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Abstract

Due to noisy motor commands and imprecise and ambiguous sensory information, there is often substantial uncertainty
about the relative location between our body and objects in the environment. Little is known about how well people
manage and compensate for this uncertainty in purposive movement tasks like grasping. Grasping objects requires reach
trajectories to generate object-fingers contacts that permit stable lifting. For objects with position uncertainty, some
trajectories are more efficient than others in terms of the probability of producing stable grasps. We hypothesize that
people attempt to generate efficient grasp trajectories that produce stable grasps at first contact without requiring post-
contact adjustments. We tested this hypothesis by comparing human uncertainty compensation in grasping objects against
optimal predictions. Participants grasped and lifted a cylindrical object with position uncertainty, introduced by moving the
cylinder with a robotic arm over a sequence of 5 positions sampled from a strongly oriented 2D Gaussian distribution.
Preceding each reach, vision of the object was removed for the remainder of the trial and the cylinder was moved one
additional time. In accord with optimal predictions, we found that people compensate by aligning the approach direction
with covariance angle to maintain grasp efficiency. This compensation results in higher probability to achieve stable grasps
at first contact than non-compensation strategies in grasping objects with directional position uncertainty, and the results
provide the first demonstration that humans compensate for uncertainty in a complex purposive task.
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Introduction

Optimal sensorimotor control models actions as decisions that

maximize the desirableness of outcomes, where the desirableness is

captured by an expected cost or utility to each action sequence. These

models provide explanations for many aspects of our ability to

compensate for uncertainty [1–3]. In particular, humans are near

optimal at integrating sensory information with internal models of

motor actions to produce estimates of world states and action

consequences [4–7]. Moreover, people maintain and update estimates

of their uncertainty, and use this information to improve task

performance and economic gain [8–13]. The vast majority of research

on optimal visuomotor control involves point-to-point movements.

However, these studies have neglected normal purposive movements

involving the application of forces to objects in our environment, with

the intent of changing either the object’s motion, as in grasping, or our

own motion, as in walking. Planning for such movements requires

anticipating the effects of object-body contact on subsequent dynamics.

Due to the complexity of anticipating the effects of applied forces to

object motion, it is significantly more challenging to adapt the optimal

sensorimotor control framework to problems like grasp planning, and it

is much less clear that the visuomotor system will have models complex

enough to allow for optimal control strategies.

In grasp planning, fingers must be targeted toward points on the

object’s surface that will allow the application of forces sufficient

for lifting and dexterously manipulating the object. In particular,

the finger-object contacts should permit forces that are capable of

stably lifting the objects and counterbalance external forces and

torques exerted on the object – termed force-closure grasping [14,15].

Once people place their fingers on contact points supporting

force-closure, they can begin to lift the object. Hence, the duration

of a grasping task depends on the time to produce force-closure

grasping, and this time is minimized by movement trajectories that

produce force-closure at first contact. Failure to satisfy force-

closure conditions at first contact requires subsequent adjustments

to rearrange the contact points – a process that requires extra time

and effort. Little is known about how people recognize contact

points supporting force-closure or how this process is affected by

uncertainty.

The purpose of our work is to study uncertainty compensation

in grasping and compare human performance against normative

predictions. An illustration of precision grasping objects with

position uncertainty is presented in Fig. 1A. If the position of the

cylinder is precisely known, all the movement trajectories will

produce force-closure grasping at first contact. However, if the

cylinder position is distributed along a strongly oriented 2D

Gaussian distribution, some of the movement trajectories are more

efficient in terms of force-closure grasping than others. The

probability of achieving force-closure grasping at first contact as a

function of index finger/thumb approach is presented in Fig. 1B
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(see Text S1 and results section for more details). The grasp

trajectory that produces force-closure grasping irrespective of the

cylinder position involves index finger and thumb approaching the

distribution center in opposite directions along the axis of maximal

uncertainty. This predicts that people should reorient the

approach direction of their hand to grasp the cylinder along the

direction of maximal uncertainty.

We test what, if any, changes in grasping strategy occur as

compensations for object location uncertainty. Using a robotic

arm to generate oriented distributions of cylindrical object

locations, we investigate whether people adopt grasping strategies

that minimize the impact of uncertainty on grasp success in terms

of force-closure grasping at first contact.

Results

A schematic representation of the apparatus is shown in Fig. 2A.

Participants were instructed to reach rapidly with the right hand to

precision grasp and lift a cylindrical object mounted on a robotic

arm, in 3 conditions that varied in the amount of position

uncertainty. In one condition the cylinder was stationary

throughout the reach (no motion condition). In the other

two, the object visibly moved through a series of randomly drawn

positions. After the object was occluded, it either moved to a new

random location (random-end location condition) or to a

fixed location (fixed-end location condition). The chance that

the reach trajectory will end with the fingers making object contact

at points permitting force-closure depends on the path the index

finger and thumb take to the object. The critical part of the

trajectory occurs near the end of the movement, when the fingers

approach possible object locations.

Trajectory characteristics are illustrated for a single participant

on the no-motion (left), fixed-end location (middle) and random-

end location (right) conditions in Fig. 2B, which shows statistics on

the set of trajectories in each condition. The three panels display

the frequency that trajectories passed through each spatial location

as a color map, where blue indicates probabilities near zero and

red indicates high probability regions. The position distribution of

the cylinder is illustrated by the white ellipse. In addition, we

computed the average velocity and orientation of the contact

surfaces of both index finger and thumb at each spatial location.

The results illustrate the highly stereotyped trajectories in our

Figure 1. Graphical illustration of grasp analysis with direc-
tional position uncertainty. (A) The critical aspect of grasping an
object with position uncertainty is the control of the contact surfaces of
the index finger and thumb (rectangular patches). These surfaces must
be moved along paths that will make appropriate contact with the
object at any of its possible locations (gray transparent cylinders).
Appropriate contact involves the concept of force-closure (see materials
and methods). Upper inset: Force-closure grasping representation.
Assume that a reach trajectory results in two contact points of the
index finger (A) and the thumb (B) on the surface of the cylinder ci. This
trajectory produces force-closure grasping because the line segment
(AB) is located between the two friction cones defined by the contact
points A and B. Based on the Coulomb’s law, two contact points
produce force-closure when the component of the contact forces at
these points in the direction of the surface normals (u\) exceeds the
coefficient of friction m times the tangential components. The friction
cones are determined by the vector mu\:ð Þ{u :ð Þ and mu\:ð Þzu :ð Þ , where (.)
corresponds to subscript th and f for the thumb and the index finger,
respectively. Note that u refers to the surface tangents. Lower inset:
Graphical representation of the fingers’ contact surface approach for
grasping a cylindrical object with directional position uncertainty. The
thumb and the index finger contact surfaces are displayed as line
segments with local position r and normals u. For visualization reasons,
we present only the characteristics of the index finger, whereas the
characteristics of the thumb is similar to the index finger, but with the
subscript th. The gray circles describe the possible cylinder locations
based on the object’s position distribution, which is illustrated as ellipse
with center x and major and minor axes Vm,Vm

\ , respectively. Given a
possible cylinder location ci, the reach trajectory will produce force-
closure if the line segment defined by contact points of the thumb and
the index finger surface on the cylinder surface, is between the two
friction cones at the two contact points. Note that (w, d) corresponds to
the local contact coordinates of the index finger (with subscript f) and
thumb (with subscript th) (see materials and methods section). (B)
Effects of approach direction in the probability of producing force-
closure for ideal (dashed lines) and noisy (solid lines) approaches for 0
deg (gray) and 45 deg (black) covariance orientations. Noisy approaches
were generated by adding noise to both approach direction
(variance = 4.5 deg2) and fingers orientation (variance = 2.5 deg2).
doi:10.1371/journal.pcbi.1000538.g001

Author Summary

Optimal sensorimotor control models actions as decisions
that maximize the desirableness of outcomes, where the
desirableness is captured by an expected cost or utility to
each action sequence. These models provide explanations
for many aspects of our ability to compensate for
uncertainty, but they have not been applied to under-
standing purposive movements—movements involving
the application of forces to change the relative position
of objects and the actor in the environment. Using time
efficiency as a natural cost function, we present a statistical
optimal control analysis of uncertainty compensation
strategies in a purposive movement task, grasping an
object with directional position uncertainty. In accord with
the predictions of the analysis, the experimental results
showed that people compensate for uncertainty by
adopting grasp strategies that increase the chance to
produce a stable grasp at first contact. Our findings
suggest that visuomotor system plans for uncertainty even
in complex purposive movements.

Grasping under Position Uncertainty
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experiment, with an initial forward transport phase that brings the

index finger and thumb near the object, followed by an approach

period in which both digits move more slowly and mainly in a

direction perpendicular to the contact surface of the fingers. Note

that this perpendicular approach is a critical component for

producing force-closure grasping at first contact and that it is

much more prominent in the random-end location condition. In

addition, there are significant differences on the grip aperture

profile across the 3 conditions. While grip aperture remained

narrow for most of the reach trajectory in the no-motion

condition, it widened near the beginning of the trajectory in the

random-end location and fixed-end location conditions. Interest-

ingly, grip aperture is larger in the fixed-end location condition

than the no-motion condition, suggesting that object motion

induces uncertainty even for an object felt to be in exactly the

same position on every trial.

We investigated whether participants modified their index

finger/thumb approach direction with the orientation of the object

position distribution. We predicted a change in approach direction

from an analysis of the conditions for force-closure at first contact.

Force-closure occurs when the fingers make contact on the object

at locations that permit the application of forces in the direction of

both the surface normals and surface tangents that can potentially

cage the object. A necessary condition for force-closure is that the

required tangential forces are less than the force applied to the

surface normals, scaled by the coefficient of friction. Geometri-

cally, this relation produces friction cones at the contact points of

the thumb and the index finger with cylinder, whose boundaries

are determined by the surface tangent and normal vectors of both

fingers (Fig. 1A upper inset). In the presence of object location

uncertainty, approach direction affects the ability to achieve force-

closure, as illustrated in Fig. 1. Particularly, Fig. 1A shows a

graphical representation of the trajectory of the index finger and

thumb contact surfaces (rectangular patches) to an array of

possible object locations, displayed as transparent cylinders. The

relevant geometry for computing force-closure for a possible

cylinder location is presented in the lower inset. The center of the

distribution of cylinder locations is shown as x, the principal axis of

uncertainty as vm, and the thumb and index finger contact

surfaces are shown as line segments, with local position r and

direction u. For each possible cylinder location ci, force-closure is

only possible if the cylinder surface is in the approach path for

both digits (wf is less than the finger surface width) and the angle

between the index finger and thumb is sufficiently large.

On the basis of this analysis, the choice of a grasp strategy can

be turned into a statistical decision problem, where the objective is

to select an approach that maximizes the probability of force-

closure at first contact (see materials and methods section). The

analysis shows that the optimal approach direction is aligned with

the major axis of the covariance of cylinder locations. For a given

trajectory, we can compute the probability of force-closure by

determining the proportion of sample cylinder locations that

satisfy the force-closure conditions. Fig. 1B shows the theoretical

impact of varying approach direction on the probability of force-

closure for ideal approaches (dashed lines) and noisy approaches

(solid lines) generated with random perturbations added to both

the approach direction (variance = 4.5 deg2) and the finger surface

orientations (variance = 2.5 deg2). The results are shown for two

orientations of object location uncertainty, 0 (gray) and 45 deg

(black). The principal effect of additional variability is to narrow

the range of approaches that produce high force-closure

probabilities.

Approach direction compensation: If participants exhibit

the predicted compensation, we should observe approach direction

vary to align with the axis of maximal uncertainty. We estimated the

planned approach direction for each participant and condition by

computing the covariance of sensor positions across trajectories,

illustrated in Fig. 3A. The direction of approach was extracted from

the principle axis of the covariance spatial distribution of finger

locations across the set of trajectories gathered over the ten time

steps closest to the average first contact (see materials and methods

section). To insure the covariance estimates were based on

compatible trajectory points we restricted the analysis to a cluster

of trajectories with similar temporal characteristics, comprising

about 80% of the trajectories in an experimental condition. This

measure captures how trajectories are spatially constrained near

contact, with the main axis providing a measure of the direction of

the constraint, and the ratio between major and minor axes of the

Figure 2. Experimental apparatus and trajectory characteristics. (A) Diagram illustrating the experimental apparatus. (B) Examples of
trajectory characteristics for the three conditions, left: no motion, middle: fixed-end location and right: random-end location. The reach strategy in
each condition is revealed by an analysis of the average orientation (black line segments) and velocity (arrows) of the finger’s and thumb’s contact
surfaces at each location along the trajectories. A superimposed density map shows the probability of a trajectory passing through each spatial
location, where blue and red indicate zero and high probability, respectively.
doi:10.1371/journal.pcbi.1000538.g002

Grasping under Position Uncertainty
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covariance provides a measure of the importance of the constraint.

The major/minor axis ratio, averaged across participants for each

covariance angle is plotted in Fig. 3B, shows that the approach

direction of the index finger is significantly more constrained than

the thumb. Constraint differences in the index finger and thumb

may be explained by differences in the timing of first contact – the

index finger typically contacted before the thumb. Once contact is

made, there are additional forces on the hand affecting the

trajectories and additional information about the object’s location

that may influence the subsequent trajectory path. In fact, we found

that trajectories in the thumb frequently exhibited direction changes

after first contact by the index finger. These changes may arise

because the index finger is longer and has a degree of freedom more

than the thumb, making adjustments to the location and orientation

easier.

Because the data suggest that locus of control is the index finger,

we focused our analysis of approach direction on the index finger,

shown in Fig. 3C. In the random-end location condition, where

the final object location varied unpredictably, approach direction

is significantly related to the object uncertainty direction (R-

square.0.8038, F[0.05;1,3].12.2905 and P,0.0393), and scales

almost linearly for all participants. However, all participants’

slopes were less than predicted by ideal compensation (shown by

the black discontinuous line). In contrast, for the fixed-end location

condition, where the final position was fixed across trials, the

approach direction was near constant (Fig. 3D).

Figure 3. Approach direction vs. covariance angle for the ‘‘random-end location’’ and ‘‘fixed-end location’’ conditions. (A) Diagram
illustrating the approach direction computation and definition of the covariance angle. The gray solid circle represents the cylinder location, the red
line represents the average trajectory, and ellipse represents the covariation of the spatial distribution of finger locations across trajectories for the
last 10 time steps preceding contact. S1 and S2 correspond to the minor and major axes of the trajectory covariance ellipse, and approach angle h is
the angle between S2 and the x-axis (dotted line). (B) Average ratio S2/S1 across participants for each covariance angle of the major and minor axes
of the trajectory covariance for the thumb (blue line) and the index finger (red line), with standard errors shown in gray. (C) Approach direction for
each covariance angle and participant in the random-end location condition. Error bars are 61 standard error. The black discontinuous line shows
ideal compensation. All participants less than fully compensate with slopes (0.26, 0.4, 0.58, 0.65, 0.67) uniformly less than the ideal of 1. (D) Same as C
for the fixed-end location condition.
doi:10.1371/journal.pcbi.1000538.g003
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PLoS Computational Biology | www.ploscompbiol.org 4 October 2009 | Volume 5 | Issue 10 | e1000538



Does compensation increase the probability of force-
closure grasping?

To quantify how much the change in approach direction

observed in the random-end location condition affected grasp

efficiency, we computed the probability of force-closure for each

participant and covariance angle. We estimated the force-closure

probability for each trajectory by determining the proportion of

sampled object locations that would satisfy the force-closure

conditions at first contact, and averaged across trajectories (see

materials and methods section). An ideal grasp strategy with no

approach noise has a probability of one. To illustrate the

computation, two different trajectories of a single participant with

high and low probability of force-closure are shown in Figs. 4A

and 4B, respectively. Sample cylinder locations are shown in gray,

red describes the actual cylinder position, and the approach of the

index finger and thumb contact surfaces are illustrated by a time

series of line segments. In Fig. 4A the index finger makes contact

with a sample cylinder location (black), which given the approach

of the thumb, satisfies the criteria for force-closure. In fact, this

trajectory will produce force-closure for almost all the cylinder

locations generated from this distribution (0 deg orientation). In

contrast, the trajectory in Fig. 4B fails to produce force-closure for

the location shown in black, and for most of the other sample

locations.

The probability of force-closure provides a measure of the

benefits of modifying approach direction with uncertainty. Fig. 4C

Figure 4. Force-closure performance evaluation. (A) Illustration of the analysis for computing force-closure for a given reach trajectory. Gray
circles represent possible cylinder locations sampled from a covariance matrix with major axis along the dotted line, and the red circle shows the
actual cylinder location. Index finger and thumb contact surface locations are illustrated by a time series of line segments. The black circle shows
index finger contact with a sampled cylinder location. Once the index finger contacts a possible location, the thumb is extrapolated to assess whether
the trajectory would satisfy the conditions for force-closure. This reach trajectory produces force-closure grasping. (B) Illustration of a trajectory with
force-closure failure for most of the sample locations. (C) Probability of producing force-closure is shown for each participant adjacent to a simulated
non-compensation strategy. (D) Relative proportion of inefficient trajectories – trajectories that produce force-closure for less than 20% of sample
location. Square and triangle points represent estimates of the proportion of inefficient trajectories vs. covariance angle for each participant (each
color corresponds to a particular participant same as Figs. 3c and 3d). Note that 61 standard errors of these estimates are so small that are not visible
as error bars on the figure. Dashed and solid lines show the regression results across participants.
doi:10.1371/journal.pcbi.1000538.g004

Grasping under Position Uncertainty
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shows the results (averaged across covariance angles) from the

random-end location condition. To provide a baseline measure of

performance, we compared these results to a simulated non-

compensation strategy, in which we compute the probability of

force-closure for each covariance angle using the trajectories from

the no-motion condition (see materials and methods section). The

difference between these probabilities is a measure of the benefits

achieved by approach compensation.

We can also gain insight into the benefits of compensation by

focusing on the set of trajectories with low performance. We identified

the set of trajectories that produced force-closure for less than 20% of

sample locations (values between 20% and 50% produced similar

results). Because these trajectories will require post-contact adjust-

ments in fingers positions before lift occurs for the majority of cases,

we call this measure the proportion of inefficient trajectories. The results

from this analysis were compared with the results from the

hypothetical scenario in which people do not compensate (simulated

non-compensation strategy) across all covariance angles. Note that

participants showed large differences in this measure but similar

trends. To make these trends easier to visualize, we subtracted the

mean across covariance angles of this measure from each

participant’s data. The results are shown in Fig. 4D. On average

there were fewer inefficient trajectories in the random-end condition

than the simulated non-compensation strategy. The dashed and the

solid lines summarize the regression results across participants for

both the simulated non-compensation strategy and the random-end

location condition. In accord with expectations, a non-compensation

strategy produces inefficiency curves that significantly vary as a

function of covariance angle (R-square = 0.9309, Slope = 20.0022,

F[0.05; 1,3] = 40.4193 and P = 0.0079). In contrast, the inefficiency

curves in the random-end location condition shows that by modifying

approach direction, participants were able to maintain a low

inefficiency rate for all covariance angles (R-square = 0.0015,

Slope = 3.4900e-005, F[0.05; 1,3] = 0.0044 and P = 0.9513). Moreover,

a test of the two regression results shows these trends are different

(ANCOVA, F[0.05; 1,6] = 11.95 and P = 0.0135).

Effects of position uncertainty on grip aperture profile
We also tested whether people modify their grip aperture profile

as a function of condition and covariance orientation, by

computing the mean value of the maximum grip aperture

(MGA) across trials and regressed the results against covariance

angles. For all conditions, we found no significant variation of

MGA magnitude or time with covariance angle. However, there

were significant differences across conditions for all participants

(one-way ANOVA, F[0.05; 1, 598] .106.4595 and P-value ,0.001),

excluding Participant 5, shown in Fig. 5. Interestingly, almost all

participants increased their gripwidth on the ‘‘fixed-end location’’

condition in response to the observed object motion, despite the

fact that the final object position is both visible and always the

same.

Discussion

We have adopted principles from Statistical Decision Theory

[16] to account for human behavior in a purposive movement

task: grasping objects with position uncertainty. Previous studies

have applied Statistical Decision Theory to model reach behavior,

providing evidence that the sensorimotor system’s computation

can be modeled as Bayes optimal, incorporating proprioceptive

and environmental information to minimize the effect of

uncertainty on task performance [3,9–11,17–18]. To simplify

modeling and the assessment of optimality, these studies have

focused on artificial environments and simple tasks involving

point-to-point reaching movements. It is quite challenging to

extend the optimality approach to the study of purposive

movements. The goals and the consequences of such movements

are determined by the application of forces and the effects of noise

and uncertainty, but movement plans need to be expressed in

terms of limb motions. Previous studies involving purposive

movement tasks have provided evidence that people modulate

their grasping strategies when they can predict changes in objects’

intrinsic characteristics, such as center of mass [19–22], surface

shape [23], texture [24], and weight [25]. Particularly, the

sensorimotor system uses information acquired from previous

manipulations of the same object to select digit contact points and

the forces required for object manipulation. However none of

these studies provide models that can explain the anticipatory

motor behavior that participants adopted in grasping. One of the

novelties of the current work is that we used normative predictions

to evaluate the benefits of uncertainty compensation, based on the

Figure 5. Maximum Grip Aperture (MGA). MGA averaged across trajectories and covariance angle for each condition and participants.
doi:10.1371/journal.pcbi.1000538.g005
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hypothesis that participants attempt to minimize overall the grasp

time and use this idea to construct a natural cost function on grasp

approach based on the concept of force-closure grasping at first

contact. We showed how the approach phase of a reach trajectory

determines the time efficiency with which an object can be grasped

and lifted, and generated testable predictions: participants should

modify approach to allow grasp closure along the direction of

maximal uncertainty and increase peak gripwidth (see Text S1).

We observed both kinds of compensation strategies across

conditions; a gripwidth change without approach modification in

the fixed-end position condition, but both gripwidth and approach

changes in the random-end position condition. Previous studies

have also observed gripwidth compensation for uncertainty. In

particular, MGA increases without visual information [26] and

people modify their MGA with the amount of visual uncertainty

about object position [27–28]. However, MGA did not scale with

the orientation of the cylinder position distribution.

Note that modifying the approach direction requires extra

energy to rotate the hand, which means that the advantages of

compensation in terms of efficiency must outweigh these costs.

Non-compensation strategies increase the chance of not producing

force-closure at first contact, which must be corrected by time-

consuming and metabolically costly finger repositioning after

contact. Finger repositioning occurs in a sensory feedback loop

that takes time. Contact locations and forces must be sensed and

appropriate adjustments computed and executed, with a minimum

time lag around 200 ms [19]. Grasping is also frequently time

critical – an object can potentially move during a reach, or the

initial contact by one finger can impart an impulse which will

move the object if not quickly counteracted by the opposing finger.

In addition, in many tasks if force-closure is not met at first

contact, there may not be a second chance for grasping the

objects. Hence, good initial contacts minimize natural costs

associated with time and energy expended during corrective

movements and reduce the chance of negative results.

The probability of achieving force-closure grasping is not the

only criterion used to plan grasping movements, and our results

showed that participants did not fully optimize this measure.

Grasp planning may attempt to optimize other cost criteria in

addition to force-closure grasping at first contact. Possible

biomechanical cost functions, such as energy expenditure [29],

joint mobility [30], muscle tension changes [31], mean torque

changes [32], mean square rate of change of acceleration [33] and

peak work [34] create competing criteria and constraints that must

be simultaneously satisfied (see also [18]). Hence, perfect

compensation may have been difficult to achieve for some

covariance angles and the additional energy required may not

be worth the small gain in grasping performance [35]. Especially,

participants may sacrifice perfect compensation to increase

comfort of their grasp [36]. Another possibility is that trajectories

are selected to minimize the uncertainty in hand and finger

positions [37]. Because participants grasped the object while it was

out of view, this kind of uncertainty may have been non-

negligible. However, in Fig. 1B, we showed that simulated errors

in hand and finger position actually narrow the ranges of

approaches that produce high force-closure probabilities, and

reduce the probability of producing force-closure grasping.

It is important to note that our analysis of optimal grasping

behavior with position uncertainty will not hold in all contexts. In

the optimal analysis we permitted differences between the thumb

and index finger contact times. This is appropriate for our

experiment because the cylindrical object was held in a cradle. In

general, time differences will not affect sufficiently heavy objects.

For objects light enough to be toppled by contacting with one of

the fingers, there will be an advantage to contacting the object

with both fingers simultaneously. For this class of objects, there is a

trade-off between minimizing the chance of knocking over the

object and maximizing the chance of contacting the object. For

instance, catching a frisbee by opening the fingers wider increases

the chance to contact the object, but decreases the chance to catch

it by contacting with both fingers simultaneously. We can extend

the current analysis using similar Statistical Decision Theory

principles and adding a new cost to penalize non-simultaneous

contact of both fingers with the object.

An interesting question is what cues drive the compensation

strategies we observed. Like previous studies, that showed

integration of visual and proprioceptive information in motor

tasks [38–40], participants may use visual and/or haptic feedback

from the finger-cylinder contact to compensate for the position

uncertainty of the object. Comparing fixed-end location and

random-end location conditions suggests that the haptic error

participants experienced in the latter condition is critical for

compensating approach direction. Although participants observed

the distribution of object position in both fixed-end location and

random-end location conditions, only when they felt the location

variability did they modify their approach direction. Nevertheless,

the visual movement is not without effect. Particularly, we found

gripwidth varies between the fixed-end location and random-end

location conditions for most of the participants (excluding

Participant 5). The results suggest that the sensorimotor system

cannot ignore the cylinder motion even when it is uninformative.

However, we found that participants did not adjust the approach

direction with the covariance angle on the fixed-end location

condition, but rather had a preferred approach direction of about

70 deg for all covariance angles.

We also examined whether there was evidence of learning by

dividing trajectories into ‘‘early’’ and ‘‘late’’ groups and compared

their characteristics. We did not find any significant differences in

trajectory characteristics between the two groups, for any

attempted split. The absence of significant learning effects is likely

due to trajectory variability and the number of trials (100).

However, it may also indicate that uncertainty compensation

strategies are relatively constant.

In conclusion, the results show that people plan for the effects of

uncertainty in selecting object contacts in purposive movement

tasks.

Materials and Methods

Participants
Five right-handed (25–30 years old, 4 men and 1 woman)

participants with normal or corrected-to-normal vision participat-

ed in the study for monetary compensation. The appropriate

institutional review board approved the study protocol and

informed consent was obtained based on the Declaration of

Helsinki.

Apparatus
Participants were instructed to reach rapidly with and then use a

precision grasp to lift a cylindrical object (2.2 cm diameter and

11.5 cm height) held in a cradle on a platform mounted on a

robotic arm that precisely moved the object (,1 mm error),

Fig. 2A. Trajectory data were recorded by placing three infrared

sensors on hard foam blocks attached to the fingernails of both

index finger and thumb, which were tracked via an Optotrak 3020

with sampling rate 100 Hz. Reaches began with index finger and

thumb placed on a reference block located 52 cm away from the

average position of the cylinder and 1 cm above the platform
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plane. For convenience, we transformed all data to a coordinate

frame in which the x-dimension corresponds to a straight line

connecting the midpoint of the finger starting location to the

midpoint of the average of the cylinder contact locations. The y-

dimension is formed from the cross-product of the x-dimension

and the cylinder’s main axis. Finally, the z-dimension is

perpendicular to x and y-dimension. Head-stabilized (via chinrest)

participants viewed the cylinder at a distance of 52 cm through

liquid crystal glasses which were used to occlude the object during

reach time. Ear plugs and closed ear headphones were used to

eliminate auditory cues to the motion of the object while it was out

of view. A trip switch guaranteed the object was lifted at least

5 mm.

Experimental paradigm
Participants selected a comfortable reference position by placing

both fingers along the top edges of the reference block at the

beginning of the experiment. At the start of each trial, participants

viewed the cylinder for a period of time that depended on

condition, and then vision was removed by shutting down the

crystal liquid glasses. Thereafter, they were cued to rapidly reach,

precision grasp and lift the object within 1200 ms while it was out

of view. The trial was considered successful if the participant lifted

the cylinder to trigger the switch within the timeout, however,

none of the participants failed to grasp the cylinder within

1200 ms. The fingers had to be returned within 3 mm of their

starting positions before the next trial was begun.

Participants were familiarized with the task by running a

number of training trials on the non-motion condition. Once they

were ready and felt comfortable with grasping the cylinder, the

real trials began. On the no-motion condition the cylinder was

stationary and the view time was 1 sec before glasses occluded the

vision of the object. In the fixed-end location condition, the robotic

arm moved the cylinder over a sequence of 5 random positions

(1 sec each) sampled from a strongly oriented 2D Gaussian

distribution. The cylinder was returned to the based (initial)

position and the view was occluded after 1 sec. Thereafter,

participants reached and grasped the cylinder, while it was out of

view. Note that participants were told that the cylinder always

returned to the base position. In the random-end location

condition, the cylinder moved over a sequence of 5 positions

(1 sec each) randomly generated by a strongly oriented 2D

Gaussian distribution. Thereafter, the view of the object was

occluded and the object moved to a new random position selected

from the same Gaussian distribution. Finally, participants reached

and grasped the cylinder, while it was out of view. In this

condition, participants were told that the cylinder moved to a new

position from within the same distribution of the 5 visible

positions. For both fixed-end location and random-end location

conditions, we used an 80 deg range of distribution orientations

(220u, 0u, 20u, 40u, 60u), designed to fit within, but strongly

challenge participants’ natural biomechanical reaching posture.

The standard deviations of the major and minor axes of the

covariance were 12 mm and 0.25 mm, respectively. Note that the

covariance angle was defined with respect to the x-dimension of

the coordinate frame. Trials from each covariance angle were

blocked, and 100 trials of reaching, grasping and lifting the

cylindrical object were performed for each block.

Spatial trajectory data
Kernel density estimation was used to analyze the spatial

distribution, velocities and orientations of the thumb and index

finger trajectories as illustrated Fig. 2B. We computed the

frequency that reach trajectories passed through a grid of spatial

locations (1 mm61 mm) in the 2D space (ignoring z-axis). We

produced a density estimate from the frequency data using a

Gaussian Kernel with standard deviation of 5.5 mm. The colors of

the density map describe the probability density values with red

corresponding to high and blue corresponding to low density

regions. Smoothed estimates of the average velocity (arrows) and

orientation (line segments) at each spatial location were also

computed, because the number of measurements varied across

cells. For each cell, velocity and orientation estimates were

generated by performing a weighted average of these values from

trajectories across neighboring cells, using a Gaussian filter with

standard deviation of 3.5 mm as a weighting function.

Trajectory analysis
We computed approach direction for the average trajectory for

each participant on the two conditions (fixed and random-end

location). Because averages are strongly affected by outliers, we

excluded trajectories that had substantially different temporal

characteristics. Note that trajectory data were spatially variable,

but timing was consistent for trajectories with similar velocity

profile. From the histogram of the time of maximal x-velocities, we

selected the trajectories that fell within 80% the histogram mean

(i.e., 10%–90% percentiles of the distribution) and averaged them.

From the average trajectory, we computed the approach direction

of the main axis of the ellipse that describes the spatial variation of

the fingers centroids, Fig. 3A. The approach direction was

computed as the direction of the principal axis of the covariance

ellipse that describes the spatial variation of the sensor centroids

across both trajectories and time points from the contact time

through the preceding 100 ms (10 time steps). This 100 ms time

period was selected because it corresponds to the average duration

for closing the fingers (kinematically identified as the period in

which the x-velocity is near zero and the y-velocity indicates the

fingers are moving toward each other). Bootstrap resampling was

used to estimate the mean and the standard error of the approach

direction for each participant and covariance orientation. The

mean and the standard error of the approach direction were

computed from 100 bootstrap resamples. Because contact times

were difficult to automatically detect from kinematic data, all

candidate contact times were cross-checked both by visual

inspection and by verifying that the index finger x- and y-velocity

were near-zero and the distance of the finger to the cylinder was

consistent with contact.

In addition, we measured MGA because it serves as a measure

of position uncertainty [26] and changes with viewing eccentricity

[27–28] and without vision [26]. In particular, fingers are opened

wider for grasping objects without precise information about their

position, most likely to avoid finger-object collision or missing the

object. On each block of the experiment, we computed the

average MGA by measuring the maximum distance between the

centroid of sensors on the index finger and the thumb for every

trajectory and averaging these values across the 100 trajectories.

Note that this distance is 4.5 cm larger than between the contact

surfaces of the index finger and thumb, due to the widths of the

fingers and the 1 cm thick foam blocks the sensors were mounted

on.

Calibration of finger contact surfaces
To evaluate object-finger contact, we computed an estimate of

the index finger and thumb contact surfaces relative to the sensor

locations via a calibration procedure. The index finger and thumb

were placed in grooves on a calibration block and the sensor

locations were recorded. The orientation and position of the

calibration block were also recorded by placing sensors in known
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locations on the calibration block. The groove angle, length and

depth were precisely known due to the geometry of the block and

the block required precision grip contacts similar to those made on

the cylindrical object. We converted this information to approx-

imate the index finger and thumb contact surfaces and computed

a homogeneous transformation that converted between sensor and

finger coordinates. In particular, finger coordinates had an origin

at the center of the estimated region of potential contact, and had

directions aligned so that one axis (the surface normal) was

perpendicular to the calibration block surface (and hence index

finger and thumb normals were parallel but opposite in direction),

one axis pointed in the direction of the groove (along the length of

the index finger and thumb), and the other axis roughly

corresponded to finger width. Once projected into the x-y plane

the surface approximation became a line segment that has a 1–

2 mm error from the actual index finger/thumb contact surface.

Evaluation of human strategies for grasping objects with
directional position uncertainty

According to an optimal statistical modeling approach, the goal

is to select a visuomotor grasping strategy that chooses a desired

movement trajectory by optimizing the expected gain. The gain

function takes into account the costs and benefits of possible

outcomes of the movement [18]. Although there are multiple

factors that affect grasping as described in the discussion, we focus

on the gain provided by achieving force-closure at first contact.

We use ‘‘optimal strategy’’ to refer to a grasping strategy that

maximizes the probability of satisfying force-closure without post-

contact adjustments. Selecting the optimal strategy can be

described as an optimization problem as follows, where uppercase

refers to random variables and lower case to instances.

The optimal movement policy �ss� maximizes Eq. (1).

�ss�~ argmax
�ss

G �ssð Þ~
ð

s

ð
c

R c,sð ÞP(c) p sj�ssð Þ ds dc

� �
ð1Þ

where S is a random variable denoting an executed movement

strategy, �SS are reach plans, C represents cylinder locations, P(c) is

the distribution of cylinder locations, R c,sð Þ is an indicator

function for the event of successful cylinder contact satisfying

force-closure conditions given that the actual movement trajectory

is s. The conditional distribution p sj�ssð Þ is the probability of

performing the actual movement trajectory given that the planned

movement trajectory is �ss. FinallyG sð Þ corresponds to the

probability that force-closure conditions are satisfied following

the movement trajectory s. In the ‘‘Text S1’’ we show how to solve

Eq. (1) to find the optimal strategy.

To keep the analysis tractable, we made the following

simplifications. Due to the shapes of both cylinder and fingers,

and the post-contact lift direction of the cylinder we can safely

neglect the spatial dimension along the cylinder’s z-axis and focus

on the perpendicular plane. Within the plane, the contact surfaces

of the index finger and thumb can be approximated as line segments

(see lower inset of Fig. 1A). The index finger’s contact surface is

parameterized by the line segment’s midpoint, rf, directions uf

parallel and u\f perpendicular to the surface, and a half-width e.

The thumb’s contact surface is parameterized similarly, but with

subscripts th. With this representation, a reach plan is a desired

trajectory S(t) = {rf, rth, uf, uth}, where time dependence is

suppressed inside the brackets to make the notation less complex.

Possible locations for the cylinder (with radius r) centroid is

modeled as a random vector ci sampled from a 2D Gaussian

density P(c). To simplify the conditions for contact, we project the

samples ci into a frame of reference defined by the index finger’s

(or thumb’s) contact surface, forming contact coordinates. Contact

coordinates are simply the position of points in the environment

with respect to the index finger and thumb surfaces. Let

Uf ~ uf u\f

h ih i
, then the contact coordinates for the cylinder

with respect to the index finger are given by:

wf

df

� �
~UT

f ci{rf

� �

Contact coordinates for cylinder with respect to the thumb are

similarly defined. The analysis of optimal grasping is presented in

lower inset of Fig. 1A.

The force-closure indicator function R C,Sð Þ, is based on the

following necessary conditions for object-finger contacts to be in

force-closure:

1. The index finger and thumb are touching the cylinder on the

appropriate sides: df ~r and dth~r

2. The contact point is within the width of the index finger or

thumb: wf

�� ��ƒe, and wthj jƒe

3. Nguyen [15] showed that a necessary condition for force-

closure requires the index finger and thumb contacts to be at

surface locations that are within each other’s friction cones and

include the center of mass (see upper inset of Fig. 1A). For a

coefficient of static friction m and given A~czru\th,

B~czru\f are the contact points of the thumb and index

finger respectively, the necessary conditions for force-closure

are:

c1~ mu\thzuth

� �T
DAB ƒ0 ð2aÞ

c2~ mu\th{uth

� �T
DAB ƒ0 ð2bÞ

c3~{ mu\f zuf

� 	
T

DAB ƒ0 ð2cÞ

c4~{ mu\f {uf

� 	
T

DAB ƒ0 ð2dÞ

Where DAB~r u\
f {u\thÞ

�
is the vector between the contact

points A, B.

Due to the cylinder geometry, the 4 conditions above are

equivalent to the simplified condition, Eq. (3) that the angle

between the surface normals is greater than 90 deg, for a

coefficient of fiction m = 1 (reasonable for skin-plastic contact):

u\thÞ
Tu\

f ƒ0 ð3Þ
�

Hence, the indicator function F~R C,Sð Þ is given by Eq. 4:

F~H { u\th
� �T

u\
f

� 	
H wf

�� ��{e
� �

H wthj j{eð Þd df {r
� �

d d th{rð Þ ð4Þ

Grasping under Position Uncertainty

PLoS Computational Biology | www.ploscompbiol.org 9 October 2009 | Volume 5 | Issue 10 | e1000538



Where H and d denote Heaviside step function and the Delta

Dirac, respectively (see Text S1 for more details)

To compare human performance to optimal, we estimated the

probability of force-closure from trajectory data. For each

participant and condition, we treated the set of trajectories as

samples from p sj�ssð Þ, the distribution of trajectories given the

participant’s strategy in that condition. To estimate G �ssð Þ, we also

computed the expected probability of force-closure for each

trajectory and then averaged across trajectories, which can be

considered a kind of Monte Carlo integration.

We estimated the expected probability of force-closureð
c

R c,sð ÞP(c) dc associated with an observed trajectory by

measuring the proportion of sampled cylinders that could have

been contacted by the fingers along the trajectory and that would

have satisfied the conditions for force-closure, had the cylinder

been at one of these sampled locations. For each movement

trajectory in a random-end location condition with a specific

covariance angle, we generated M (where M = 1000) virtual

‘‘cylinder positions’’ drawn from a P(c) with mean and covariance

equal to those used in the random-end location condition block of

the experiment. The main difficulty in computing this estimate

was that either the index finger or thumb was stopping when it

made contact with the actual cylinder before sweeping through all

sampled cylinder locations. After one of the fingers made contact,

the remaining trajectory was biased by the knowledge of the actual

cylinder location, and thus should not be used to estimate the

probability of force-closure given the reach plan. However,

evaluating the conditions for force-closure requires both fingers

to contact the cylinder. To overcome this problem, we took

advantage of the fact that trajectories were near-linear and had

low-variability close to the center of the cylinder distribution.

Thus, we assumed that the remaining trajectory of the non-

contacting finger can be replaced by extrapolating in the direction

of average trajectory (across all trials) for that finger at the contact

time, until the extrapolation either contacted or missed the

cylinder. Because the proportion of locations intersected was

affected by this collision, we normalized the counts by the number

of cylinders that the ideal strategy would successfully grasp if the

index finger and thumb were stopped at the same locations. This

computation is illustrated for two different trajectories in Figs. 4A,

and 4B, respectively.

We tested the optimality of participants’ grasp strategies and to

provide a comparison, we also estimated the deterioration in

grasping performance if participants do not compensate for

uncertainty. To provide a baseline comparison for this grasp

performance measure, we estimated the probability of force-

closure if participants had adopted a non-compensation strategy

for the random-end location condition (and hence would not have

compensated for the cylinder location uncertainty). We simulated

the non-compensation strategy by estimating the expected

probability of force-closure for no-motion condition trajectories

on the random-end location condition cylinder locations.

Supporting Information

Text S1 Supplementary Materials

Found at: doi:10.1371/journal.pcbi.1000538.s001 (0.09 MB

DOC)
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