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Abstract

Understanding how novel functions evolve (genetic adaptation) is a critical goal of evolutionary biology. Among asexual
organisms, genetic adaptation involves multiple mutations that frequently interact in a non-linear fashion (epistasis). Non-
linear interactions pose a formidable challenge for the computational prediction of mutation effects. Here we use the recent
evolution of b-lactamase under antibiotic selection as a model for genetic adaptation. We build a network of coevolving
residues (possible functional interactions), in which nodes are mutant residue positions and links represent two positions
found mutated together in the same sequence. Most often these pairs occur in the setting of more complex mutants.
Focusing on extended-spectrum resistant sequences, we use network-theoretical tools to identify triple mutant trajectories
of likely special significance for adaptation. We extrapolate evolutionary paths (n = 3) that increase resistance and that are
longer than the units used to build the network (n = 2). These paths consist of a limited number of residue positions and are
enriched for known triple mutant combinations that increase cefotaxime resistance. We find that the pairs of residues used
to build the network frequently decrease resistance compared to their corresponding singlets. This is a surprising result,
given that their coevolution suggests a selective advantage. Thus, b-lactamase adaptation is highly epistatic. Our method
can identify triplets that increase resistance despite the underlying rugged fitness landscape and has the unique ability to
make predictions by placing each mutant residue position in its functional context. Our approach requires only sequence
information, sufficient genetic diversity, and discrete selective pressures. Thus, it can be used to analyze recent evolutionary
events, where coevolution analysis methods that use phylogeny or statistical coupling are not possible. Improving our
ability to assess evolutionary trajectories will help predict the evolution of clinically relevant genes and aid in protein design.

Citation: Guthrie VB, Allen J, Camps M, Karchin R (2011) Network Models of TEM b-Lactamase Mutations Coevolving under Antibiotic Selection Show Modular
Structure and Anticipate Evolutionary Trajectories. PLoS Comput Biol 7(9): e1002184. doi:10.1371/journal.pcbi.1002184

Editor: Claus O. Wilke, University of Texas at Austin, United States of America

Received February 2, 2011; Accepted July 19, 2011; Published September 22, 2011

Copyright: � 2011 Beleva Guthrie et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This research was supported by a NSF CAREER award DBI-084527 to RK, and a UCSC Academic Senate Special Grant to MC. The funders had no role in
study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: karchin@jhu.edu

"MC and RC both served as co-mentors for VBG.

Introduction

Evolutionary biology seeks to understand how proteins rapidly

evolve novel functions and adapt to new environments, while

retaining their functional specificity [1–4]. Improved understand-

ing of the genetic basis of adaptive evolution should help anticipate

the functional impact of mutations, which has critical clinical and

biotechnological implications [2,3,5].

It has been noted that for a given protein target under selective

pressure, the contribution of individual amino acid substitutions to

adaptation is highly variable [1,4]. A few residues have a large

impact on increasing fitness under selective conditions, whereas

the contribution of most residues is more modest [6]. The

difference between these two classes of mutations cannot always be

explained only by properties of the specific sites: The impact of

mutations is context-dependent and reflects a complex network of

interactions between multiple residues within a protein [1,4,7].

Bacterial b-lactamases, enzymes that break up the functional

ring of b-lactam antibiotics, are a good model system for the study

of genetic adaptation. The reason is that acquisition of resistance

to inhibitors and newer b-lactam antibiotics [7,8] requires only a

small number of mutations. This is also a system where the

impacts of individual mutations on adaptive fitness can be readily

assessed.

Since the discovery of a b-lactamase known as TEM-1 in 1963,

over 170 mutants have been identified in clinical environments, in

addition to dozens more described in laboratory evolution

experiments (reviewed in [9]). Here we compiled a comprehensive

database of clinically or experimentally derived TEM-1 b-

lactamase mutant sequences. Our assumption is that the majority

of mutations within these mutants involve a degree of positive

selection, and that coevolution of two given residue positions

points to a functional interaction between them. We generated a

graphic representation of these genetic interactions — an

undirected network of mutated residue positions, in which edges

are weighted based on co-occurrence frequency relative to the

frequency of the constituent single mutations. We found that this

network segregates mutant positions according to known selective

pressures, namely broad-spectrum, extended-spectrum and inhib-

itor resistance.
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We then focused on a network model of mutant positions

involved in extended-spectrum resistance, which is the best-

represented resistance phenotype class in our TEM mutant

sequence database. We reasoned that generating adaptive

evolutionary trajectories involves assembling combinations of

mutations that fulfill the specific functional milestones required

for genetic adaptation. If we assume that every mutant position

represents a potential functional milestone, adaptation involves

information transfer across the network. We focused on the most

experimentally tractable evolutionary trajectories (trajectories

involving three mutations) and identified mutation paths that

facilitate the transfer of information across the network as paths of

likely special significance for adaptation. The particular signifi-

cance of these evolutionary trajectories identified by our analysis is

demonstrated because they frequently increase protection over

constituent double mutation pairs. Even though most of these

trajectories had been previously described, our ability to identify

them implies that our analysis has predictive value because it had

no information about the original sequence context of the co-

occurring pairs of mutations.

Our network approach attempts to maximize the amount of

genetic information that can be derived from sequences, in the

setting of rapid evolution under defined selective pressures, such as

drug resistance, virulence, or immune evasion. Detailed phyloge-

netic or structural information is not required for our method in its

current form, but our approach is amenable to the incorporation

of biophysical, tertiary structure, and phylogeny variables.

Results

In order to study how new biochemical activities arise during

evolution, we compiled a database of TEM mutant sequences that

have evolved under antibiotic selective pressure. Our database

includes clinical (n = 144 [10,11]) and laboratory evolved (n = 217

[12–26]) sequences. This database of TEM b-lactamase mutants is

available in Tables S1 and S2 (annotated amino acid residue

substitutions) and in Datasets S1-S8 (FASTA sequences and

references).

Mutations within TEM b-lactamase sequences can be grouped into

the following three phenotypic classes, corresponding to specific

functional selections: mutations associated with resistance to penicillins

and some earlier generation cephalosporins (broad-spectrum resis-

tance or Class 2b), mutations conferring resistance to later generations

of cephalosporins and monobactams (extended-spectrum resistance or

Class 2be), and mutations that make b-lactamases resistant to

inhibitors (inhibitor resistance or Class 2br) [27].

Our first assumption was that a majority of mutations present in our

database would have undergone a degree of positive selection. This

assumption was based on the fact that the rapid evolution of b-

lactamases in recent years has been linked with the widespread use of

antibiotics [28,29]. Also, a concordance between clinical and

experimental b-lactamase evolution has been established [9]. PAML

(codeml) analysis [30] of the naturally occurring sequences, further

supports our assumption by showing enrichment of non-synonymous

vs. synonymous mutations (v.1) in most residue positions (Table S3).

Our second hypothesis was that co-occurrence of pairs of mutated

residue positions within the same sequence is indicative of a functional

relationship between these positions. We constructed an undirected,

weighted network representation of co-occurring residue pairs in order

to map out potential functional interactions underlying the evolution of

b-lactamase under antibiotic selective pressure. In this network model

(shown in Figures 1 and 2), mutated residue positions are represented

as nodes. Links connect pairs of nodes corresponding to residue pairs

observed to be co-mutated in at least one TEM sequence. In order to

give an idea of how important each residue node is for the network,

node size is proportional to weighted degree centrality, which shows

how well a node is connected to its neighbors and how many neighbors

it has (Methods). To indicate the potential strength of the interaction,

links within our network are weighted in proportion to the number of

residue pair co-occurrence events. Epistatic information is implicitly

incorporated into link weights, through a normalization factor

comparing the frequency of a given mutated position pair with the

frequency of the corresponding individual mutations at the two

positions (Methods).

The TEM coevolution network is scale-free and modular
The weighted degree distribution of the network, i.e. the

aggregate weight of the links incident on each individual node,

reveals overall few highly connected nodes, with a majority of

nodes exhibiting low connectivity (Figure S1).

The TEM coevolution network also has a modular structure, with a

modularity score [31] Q = 0.522, where 0#Q#1.0; This modularity

occurs at two levels: at a broad (community) level and at a narrower

(subcommunity) level (Figures 1 and 2). The Clauset community-

finding algorithm [31] (Methods) identified three major network

communities (Figure 1). We found a clear correspondence between

each of these communities and each of the b-lactamase phenotype

classes defined by Bush and Jacobi [27]: 1) broad-spectrum antibiotic,

2) extended-spectrum antibiotic, and 3) inhibitor resistance. The

broad-spectrum antibiotic community includes mutations previously

reported as nearly neutral or as preserving the parental TEM-1

phenotype, since catalytic efficiency for broad-spectrum b-lactams has

evolved to ‘‘perfection’’ in TEM-1 [32]. The extended-spectrum

community contains mutations at eight positions that are known to

extend the substrate spectrum of the enzyme: 39, 51, 104, 164, 173,

237, 238, 240 [9,17,19,21,24,33–41], as well as four stabilizing

mutations: 153, 182, 224, 268 [9,25,39,41–43]. Likewise, the inhibitor

community contains five positions known to confer inhibitor

resistance: 69, 165, 244, 275, 276 [9,13,44–49] and three enhancer

stabilizing mutations: 147, 201, 275 [9,25,43,45,50–52].

Author Summary

Understanding how new biological activities evolve on the
molecular level has critical implications for biotechnology
and for human health. Here we collect a database of
mutations that contribute to the evolution of b-lactamase
resistance to inhibitors and to new b-lactam antibiotics in
bacterial pathogens, such as Escherichia coli. We compiled
a database of TEM b-lactamase sequences evolved under
antibiotic pressure and identified functional interactions
between individual residue positions. We visualized these
complex molecular interactions as a network and used
network theory to derive information regarding the origin
of individual mutations and their contribution to the
observed resistance. Our approach should help interpret
sequence databases for clinically relevant proteins under-
going high mutation rates and under selective (drug,
immune) pressure, such as surface proteins of pathogens
(particularly of RNA viruses such as HIV) or targets for
chemotherapy in microbial pathogen or tumor cells.
Notably, our approach only requires sequence data;
detailed phylogenetic or tertiary structure information for
the target gene is not necessary. Our analysis of how
individual mutations work together to produce new
biological activities should help anticipate evolution driven
by a variety of clinically-relevant selections such as drug
resistance, virulence, and immunity.

Network Models of TEM b-Lactamase Mutations
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On a narrower level, within the two adaptive community

networks (the extended-spectrum and inhibitor-resistant commu-

nity networks), we found subcommunities, i.e. subnetworks of

densely connected nodes. These subcommunities likely represent

parallel strategies of adaptation within a community’s phenotype

class, namely trajectories leading to different local maxima within

the fitness landscape (Discussion).

Functional information within the 2be community
network

We reasoned that by analyzing the connectivity of the TEM b-

lactamase coevolution network, we could extract functional

information about amino acid residue positions in this enzyme.

We focused our analysis on the extended-spectrum community,

which is the adaptive community network based on the largest

number of available mutant sequences.

We used the occurrence count of mutations at a given position

as an indication of functional importance for extended-spectrum

b-lactamase resistance (Table 1, column 2) and compared these

counts with two well-established network centrality metrics: the

degree and the node betweenness centrality ranks (Table 1,

columns 3, 4). The degree centrality rank is an indication of how

well connected a node is to its neighbors and how many neighbors

it has (Methods). Node betweenness centrality can be interpreted

as a measure of information flow through a given node from the

entire community. All the frequent mutant positions (n.10)

Figure 1. The TEM coevolution network and its communities. The network was constructed based on frequencies of co-occurring mutated
residue positions in 363 mutant TEM b-lactamase sequences. Node size is proportional to how well connected a node is to its neighbors and how
many neighbors it has (weighted degree centrality, Methods). Link thickness is proportional to the number of sequences in our database in which
both positions are mutated, normalized by the number of sequences in which only one or the other position is mutated (Methods). Node (residue)
numbers are shown in Ambler notation. The Clauset community-finding algorithm [31] identified three major communities, corresponding to three
Bush-Jacobi b-lactamase phenotype classes: broad-spectrum antibiotic resistance or 2b (gray), extended-spectrum antibiotic resistance or 2be (blue)
and inhibitor resistance or 2br (orange). Mutated positions with phenotypic effects documented in [9]: extended-spectrum resistance 51, 173, 237,
240, 39, 164, 104, 238, 153, 265, 92, 224; inhibitor resistance 165, 69, 275, 276, 244, 201; inhibitor and extended-spectrum resistance: 182, 268. Image
created with CytoScape [78].
doi:10.1371/journal.pcbi.1002184.g001

Network Models of TEM b-Lactamase Mutations
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ranked high by both metrics, suggesting that node centralities in

the network are good indicators of the corresponding residue

functional relevance for extended-spectrum b-lactamase resis-

tance. However, the sensitivity of the metrics is revealed in the less

frequently mutated positions such as 120, 51, and 268, as these

would not have been predicted to have a high functional impact

based on frequency alone. Within this category, node betweenness

centrality ranks tend to be higher than node degree ranks,

suggesting that node betweenness centrality is a more sensitive

metric for assessing the functionality of individual nodes within the

network.

Using the network to identify evolutionary trajectories of
potential special significance for adaptation

Each link in the TEM coevolution network represents a

potential step within an adaptive evolutionary trajectory.

Although, by construction, all two-node paths have been seen in

natural or laboratory evolution, by defining longer paths within

the network, we should be able to derive evolutionary trajectories

consisting of more than two mutations. We chose to analyze two-

edge (three-node) shortest paths, each of which represents an

evolutionary trajectory that produces a triple mutant sequence,

because they are the most tractable to enumerate and explore.

Figure 2. The TEM extended-spectrum community network and its two subcommunities. The network was constructed in the same way
as Figure 1, but here we only used sequences associated with extended-spectrum antibiotic resistance. We identified two large subcommunities, the
first containing the active-site residue 238 (light-blue), and the second containing the active-site residue 164 (dark-blue). Node size is proportional to
how well connected a node is to its neighbors and how many neighbors it has (weighted degree centrality, Methods). Link thickness indicates how
frequently two residues (nodes) are mutated in the same sequence, normalized by the number of sequences in which only one or the other position
is mutated (Methods). Image created with CytoScape [78].
doi:10.1371/journal.pcbi.1002184.g002

Network Models of TEM b-Lactamase Mutations
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Our hypothesis was that adaptive evolution often involves

discrete steps in the form of functional modifications: improved

active site fit to a new substrate, suitable chemical environment in

the active site, increased thermodynamic stability, etc. Therefore,

adaptive evolutionary trajectories can be conceptualized as a

successful combination of functional milestones. In this scenario,

the evolution of new biochemical activities involves transfer of

information within our network, where each node is a potential

functional milestone. We reasoned that efficient information

transfer would improve the chances of generating mutant

combinations with high fitness.

We identified evolutionary trajectories of special significance for

adaptive evolution based on shortest path betweenness-centrality —

a metric that can be interpreted to measure the efficiency of

information transfer through the network. We found that a subset of

all possible three-node paths in the network (48 out of 214) had a

shortest path betweenness centrality greater than zero. These triple

mutant trajectories are listed in Table 2, ranked in descending order

of betweenness centrality. Shown is also the number of times (count)

that each residue position in the trajectory was seen mutated in the

201 extended-spectrum resistant TEM sequences in our database.

Note that many nonzero betweenness trajectories consist of at least

one infrequent mutation and therefore would not have been

predicted as critical based on frequency alone. Note also that these

48 triplets consist of combinations of only 16 residue positions out of

a total of 55 residue positions in the network. These positions could

be of special significance for the evolution of extended-spectrum b-

lactamase resistance (see below).

Evidence that trajectories with high betweenness
centrality are significant for adaptation

We investigated the significance of betweenness centrality as an

indicator of potential adaptive evolution. Below we show that: 1)

the triple mutant trajectories listed in Table 2 as of potential

special significance for adaptation are enriched for triple mutants

that have been previously reported; 2) the reported triple mutant

combinations consistently increase extended-spectrum resistance

over constituent double mutants, confirming they resulted from a

functional selection; 3) using reported triplet mutants as a proxy

for increased resistance, we can estimate the ‘‘success rate’’ of our

method. Our success rate is considerably higher than what would

be anticipated based on the simple assumption that the most

successful triplet combinations consist of the most frequent single

mutations in our database. Together, these three lines of evidence

strongly support the predictive value of our extrapolation to triple

mutant evolutionary trajectories.

1. Nonzero betweenness centrality triplets frequently identify triple mutants

associated with extended-spectrum resistance. In addition to listing

nonzero shortest path betweenness centrality trajectories,

Table 2 also shows which of these trajectories were previously

reported in clinical or experimental studies. Trajectories are

listed in descending order of betweenness centrality value. We

noted that this list is rich in triple mutant combinations that

have been previously described in clinical or experimental

reports, with 23 previously described out of the 48 predicted

paths. In addition, we found a strong association between the

chance of having been previously reported and the corre-

sponding shortest path betweenness centrality value: while all

of 10 top-ranked triplet paths are already known; only 1 of the

6 paths with the lowest positive betweenness centrality (value of

1) is known.

2. Trajectories produced during experimental or natural evolution increase

extended-spectrum resistance. We interpreted the occurrence of a

given path (evolutionary trajectory) in clinical isolates or

published laboratory evolution experiments as an indication

Table 1. The mutated residue positions most important for TEM extended-spectrum antibiotic resistance, according to measures
from network theory (centrality rankings).

Residue
Number*

Count
within
Data-
base

Node
Degree
Rank

Node
Between-
ness Rank Described Function References

104 48 1 1 The long K chain of E104K mutants interacts directly with carboxylic acid group of the substrate. [9,73]

164 48 2 2 Forms two salt bridges, to E171 and D179, critical for correct positioning of E166. The smaller
mutant chain collapses the V-loop, resulting in an active site with greater accessibility.

[9,74]

238 38 3 3 Expands the active site either by repositioning the B3 b-strand or by tilting the V-loop [73,75]

240 31 4 4 Interacts with substrate; possibly stabilizing. [73,76]

182 27 5 5 Increases the thermodynamic stability of the protein; could suppress misfolding and aggregation
caused by other mutations. Acts as a global suppressor.

[9,43,77]

265 20 7 9 Unknown mechanism. Possibly important for enzyme stability. [9]

237 9 6 8 Introduces another H-bond with carbonyl group of b-lactam ring. [9,73]

173 5 9 6 Increased resistance, specific for subset of cephalosporins. [9]

120 3 17 8 Unknown mechanism. Possibly important for enzyme stability. [25,50,51]

254 3 8 N/A Unknown mechanism. Possibly stabilizing. [9,25]

51 2 15 7 Unknown mechanism. Possibly important for both enzyme activity and stability. [9,35]

268 2 10 8 Unknown mechanism. Possibly stabilizing. [9]

Degree centrality rank is based on how well connected a node is to its neighbors and how many neighbors it has (Methods). We interpret betweenness centrality as a
representation of the information flow through a node from the entire community (Methods).
*Based on Ambler TEM b-lactamase numbering scheme [65]. Mutated residues that are highly ranked by the network centrality metrics have known functional impact
previously described in the literature. While many of the mutations known to contribute to extended-spectrum resistance are highly frequent, the network also ranks
highly the less frequent mutations with known contributions.
doi:10.1371/journal.pcbi.1002184.t001

Network Models of TEM b-Lactamase Mutations
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Table 2. Prediction of critical triple mutant evolutionary trajectories in the extended-spectrum antibiotic resistance community.

Evolutionary Trajectory
Betweenness
Centrality Count Previously Reported in Clinical and/or Laboratory-evolved Isolates

238_104_164 96 48,48,38 TEM-008*,TEM-134*, [36]***

173_164_104 92 48,48,5 [17]**

182_104_164 66 27,48,48 TEM-043*,TEM-063*, [36]***

240_164_104 62 31,48,48 TEM-046*

268_240_164 41 2,31,48 TEM-136*, [36]***

120_238_104 39 3,38,48 [24]**, [36]***

39_240_164 32 1,31,48 [36]***

237_164_104 28 9,48,48 TEM-130*, [36]***

104_238_153 23 48,38,9 TEM-021*, [36]***

240_164_173 22 31,48,5 TEM-132*, [36]***

104_164_40 18 48,48,1

238_104_51 16 38,48,2

215_104_164 15 48,38,20 TEML-136*

104_238_265 15 2,48,48 [17]**, [15]**, [36]***

39_240_238 12 1,31,38

182_104_51 11 27,48,2

173_164_51 9 5,48,2

215_104_238 8 2,48,38

182_238_120 7 27,38,3 [24]**

240_164_51 6 31,48,2

224_164_173 6 3,48,5 [19]**

173_164_237 6 5,48,9 [17]**, [29]***

224_164_240 5 3,48,31

173_164_40 4 27,38,20

182_104_215 4 27,48,2

182_238_153 4 5,48,1 [36]***

240_238_153 4 31,38,9

182_238_265 4 27,38,9 [36]***

51_164_40 3 20,38,31

40_164_240 3 2,31,9

224_164_251 3 3,48,2

51_164_237 3 1,48,31

268_240_237 3 2,48,1 TEM-136*, [36]***

265_238_240 3 2,48,9 [36]***

39_240_237 2 3,38,9 [36]***

39_240_268 2 2,38,3

120_238_153 2 31,38,3 [24]**

240_238_120 2 3,48,9

120_238_265 2 1,31,2

268_238_120 2 2,38,9

268_238_153 2 3,38,20

224_164_237 2 1,31,9 [36]***

224_164_40 1 2,38,20

237_164_40 1 9,48,1

51_104_215 1 48,48,3

104_164_224 1 20,38,9 [36]***

265_238_153 1 3,48,1

268_238_265 1 2,48,2

Network Models of TEM b-Lactamase Mutations
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of likely fitness advantage, i.e. of likely increased resistance to

extended-spectrum b-lactam antibiotics. We confirmed this

interpretation experimentally, using cefotaxime as a represen-

tative extended-spectrum b-lactam antibiotic as done previ-

ously in similar studies [7,25,36]. We tested 15 triple mutants

that span a range of shortest path betweenness centrality

values, by measuring growth (in centimeters) along an LB agar

plate containing a cefotaxime gradient (Methods). Of these 15

triple mutant trajectories, 9 had already been described, and 6

were new. The results (Table 3) show that observed mutants

consistently increased resistance over both ordered, constitutive

pairs: 8 out of the 9 previously reported triple mutants. By

contrast, none of the non-observed mutant sequences we tested

improved on both constitutive double mutants. These results

confirm the intuitive notion that combinations of mutants that

increase fitness are more likely to have been selected during

evolution of TEM b-lactamase under extended-spectrum

antibiotic selection and therefore reported.

3. The success rate of our analysis is not due to chance. Our experimental

results show that observed triple mutants consistently increase

cefotaxime resistance. Thus, we reasoned that to be reported as

having extended-spectrum resistance is a viable proxy for

having increased fitness. By this logic, the predictive success

rate of our method is 23 out of 48. To demonstrate that this

success rate is not due to chance, we ran a simulation in which

we randomly selected 48 triple mutants only from TEM

residue positions previously reported in association with

extended-spectrum antibiotic resistance. We sampled these

positions according to their mutation frequency in our

database. The 10,000 random sets of 48 triple mutants selected

in this way followed a normal distribution, as expected. This

simulation produced an average success rate of 12.863.08

Triple mutant trajectories are shown as an ordered list of three residue positions, where an ordered pair represents a link in the network. The shortest path betweenness
centrality is listed for each triple mutant trajectory, in descending order. We interpret the betweenness centrality of a trajectory as a representation of information flow
through this path for the entire community network: Trajectories with high betweenness centrality have the highest information flow (Methods). The count shows the
number of times that each residue position in the trajectory was seen mutated in the 201 extended-spectrum resistant TEM sequences in our database. Note that many
trajectories consist of at least one infrequent mutation and therefore would not have been predicted as critical based on frequency alone. Some of the triple mutants
have been seen either alone or in combination with other mutations in clinical isolates (*), in laboratory-evolved isolates that were included in our database (**), or in
laboratory-evolved isolates that were not in our network database, from a recent report that was published after our analysis was completed (***) [36].
doi:10.1371/journal.pcbi.1002184.t002

Table 2. Cont.

Table 3. Triple mutant trajectories critical to the extended-spectrum antibiotic community network are shown experimentally to
increase resistance over their constituent doublets.

Triplet
Between ness
Centrality Reported?

Resistance
outcome [cm] Doublet 1

Resistance
Outcome
[cm]

Triplet
Improvement
over Doublet 1
[cm] Doublet 2

Resistance
Outcome [cm]

Triplet
Improvement
over Doublet 2
[cm]

104_164_173 92 Y 16.49 104_164 8.42 8.07 164_173 6.95 9.54

182_104_164 66 Y 16.86 182_104 2.82 14.04 104_164 8.42 8.44

39_240_164* 32 Y 9.10 39_240 2.16 6.94 240_164 9.48 -0.38**

104_238_153 23 Y 17.65 104_238 16.83 0.82** 238_153 11.5 6.15

240_164_173 22 Y 17.48 240_164 9.48 8.00 164_173 6.95 10.53

104_164_40 18 N 5.06 104_164 8.42 -3.36 164_40 2.13 2.93

238_104_51 16 N 1.88 238_104 16.83 -14.95 104_51 1.65 0.23**

104_238_265 15 Y 19.40 104_238 16.83 2.57 238_265 10.84 8.56

39_240_238 12 N 9.59 39_240 2.16 7.43 240_238 12.04 -2.45

182_104_51 11 N 2.54 182_104 2.82 -0.28** 104_51 1.65 0.89

173_164_51 9 N 1.79 173_164 6.95 -5.16 164_51 1.9 -0.11**

215_104_238 8 N 11.26 215_104 2.39 8.87 104_238 16.83 -5.57

182_238_153* 4 Y 17.95 182_238 16.17 1.78 238_153 11.5 6.45

120_238_153 2 Y 14.36 120_238 7.22 7.14 238_153 11.5 2.86

104_164_224* 1 Y 9.31 104_164 8.42 0.89*** 164_224 3.9 5.41

Each mutant trajectory is shown as an ordered list of three mutated residue positions (column 1). Each ordered pair of mutated residue positions represents a link in the
extended-spectrum community network. The shortest path betweenness centrality is listed for each trajectory (column 2). This metric is unitless and is a measurement
of the path’s importance in the network. 9 of the 15 tested trajectories were reported in clinical or directed evolution isolates (column 3). The level of cefotaxime
resistance (an indicator of extended-spectrum antibiotic resistance) is shown in centimeters of linear growth on a 0.04 mg/ml cefotaxime gradient. The level of resistance
is shown for each triple mutant trajectory (columns 1 and 4) and its two ordered constituent double mutants (columns 5 and 6, and 8 and 9). The differences
representing the improvement in resistance conferred by the triple mutant trajectory with respect to each double mutant, is shown in columns 7 and 10. Trajectories
marked with * had not been reported when this work was done and were not included in input to the network. They were subsequently reported in a recent
publication [36]. (**) Triplet improvement over pair is outside the margin of standard error (for the number of replicates (n) refer to Table S4). (***) Improvement is
outside the margin of standard error if the variability between gels is subtracted out (Figure 3).
doi:10.1371/journal.pcbi.1002184.t003
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observed triplets out of 48. Since our success rate of 23 out of

48 is well outside the range of standard error, our analysis has

predictive value (Discussion).

We next addressed the functional significance of links present in

our network. To that end, we compared the level of resistance of

pairs of mutations present in nonzero betweenness centrality

trajectories to their constituent mutations (Table 4; original

measurements in Table S4). Given that our network is largely

constructed with mutations that have experienced some degree of

positive selection, and that mutant positions are linked when they

co-occur in the same sequence, we expected a predominance of

positive interactions. To our surprise, we found that almost half of

the 21 pairs tested showed a negative trend, and that 5 out of 12

significant sign-epistatic interactions were negative. When we

compared the effect of single mutations on mutation pairs in triple

mutant trajectories (Table 5), we found 8 significant negative

epistatic interactions versus 19 positive ones. Overall, our analysis

revealed a surprising number of negative interactions: 22 out of 60

tested interactions had a negative trend, which was statistically

significant in 13 cases. Thus, while links in our network represent

potential functional interactions, these links are not necessarily

indicative of positive epistasis. In fact, their interaction is frequently

negative. Because all the pairs we tested co-occurred in at least one

TEM sequence, we inferred that the interaction was positive in the

original sequence, i.e. in the presence of additional mutations.

The observed disconnect between co-occurrence and the

cefotaxime resistance phenotype of pairs of mutations included

in our network suggests that the adaptive value of a given mutation

or mutation pair is highly dependent on sequence context. Thus,

an accurate assessment of the contribution of a given mutation to

adaptation involves testing the effect of the mutation in the

presence of different additional mutations, i.e. in a range of

sequence contexts. Table 6 shows the impact of 14 of 16 mutations

identified as of likely significance for extended-spectrum b-

lactamase resistance based on shortest path betweenness centrality.

Both the average effect (column 5) and the range of effects (in

centimeters of continuous growth; column 6), obtained in a variety

of sequence contexts, are shown. The number of sequence

contexts tested (7 on average) is listed in column 4. The sequences

tested and their measurements are listed in Table S4.

Note that, in agreement with the epistatic analysis presented in

Tables 4 and 5, most mutant positions exhibit a wide range of

effects, and that these effects are frequently sign-epistatic (i.e. that,

in addition to positive effects, include neutral and negative

combined effects). The effect of the R164H mutation on

cefotaxime resistance for example can go from 25.5 cm to

+14.04 cm, that of H153R, from 28.19 cm to 7.14 cm. The

Table 4. Experimentally determined epistatic interactions between single mutations in the extended-spectrum antibiotic
resistance community network.

M1 M1 Growth [cm] M2 M2 Growth [cm] M1_M2 Growth [cm] M1_M2 - (M1+M2) [cm] Significant Epistastic Effect*

Q39R 2.09 G238S 9.61 7.76 -2.35

Q39R 2.09 E240K 1.58 2.16 0.08

L40W 2.08 R164H 3.43 2.13 -1.79 negative

L51P 1.93 E104K 2.20 1.65 -0.89 negative

L51P 1.93 R164H 3.43 1.90 -1.87 negative

E104K 2.20 H153R 2.17 2.73 -0.05

E104K 2.20 R164H 3.43 8.42 4.38 positive

E104K 2.20 I173V 2.10 10.84 8.13 positive

E104K 2.20 M182T 2.15 2.82 0.06

E104K 2.20 K215E 1.90 2.39 -0.12

E104K 2.20 A224V 1.86 1.90 -0.57

E104K 2.20 G238S 9.61 16.83 6.61 positive

R120S 1.94 G238S 9.61 7.22 -2.74 negative

H153R 2.17 G238S 9.61 11.50 1.31

R164H 3.43 I173V 2.10 6.95 3.01 positive

R164H 3.43 A224V 1.86 3.90 0.20

R164H 3.43 E240K 1.58 9.48 6.06 positive

I173V 2.10 E240K 1.58 3.62 1.53 positive

M182T 2.15 G238S 9.61 16.17 6.00 positive

K215E 1.90 G238S 9.61 6.34 -3.58 negative

G238S 9.61 E240K 1.58 12.04 2.44

G238S 9.61 T265M N/A 10.84 N/A

Mutated residues (columns 1 and 3) and their individual cefotaxime resistance levels (columns 2 and 4) are compared to resistance levels when they occur together in
the same sequence (column 5). The level of cefotaxime resistance (an indicator of extended-spectrum antibiotic resistance) is shown in centimeters of linear growth on
a 0.04 mg/ml cefotaxime gradient. The difference between the combined effect (column 5) and the sum of the individual effects (column 2 + column 4), which
represents epistasis, is shown in column 6.
*Significant epistatic effect = differences that exceed the margin of standard error (for the number of replicates (n), refer to Table S4). The sign of significant sign-
epistatic interactions is shown in column 7. These interactions are mapped onto edges in our extended-spectrum community network (Figure 4A,B). Six interactions that
were previously reported as positive are highlighted here in bold.
doi:10.1371/journal.pcbi.1002184.t004
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average increase in cefotaxime resistance corresponds roughly to

the count in our database, with frequent mutations (n. = 20)

having a large impact on cefotaxime resistance (4.361.6 cm).

H153R and I173V, two mutations with intermediate count

(5,n,20), also have a clear impact on resistance, with maximal

effects in the same order as those of frequent mutations. The

Table 5. Experimentally determined epistatic interactions between single mutations and mutation doublets in the extended-
spectrum antibiotic resistance community network.

M1 M1 Growth [cm] M2 M2 Growth [cm]
M1_M2 Growth
[cm]

M1_M2 - (M1+M2)
[cm]

Significant Epistastic
Effect*

Q39R 2.09 E240K R164H 9.48 9.10 -0.88

Q39R 2.09 E240K G238S 12.04 9.59 -2.95 negative

L40W 2.08 E104K R164H 8.42 5.06 -3.85 negative

L51P 1.93 M182T E104K 2.82 2.54 -0.62

L51P 1.93 I173V R164H 6.95 1.79 -5.50 negative

L51P 1.93 G238S E104K 16.83 1.88 -15.29 negative

E104K 2.20 R164H L40W 2.13 5.06 2.32 positive

E104K 2.20 R164H A224V 3.90 9.31 4.80 positive

E104K 2.20 K215E G238S 6.34 11.26 4.31 positive

E104K 2.20 I173V R164H 6.95 16.49 8.93 positive

E104K 2.20 G238S T265M 10.84 19.40 7.95 positive

E104K 2.20 G238S H153R 11.50 17.65 5.54 positive

R120S 1.94 G238S H153R 11.50 14.36 2.51

R120S 1.94 E240K G238S 12.04 12.92 0.53

H153R 2.17 R120S G238S 7.22 14.36 6.56 positive

H153R 2.17 E104K R164H 8.42 11.50 2.50 positive

H153R 2.17 E104K I173V 10.84 2.65 -8.77 negative

H153R 2.17 M182T G238S 16.17 17.95 1.20

H153R 2.17 E104K G238S 16.83 17.65 0.24

R164H 3.43 Q39R E240K 2.16 9.10 5.10 positive

R164H 3.43 E104K H153R 2.73 11.50 6.93 positive

R164H 3.43 M182T E104K 2.82 16.86 12.20 positive

R164H 3.43 E104K I173V 10.84 16.49 3.81 positive

R164H 3.43 H153R G238S 11.50 6.00 -7.34 negative

I173V 2.10 R164H L51P 1.90 1.79 -0.62

I173V 2.10 E104K H153R 2.73 2.65 -0.59

I173V 2.10 E104K R164H 8.42 16.49 7.56 positive

I173V 2.10 E240K R164H 9.48 17.48 7.49 positive

M182T 2.15 E104K L51P 1.65 2.54 0.33

M182T 2.15 E104K R164H 8.42 16.86 7.88 positive

M182T 2.15 G238S H153R 11.50 17.95 5.89 positive

K215R 1.90 E104K G238S 16.83 11.26 -5.88 negative

A224V 1.86 E104K R164H 8.42 9.31 0.62

G238S 9.61 E104K L51P 1.65 1.88 -7.79 negative

G238S 9.61 Q39R E240K 2.16 9.59 -0.59

G238S 9.61 K215R E104K 2.39 11.26 0.85

E240K 1.58 Q39R R164H 3.70 9.10 5.41 positive

E240K 1.58 R164H I173V 6.95 17.48 10.54 positive

E240K 1.58 R120S G238S 7.22 12.92 5.71 positive

T265M N/A E104K G238S 16.83 19.40 N/A

Mutated residues (columns 1) and residue pairs (column 3) and their corresponding cefotaxime resistance levels (columns 2 and 4, respectively) are compared to
resistance levels when they occur together in the same sequence (column 5). The level of cefotaxime resistance (an indicator of extended-spectrum antibiotic
resistance) is shown in centimeters of linear growth on a 0.04 mg/ml cefotaxime gradient. The difference between the combined effect (column 5) and the sum of the
individual effects (column 2 + column 4), which represents epistasis, is shown in column 6.
*Significant epistatic effect = differences that exceed the margin of standard error (for the number of replicates (n), refer to Table S4). The sign of significant epistatic
interactions is shown in column 7.
doi:10.1371/journal.pcbi.1002184.t005
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average effect of infrequent mutations (n,5), by contrast, is

negative (21.361.6 cm), questioning the relevance of these

mutations for extended-spectrum resistance. The large negative

effects that some of these mutations — L51P (214.95 cm), K215E

(25.57 cm); R120S (22.39 cm) — have in specific contexts

suggests that they are functionally important but that their effect is

highly context-dependent. The two strongest negative epistatic

effects we detected for infrequent mutations, those of L51P and

K215E, are shown in Figure 3B.

Discussion

Here we assembled a large database (n = 361) of mutants of the

enzyme TEM-1 b-lactamase to study the genetic basis for adaptive

evolution.

In the construction of this database we made the following two

assumptions:

1) That most mutated positions would have undergone a degree

of positive selection, which was supported by a PAML (codeml)

analysis of clinical mutants (Table S3).

2) That experimental evolution is comparable to clinical

evolution, given that both scenarios share a selective pressure

(antibiotic resistance selection) and yield similar mutations [9].

We then used co-occurrence, i.e. presence of two mutations in

the same sequence, as an indicator of potential functional

interaction. Pairwise interactions were visualized using a network

representation where each node is a mutant position, and each link

represents occurrence of two mutated positions in the same

sequence. The resulting undirected, weighted network has a few

highly connected nodes and a majority of nodes exhibiting low

connectivity (Figure S1). This connectivity property [53] is

reminiscent of the link distribution in networks representations

of other biological processes, such as cell signaling or differenti-

ation, where it helps in buffering noise caused by random variation

within the system. In the case of proteins, it may contribute to

robustness to mutation.

We distinguished two levels of modular organization within our

network of genetically defined interactions in TEM b-lactamase:

Large ‘‘communities’’: These correspond to three distinct

phenotypic categories: broad-spectrum, extended-spectrum and

inhibitor resistance (Figure 1). The observed segregation of residue

positions according to the selection driving their evolution is

remarkable given that no phenotype class information was used to

construct the network. This effect is consistent with previously

described antagonistic pleiotropy between different resistance

phenotypes [54]. Within the two adaptive communities (extend-

ed-spectrum and inhibitor resistance) we found that community

annotation largely matched phenotypic data: Five mutant

positions were correctly classified as inhibitor resistance mutations

and 12 positions were accurately classified as extended-spectrum

mutations (see legend to Figure 1). Interestingly, mutations that are

known or suspected to contribute to both inhibitor and extended-

spectrum antibiotic resistance (182, 268, 201) are at the interface

between the two communities. Positions 100 and 147 are similarly

Table 6. Experimentally determined effects of individual mutated residue positions found in critical extended-spectrum antibiotic
resistance network trajectories (Table 3).

Mutant position
Count within
database Mutation tested

Number of different sequence
contexts tested

Average effect
[cm] Interval (min, max) [cm]

164 48 R164H 13 4.18 (-5.5, 14.04)

104 48 E104K 15 4.04 (-0.28, 9.54)

238 38 G238S 11 8.03 (0.23,14.63)

240 31 E240K 8 3.96 (0.07,10.53)

182 27 M182T 6 3.92 (0.62, 8.44)

265 20 T265M 2 1.90 (1.23, 2.57)

153 9 H153R 8 0.95 (-8.19, 7.14)

173 5 I173V 8 3.82 (-0.11, 8.64)

237 9 N/A N/A N/A N/A

224 3 A224V 4 0.33 (-0.3, 0.89)

120 3 R120S 4 0.43 (-2.39, 2.86)

215 2 K215E* 4 -2.89 (-5.57, 0.19)

51 2 L51P 6 -3.69 (-14.95, 0.34)

268 2 N/A N/A N/A N/A

40 1 L40W** 3 -1.39 (-3.36,0.49)

39 1 Q39R 6 -0.56 (-2.45, 0.58)

Critical triple mutant trajectories (Table 3) contain only 16 unique individual residue positions (column 1). The number of sequences in experimental and clinical isolates
that have this residue position mutated is shown in column 2. For each residue position, we tested the most frequent amino acid substitution in these sequences, with
two exceptions:
*K215E has equal frequency to K215R and K215Q in the extended-spectrum phenotype sequence database;
**L40W and L40V have equal frequencies (column 3). We tested the level of cefotaxime resistance of each mutation (centimeters of linear growth on a 0.04 mg/ml

cefotaxime gradient) in a variety of sequence contexts. Each context consists of the relevant mutation plus different additional mutations, all of which are found in the
critical triple mutant evolutionary trajectories. The number of sequence contexts tested is shown in column 4 and the different mutant combinations comprising each
sequence context are shown in Table S4. Averaging the effect of each mutation across all its sequence contexts yields a measure of its global contribution to
extended-spectrum antibiotic resistance (column 5). In general, the effects are highly dependent on sequence context, as shown by the wide range of outcomes
(column 6).

doi:10.1371/journal.pcbi.1002184.t006
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located at this interface. These are positions with likely

compensatory, thermodynamically stabilizing mutations [25,26,

43,51] that have been found in extended-spectrum evolution

experiments too [19,24,36]. They may also belong to the dual

resistance phenotype category, as experimental data on inhibitor

resistance evolution is scarce. The only clearly misclassified mutant

positions are: 175 (involved in extended-spectrum resistance [55]

but classified as inhibitor resistance) and 130 (an inhibitor

resistance mutation classified as broad-spectrum). In the case of

the catalytic site residue 130, the misclassification was due to the

fact that the S130G mutation confers resistance to inhibitors on its

own and therefore rarely co-occurs with other mutations. Its

assignment to the broad-spectrum community is based on a single

co-occurrence event in our database.

‘‘Subcommunities’’ within these communities: We hypothesize

that subcommunities are likely to represent parallel strategies of

adaptation within the community’s phenotype class. This appears

to be the case in the two adaptive phenotypic classes included in

this study:

Inhibitor-resistance community: this network contains two

subcommunities, corresponding to two distinct mechanisms

disrupting inhibitor binding at the active site [56]. One involves

positions 69 and 276, which are strongly connected in one

subcommunity, and the other one involves 244, which is in a

separate subcommunity (Figure 1).

Extended-spectrum resistance community: this network con-

tains two large subcommunities (Figure 2). Central to each

subcommunity is one position involved in substrate recognition,

164 and 238 respectively. R164H/S/C mutations are thought to

lead to the collapse of the V-loop, creating greater active site

accessibility (Figure S2A); G238S on the other hand, appears to

increase affinity for the substrate and/or cause repositioning of the

V-loop (Figure S2B). These two mutations were recently shown to

represent alternative evolutionary solutions, leading to parallel,

divergent mutation trajectories with different fitness optima [36].

In that study, divergent evolution appeared as a contingency effect

of trajectories involving the negatively epistatic G238S or R164S

mutations. Specifically, the first mutation significantly impacted

the composition of subsequent evolutionary trajectories [36]. In

our network analysis, divergent evolution is represented by the two

subcommunities defined by residues 164 and 238. Most nodes

have strong connections (high-weight links) to one of these

subcommunities and much weaker connections (very low-weight

or absent links) to the other subcommunity. For example, position

237 is strongly linked to 164, but is weakly connected to nodes

from the 238 subcommunity. This non-uniform node connectivity

agrees with a recent laboratory evolution study [36], which

reported that E104K is preferentially selected in G238S

trajectories, while E240K is more frequently found in R164S

trajectories. Therefore, our network can be used to make

inferences on evolutionary contingency effects, at least for the

two main fitness peaks present in extended-spectrum evolution.

The observation that other residue positions are frequently linked

with both 164 and 238 in our network, even if we typically find a

preference for one or the other, indicates that the evolutionary

divergence associated with the two fitness peaks is only partial.

In sum, we find that both distinctive selective pressures and

peaks within the enzyme’s fitness landscape leave recognizable

Figure 3. Cefotaxime plate growth assays for selected clones. Cultures of cells expressing the b-lactamase mutants listed at the top of the
gradients were stamped on LB plates containing a cefotaxime gradient. The direction of the gradient is from top (minimal concentration) to bottom
(maximal concentration). The maximal concentration of the gradient is listed at the bottom. Note that in part B more than one concentration is
shown to cover the wide range of resistance phenotypes of the panel of mutants being tested. (A) Two mutant triplets predicted to be of special
significance by our analysis but that were not present in the sequence database used to build the network but were subsequently reported in [36],
and a third triplet also predicted by our analysis but that showed only a marginal increase. Only the doublet with the highest level of resistance is
shown. (B) Triplets with the strongest negative epistatic effects. The mutation responsible for the negative effect is highlighted in bold.
doi:10.1371/journal.pcbi.1002184.g003
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footprints on the network’s connectivity. Furthermore, the amino

acid positions within network modules are not necessarily

physically close in the protein’s tertiary structure, as interactions

are defined genetically (functionally) rather than physically. To

illustrate this point, Figure S3 maps nodes (mutant positions)

belonging to the three major communities in the TEM coevolution

network (Figure S3A) and the two main extended-spectrum

resistance subcommunities (Figure S3B) onto the tertiary structure

of the TEM enzyme (PDB ID: 1ero). It is apparent that neither

community is physically localized to a defined area of the protein.

Link weights in our network are proportional to the number of

sequence co-occurrence events for the corresponding mutated

residue pairs. We implicitly incorporated epistatic information into

this metric by using a normalization factor: We compared the

number of mutated position pair occurrences with the mutation

count at each of the corresponding individual residues (Methods,

Equation 1). In addition, we calculated the difference between the

raw co-occurrence weights and weights normalized in this way

(Table S5): A positive difference indicates a trend toward positive

epistasis between the two residue positions involved, whereas a

negative difference is indicative of possible negative epistasis.

Positive epistasis trends predicted in this way appear to be in

agreement with experimentally proven epistatic interactions: 10

interactions were described as such in the literature, and only 2

cases, both involving position 237 (Table S5), have been reported

as negative. The negative difference also correctly predicts the

negative-epistatic interactions within residue pairs 173–182 and

164–238. Negative pairwise interactions are, however, underrep-

resented in the input to our network because mutations at these

residue positions are infrequently selected together.

By connecting individual nodes (representing mutated residue

positions), paths through our network define potential evolutionary

trajectories. Network metrics allowed us to extend the trajectories

beyond the pairs of co-occurring nodes used to build the network.

We focused on combinations of three mutations, which are the

most experimentally tractable ones. Our basic hypothesis was that

genetic adaptation necessitates a specific combination of functional

milestones, where each amino acid mutation represents a potential

milestone. According to this hypothesis, combinations of muta-

tions that facilitate information flow through the network should

contribute prominently to genetic adaptation. We used shortest

path betweenness centrality (a metric that can be interpreted as

measuring a path’s importance for information flow within the

network) to identify trajectories of potential special significance for

extended-spectrum b-lactamase resistance (Table 2). The follow-

ing points support the special significance of triple mutant

trajectories with nonzero betweenness centrality:

N They occur frequently in natural or experimental extended-

spectrum b-lactamase evolution experiments (Table 2, column

4).

N The higher the betweenness centrality, the more likely they are

to have been previously seen (Table 2).

N Presence of these mutations in reported (previously seen)

sequences is associated with increased cefotaxime resistance,

an indicator of extended-spectrum activity (Table 3).

All predicted triple mutant combinations that were experimen-

tally tested and that significantly improved resistance over

constituent mutant pairs (a total of 8) have been previously

described. Of these, only two (M182T G238S H153R and E104K

R164H A224V) were absent from our original database and have

been reported only recently [36]. Their impact on cefotaxime

resistance is shown in Figure 3A.

By construction, the network only contains information about

mutation pair occurrence counts (regardless of whether the pairs

are components of more complex mutant sequences). Therefore,

all mutation triplets with increased resistance constitute predictive

successes, regardless of whether or not sequences containing these

mutations were part of the original database. We used the strong

association between previous observation of a TEM mutant and its

increased resistance to estimate our success rate at 23 out of 48. As

a control, we ran a computational simulation to find the success

rate we would have obtained by random sampling from positions

involved in extended-spectrum resistance weighted by residue

mutation frequency in our database. The average result of 10,000

random samplings was 12.863.08 out of 48, proving that our

method is able to extrapolate triple mutant trajectories from pairs

of coevolving mutations more accurately than simply combining

mutations of high frequency.

At this time, the predictive value of our method can only be

rigorously supported with respect to known TEM mutant

combinations. A priori, there is no reason to believe that our

method cannot find adaptive combinations of mutations that have

never been seen before. However, the success rate for new

sequence space should vary substantially between genes, depend-

ing on how extensively they have already been sampled by natural

and/or experimental evolution.

Our method for identification of paths of special significance for

adaptation has limitations, because it assumes that each mutant

position has a discrete effect on adaptation and that this effect is

sufficiently unique that adaptation requires a composite solution.

Therefore, global suppressors (such as mutations at position 182)

or mutations with a large impact on their own (S130G, associated

with inhibitor resistance, and G238S conferring extended-

spectrum resistance) will not be adequately accounted for by our

‘‘information flow’’ metric.

Another example of this method’s limitations is illustrated by the

absence of the high fitness extended-spectrum triple mutant 104-

238-182 in our list of nonzero betweenness centrality triplets

(Table 2). Amino acid substitutions at 104-238-182 were the most

frequent combination obtained from TEM-1 libraries subjected to

cefotaxime selection in a recent study [36]. The presence of a

global suppressor (182) and of a mutation with a large impact on

its own (G238S) likely explains why this triple mutant combination

is not among the nonzero betweenness paths in Table 2. However,

parallel, divergent evolutionary trajectories identified by this study

are enriched for triple mutant trajectories with high betweenness

centrality (detailed in Table S6 and Text S1 Results). Overall,

triple mutant trajectories with nonzero betweenness centrality are

frequently contained within mutational trajectories parallel to

E104K M182T G238S. Thus, our method is able to identify paths

of special significance for genetic adaptation, although with

decreased sensitivity to mutations with a large impact on their

own and to global suppressors.

Next, we investigated whether links connecting co-occurring

pairs in our network represent positive functional interactions. We

tested the individual vs. combined effects of the mutations in the

mutant triplets from Table 3. The results are listed in Table 4: A

difference between adding the individual fitness effects of two

mutations (M1+M2) and the combined fitness effect of the double

mutant (M1_M2) is indicative of epistasis. This table includes six

interactions previously reported as positive epistatic (highlighted in

bold). In agreement with previous reports, our experiments show

significant positive epistasis in all cases but E104K M182T, which

in our hands is simply additive. We also found two new examples

of positive epistasis involving I173V (E104K I173V and II73V

E240K), and we identified five new examples of negative epistasis.
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The high count of negative interactions in our tested pairs is

surprising given that each connected pair of nodes represents pairs

of mutations that co-occur in at least one sequence. We assume

that the reported sequences containing these negatively epistatic

mutations must have additional mutations producing an overall

positive outcome. Similarly, we found a number of significant

negatively epistatic interactions in the triple mutants tested (8 out

of 27; Table 5). Thus, even in a network model representation

intrinsically biased against negative epistasis, we frequently identify

negative epistatic interactions among linked mutation pairs. This

observation highlights the pervasiveness of negative epistasis in

TEM extended-spectrum resistance evolution and shows that links

within our network are more indicative of potential functional

interactions than of positive epistasic interactions.

Figure 4 maps experimentally determined pairwise epistatic

interactions (either from previous reports in the literature or from

this study) onto the TEM extended-spectrum coevolution network:

Figure 4A shows the positively epistatic interactions, and Figure 4B

shows negatively epistatic interactions. Some known negative

epistatic interactions may, however, be absent from our network

representation, as they would rarely co-occur in the same

sequence.

The 48 triple mutant paths we identified as of special

significance (Table 2) consist of different combinations of only

16 residue positions (listed in Table 6, column 1). These include 10

positions with a demonstrated effect on extended-spectrum b-

lactamase resistance, out of 12 known to date [9]. The two false

negatives are positions 175 and 179, each of which arises

independently only once (Text S1 Methods) in our extended-

spectrum sequence database. 175 is one of a number of positions

in the V-loop (involved in active-site formation) that are known to

play a role in extended-spectrum resistance [9,55]. 179 was

previously reported in a clinical isolate [20,57] and in several

experimental isolates [58] but appears to have a narrower

substrate specificity than other mutations present in the extend-

ed-spectrum network community [9]. Our analysis suggests that

the remaining 6 mutant positions present in the nonzero

betweenness triple mutant paths (40, 120, 153, 215, 224, and

265) should be considered as potentially important for adaptation.

We evaluated the relevance of 14 out of the 16 positions

identified by our betweenness centrality analysis by experimentally

determining their cefotaxime resistance phenotype. In order to

factor in the prevalent role of epistasis in extended-spectrum TEM

evolution, we determined the impact of a given mutation on

cefotaxime resistance as the average phenotype in a variety of

sequence contexts (in the presence of a variety of additional

mutations). The results are summarized in Table 6, with the

number of sequence contexts tested listed in column 4, the average

effect (in cm) shown in column 5, and the range of effects listed in

column 6. Our results show a relationship between average

phenotypic effect and representation in our database, with

frequent mutations (n.4) having a clear average positive effect

(. = 1 cm). Our phenotypic analysis also confirms the relevance of

mutations at three positions whose phenotypic impact on

extended-spectrum resistance had, to our knowledge, not been

previously demonstrated: 265 (average 1.9 cm, up to 2.6), 153

(average 1.0 cm, up to 7.1), and 120 (average 0.4 cm, up to 2.9).

The effect of 153 is strikingly sequence-context dependent, with

values ranging from 28.19 to +7.14 cm, which may explain why

the role of this mutation has been hard to experimentally

demonstrate. R164H and L51P, two mutations with a known

effect on resistance phenotype, had large negative impacts in some

sequence contexts: 25.5 and 214.95 cm, respectively. These

observations imply that a strong negative epistatic effects may be

as indicative of functional interactions as a positive epistatic effects.

Therefore, the large negative effects K215E (25.57 cm) and

L40W (23.4 cm) suggest an important role for these residue

positions that is only revealed in specific sequence contexts,

although this remains to be experimentally confirmed.

In sum, positions present in triple mutant paths with nonzero

betweenness centrality identified all but two of the positions with

known phenotypic effect on extended-spectrum resistance. We

experimentally demonstrated the impact of the additional

mutations identified by our analysis, either directly by showing

increased cefotaxime resistance (120, 153, 265) or indirectly, by

showing large negative effects on resistance (215 and 40). These

results suggest that our method is able to accurately identify

positions that play an important role in genetic adaptation. It is

able to do so because it evaluates mutations in the context of their

genetically defined functional interactions.

Many current state-of-the-art bioinformatics methods for

predicting mutation effects consider only evolutionary history

and/or biophysical properties of single residue positions [59,60].

Previous methods that consider interactions among residue

positions include evolutionary trace, statistical-coupling and

residue coevolution networks [61–64]. Evolutionary trace (ET)

[61] uses a phylogenetic tree to group protein sequences and rank

the functional importance of amino-acid residues by correlating

their evolution with divergence in the tree. Residues traced in this

way are mapped onto a protein structure, and sites of clustering

can be used to infer functionally important sites. Statistical

coupling analysis [62] relies on partitioning and perturbation of

large and diverse multiple sequence alignments of homologous

proteins to study higher-order interaction patterns. More similar to

our approach are two previous studies of protein residue

coevolution networks, based on large, diverse protein families.

They found that node connectivity and centrality had utility in

predicting functionally important residues [63] and that function-

ally important residues tend to coevolve with other sites more than

other residues [64].

In contrast to these methods, our approach uses network

analysis to infer higher-order evolutionary interactions between

groups of coevolving residues that may not be co-localized in a

protein structure. Our focus is not on finding functionally

important residues. Rather, we identify communities of residue

positions associated with different antibiotic resistance phenotypes

and subcommunities representing distinct strategies to acquire a

given resistance phenotype. We are also able to extrapolate

adaptive evolutionary trajectories – combinations of triple mutants

that increase cefotaxime resistance – based only on the initial

knowledge of the co-occurrence of mutated residues in resistant

mutant sequences. Our method can be applied to protein

Figure 4. Pairwise epistatic interactions in the TEM extended-spectrum community either previously described in the literature or
identified in our experiments [19,79–83]. Network is represented as in Figure 2. The subcommunity containing the active-site residue 238 is
light blue and the subcommunity containing the active-site residue 164 is dark blue. Node size is proportional to weighted degree centrality
(Methods). Link thickness indicates how frequently two residues (nodes) are mutated in the same sequence, normalized by the number of sequences
in which only one or the other position is mutated (Methods). (A) Black links indicate positive epistatic interactions. (B) Red links indicate negative
epistatic interactions. Because the network is constructed from co-occurring mutated residue pairs, negative-epistatic pairs may be underrepresented
in or absent from the network, e.g. 39 and 173. Image created with CytoScape [78].
doi:10.1371/journal.pcbi.1002184.g004
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subfamilies in which there is low sequence diversity, and it does

not require a reliable phylogeny or tertiary protein structure on

which to base inference.

While we use TEM b-lactamase as a model system in this

paper, we believe that our network analysis is generalizable to

other genes evolving under defined selective pressures. This

model presents a desirable alternative to phylogeny in many

situations, e.g. genes in clinical isolates for microorganisms with

frequent horizontal transfer or/and high geographic mobility,

and microorganisms with high genetic variation, where

positively selected mutations are in the minority, such as RNA

viruses. If however, reliable phylogenetic data is available,

phylogeny could be incorporated into our analysis to help

estimate how many times pairs of mutated residues arise

independently and to reveal the ordering of mutation events.

The construction of a directed rather than undirected network

model could enable us to better project the order of mutations in

future predicted trajectories.

Materials and Methods

Data collection
We compiled a set of 363 TEM mutant protein sequences from

existing databases and literature: the Lahey Clinic b-lactamase

database [10], the Lactamase Engineering Database (LacED) [11],

and from published directed evolution experiments that select for

TEM mutants exhibiting various resistant phenotypes [12–26].

Sequence alignment
Using TEM-1 as the reference sequence [10] and the Ambler

TEM amino acid residue numbering scheme [65], we constructed

a multiple sequence alignment of naturally occurring and

laboratory-evolved TEM mutants (Tables S1 and S2). To estimate

the number of times that mutations at two residue positions have

coevolved, we counted independently selected mutation pairs

(Text S1 Methods). FASTA-formatted TEM mutant sequences are

provided as Datasets S1-S8.

TEM coevolution network construction
We constructed an undirected, weighted network in which two

nodes (two mutated amino acid residue positions) are linked if

mutations at both residues exist in at least one TEM sequence in

the alignment. The weight w of each link is proportional to the

number of sequences in which both positions are mutated,

normalized by the number of sequences in which only one or

the other position is mutated:

w Mi,Mj

� �
~

c Mi,Mj

� �
{ 1{eð Þ

c Mið Þzc Mj

� �
{c Mi,Mj

� � ð1Þ

where c(Mi) and c(Mj) are the number of times a the ith and jth

column (residue position), respectively, are mutated in the

alignment. c(Mi,Mj) is the number of times both columns are

mutated together, and w(Mi,Mj) is the network weight of the link

between nodes i and j (or residue positions i and j ).

We included a correction term to ensure that mutated pairs,

which occur in a single sequence together and never by

themselves, are not overweighted. Without this term, these pairs

would always have (the maximum) link weight 1.0. e is the inverse

of the number of aligned sequences used to construct the network

(a heuristic choice that works well in practice).

Annotation of TEM sequences by their phenotype class
We were able to associate 380 out of 405 TEM naturally

occurring or TEM laboratory-evolved mutant sequences in our

database with a single major b-lactamase phenotype class (113

broad-spectrum 2b sequences, 201 extended-spectrum 2be

sequences, 49 inhibitor-resistant, 2br, sequences). There were also

17 sequences with a combined extended-spectrum antibiotics and

inhibitor resistant phenotype class, 2ber, that were not used in our

network. The phenotype class of naturally occurring TEMs is

determined experimentally, and TEM sequence-to-phenotype-

class associations can be found in the Lahey Clinic b-lactamase

online database [10]. We assumed that the resistance selection

criterion used in the directed evolution experiments [12–26]

determined the phenotype class of the TEM sequences coming

from such experiments.

2be phenotype class network construction
To explore the subcommunity structure of the 2be phenotype

class, we constructed an undirected, weighted coevolution network

(as above), using only 201 (naturally occurring and laboratory-

evolved) extended-spectrum sequences.

We observed a few differences between the wiring of the

extended-spectrum phenotype network and its corresponding

community in the TEM coevolution network. In the first case,

all residue positions that can be associated with extended-spectrum

resistance were included in the sequences used to build the

network. In the second case, some mutated residue positions (as

opposed to mutant sequences) can be associated with more than

one phenotype class (pleiotropy). However, by construction, the

community-finding algorithm associates the corresponding nodes

with only one community. These differences were minor and did

not have an impact on the conclusions of our analysis.

Network analysis
Network modularity. To identify highly connected subnet-

works (communities) of mutated residue positions, we used the

Community-Structure-Partition algorithm [31], implemented in

the Graph Utilities Package in Mathematica 7.0 [66].

Communities with five or fewer nodes were merged onto one of

the larger communities. The choice of a larger community onto

which to merge the smaller community was determined by

calculating the overall network modularity function [31] after a

suggested merge. The merge that resulted in the highest network

modularity was the one that was chosen.

Central nodes in the network. We used three standard

graph-theoretical node centrality metrics to identify important

residue positions in our undirected, weighted network: degree

centrality, closeness centrality and betweenness centrality. To

calculate the closeness and betweenness centrality metrics, we

transformed link weights into link costs by taking the inverse of

each pair association weight. A detailed description of all node

centrality metrics used in our study can be found in Text S1

Methods.

Length of shortest paths. A path is a set of adjacent links in

a network, which connects a pair of nodes v and w. The length of

the shortest path between two nodes dG(v, w) in a weighted

network is the minimum sum of link costs along an optimal path

between nodes v and w. We compute link costs as the inverse of

link weights.

Path betweenness centrality. We adapted the equation for

weighted node betweenness centrality (Equation S3) to multiple-

node path betweenness centrality
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where P is a path comprised of distinct adjacent nodes in the

network, and sst(P), is the number of distinct shortest paths

connecting the network nodes s and t and containing P as a

subpath. This metric counts the number of times a subpath occurs

as a component of all shortest paths between all pairs of nodes in a

network.

Codon-model analysis of selection
We performed a PAML (codeml) analysis [67] for the naturally

occurring TEM b-lactamase sequences. We used PHYLIP [68] to

build a phylogenetic tree (gamma distribution, four classes, a
parameter: 0.348). We used a log-likelihood test to compare the fit

of codeml models 2 (three-classes of unselected/selected codon

positions) and 1 (two-classes of unselected/selected codon

positions) to the data, and found that model 2 was a better fit

(x2 test, p-value ,,0.01). Using model 29s three site classes, we

found that out of 35 mutated residue positions in the network of

naturally occurring TEM sequences, 11 are identified as strongly

positively selected (v . = 8.4) and 22 are positively selected

(relaxed to v. = 0.8) (Table S3).

Experimental tests of TEM mutants
Selection of mutants to be tested. 48 out of a possible 214

three-node shortest paths in the 2be community network had

nonzero betweenness centrality, and we focused our experiments

on the corresponding 48 triple mutants. Because all triplets

represent a mutational trajectory and are therefore ordered, we

compared the activity of each triplet to each possible trajectory (i.e.

doublet) that led to it.

Site-directed mutagenesis of TEM b-lactamase. Our

target TEM-1 b-lactamase sequence is in pGPS-ori, a pGPS3-

derivative with a b-lactamase gene moved close to the origin of

replication and with kanamycin as selectable marker [69]. We

used previously described b-lactamase mutants generated under

aztreonam selection [18]. Additional mutants were generated

using the ‘‘megaprimer’’ protocol [70]. Briefly, we amplified the b-

lactamase gene with a forward or reverse primer bearing the

desired point mutation and an additional 59 or 39 flanking primer

(all primers used are listed in Table S7). The PCR product was

purified by gel electrophoresis and served as a ‘‘megaprimer’’ for

whole plasmid amplification in the next PCR reaction, using

pGPSori as the template. Standard PCR conditions apply, except

elongation time is extended to 2 minutes/kb. When the reaction is

complete, the PCR product is treated with the restriction enzyme

DpnI, which digests only methylated (template) DNA. 8 ul of the

megaprimer product are transformed into chemically competent

TOP10 cells (Invitrogen) and selected on kanamycin (30 ug/ml).

Incorporation of the intended point mutations was verified by

sequencing of purified plasmids. All DNA isolation procedures

were performed with Machery Nagel’s Nucleospin Plasmid

miniprep kit. Sequencing was carried out by Sequetech

(Mountain View, CA).

Cefotaxime protection. We found that JS200 (a B strain of E.

coli) was more sensitive to cefotaxime than BL21, which is a

standard K strain (not shown). Therefore we used JS200 (SC-18

recA718 polA12ts uvrA155 trpE65 lon-11 sulA1) cells

complemented with pHSG-Pol I plasmid as hosts [71]. To

determine extended-spectrum b-lactamase protection, we used

cefotaxime as antibiotic of choice, following the example of previous

experimental studies of extended-spectrum b-lactamase evolution

[9,24]. Given the large number of clones involved in our study, we

established a gradient plate assay to determine cefotaxime resistance

levels in an efficient manner. This assay is conceptually similar to

inhibition zone assays, but produces growth rather than absence of

growth as output. This method is described in detail in [72]. Briefly,

25 ml LB agar containing a given concentration of cefotaxime is

poured on a tilted plate and allowed to solidify. Then the plate is

placed flat on a surface and drug-free agar is poured on top, creating

a gradient of drug concentrations along the length of the plate.

Individual b-lactamase mutants were transformed and individual

colonies were grown to late exponential phase. We tested 3 to 4

independent clones for each mutant, and frequently more. All the

measurements are listed in Table S4, with the number of

measurements shown in column AI. Cultures of transformant cells

were stamped on LB agar plates containing cefotaxime gradients

and grown overnight at 37uC. The next day the plates were imaged

and length of continuous growth along the drug gradient (in

centimeters) was measured; a detailed description of this technique

can be found in [72]. Given the wide range of resistance phenotypes

present in our mutant panel, we tested each clone in gradients

containing different cefotaxime concentrations to find one

concentration providing adequate resolution. Wild-type TEM and

a TEM-deleted plasmid (delta) provided good resolution at

gradients containing a maximal concentration of 0.04 ug/ml

(Table S4). Additional concentrations used were: 0.08, 0.12, 0.3,

0.6, 2 and 4 ug/ml (Table S4). Our negative controls were pGPSori

and a plasmid encoding no b-lactamase (delta).

Quantification of cefotaxime protection. Our gels

produced reproducible measurements, with an average standard

error of 19% for all the 58 clones tested at the optimized

concentration of cefotaxime (Table S4). In addition, each gel had

one clone of known level of resistance as a control. We also had to

find a way compare results from gradients containing different drug

concentrations because, as mentioned above, the concentration of

cefotaxime necessary to produce the intermediate level of growth in

our gradient required for optimal resolution varied substantially

depending on the level of resistance of each individual clone. To

that end, we measured the growth distance for a number individual

reference clones at two contiguous concentrations and averaged the

difference; this average difference was used to extrapolate

measurements to the concentration used to run the wild-type and

clones with low levels of resistance (0.04 ug/ml); the number of

clones tested for each conversion step (n), the difference between

contiguous concentrations, and the aggregate average difference

(conversion factor) are listed in Table S8. Note that the introduction

of this conversion factor should not affect comparisons between

clones showing similar levels of resistance, since these would have

been run in gels with the same drug concentration; its purpose is to

allow comparisons between clones showing substantial differences in

level of resistance and should therefore not alter the results

qualitatively.

Supporting Information

Figure S1 The weighted degree distribution of the TEM
coevolution network (Figure 1). The distribution of nodes by

aggregate weight of links per node (weighted degree centrality,

Equation S1) is shown. Many nodes (residue positions) with high

weighted degree are functionally important (Table 1). The

distribution reveals that the network contains very few highly

connected nodes, with a majority of the nodes exhibiting low

connectivity. This topology is similar to that of scale-free networks
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[53], and is reminiscent of the connectivity distribution of other

biological processes such as signaling or cellular differentiation.

(TIF)

Figure S2 Structural impact of extended-spectrum
antibiotic resistance mutations. (A) Mutations at residue

164. An arginine to serine (or arginine to histidine) substitution at

position 164 (blue spheres) has been hypothesized to collapse the

critical V-loop (green) in the active site, thus opening the active site

to b-lactams with larger side chains [9,74,77] (PDB ID [84]). The

ligand (shown in stick representation) is an N-Formimidoyl-

Thienamycine pseudo-substrate from PDB ID 1jvj [85]. (B)

Mutations at residue 238. A glycine to serine (or glycine to alanine)

substitution at position 238 has been hypothesized to expand the

active site by either repositioning the B3 b-strand (positions 235-

240) [73] (yellow) or by tilting the V-loop (green) (positions 161-

179) [75] that connects the two sub-domains of the protein.

Mutations at both positions are associated with increased

resistance to third generation cephalosporins [38].

(TIF)

Figure S3 Locations of amino acid residues in the TEM
coevolution network and the TEM extended-spectrum
community network, mapped onto the TEM tertiary
structure (PDB 1ero). (A) Residues in the TEM coevolution

network and their three major communities (Figure 1). Residues

are colored by community membership: gray (broad-spectrum

resistance), blue (extended-spectrum resistance) and orange

(inhibitor resistance). The communities do not map to distinct

regions of the tertiary structure. Image created with UCSF

Chimera [86]. (B) Residues in the TEM extended-spectrum

community network and their two major subcommunities

(Figure 2). Residues are colored by subcommunity membership:

light blue (subcommunity containing the active-site residue 238)

and dark blue (subcommunity containing the active site residue

164). The subcommunities do not map to defined regions of the

tertiary structure. Image created with UCSF Chimera [86].

(TIF)

Table S1 Lists of all naturally occurring TEM-1 mutants
in our database. Each mutant is listed in column 1 and amino

acid substitution mutations are indicated by residue position

according to the Ambler system [65]. The mutants are listed in

three worksheets by Bush-Jacoby phenotype class [27]: broad-

spectrum antibiotic resistance (2b), extended-spectrum antibiotic

resistance (2be), and inhibitor resistance (2br). FASTA sequences

for all TEM-1 mutants from clinical isolates are included in

Datasets S5-S8.

(XLSX)

Table S2 Lists of all laboratory-evolved TEM-1 mutants
in our database. Each mutant is listed in column 1, and amino

acid substitution mutations are indicated by residue position

according to the Ambler system [65]. The mutants are listed in

three worksheets by Bush-Jacoby phenotype class [27]: broad-

spectrum antibiotic resistance (2b), extended-spectrum antibiotic

resistance (2be), and inhibitor resistance (2br). References for each

directed evolution experiment are provided in Dataset S4. FASTA

sequences for all TEM-1 mutants from laboratory-evolved isolates

are included in Datasets S1-S3.

(XLSX)

Table S3 Codon-based analysis of positive selection. We

performed a PAML (codeml) [67] analysis for the naturally

occurring sequences. Residue position number according to the

Ambler system [65] (column 1); wild-type amino acid residue in

TEM-1 (column 2); v value (ratio of non-synonymous to

synonymous nucleotide substitutions at a codon position) (column

3). "Site class" identified by codeml. Class 3 = strong positive

selection, Class 2 = "relaxed" positive selection, Class 1 = no

selection or negative selection (column 4). Node degree centrality

= weighted degree centrality computed in a network constructed

with only sequences from clinical isolates (column 5).

(XLSX)

Table S4 Cefotaxime gradient measurements. All mu-

tants and controls tested experimentally for cefotaxime resistance

are listed in column A. The concentration empirically found to

produce adequate resolution (i.e. intermediate level of growth in

the gradient) is listed in column B. Columns C through AF list

measurements (in centimeters) of continuous growth at the

optimized concentration. The limit of continuous growth at the

optimized cefotaxime concentration is listed (in centimeters). The

average of all the measurements for a given clone is shown in

column AG, with the corresponding standard deviation, standard

error and % standard error in columns AH, AJ, and AK

respectively. The total number of measurements (n) for each clone

is provided in column AI.

(XLSX)

Table S5 Network link weight normalization is predic-
tive of epistasis. Links between nodes were weighted according

to the frequency in which the relevant pair (i.e. the mutant

positions joined by the link) occurred in our database. This metric

was further modified using a normalization factor comparing

frequency of co-occurrence to that of the corresponding

individual mutations. The two positions are listed as M1 and

M2 in columns 1 and 2. The difference between observed co-

ocurrence in the same sequence and the predicted frequency

based on the frequency of each individual mutation constituting

the pair is shown in column 3 (‘‘predicted interaction based on

link-weight normalization"). A positive difference indicates a

trend toward positive epistasis between the two residue positions

involved, whereas a negative difference of is indicative of possible

negative epistasis. Column 4 indicates whether we found the

interaction to be significantly epistatic in our cefotaxime

resistance assays (Table 4), and column 5 lists the experimentally

determined trend. Column 6 lists demonstrated epistatic

interactions reported in the literature, and column 7 lists the

corresponding references (the full reference is found at the bottom

of the worksheet).

(XLSX)

Table S6 Presence of triple mutants predicted to be of
special significance for adaptation within cefotaxime-
driven evolutionary trajectories. Cefotaxime-driven evolu-

tionary trajectories reported by Salverda et al. [36] are listed in

column 2. This work investigated the role of contingency of the

first mutation to be fixed under a given selective pressure on

subsequent evolution. The clone number for each independent

isolate, reported in [36] (figures 2A, 3A and 5A), is listed in column

1. Each directed evolution experiment is listed on a separate tab of

this worksheet, with the sequence used to generate the original

libraries for each of these experiments listed in column 3: TEM-1

evolution: 7 trajectories (out of 12) contained the triple combination

of E104K M182T G238S mutations, and the 5 remaining

trajectories represent parallel evolutionary trajectories; R164S

evolution; A237T evolution; R164S/G238S evolution; A237T/G238S

evolution. The triple mutant combinations present in the reported

sequences and corresponding to evolutionary trajectories of special

significance listed in Table 2 are highlighted in bold in column 2

and listed in column 4. Betweenness centrality values, indicative of

the amount information flow (Methods), for trajectories of special
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significance are listed in column 5 and the average betweenness

centrality values per clone are shown in column 6.

(XLSX)

Table S7 Primers used for site-directed mutagenesis of
TEM b–lactamase. The primers used for site-directed muta-

genesis by the megaprimer protocol [70] are listed, grouped by

orientation. For each primer, the name, sequence, and amino acid

substitution are shown.

(XLSX)

Table S8 Calculation of conversion factor used to
extrapolate growth to the gradient concentration used
for wild-type. A conversion factor was used to compare results

from gradients containing different drug concentrations. To that

end, we measured the growth distance for a number individual

reference clones at two contiguous concentrations and averaged

the difference. This average difference was used to extrapolate

measurements to the concentration used to run the wild-type and

clones with low levels of resistance (0.04 ug/ml). The number of

clones tested for each conversion step (n) is listed in column 2, the

difference between contiguous concentrations in column 3, and

the aggregate average difference (conversion factor), in column 4.

(XLSX)

Table S9 Calculation of average effect of mutations at
individual positions tested in a variety of sequence
contexts. 14 out of 16 positions identified in high betweenness

centrality trajectories were tested experimentally in a variety of

sequence contexts. For each position, the most frequent mutation

found in our database was used (see Table 6). The position being

tested (M1) is listed in column 1, and its count in our database in

column 2. Additional mutations (M2) are listed in column 3. The

growth, in centimeters (extrapolated to a cefotaxime gradient of

0.04 ug/ml, see Table S8) is listed in columns 3 (M1), 6 (M2) and

8 (M1+M2). The difference between M1+M2 and M2 measure-

ments, representing the effect of M1 on resistance, is listed in

column 11. We conservatively estimated the combined standard

error to be the sum of the standard errors (p,0.05) of M2 and

M1+M2 (column 10). The effect of M1 was considered to be

significant (p,0.05) when the value for the combined margin of

error was smaller than the p-value of the effect (column 12).

Columns 13-15 list the average for each M1 position, the

maximal positive effect, and the maximal negative effect,

respectively. These values are listed also in Table 6 of the main

text, columns 5 and 6.

(XLSX)

Text S1 Supporting Methods and Results sections. The

Methods section outlines important processing steps for TEM

mutations before their inclusion in the network. Key node network

centrality metrics are also presented. The Results section highlights

the observation that the evolutionary trajectories we predicted by

our betweenness centrality ranking are enriched in paths that are

parallel to the 104-238-182 evolutionary trajectory.

(DOC)

Dataset S1 FASTA formatted protein sequences used in
the construction of the TEM coevolution network.
Sequences are collected from published laboratory evolution

experiments selecting for resistance to extended-spectrum b-

lactam antibiotics.

(FA)

Dataset S2 FASTA formatted protein sequences used in
the construction of the TEM coevolution network.
Sequences are collected from published laboratory evolution

experiments selecting for resistance to b-lactamase inhibitors.

(FA)

Dataset S3 FASTA formatted protein sequences used in
the construction of the TEM coevolution network.
Sequences are collected from published laboratory evolution

experiments selecting for resistance to broad-spectrum b-lactam

antibiotics.

(FA)

Dataset S4 References for the laboratory-evolved TEM
sequences in Datasets S1 through S3.

(XLSX)

Dataset S5 FASTA formatted protein sequences used in
the construction of the TEM coevolution network.
Sequences are collected from clinical isolates that have been

demonstrated to confer resistance to extended-spectrum b-lactam

antibiotics.

(FA)

Dataset S6 FASTA formatted protein sequences used in
the construction of the TEM coevolution network.
Sequences are collected from clinical isolates that have been

demonstrated to confer resistance to b-lactamase inhibitors.

(FA)

Dataset S7 FASTA formatted protein sequences used in
the construction of the TEM coevolution network.
Sequences are collected from clinical isolates that have been

demonstrated to confer resistance to broad-spectrum b-lactam

antibiotics.

(FA)

Dataset S8 FASTA formatted coding DNA sequences
used in the TEM phylogenetic analysis. Sequences are

collected from clinical isolates that have been demonstrated to

confer resistance to extended- or broad-spectrum b-lactam

antibiotics, or to b-lactamase inhibitors.

(FA)
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