number of

extrinsic degeneracies found suggests that the degree of bending

remains substantially conserved throughout the TVSR group.

The consistent next step after proposing an AA/NT recognition

code was to validate its predictions. We approached this issue in

the next sections in three complementary ways. First, we

compared the theoretical predictions with experimental data from

LacI mutants (Fig. 4.B and Fig. S3) [19,20]. Second, we confirmed

the existence of natural counterparts of BSs previously interpreted

only as synthetic constructs (Fig. 4.C). Finally, by computing a

gene tree including all TFs with at least one BS in Table S1, we

identified several convergence events in the recognition process –

the same AAs/NTs association in different tree locations (Fig. 5) –

that additionally supported the hypothesis of the conservation of

the mode of binding, and that overall indicated the presence of a

relatively consistent recognition code.

Mutational studies support code predictions
We compared the theoretical predictions with two experimental

studies analysing the DNA binding specificities of Escherichia coli’s

LacI repressor [19,20]. Fig. 4.B shows a comparison between the

recognition rules in Table S1 and data from the first of these

studies, the pioneering work of Müller-Hill and colleagues [19] in

Figure 4. Recognition code and experimental confirmations. A) Sequence correlations between (AA-15, AA-16) and (NT-5, NT-4) extracted
from correlations in Table S1. AAs sequences recognizing a same sequence of NTs were grouped. Here, we only considered significant palindromic NT
sequences; for example, (NT-5, NT-4) = TG means (NT{5L, NT{4L; NT{4R, NT{5R)~(TG; CA). We included the case for (AA-15, AA-16) = YQ
corresponding to the synthetic SymL site in C). Recognition degeneracies are represented as unidirectional arrows (asymmetrical intrinsic),
bidirectional divergent arrows (symmetrical intrinsic), and bidirectional convergent arrows (extrinsic). Colors for polar (green), basic (blue), acidic (red)
and hydrophobic (black) amino acids. B) Agreement between synthetic and natural data. Recognition of (NT-5, NT-4)-palindromes by different (AA-15,
AA-16)-LacI mutants (YQ is the wild type). Data from [19] –from which we only considered those sequences (AA-15, AA-16) with a natural
correspondence in Table S1. Rest of BS positions as in SymL. The larger the TF/BS affinity, the stronger the repression of the b-galactosidase activity.
Experimental conditions limited repression to a factor of 200. Arrows indicated again degeneracy classes. Predictions for wild type YQ correspond to
asymmetric natural BSs (see text). (NT-5, NT-4)-palindromes involved in the predicted correlations for PM (AT?GT, see Table S1) lack an
experimental test. Accordingly, PM do not exhibit a strong affinity for any of the tested palindromes (see Fig. S3), C) Natural and synthetic operators.
A dot distinguishes the half sites. Flanking nucleotides separated by a space to help visualization of the highly conserved central region of the BSs.
Colors identify different palindromic or mixed combinations in the specificity nucleotides (see Table S2 for more details).
doi:10.1371/journal.pcbi.1000989.g004

A Recognition Code within the LacI Family
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which several repressor mutants where isolated and characterized.

In this figure, the experimentally measured repression of (NT-5,

NT-4)-palindromes by different (AA-15, AA-16)-LacI mutants is

shown in boxes (with TG=Y15Q16 being the wild type interaction),

where the theoretical predictions are superimposed. These

predictions are indicated by arrows, following Table S1, with

dots denoting non-degenerate associations [links to a single (NT-5,

NT-4) pair]. The agreement between theory and experiments

emphasizes the presence of an intrinsically degenerate code, with

the only discrepancy of the wild type Y15Q16.

This inconsistency of the wild type class is due to the difference

between the BSs considered in our study and those examined

experimentally. Theoretical correlations were derived from

natural BSs exhibiting variations over the asymmetric O1 site

for E. coli’s LacI (Fig. 4.C). This specific BS presents an intervening

base (NT-2bis, Fig. 4.C) which introduces an asymmetry between

the protein contacts made over the left and right half sites [29,38].

However, LacI can bind a palindromic BS lacking the intervening

nucleotide. This BS is called SymL (Fig. 4.C) because it is

synthetically built from the symmetrization of the left half site of

Figure 5. Convergence of binding modes in the gene tree. Gene tree involving all TFs with BSs in Table S1 (623 TFs) plus the 3 TFs with Y15Q16

binding to natural SymL-like BSs (Fig. 4.C and Table S2). Only one BS per TF is shown. The external color code displays the specificity-associated
positions –to help visualization of palindromic combinations right positions are read in the complementary (c) strand:
(NT{5L, NT{4L; NT{5c

R, NT{4c
R). The color background in several branches corresponds to different recognition AAs (only a few recognition

classes were enhanced). External color code in these branches shows darker colors to help visualization. Dots in branches denote bootstrap values
larger than 80 (for 100 trees total, see Fig. S4 for more details).
doi:10.1371/journal.pcbi.1000989.g005

A Recognition Code within the LacI Family
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O1 [29]. The mutational studies were based on variations over

SymL [19] –for example, the SymL’ site in Fig. 4.C. In such

synthetic constructs the palindromic affinity of LacI is severely

restricted to (NT-5, NT-4) = TG. Moreover, LacI is unable to bind

the SymL/SymL’-like mixture (Table S2) obtained from the

delection of NT{2R in the natural O1 site [51].

In a more recent work, Lewis and colleagues [20] characterized

the associations between a set of 203 E. coli’s LacI mutants for the

triplet (AA-15, AA-16, AA-20) –corresponding to the AA

coordinates 17, 18 and 22 of LacI, respectively– and the 43

palindromic (NT-6, NT-5, NT-4)-variants of the SymL operator.

We plotted in Fig. S3 a comparison between the recognition pairs

obtained in these experiments (corresponding to the TVSR group)

and the theoretical predictions involving significant NT palin-

dromic combinations (Fig. 4.A). We noticed again a strong

agreement between theory and experiment, which becomes more

evident when considering that regulators sharing the same AA-16

sequence tend to bind similar NT sequences. Note also that some

of the theoretical correlations could remain untested due to the

specific mutant sampling of the screening protocol.

Our predictions appeared nevertheless at odds with some

experiments done with lac family members in the latter study [20].

In this case, the recognition triplet (AA-15, AA-16, AA-20) of LacI

was swapped to that of nine different members of the family, i.e.,

MalR, RbtR, FruR, PurR, RbsR, GalR, CytR, RafR and ScrR

(the last four in the TVSR group). The sequence of (NT-6, NT-5,

NT-4) in SymL was changed accordingly for these regulators to

that of a natural BS in which they were known to bind. Only the

mutants associated to GalR and FruR worked [20]. This

seemingly contradiction is partly linked to the presence of

members out of the TVSR group (see below) and the use of

single BSs in the repressor-operator characterization (see Text S1,

section 3 for a detailed discussion).

The agreement between the familial (genomic-based) specificity

predictions and the corresponding mutational experiments in the

TVSR set (Fig. 4.B and Fig. S3), this set being 56:5% of the whole

family, suggests that the preferential binding of arginine in AA-20

to guanine in NT-6 might turn the structural environment under

which the recognition partners (AA-15, AA-16)/(NT-5, NT-4)

operate with strong stability, so that indirect readouts did not

prevent the emergence of a consistent recognition code.

Code predictions help identify natural correspondences
of a synthetic binding mode

The binding of LacI to the synthetic site SymL was believed to

be a laboratory construct, not representative of the characteristic

binding mode of this regulator [35]. However, two observations

from our study supported the presence of a natural counterpart of

this synthetic binding mode. First, the natural BSs for the related

recognition sequence H15Q16 resembled either the perfect

palindromic sequences of SymL and SymL’, or their mixture

(Table S2, see the corresponding logo in Fig. 2.D). Second,

although every BS involved in the Y15Q16 logo in Fig. 2.C

incorporated the inserted nucleotide, we also found several BSs

related to the synthetic SymL construction (Fig. 4.C and Table S2)

in the first BS search based on PF. In agreement with the mutant

model [19,51], neither natural SymL’-like BSs nor mixtures were

detected for Y15Q16 in this PF scan.

That the recognition sequences of Y15Q16- and H15Q16-TFs are

highly related was also suggested by its location in the gene tree.

Fig. 5 shows the gene tree of all TFs with at least one BS in the

table of correlations (623 TFs for 811 BSs in Table S1) and the

three TFs with Y15Q16 binding to SymL-like BSs. In this tree,

branches corresponding to these two recognition classes appeared

closely located. In fact, a recent mutational work [52] demon-

strated that the H15Q16 LacI-mutant exhibits a stronger affinity to

SymL than the Y15Q16 wild type.

Recognition convergence strengthens structural stability
hypothesis

If only a restricted number of specificity determinants (AA to

NT pairs) were possible within a particular regulatory family, we

should expect instances of convergent evolution for the same

recognition AAs in divergent backgrounds. This is indeed what we

observed. In the gene tree plotted in Fig. 5 (see also Fig. S4),

branches corresponding to several of the largest recognition classes

were highlighted. We identified convergence events in the

recognition process (i.e., same AAs associated to the same NTs

throughout the tree). These findings validated the initial hypothesis

that the binding mode was highly conserved and that, as a

consequence, evolution finds the same solutions repeatedly (the

presence of relatively consistent recognition rules). Such structural

stability of the TVSR set could apply to other regulator families.

Conclusions
This work reveals the first comprehensive resolution of a

recognition code for a large group of proteins within a family of

transcriptional regulators. This resolution is based on the use of

comparative genomics [15], the identification of local transcrip-

tional regulation as a fundamental regulatory architecture in

prokaryotes [30–34] and the hypothesis of the stability –in the

large phylogenetic distances considered– of the domain structure

around the recognition sites [10,14].

This last hypothesis is confirmed by the patterns of differential

residue and BS conservation obtained. Indeed, we only found a

few instances of TFs that would invalidate our conjecture, i.e., TFs

with the same sequence in the specificity pair (AA-15, AA-16) but

recognizing incompatible BSs (extrinsic degeneracies). Moreover,

the convergence events and the agreement of the correlations with

mutational data (including the extension of the rule of the AA-15

flexibility to become a dominant family attribute) support the

assumption that the mode of binding is conserved for a large

fraction of the family.

A few caveats to our approach should be noticed. First, we

considered a stringent protocol to select for BSs. This method

combined PF, iterated PWM refinement, and further removal of

BSs with potential spurious nucleotides exhibiting no special

affinity (see Text S1, section 2). In this way, those AA/NT

relationships incorporated into the code should exhibit at least a

minimal moderate affinity. Of course, any false positive removal is

made at the cost of losing some true positives. An example of this

was the loss of the BS for RafR [26], which was detected in the

initial PF search but removed after the processing protocol. In any

case, this was a consequence of the dominance within the TVSR

set of a canonical mode of binding associated to an ideal BS

backbone given by the conserved pattern (T)G–A-CG-T–C(A) in

Fig. 2.E. A second limitation to our approach is the reliability of

the extrinsic/intrinsic degeneracy analysis. The most reliable ones

correspond to TF classes with many members and many detected

BSs, e.g., the TF class corresponding to V15A16 (see the Appendix

in Text S1). This second limitation could be overcome as more

genomes become available.

In contrast to what appears to happen with the LacI family as a

whole [20], the natural recognition correlations within the TVSR

subfamily could be largely reproduced by mutational experiments.

Thus, the genomically-derived correlations will be useful to

complete the specificity map derived with mutational approaches

only [19,20]. Moreover, the use of natural correlations will be
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probably essential to guide the redesign of a library of regulators that

can target the maximal number of arbitrary sequences in the non-

conserved positions of the consensus sequence. Note that, beyond

the code established between the pairs (AA-15, AA-16) and (NT-5,

NT-4), the mutual information analysis of Fig. S1 suggested that

there existed alternative AA and NT positions also involved in

specificity tasks. In particular, the sequence in NT-2 was associated

in this analysis to those of AA-5, AA-15 and AA-55. The same

applies for a mutual information analysis restricted to the TVSR set

(data not shown). This specificity role of AA-55 was demonstrated in

the particular case of the purine repressor [41]. As AA-15 could be

coupling the recognition of NT-2 to that of the pair (NT-5, NT-4),

the resolution of the specificity map for the triad (NT-5, NT-4, NT-

2) could be beyond the scope of any mutational approach without a

previous genomic blueprint.

In summary, the main advantage of the BS search based on local

regulation is its potential applicability to any annotated genome and

TF family, without the limitations linked to orthology and

functionality definitions, i.e., the functional relationship between

the TF and the regulated operon trivially exists in the case of

autoregulation. The explicit correlations obtained in this analysis

can thus be refined with sequence data from newly sequenced

genomes, and could ultimately act as a blueprint for the synthetic

redesign of TFs with new specificities. These correlations constitute

the first candidate to a relatively consistent recognition code

applicable to an extensive subfamily of transcriptional regulators.

Methods

Selection of sequences for HTH-LacI domains
5597 AA sequences for HTH-LacI domains (Smart SM00354)

were obtained from MicrobesOnline [36]. The median length

value of this domain (including both the HTH and hinge-helix

regions) is 71+3:5 AAs. To guarantee the functionality of the

domains, we selected from the starting set every sequence whose

length is inside the range of 71+7 AAs, and removed those

lacking the 26-AA Pfam domain PF00356 –this label corresponds

to the HTH core of the HTH-LacI domain. We also discarded

three cases of proteins containing two SM00354 domains. Finally,

we removed overrepresented sequences due to strain variations in

the database to get a final set of 2639 sequences.

Domain alignment
We use Muscle [53] to add each of the HTH-LacI domains to a

previous Smart curated alignment involving 49 SM00354 domains

[54]. After the removal of columns exhibiting gaps in more than

80% of its sequences, we obtained a seed-alignment with 71 AA

positions. Then, for each of the 2639 sequences we applied the

following protocol: i) the sequence is added to the seed-alignment

using the mentioned option of Muscle; ii) all those positions that

imply the insertion of a gap in the seed-alignment are removed

from the sequence; and iii) the sequence (in its aligned

configuration) is removed from the seed-alignment and saved.

After the process was completed, none of the 71 positions in the

final alignment of the 2639 domains (Fig. 1.C) exhibited gaps in

more than 5% of sequences. We extracted all the recognition helix

sequences from the alignment. 1490 out of 2639 domains

belonged to the TVSR group (Dataset S1).

Selection of intergenic regions for BS search
We could extract from the operons predictions included in

MicrobesOnline [36] the non-coding region located upstream of

the operon encoding the HTH-LacI domain (up to 200 bp), and

also the non-coding region located before the downstream

neighbor operon (Fig. 2.A, Dataset S1). When the regulated

operon is located downstream of the regulator, both operons are

usually encoded in the same strand (unidirectional architecture

[31]). Thus, in the case of downstream regulation we only

considered the unidirectional orientation –this occurs in *56% of

domains. We did not included alternative convergent orientation

(downstream operon encoded in the opposite strand) because

under this architecture neighbor regulation is much less common

[31]. Sequences were truncated if the next upstream coding region

was reached (Fig. 2.A, red lines). From every region we also

obtained an extended version of 250 bp that includes the range of

coding positions from +1 to +50. These extended regions were

never truncated (Fig. 2.A, green lines).

Recognition TF classes and first BS search by PF
Within the TVSR group we divided the intergenic regions in

groups associated to domains sharing the same (AA-15, AA-16)

sequence. On each group (recognition class), we made a first BS

scan using PF techniques as implemented in the Gibbs Motif

Sampler [55], with the following parameters: estimated total

number of BSs in a given group of regions equals the number of

these regions; one BS per region at the most; palindromic BSs of

14 bp without fragmentation. Results were robust to changes in

these parameters, including the estimated BS length and the

palindromic nature of the sites. To avoid circularity we did use

uninformed priors based on the average background composition

[56]. The PF scan was applied over the truncated version of the

intergenic regions to avoid coding zones, which, as it happens with

BSs, are more conserved than the non-functional intergenic

sequences. Finally, we discarded BSs with confidences below 40%.

Second BS search by PWM
After the first BS scan we had at most one BS per intergenic

region. We refined and extended our results through an iterative

process of PWM construction and BS selection. This time, we

considered that there might be multiple BSs per intergenic region

and BSs located in the coding zone. Firstly, we built a PWM from

the BSs found in the PF scan using a constant pseudocount

function s~0:5 [49] (results were robust under variations on this

parameter). Secondly, we slided this PWM over the extended

version of the intergenic regions and generously selected all those

sites with a score over the minimal one in the starting BS set. The

sites selected in this search is what we called the candidate sites.

Finally, we applied the following protocol to look for the most

significant candidates: i) generation of a null set of 107 scores that

was obtained by sliding the PWM over random versions of the

intergenic regions; ii) selection of every candidate whose score had

a p-value below 10{5 when compared to the null set; iii)

construction of a new PWM from the candidates selected in ii);

and iv) computation of the score for all candidates under the new

PWM.

Using the new PWM to generate a new null set, these four steps

were iterated until convergence. The resulting set of 942 BSs was

the end product of the whole process of search (Dataset S1). All the

found BSs exhibited Z-scores above Z~4. Each BS was read in

the sense strand –consequently, its left and right semisequences

were univocally determined. See Text S1, section 1 and Fig. S5 for

a comparison with more standard approaches to BS search.

Consensus logo
We extracted the consensus sequence of BSs associated to a

same recognition class and then aligned the whole set of consensus

sequences to obtain the consensus logo (Fig. 2.E). Using the

alignment of consensus sequences instead of the raw alignment of
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all found BSs avoids the over-representation of those BSs

corresponding to the most populated classes. The raw alignment

exhibited the same qualitative behavior to that of Fig. 2.E.

Identification and classification of degeneracies
We successively applied the following protocol to each set of BSs

associated with the same recognition AAs (see section 2 of Text S1,

Table S3, Fig. S6, and Fig. S7 for a more detailed description).

First, a triangular matrix F containing the frequencies of the

136 possible combinations for the quartet of positions

(NT{5L,NT{4L; NT{4R,NT{5R) was computed. Second, a

matrix S was extracted from F by selecting combinations found to

be statistically significant (with respect to those observed in the

genomic background). Third, significantly under-represented

mixtures were identified in S, as the absence of mixed

combinations is linked to extrinsic degeneracies (Fig. 3.B, right).

Finally, each extrinsic degeneracy partitioned S into two

submatrices in which the two types of intrinsic degeneracy were

resolved. In the absence of any significant high frequency in a

submatrix we kept the symmetrical recognition scenario of the null

model (Fig. 3.B, left). Moreover, the presence of a significant

frequency usually corresponded to a palindromic combination. In

this case, we considered an asymmetrical recognition process with

a dominant palindrome (Fig. 3.B, center).

Gene tree
The full AA-sequences of the 626 TFs with at least a BSs in

Table S1 (623 TFs) plus the 3 TFs with Y15Q16 binding to natural

SymL-like BSs (Fig. 4.C and Table S2) were aligned and refined

with Muscle. This alignment was trimmed with Gblocks [57].

Finally, we use PhyML to build the tree in Fig. 5. Supplementary

Fig. S4 contains a more detailed version of this tree in which each

protein is labeled with its VIMSS ID plus the recognition AA pair.

In this larger version, we plotted all the BSs associated to each TF

(we found four BSs per TF at most).

Supporting Information

Dataset S1 Sequences of proteins, domains, intergenic regions

and binding sites.

Found at: doi:10.1371/journal.pcbi.1000989.s001 (0.67 MB ZIP)

Figure S1 Mutual information (covariance dependency) values

between 370 domains in our alignment for which we could

univocally associate BSs in RegTransBase v5 (reference [46], main

text) and the alignment of these BSs (see Text S1, section 1 for

details on the use of RegTransBase data). Logos for these

alignments are explicitely shown. The global mutual information

pattern reflects the symmetrical nature of the contacts made by the

monomers over the corresponding half site. Mutual information

analyses cannot solve interactions between highly conserved NT

and/or AA positions -note how they correspond to the darkest

rows and columns (see reference [47], main text). This is the case

of the links between the hinge-helix AA-51 and AA-54 with the

central CG group. On the other hand, the largest covariances for

NT-5 corresponded to AA-15 and AA-16. Although several AAs

(like AA-15) exhibited appreciable scores for NT-4, the maximal

mutual information is obtained with AA-16. NT-6 is strongly

correlated with AA-20, with no more appreciable correlations

for these NT and AA coordinates. Finally, NT-2 is correlated,

in decreasing order of importance, with AA-55, AA-15 and AA-5.

Found at: doi:10.1371/journal.pcbi.1000989.s002 (0.50 MB TIF)

Figure S2 Conserved positions in recognition helix.

Found at: doi:10.1371/journal.pcbi.1000989.s003 (0.02 MB PDF)

Figure S3 Comparison of theoretical predictions with experi-

mental data. Black boxes correspond to (AA-15, AA-16)/(NT-5,

NT-4) binding partners in a protocol of phenotype screening of

binding mutants (reference [20], main text). Vertical gray lines

separate groups of amino acid sequences sharing the same AA-16.

Green dots indicate the theoretical sequence correlations [involv-

ing significant (NT-5, NT-4)-palindromes, see Fig. 4.A in main

text]. One should consider in this comparison that: i) regulators

sharing the same AA-16 sequence tend to bind similar nucleotide

sequences, and ii) due to the sampling effects of the screening

method, some of the theoretical recognition predictions remained

possibly untested. The main discrepancy observed corresponded

to those regulators with a methionine in AA-16, where we found a

consistent signal of binding to (NT-5, NT-4) = TT which is abstent

in the mutational experiment. This trend was however in

agreement with the experimental data reported in reference

[19], main text. Note also here the considerable number of

mutants that were still able to bind the wild type sequence of

SymL, (NT-5, NT-4) = TG.

Found at: doi:10.1371/journal.pcbi.1000989.s004 (0.16 MB TIF)

Figure S4 Full version of the gene tree in Figure 5, main text.

This tree involves the same transcriptional factors (TFs) of the

simplified tree; however, we plotted now all the binding sites (BSs)

associated to each TF (we found four BSs per TF at most). Each

external quartet of colored boxes corresponds to the specificity-

associated positions of one BS -to help visualization of palindromic

combinations, right positions are read in the complementary (c)

strand: (NT-5L, NT-4L; NT-5c
R, NT-4c

R). The color background in

several branches corresponds to different recognition amino acids

(only a few recognition classes were enhanced). Dots in branches

denote bootstrap values larger than 80 (for 100 trees total).

Found at: doi:10.1371/journal.pcbi.1000989.s005 (3.33 MB TIF)

Figure S5 Comparison with RegTransBase.

Found at: doi:10.1371/journal.pcbi.1000989.s006 (0.03 MB PDF)

Figure S6 Example of matrix F.

Found at: doi:10.1371/journal.pcbi.1000989.s007 (0.04 MB PDF)

Figure S7 Protocol to distinguish among the different types of

degeneracies.

Found at: doi:10.1371/journal.pcbi.1000989.s008 (0.02 MB PDF)

Table S1 Table of correlations.

Found at: doi:10.1371/journal.pcbi.1000989.s009 (0.03 MB PDF)

Table S2 Natural and synthetic operators for Y15Q16 and

H15Q16.

Found at: doi:10.1371/journal.pcbi.1000989.s010 (0.03 MB PDF)

Table S3 Examples of two-strand-detailed binding sites.

Found at: doi:10.1371/journal.pcbi.1000989.s011 (0.02 MB PDF)

Text S1 Efficiency of the BS search method based on local

regulation. Resolution of the recognition correlations. Comparison

with mutational data. Glossary. Appendix: BS logos.

Found at: doi:10.1371/journal.pcbi.1000989.s012 (1.45 MB PDF)
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