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Abstract

To characterize intracellular energy transfer in the heart, two organ-level methods have frequently been employed:
31P{NMR inversion and saturation transfer, and dynamic 18O labeling. Creatine kinase (CK) fluxes obtained by following
oxygen labeling have been considerably smaller than the fluxes determined by 31P{NMR saturation transfer. It has been
proposed that dynamic 18O labeling determines net flux through CK shuttle, whereas 31P{NMR saturation transfer
measures total unidirectional flux. However, to our knowledge, no sensitivity analysis of flux determination by oxygen
labeling has been performed, limiting our ability to compare flux distributions predicted by different methods. Here we
analyze oxygen labeling in a physiological heart phosphotransfer network with active CK and adenylate kinase (AdK)
shuttles and establish which fluxes determine the labeling state. A mathematical model consisting of a system of ordinary
differential equations was composed describing 18O enrichment in each phosphoryl group and inorganic phosphate. By
varying flux distributions in the model and calculating the labeling, we analyzed labeling sensitivity to different fluxes in the
heart. We observed that the labeling state is predominantly sensitive to total unidirectional CK and AdK fluxes and not to
net fluxes. We conclude that measuring dynamic incorporation of 18O into the high-energy phosphotransfer network in
heart does not permit unambiguous determination of energetic fluxes with a higher magnitude than the ATP synthase rate
when the bidirectionality of fluxes is taken into account. Our analysis suggests that the flux distributions obtained using
dynamic 18O labeling, after removing the net flux assumption, are comparable with those from 31P{NMR inversion and
saturation transfer.
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Introduction

In heart, the mechanisms that ensure energy production meets

demand over a wide range of workloads, remains unclear.

Fundamental to this search is an accurate understanding of the

recycling fluxes of ATP, ADP, Pi, and phosphocreatine (PCr)

between the mitochondrial inner membrane space and the

ATPases on both the myofibrils and sarcoplasmic reticulum. In

highly compartmentalized environments, such as heart muscle [1–

8], determination of energy transfer fluxes is far from trivial. The

organ level methods used to determine the fluxes include 31P-

NMR inversion and saturation transfer, and the transient labeling

of c{ATP, b{ATP, b{ADP, and Pi using H18
2 O, a method we

refer to as dynamic 18O labeling. To estimate the fluxes using 31P-

NMR inversion and saturation transfer, magnetization transfer has

been simulated in the compartmentalized system and fitted against

experimental data [9–12]. A recent study [12] employed rigorous

statistical testing of model solutions against experimental data

using stochastic models that described measurement uncertainty.

Such analysis was applied to discriminate between energy transfer

pathways over a range of cardiac performance levels. These results

suggest that at least 40% of the energy is exported via direct ATP

transfer at high cardiac performance. This method is unable to

determine the split between direct ATP transfer and the creatine

kinase (CK) shuttle at lower cardiac performance. While the split

has not been determined for all conditions, total CK unidirectional

flux was found to be stable if energy demand was changed either

by variation of extracellular calcium or by left ventricle balloon

volume in isovolumetric contractions.

There are several complications that have to be considered

when interpreting magnetization transfer experiments. As sum-

marized recently [13,14], magnetization transfer interpretation

should be based on a complete model of the biochemical reactions

that could contribute to the measured transfer. For example,

oversimplified interpretation of saturation transfer experiments to

determine the ATP synthesis flux by analyzing the rate Pi and

ATP can lead to overestimated values for ATP synthesis [13]. A

recent study overcame this limitation by analyzing 31P-NMR

inversion and saturation transfer results using compartmental

models and statistical methods on multiple experiments [12].

Dynamic 18O labeling has also been employed to measure the

fluxes of high-energy metabolites [15–28], although no study to
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date has measured the cardiac performance dependence of these

fluxes [29]. The dynamic incorporation of 18O into c{ATP,

b{ATP, b{ADP, and Pi was quantified using mass spectrom-

etry in earlier papers, and more recently using 18O-assisted 31P-

NMR [20]. From the 18O labeling data in [28], a linear

relationship was found between rate pressure product after

ischemia-reperfusion recovery of individual hearts and energy

transfer through CK. This relationship was identified due to

variation of heart recovery after being exposed to ischemia-

reperfusion with and without preconditioning. In control condi-

tions, before exposure to ischemia, the flux through CK was

estimated to be 330+20nmol:mgprotein{1:min{1 which con-

verts to *2mM:s{1 (see Methods for conversion factors). This is

considerably smaller than the total CK unidirectional flux

*6mM:s{1 in [12] and other 31P-NMR saturation transfer

studies [30–38]. However, in contrast to 31P-NMR saturation

transfer studies, it is proposed that flux estimation on the basis of
18O labeling leads to the estimation of net flux through CK shuttle

system [20,24]. Definitions for net and total flux are provided in

Figure 1. Usually, labeling by isotopic tracers depends on the

bidirectionality of reactions which allows transfer of the label in

the opposite direction to net flux in the system [39]. Considering

that the adenylate kinase (AdK) and CK reactions are reversible, it

is expected that 18O labeling could be influenced by the

bidirectionality of the reactions, as well as the net flux through

the shuttles.

The incorporation of 18O into the phosphoryl groups of ATP

and Pi has been used in many studies including analysis of the

ATP synthase mechanism [40] and cyclic nucleotide metabolism

[41]. To study cyclic nucleotide metabolism, the rate of 18O
incorporation into the a{phosphoryl groups of guanine nucle-

otides was measured to calculate the change in cyclic GMP and

cyclic AMP flux [41]. Another study by the same group used the

rate of 18O incorporation into the a{phosphoryl groups of ADP

and ATP to calculate cyclic AMP fluxes in human platelets [42]. A

number of years later the same group developed a technique that

is able to determine the rate of ATP hydrolysis (and synthesis) by

exchanging H16
2 O with H18

2 O and tracking the time course of 18O

incorporation into c{ATP [43]. In contrast to a{phosphoryl
groups, c{phosphoryl groups are exchanged much more often,

and this technique was deemed to be unreliable if Pi and ATP also

participate in reactions that have a higher magnitude of flux than

the synthesis rate [43], such as the CK reaction in isolated rat

heart [31].

The H18
2 O labeling technique was then applied in a long series

of papers that explore the fluxes in the phosphotransfer networks

of both heart and skeletal muscle [15–28,44,45]. While it was

stated in [20,22,24,25,46] that labeling was analyzed using models,

the details of these models were not presented. Despite this, it was

further stated that the method determines net flux through the

individual phosphotransfer pathways. For determination of net

flux through the CK shuttle, a relationship between PCr labeling

and CK flux was established on the basis of gradual inhibition of

CK [16,27]. However, to our knowledge, no sensitivity analysis of

this method of flux determination has been performed which limits

our ability to compare flux distributions predicted by H18
2 O

labeling, and 31P-NMR inversion and saturation transfer. In

addition, we are unaware of any comprehensive kinetic analysis of
18O labeling on a phosphotransfer network in its entirety since the

work by Dawis et al. [43].

The aim of this work is to analyze the properties of H18
2 O-

provided labeling in a physiologic heart phosphotransfer network

with active CK and AdK shuttles and establish which fluxes

determine the labeling state. For this, we use an integrated kinetic

model able to predict the dynamic 18O labeling state to assess if the

labeling state is sensitive to net fluxes when enzymatic and

transport fluxes are not assumed to be unidirectional.

Results

An integrated kinetic model was constructed to account for all

isotope transformations that occur in the high-energy phospho-

transfer network reactions in heart (Figure 1). The dynamic

transformation of isotopologue species occurs while the phospho-

transfer network reactions proceed at a steady rate. This kinetic

model is able to simulate the dynamic change in 18O enrichment

in each phosphoryl group and phosphate ion given a steady flux

distribution and a time dependent function of the ratio of H18
2 O:

H16
2 O. Note that the labeling state of H18

2 O is simulated in enzyme

bound compartments. Details of the model construction are

provided in Methods.

Model validation
Prior to conducting the sensitivity analysis a number of model

validation steps were performed. First, we tested if the steady state

labeling distribution predicted by the model matches the

theoretical distribution provided by Dawis et al. [43]. Following

this we compared the dynamic predictions of our model to the

dynamic predictions in [43]. Figure 2 shows that both the steady

state and dynamic labeling state predictions provided by our

model are indistinguishable from those provided by the model

developed by Dawis et al.

Additionally, it is important to ensure that the model we

constructed is able to provide predictions that adequately match

published dynamic 18O labeling data measured in heart. In most

studies, the fluxes derived from organ-level labeling are published

without the corresponding labeling dynamics of individual species.

However, a recent paper does provide dynamic measurements of

Author Summary

In heart, the movement of energy metabolites between
force-producing myosin, other ATPases, and mitochondria
is vital for its function and closely related to heart
pathologies. In addition to diffusion, transport of ATP,
ADP, Pi, and phosphocreatine occurs along parallel
pathways such as the adenylate kinase and creatine kinase
shuttles. Two organ-level methods have been developed
to study the relative flux through these pathways.
However, their results differ. It was recently demonstrated
that 31P{NMR studies often suffer from the exclusion of
compartmentation from their metabolic models. One
study overcame this limitation by using compartmental
models and statistical methods on multiple experiments.
Here, we analyzed the sensitivity of the other method -
dynamic 18O labeling of phosphoryl groups and inorganic
phosphate. For that, we composed a mathematical model
tracking enrichment of the metabolites and evaluated
sensitivity of labeling to different flux distribution scenar-
ios. Our study shows that the dynamic 18O method
provides a measure of total flux, and not net flux as
presumed previously, making the fluxes predicted from
both methods consistent. Importantly, conclusions derived
on the basis of 18O labeling analysis, particularly those
regarding the net flux through the shuttles in control and
pathological cases, need to be reevaluated.

Dynamic Isotopologue Model of Oxygen Labeling
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Figure 2. Model validation using the steady state labeling distribution and dynamic human platelet results in [43]. All labeled species
are plotted separately with the number of attached 18O atoms indicated by symbols. Measured data points from [43] are filled; Calculated points from
[43] are unfilled; Lines represent simulations performed in this work. Subplot A shows the labeling distribution found at isotopic steady state as the

H18
2 O is ranged from zero to 100% H18

2 O. The steady state points are identical to those predicted in [43]. Subplot B is a fit to the dynamic human

platelet data in [43] (37 C, 32.3% H18
2 O.). The model in [43] is reproduced by setting the CK flux equal to zero and assuming all reactions are

unidirectional. Note that the results of our simulation match with the simulation results in [43]. The parameters a and b from [43] were used to find

the ATP pool (
1

a
), and Pi pool (

1

a:b
).

doi:10.1371/journal.pcbi.1002795.g002

Figure 1. Heart phosphotransfer network used as the basis of the model in this work. CK fluxes are taken from Vendelin et al. [12]. The
AdK fluxes are taken from flux distribution 1 found in Table S1 where it was assumed that the ratio of total CK fluxes to the total AdK fluxes is the
same as the ratio of the activity measurements made by Aksentijević et al. [47]. Enzymatic fluxes are given in blue and transport fluxes are given in
orange with arrows indicating the direction of positive net flux. Bidirectional fluxes have two bubbles attached to their arrows, with the upper bubble
showing the forward flux and the lower bubble the reverse flux (net flux is forward minus reverse). Unidirectional fluxes have arrows with one bubble
that indicates the forward flux. The numbers on the AdK reaction arrows indicate stoichiometry. To compare the influence of bidirectional and net
fluxes we introduce two total fluxes, one each for AdK and CK. The total flux through the CK shuttle is the sum of unidirectional reactions in the
mitochondrial intermembrane space (IMS) and cytosol that proceed towards PCr (1:12mM:s{1+4:88mM:s{1), and the total AdK flux is the sum of
unidirectional AdK reactions in the IMS and cytosol that proceed towards ADP (1:06mM:s{1+0:94mM:s{1). The magenta arrows indicate
unidirectional substrate fluxes, while the green arrows show bidirectional substrate exchange fluxes. The intermediate enzyme bound state of both
ATPase and ATP synthase is reversible with respect to H2O and Pi (see Methods).
doi:10.1371/journal.pcbi.1002795.g001

Dynamic Isotopologue Model of Oxygen Labeling
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the four labeled species of Pi (18O16
1 O3Pi,18O16

2 O2Pi, 18O16
3 O1Pi,

18O4Pi) and the three labeled species of c{ATP (18O16
1 O2c{ATP,

18O16
2 O1c{ATP, 18O3c{ATP) that result after surgically remov-

ing hearts from anesthetized male rats, and immediatly immersing

harvested atrial tissue in Krebs-Henseleit solution enriched with

30% H18
2 O [28]. As a test we used the first flux distribution from

Table 1 and simulated the labeling state. This flux distribution is

based on a flux distribution found using organ-level rat heart 31P-

NMR inversion and saturation transfer results from [12] together

with an estimation of the AdK flux from activity measurements

[47]. We found that without any fitting, the model prediction could

explain the 18O{labeled atrial tissue data in [28] (see Figure 3).

Note that such close similarity between the measurements and the

model solution was obtained using a flux distribution that

corresponds to significantly different conditions (isovolumetrically

beating heart vs isolated atrial tissue). It is clear from Figure 3 that

the model does not exactly match the 120 second data point for
18O16

1 O3Pi. This species of Pi is the entry point of 18O into the

model and the overshoot in predicted labeling is analogous to that

seen in Figure 2B and discussed in [43]. The dynamic overshoot in
18O16

1 O3Pi is less dramatic than in Figure 2B due to the differences

in the flux distributions used and inclusion of CK reactions. The

absence of the overshoot in the measurements can be due to the

gradual labeling dynamics of water (the simulation uses a perfect

step change), compartmentation of Pi, and the influence of reactions

not considered in the model. The available data does not contain

enough information to warrant the changes required for our model

to fit this one datapoint. This is especially true because no estimation

of measurement error was provided in [28], so it is not possible for

us to quantify the goodness of fit. However, while comparing the

model solution to this measured data we found that many possible

flux distributions provide labeling predictions that also adequately

explain the measured data.

Model sensitivity
Following model validation, we performed a sensitivity scan of

the model parameters. The most sensitive parameters were found

to be the ATP synthase rate as well as the net and exchange fluxes

through the AdK shuttle. Figure 4 provides upper and lower

bounds for the dynamic labeling state predictions when the cardiac

performance and net fluxes in the system are kept constant. Note

that the upper and lower bounds are formed from multiple

simulation results. We varied six enzymatic exchange fluxes (AdK

(2 fluxes, one in cytoplasm and one in mitochondria), CK (2), ATP

synthase, ATPase), 12 transport exchange fluxes (Pi (2), water (3),

ADP (4), ATP (2), PCr (1)), and 18 pool parameters (ADP (5), ATP

(5), Pi (4), PCr (2), water (2)). The six enzymatic exchange fluxes

were varied over five evenly spaced points each for a total of 15625

combinations. Small and large pool size sets were constructed

based on their mean values and standard deviations reported in

[12]. Two transport exchange flux sets with high and low values

were used. This gives a total of 15625:2:2~62500 combinations.

Additional combinations of pool parameters could increase the

upper and lower ranges of sections of these curves, however, the

Figure 3. Model simulation together with dynamic H18
2 O rat

atrial tissue results from [28]. The fluxes used to simulate the
labeling state plotted here correspond to flux distribution 1 from
Table 1, however, a wide range of flux distributions are able to fit this
data. This distribution uses the same direct ATP and CK fluxes as those
predicted by 31P-NMR inversion and saturation transfer in [12], and uses
the activity measurements in [47] to estimate the AdK flux. The

exchange of H18
2 O occurs over 30 s and the isotopic labeling state is

seen to reach its equilibrium value at 120 s as stated in [20]. The
labeling state curves take into account the active metabolic pool sizes
of 90% ATP and 70% Pi reported in [28].
doi:10.1371/journal.pcbi.1002795.g003

Table 1. List of flux distributions considered in this paper.

Flux
distribution Percentage of energy export Bidirectional fluxes

AdK ATP CK CK AdK

shuttle diffusion shuttle shuttle shuttle

1{ 5 45 50 ! !

2 5 45 50 ! !

3 5 45 50 !

4& 5 45 50 !

5& 5 45 50

6 0 50 50 ! !

7 0 0 100 ! !

8 5 0 95 ! !

9 5 95 0 ! !

These flux distributions were selected to range between physiologically feasible
states while considering both unidirectional and bidirectional flux cases.
Supporting Table S1 contains the flux values.
{Relatively high total AdK flux, taken from [47].
&Unidirectionality leads to low total AdK flux.
doi:10.1371/journal.pcbi.1002795.t001

Dynamic Isotopologue Model of Oxygen Labeling
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change is not expected to be pronounced because the total pool

size of the metabolites in this model are well characterized [12].

Table S2 provides upper and lower ranges for all 36 parameters

that were varied. The labeling state of b{ATP is most sensitive to

changes in metabolic pool sizes and exchange fluxes. It was found

that AdK exchange fluxes influence the b{ATP labeling state,

and not the labeling state of other species. Figure 5 illustrates how

the transient labeling predictions change when the ATP synthesis

rate or the total AdK flux is changed.

Referring to Figure 5, the ATP synthesis rate is seen to influence

the labeling state of all species, however, the total AdK flux mainly

influences the labeling state of b{ATP. Note that the combined

sensitivity of all exchange fluxes and pool sizes is roughly the same

as the influence of the ATP synthesis rate.

Physiological sensitivity
The main application of dynamic 18O labeling analysis is for the

determination of intracellular flux distributions. In general, to be

able to determine the flux distributions, the method must be

sensitive to variations in the fluxes. In the case of dynamic 18O

labeling analysis, the 18O labeling of species has to be sensitive to

the changes in the fluxes of reactions considered. Having

determined which model parameters influence labeling state

predictions most, we tested if the model is able to distinguish

between various flux distributions that are physiologically possible

within the context of the model we present. We restrict the

physiological sensitivity analysis to a heart performance where

predictions of the energetic fluxes in rat heart are available. To

simplify the initial phase of the physiological sensitivity analysis,

the bidirectionality of transport reactions as well as pool size

parameters were held constant. The combined influence of these

parameters, together with the physiological parameters, provide

similar predictions of the labeling state (see Figure 4), and thus can

be treated sequentially in a more general sensitivity analysis.

In total, nine flux distributions were studied. These flux

distributions were selected to test the labeling sensitivity to the

changes of specific fluxes, as explained below. General descriptions

of these are provided in Table 1; Table S1 provides a detailed

summary of the fluxes. Flux distributions 1 through 6 have roughly

equal contributions to the net export of energy via direct ATP

transfer and the CK shuttle. Flux distributions 6 and 7 have zero net

flux through the AdK shuttle. Flux distributions 7 and 8 have 100%

and 95%, respectively, of the energy exported via the CK shuttle,

while flux distribution 9 exports 95% via direct ATP transfer.

There are several specific questions that are of interest when

studying the flux distributions. First, what is the magnitude of the

fluxes? In terms of dynamic 18O labeling analysis: How does the

labeling state change when the activities of CK and AdK are

increased? Comparing the simulated labeling states of flux

distributions 1, 2, and 4 could provide insight into the effect of

increasing the activity of AdK, while comparing flux distributions 2

and 3 could provide insight into the effect of increasing CK activity.

Comparison of flux distribution 5 to the above tests reducing the

total flux of both enzyme systems (CK and AdK) simultaneously.

Figure 4. Influence of bidirectional fluxes and metabolic pool sizes on the predicted labeling state. Keeping the cardiac performance
constant and using net fluxes from flux distribution 1 within Table 1, all other parameters (18 bidirectional fluxes and 18 metabolic pool sizes) in the
model were varied over wide physiological ranges (Table S2 provides the ranges simulated). The upper and lower bounds of the predicted labeling
state over all of these simulations are shown with filled regions. Regions with maximum spread are most sensitive to these parameters. Note that the
labeling state of b{ATP is the most sensitive to changes in bidirectional fluxes and metabolic pool sizes. Symbols indicate labeled species.
doi:10.1371/journal.pcbi.1002795.g004

Dynamic Isotopologue Model of Oxygen Labeling
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Another question of interest is: Do net flux and bidirectional

enzyme activity have different influences on the labeling state?

Comparing flux distributions 2 and 6, as well as 7 and 8, allows

one to test if the labeling state is determined by net AdK flux, or

bidirectional AdK enzyme activity. Note that in those pairs of the

flux distributions, the net flux of AdK shuttle changes.

Finally, how does the labeling state change when the net

transport of energetic phosphoryl groups occurs via the CK shuttle,

or direct ATP transport? Insight into this important question could

be provided by comparing flux distributions 2, 8, and 9.

Additional combinations of these flux distributions allow for

additional comparisons. Transient solutions for these nine flux

distributions after a step to 30% H18
2 O and 100% H18

2 O are

provided in Figure S1.

To compare the different influence of bidirectional and net

fluxes we introduce two total fluxes, one each for AdK and CK.

The total flux through CK is the sum of unidirectional reactions in

the mitochondrial intermembrane space (IMS) and cytosol that

proceed towards PCr, and the total AdK flux is the sum of

unidirectional AdK reactions in the IMS and cytosol that proceed

towards ADP. To perform the comparison between fluxes, in our

analysis, the total flux is increased by simultaneously increasing the

forward and reverse flux in one or both compartmental locations

(Method A), or by increasing the net flux through the shuttle

Figure 5. Influence of heart cardiac performance and AdK flux on the predicted labeling state. Subplot A shows the labeling state
predicted using flux distribution 1 within Table 1 while varying the ATP synthase flux, shown with a color gradient. Note that the total CK and total
AdK fluxes were kept constant while changing the ATP synthase flux by changing the CK and AdK exchange fluxes. The AdK exchange fluxes in the
cytosol and IMS were changed by the same amount, while the CK exchange flux in the IMS was maintained at zero, i.e. only the cytosolic exchange
flux was adjusted to maintain a constant total CK flux. Subplot B shows the labeling state predicted using flux distribution 1 while varying the total
AdK flux, shown with the same color gradient. The units in both legends are mM:s{1 . Note that the labeling state is more sensitive to changes in
lower magnitude total AdK fluxes. As the AdK flux approaches the ATP synthase rate (2:25mM:s{1), the predicted labeling state becomes insensitive
to changes in the AdK flux. Symbols indicate labeled species.
doi:10.1371/journal.pcbi.1002795.g005

Dynamic Isotopologue Model of Oxygen Labeling

PLOS Computational Biology | www.ploscompbiol.org 6 December 2012 | Volume 8 | Issue 12 | e1002795



(Method B). Table S1 provides the expressions used to increase total

flux using both methods. It should be noted that Method B requires

changing the net flux through one of the other parallel pathways

(AdK shuttle, or direct ATP transport, or the CK shuttle.

Excluding Figure 6, where the sensitivity to total CK flux was

analyzed, all flux distributions chosen use a total CK flux of

6mM:s{1 taken from [12] (except flux distributions 3 and 5 which

have unidirectional CK fluxes). We take this as the maximum CK

flux. This flux lies at the lower range determined in other 31P-

NMR saturation transfer studies [30–38]. Aksentijevic’ et al. found

that the activity of CK is three times higher than AdK [47], so we

took the maximum AdK flux to be 2mM:s{1, represented in flux

distribution 1. Pucar et al. reported an AdK flux equivalent to

0:276mM:s{1 [20], and a lower value of 0:3mM:s{1 was chosen

for all other flux distributions (except 4 and 5 which have

unidirectional AdK fluxes).

Figure 6 shows the influence of changing the total AdK flux

using Method A while keeping all other fluxes in the flux

distribution constant (see Table 1). In this and following figures,

some flux distributions overlap others over the range of the plot

(flux ranges provided in Table S1), i.e. in Figure 6, flux distribution

2 is not plotted since it is a subset of flux distribution 1. All

Figure 6. Influence of total AdK flux on the labeling state at 30 s and 60 s after a step change to 30% H18
2 O (A), and at 30 s and 60 s

after a step change to 100% H18
2 O (B). Different flux distributions (see Table 1) were used to analyze the sensitivity of the labeling state to total

AdK flux variation. All subplots indicate that the labeling state of b{ATP is the most sensitive indicator of total AdK flux. The vertical black line
indicates the total AdK flux found in [20] for normoxic rat hearts. Comparing the slopes of the curves in (A) and (B), we see that labeling with 100%

H18
2 O enhances the sensitivity of the dynamic H18

2 O labeling method. Line colors indicate the flux distribution, while the symbols indicate the

number of 18O atoms.
doi:10.1371/journal.pcbi.1002795.g006

Dynamic Isotopologue Model of Oxygen Labeling
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solutions for 30% H18
2 O are seen to give similar labeling

distributions as the AdK flux is changed. Note that regardless of

the differences in the net flux between these flux distributions, the

labeling state depends mainly on total AdK flux. After a step

change to 30% H18
2 O the labeling states of PCr, c{ATP, and Pi

are only sensitive to total AdK fluxes below 0:5mM:s{1. b{ATP

is seen to be sensitive up to 1:0mM:s{1 at 30s, reducing to

0:5mM:s{1 at longer sampling times, as evidenced by the

variation of b{ATP labeling induced by changes in total AdK

flux (see Figure S2). Labeling with 100% H18
2 O is seen to extend

the range of sensitivity to total AdK flux for all species. The use of

100% H18
2 O increases the rate of label incorporation into the

phosphotransfer network without changing the ATP synthase or

ATPase rates. This increases the ratio of the rate of label uptake to

the rate of phosphotransfer reactions.

Because the metabolic system given in Figure 1 is compart-

mentalized, it is helpful to explore if the compartmental location of

the AdK flux has an influence on the labeling state. Figure S3

shows the influence of changing the compartmental location of the

AdK flux while keeping both the total AdK flux and all other

fluxes in the flux distribution constant. Using 30% H18
2 O, the

compartmental location of the AdK flux is not seen to influence

the labeling state, however, labeling with 100% H18
2 O shows that

the labeling state is somewhat sensitive to the compartmental

location of the AdK flux, with the largest sensitivity observed in the

labeling state of b{ATP.

To explore how the two coupled CK fluxes influence the labeling

state, a plot (Figure 7) of total CK flux versus species labeling was

produced using Method A while keeping the other fluxes in the

system constant (see Table S1). The vertical black line shows the CK

flux that was calculated by Pucar et. al based on observations of the

labeling state [20] (see Methods). While the flux found in [20] was

expected to be net flux through CK shuttle, total flux through the CK

reaction should be at least as large as the one estimated in [20]. This

plot clearly shows an insensitivity of the labeling state to total CK

flux above 2mM:s{1. This means, for example, that the 6mM:s{1

total CK flux determined in [12] provides almost the same labeling

state of 18O species as that provided by 2mM:s{1. This

demonstrates that the dynamic 18O method is not sensitive enough

to distinguish between any CK flux above 2mM:s{1. The use of

100% H18
2 O is seen to slightly increase the range of sensitivity (see

Figure S4). Note that the differences between solutions are due to

differences in total AdK flux.

Keeping total and net AdK flux constant as well as total CK flux

constant, the percentage of energy exported via direct ATP

transfer was varied from zero (maximum net flux through the CK

shuttle) to its maximum possible value (zero net flux through the

CK shuttle). The labeling states of flux distributions 1, 2, 4, and 7

were plotted during this change in Figure 8. For illustration, two

unidirectional CK flux distributions (3 and 5) were included in the

plot and are discussed below separately. Figure 8A (30% H18
2 O)

shows that the labeling state in the four flux distributions with

reversible CK does not change appreciably as the flux of energy

export is shifted from predominantly CK mediated to direct ATP

transport, while Figure 8B (100% H18
2 O) shows a moderate shift in

labeling state. Figure S5 provides additional time points for

Figure 8. Looking at these we see that in practice, this moderate

shift cannot be used to determine which parallel pathway carries

the most flux. This is also true because a number of less

characterized parameters of this model such as the reversibility of

ATP synthase to oxygen exchange and the sizes of metabolic pools

have comparable effects on the labeling state (see Figure 4).

Considering bidirectional flux distributions 1, 2, 4, and 7, in

Figures 7 and 8, we see that the labeling states for each flux

distribution are almost identical. This demonstrates that the

labeling state is predominantly determined by total CK flux and

not net CK flux. This property prevents the labeling state from

explicitly defining the net flux through the CK shuttle. Similar

conclusions can be reached from the analysis of energy export via

AdK shuttle, as demonstrated in Figure S6.

For illustration, two additional flux distributions (3 and 5) with

unidirectional CK fluxes are plotted on Figure 8. In this case, it is

not possible to keep the total CK flux constant over the range of

the plot, so the range of Figure 8 can be interpreted as a change in

total CK flux produced using Method B. For these two flux

distributions, the labeling state approaches that of the other four

flux distributions while moving from lower to higher percentages

of energy export via CK (lower to higher total CK flux). This

shows that total CK fluxes above 2mM:s{1 produce the same

labeling state regardless of the percentage of energy export.

To illustrate the properties of the pseudo-linear approximation

method, used to determine the CK flux in [16] and more recently

in [27], we used the same pseudo-linear approximation on

predictions provided by our model. This approach is based on

establishing the relationship between PCr labeling and CK flux

through inhibition of CK activity by DNFB. For illustration, we

used flux distribution 9, plotted in Figure 7, that provides a model

prediction of the labeling state of all labeled species of CK as the

total CK flux is gradually inhibited. Figure 9 applies the pseudo-

linear approximation method to the total labeling curve found by

combining the single, double, and triply labeled species of this

model prediction. As Figure 9 demonstrates, the pseudo-linear

approximation method underestimates total CK flux.

Discussion

The main result of this work is that measuring the dynamic

incorporation of 18O into the high-energy phosphotransfer

network in heart does not allow for the unambiguous determina-

tion of net energetic fluxes larger than the ATP synthase rate when

the bidirectionality of fluxes is taken into account. A number of

observations from our sensitivity analysis lead to this statement: (I)

the same 18O labeling states can be produced using many different

flux distributions, (II) the labeling state is observed to be

considerably more sensitive to total flux than to net flux, (III) in

both the CK and AdK shuttles, the labeling state is sensitive only

within the lower ranges of total flux, and (IV) the shift from 0 to

95% flux through direct ATP transfer results in indistinguishable

labeling states when total CK flux is kept constant.

Use of dynamic 18O labeling to study flux distributions
Looking at the sensitivity plots in Figures 4 and 5 we see that a

wide range of model parameters provide very similar predictions

of the 18O labeling state (both in magnitude and structure).

Changing different parameters simultaneously is likely to result in

a very similar prediction of the labeling state. This identifies that in

the range of physiologically relevant cardiac performance and

shuttle activity, many parameters in this model are structurally

unidentifiable — including net flux (observation (I).

Observation (II) does not support the suggestion that the 18O
labeling method leads to estimation of net flux through phospho-

transfer systems, as proposed in [20,24]. According to our

simulations, total flux through CK and AdK reactions have a major

role in determining the labeling state of metabolites (Figures 3 and 6).

Thus, our simulation results suggest that the fluxes estimated using

Dynamic Isotopologue Model of Oxygen Labeling
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the 18O labeling method in [20] are total fluxes and can be directly

compared to the fluxes estimated using 31P-NMR saturation studies.

Observation (III) limits the use of the 18O labeling method to

study fluxes that are smaller than the ATP synthase rate, echoing a

statement made by Dawis et al. [43]. The 18O labeling method

may be used to measure the flux of reactions that proceed at a rate

slower than the ATP synthase rate such as reactions involving the

a{phosphoryl groups of ATP or ADP [41,42].

With regards to observation (IV), we note that the use of 100%

H18
2 O increases the sensitivity of the method, although this is not

enough to find the proportion of energy exported via direct ATP

transfer and the CK shuttle. Looking at Figure S5B, we see that a

ten second labeling experiment using 100% H18
2 O would result in

a mass isotopologue distribution that could allow one to determine

this split. This short duration experiment would present technical

challenges, and the mixing rate of H18
2 O would become a critical

component of the model, perhaps requiring the use of an organ

level model taking into account heterogeneity within the heart.

Taken together, these observations lead to the conclusion that

labeling with H18
2 O does not provide sufficient sensitivity to study

the large fluxes, such as expected for the CK shuttle, under the

conditions simulated herein. However, there are a number of ways

that the sensitivity of the 18O method can be improved, for example,

by: (I) increasing the rate input of 18O into the phosphotransfer

Figure 7. Influence of total CK flux on the labeling state at 30 s after a step change to 30% H18
2 O (A), and 100% H18

2 O (B). Different flux
distributions (see Table 1) were used to analyze the sensitivity of the labeling state to total CK flux variation. Both subplots indicate that the labeling
state of all species is insensitive to the total CK flux above 2mM:s{1 (vertical black line). This insensitive range includes values found in [20] and in
[12] where total CK flux was found to be around 6:0mM:s{1 . Analogous plots at 10s provided in Figure S4 show that it may be possible to gain

information about the total CK flux in experiments shorter than 10s using 100% H18
2 O, although it would be technically challenging to perform such

an experiment. Line colors indicate the flux distribution, while the symbols indicate the number of 18O atoms.
doi:10.1371/journal.pcbi.1002795.g007
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network through the use of H18
2 O with a larger enrichment, (II)

performing experiments at higher cardiac performance, and (III)

using shorter sampling times. Figure S6 shows that the labeling state

is more sensitive to changes in AdK flux using 100% H18
2 O and

labeling states predicted for the different flux distributions show a

larger variation at shorter time points.

Model implementation and analysis
The integrated kinetic model presented in this work was

constructed to account for the most rapid isotope transformations

that occur in the high-energy phosphotransfer reaction network in

heart. As a first step in our analysis, a number of tests were

conducted to determine if this model is suitable for the analysis of

published dynamic 18O labeling data. Figure 2 shows that both

steady state and dynamic labeling state predictions provided by

our model match the predictions from the model developed by

Dawis et al. [43]. Thus, we are able to reproduce earlier published

studies with our implementation of the model. The model

presented here is considerably more complex because it considers

the bidirectionality of reactions as well as compartmentalized

metabolic pools. It should be noted, however, that this added

Figure 8. Change in metabolic labeling state at 30s with a transition from the maximum possible CK shuttle export ratio to the
maximum possible ATP export ratio after a step change to 30% H18

2 O (A) and 100% H18
2 O (B). Flux distributions 1, 2, 4, and 7 have

constant total and net AdK flux as well as total CK flux over the range of the plot. Flux distributions 3 and 5 have unidirectional CK flux, and thus the
total CK flux varies over the range of the plot. The sensitivity displayed by these two flux distributions results from the change in total CK flux and not
CK export ratio. Looking at the other four flux distributions, subplot (A) shows that the export of energy via direct ATP export or the CK shuttle has a
minor influence on the labeling state. Subplot (B) shows that the change in export ratio provides a small change in labeling state but cannot be
considered a sensitive parameter. Line colors indicate the flux distribution, while the symbols indicate the number of 18O atoms.
doi:10.1371/journal.pcbi.1002795.g008
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complexity is a minimum requirement to separate out the effects of

net versus total flux. Following this, we demonstrate that the model

solution is consistent with published dynamic traces of 18O labeling

(see Figure 3). Intriguingly, in Figure 3, we used a flux distribution

determined by 31P-NMR inversion and saturation transfer [12] to

calculate the labeling of metabolites in rat heart atrial tissue, and

found that a wide range of flux distributions are able to reproduce

these measured labeling states.

A number of simplifying assumptions were made to construct

the model we present in this work. It is explicitly assumed that all

metabolic fluxes proceed at a steady metabolic rate. In addition,

we do not employ enzyme kinetics in the flux simulations,

although this is not seen as a trade off because the resulting model

has fewer parameters and many of the enzymatic kinetic

parameters are not well characterized. A number of phospho-

transfer fluxes were excluded from the model. However, the

dynamic 18O labeling method may be useful to determine total

fluxes lower than the ATP synthase rate, so adding reactions with

fluxes of lower magnitude may allow one to determine total flux in

the additional phosphotransfer pathways. This extension of the

model could be used to study how these total fluxes, which include

the AdK shuttle flux, are altered under diseased conditions. It is

expected that adding additional phosphotransfer reactions into the

model will result in a dampening of the model dynamics, including

the 18O16
1 O3Pi dynamics observed in Figure 3.

Unfortunately, the original 18O labeling dynamics used for flux

estimations in [20] have not been published. While early dynamic
18O labeling studies include original labeling dynamics of individual

species [41–43], only sums of species are reported in later studies

[15–17,25,44,45,48]. For the heart, most of the reports include only

derived data in the form of flux estimates [19–21,23,24,26,49]. Two

heart studies include labeling dynamics reported as a sum of species

in mouse and rabbit [18,27]. A recent study reports labeling

dynamics in atrial tissues taken from surgically excised male rat

hearts [28]. However, no fluxes are reported in [28], thus we cannot

compare the flux distributions derived from 31P-NMR inversion

and saturation transfer [12] with 18O labeling dynamics.

We produced these modeling results using a step change from

H16
2 O to a percentage of H18

2 O in the surrounding water. This change

provides the most sensitive change in labeling state. In practice,

however, the switch between H16
2 O and H18

2 O will be slower and will

reduce the sensitivity of the method relative to our predictions.

As an alternative approach to the analysis presented in this

work, one could compose hypothetical data sets and find the

confidence intervals of model parameters. This would give an

estimate of the sensitivity of the labeling method. Regardless of the

approach used, we expect the conclusions to be the same. The

approach used in this work was tailored towards comparison of

different flux distributions to see whether the different energy

transfer mechanisms proposed in the literature can be distin-

guished on the basis of 18O labeling data.

Physiological implications
Without going through the published data presented in all

dynamic H18
2 O studies [15–27,44,45], it is sufficient to state that

interpretation of dynamic 18O labeling data requires one to

consider the size of metabolic pools and the bidirectionality of

metabolic reactions. When comparing the total flux determined

using 31P-NMR inversion and saturation transfer analysis

(6mM:s{1) [12] with the net flux determined by 18O labeling

analysis in control conditions for hearts before exposure to

ischemia-reperfusion (2:02mM:s{1) [20], we see from Figure 6

that the same labeling state is predicted with both fluxes. Keeping

in mind that the pseudo-linear approximation method may

underestimate the total CK flux (see Figure 9), the underlying

flux distribution in the corresponding experiments could have

been the same, regardless of the fluxes predicted in the control

cases in [12] and [20]. However, we should stress that the flux

distributions in [12] and [20] could be different due to differences

in substrates used in those studies.

Importantly, our modeling results resolve all known discrepan-

cies between the results of the dynamic 18O labeling method, and
31P-NMR inversion and saturation transfer. No fundamental

difference was found in the nature of the fluxes being measured

(net versus total), and indistinguishable labeling states were

predicted using fluxes with different magnitudes. Because our

model is non-discriminatory with respect to CK fluxes, we suggest

that interpretation of dynamic 18O labeling data would result in

flux predictions that are compatible with 31P-NMR inversion and

saturation transfer results.

Future directions
It has been shown that information regarding the compart-

mentation of metabolites and the bidirectional nature of metabolic

Figure 9. Pseudo-linear estimation of CK flux in rat heart on the
basis PCr labeling at 30s. The total PCr oxygen labeling at 30s after a
step change to 30% H18

2 O is found by combining the labeling of the
three labeled PCr species in Figure 7 (flux distribution 9), using the
equation for total labeling used by Dzeja et al. [20]. In [16], to estimate CK
flux, CK activity was inhibited and corresponding total PCr labeling was
found. Assuming that the total CK flux equals 6mM:s{1 , the red dots
show the fraction of inhibition used in [16] to calculate the CK flux. As
demonstrated in the plot, a linear approximation of PCr labeling-CK flux
relationship (blue line, least squares fit), leads to the underestimation of
total CK flux. In this example, instead of 6mM:s{1 (PCr labeling taken for
that CK flux), the CK flux found by the pseudo-linear estimation is
0:95mM:s{1 , close to the flux reported in [20]. A horizontal dashed line
corresponding to the labeling state at 6mM:s{1 flux and a vertical green
line at CK flux found by pseudo-linear approximation are provided as
visual aids for clarity. The above geometry shows that the pseudo-linear
method underestimates total CK flux.
doi:10.1371/journal.pcbi.1002795.g009
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fluxes is contained in the dynamic component of labeling data

[39]. Combining a range of sampling points from short and long

labeling experiments may increase the sensitivity of isotopologue

modeling because many fewer flux distributions will have same

labeling dynamics that match all measured data compared with

only one sampling point. Finding plausible flux distributions from

dynamic data sets requires the use of an integrative kinetic model.

The model composed in this work included a system of 132

ordinary differential equations that were generated using a

specialized program (see Text S1). While composition of such a

model is not trivial, we find it an obligatory step for the analysis of

labeling dynamics.

For the phosphotransfer network in the heart, sampling at an

earlier time, in addition to 30 seconds, would enhance the

sensitivity of the method. Adding an additional sampling point

at a longer time during the approach to isotopic equilibrium would

provide a better means to extract pool size information from the

isotopic transient. However, the dynamic 18O labeling method

requires the sacrifice of multiple animals per time point, and

adding additional sampling times will greatly increase both the

ethical and monetary costs.

In [20], the performance of Langendorff perfused rat hearts was

relatively low, as evidenced by the rate pressure product (RPP)

equal to 35000mmHg
beats

min
. For comparison, the performance

range used to study energy transfer in [12] was, in terms of RPP,

from 1700 to 86900mmHg
beats

min
. While the highest RPP value in

[12] corresponded to the case which should be considered as an

extreme condition representing pathology and at the limit of the

isovolumic perfused heart [12,29]. However, no signs of patho-

logical conditions at 63300 and 81900mmHg
beats

min
were ob-

served. These levels of cardiac performance are considerably

larger than the level of cardiac performance used in [20]

suggesting that higher cardiac performance levels are attainable

using the same isovolumic preparation. This would increase the

flux through ATPase reactions and improve the sensitivity of the

dynamic 18O labeling method. In this work (Figure 5A), the upper

range of simulated cardiac performance is 3:6mM:s{1, which

roughly corresponds to 57000mmHg
beats

min
.

While our results show that dynamic 18O labeling data is

unable to determine CK fluxes with a higher magnitude than the

ATP synthase rate, or the split between the CK shuttle and direct

ATP transfer in normoxic hearts, this method is sensitive to total

AdK flux because total AdK flux is expected to be lower than the

ATP synthase flux [47]. Our sensitivity analysis shows that

changes in total AdK flux produce significant changes in the

labeling state of b{ATP. This opens up the possibility of

combining the dynamic 18O labeling approach with 31P-NMR

inversion and saturation transfer. By using the same rigorous

statistical testing of the model solutions against experimental data

as in [12], with both types of data, it would be possible to

combine the strengths of both methods with the promise of

determining intracellular energy transfer flux distribution in the

beating heart. It is for this reason that we view these two organ-

level methods as complementary.

Our results widen the discussion that attempts to reveal the

mechanisms that ensure the homeostasis of metabolites during

cardiac function (or not) [50]. Understanding these mechanisms

will require the use of integrative kinetic models that consider

all possible operating modes of this metabolic network and all

possible functional purposes of all enzymes, metabolites, and

dynamic effects involved in the transfer of ATP from the IMS

to the myofibrils and sarcoplasmic reticulum Ca2+ ATPase

pumps.

Methods

Composition of metabolic system
The metabolic network in Figure 1 is the simplest possible

model that is able to separate out the effects of net versus total flux

in the CK and AdK shuttles. The reactions included in the

network are a subset of the reactions known to transfer high-

energy phosphoryl groups. Reactions catalyzed by the enzymes

glyceraldehyde-3-phosphate dehydrogenase, 3-phosphoglycerate

kinase, pyruvate kinase, hexokinase, succinyl-CoA synthase, and

guanylate kinase have been excluded to simplify the system. The

activities of the four glycolytic enzymes mentioned are equal to or

less than the activity of AdK [47,49]. With the exception of

guanylate kinase, the net flux through all of these reactions is

constrained by the stoichiometry of a larger metabolic network

and is not expected to contribute appreciably to ATP regenera-

tion. An estimate of glycolytic net flux is provided by 13C
isotopologue studies which have calculated that the anaplerotic

flux into the citric acid cycle derived from glycolysis is between 3

and 12% [51] of net citric acid cycle flux which varies between 4

and 150mM:s{1 in normoxic heart [52]. Because the citric acid

cycle flux is much smaller than the ATP synthase flux considered

here (2:25mM:s{1), and is constrained by the stoichiometry of the

entire metabolic network, we have excluded these reactions from

the analysis. However, the reversibility of these fluxes coupled to

large pools could facilitate temporary regeneration of the ATP

pool in the failing heart, a phenomena recently observed by

Aksentijević et al. [47]. Their reversibility could slow down the

dynamics of 18O incorporation somewhat by increasing the size of

the pool of metabolites that become labeled. This phenomenon is

analogous to adding a compartmentalized side pool which slows

down the labeling transient as described in [39]. Because this study

is concerned with only the net fluxes in normoxic heart we need

not consider these reactions here.

Uptake of 18O from H18
2 O

Because the model developed in this work tracks the transient

exchange of each oxygen atom in the phosphotransfer network

with the surrounding water environment, it is necessary to know

how each oxygen atom transfers during the course of each

reaction. It is known that exchange of phosphate oxygens with

those of water does not occur in glycolysis [53, and references

therein] and requires ATPases. Only the ATPase and ATP

synthase reactions are able to transfer 18O between H18
2 O and any

of the four oxygen atoms of inorganic phosphate. Pi is symmetric

and enrichment in each oxygen position occurs at the same rate.

The enrichment observed in the three oxygen atoms of c{ATP
are also identical. Enzyme bound states for both ATPase and ATP

synthase were included in the model because it is known that even

under physiological conditions of oxidative phosphorylation

multiple reversals of ATP formation occur before ATP is released

to the media [54], and multiple reversals are known to occur

during actomyosin catalysis [55]. No appreciable amount of

positional oxygen exchange is observed between the b{bridge
and c{nonbridge oxygens in ATP or the a{bridge and

b{nonbridge oxygens in ADP [56]. Taken together, these

properties ensure that all three oxygen atoms in every phosphoryl

group of all species have an equal probability of being isotopically

labeled. The derivation of the model equations assumes this

behavior.
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Derivation of model equations
The model was constructed by: (I) generating the full set of

individual isotopic transformations, (II) combining these transforma-

tions into a mass balance around each isotopologue in the system, (III)

composing mass isotopologue pool relations while taking into account

oxygen atom mappings, and (IV) composing mass isotopologue

balances by collecting the isotopologue balances according to the pool

relations. The result is a system of 132 ordinary differential equations

(ODEs). The intermediate equations for all of these steps are provided

in supporting Text S1. The mass isotopologue equations contain

variables for (I) the pool size of all 18 metabolic species and (II) the

forward flux for all 20 reactions as well as the reverse flux for the 17

bidirectional reactions, giving a total of 37 unidirectional flux variables.

A program was written in Python to generate these equations. This

program implements symbolic manipulation tools specifically designed

to carry out steps (I) through (IV), and is available as a Python module

for generation of mass isotopologue equations in http://code.google.

com/p/iocbio/wiki/IOCBioOxygenIsotopeEquationGenerator.

Selection of model parameters
The 18 metabolic pools are assumed to be constant during the

labeling processes. Pool size measurements for total ATP, PCr,

and Pi were taken from Vendelin et al. for activation by Ca

1.8 mM [12]. The sizes of these pools are 7.55+1.13 mM,

16.4+2.44 mM, and 1.41+0.78 mM, respectively. In [12], the

pool of ADP was too small to measure, and was taken as 1% the

ATP pool. The pools of these four species are split between the

various compartments in the model. In the IMS, the fraction of the

total pool of ATP, PCr, and ADP was taken to be 1% of the total

amount of each metabolite. The fraction of the total pool of ATP,

ADP, and Pi in the enzyme bound ATPase and ATP synthase

states was taken to be 0.05% of the total amount of each

metabolite. The fraction of ATP, ADP, and Pi in the mitochon-

drial matrix was taken to be 12.5% from measurements of the

ATP pool [12]. The pool size of enzyme bound water was taken to

be the same size as the enzyme bound ATP pool.

The 20 net flux variables in the model are constrained to

metabolic steady state by three independent net flux variables. We

chose these to be the net rate of ATP synthase, the net flux of ATP

between the IMS and the cytosol, and the net flux of PCr between

the IMS and the cytosol. A set of 17 relations between these and all

other net flux variables was found using a method we recently

developed [57]. The forward and reverse fluxes for the 17

bidirectional reactions were constructed by combining the net flux

with an exchange flux, as described by Wiechert and Graaf [58].

Conversion of fluxes
Figure 1B in the paper by Pucar et al. reports a CK flux of 330

nmol

mgProtein:min
[20]. All metabolite data are expressed in

mmol

L
of

intracellular water, assuming 2.72
mL

mgProtein
intracellular water

to total protein content, as in Vendelin et al. [12], so the CK flux

in [20] converts to 2:02mM:s{1. Likewise, Figure 2B in [20]

reports an AdK flux of 45.6
nmol

mgProtein:min
which converts to

0:276mM:s{1.

The citric acid cycle flux is reported by Des Rosier et al. to be

between 0.1 and 4
mmol

gww:min
in [52]. As above, assuming 2.72

mL

mgProtein
, and 160

mgProtein

gww
as in Vendelin et al. [12], these

values convert to between 4 and 150mM:s{1.

Numerical methods
To solve the system of ODEs we used a variable-coefficient

ODE solver with the Backward Differentiation Formula method

[59] provided by SciPy (http://www.scipy.org). Our system of

ODEs was implemented in C for computational efficiency and

exposed to Python using f2py [60] for efficient prototyping.

Supporting Information

Figure S1 Dynamic simulation of the 18O labeling state of the

phosphotransfer network given in Figure 1 for the nine different

sets of steady fluxes found in Table S1. Subplot (A) shows the

simulations with a step change to 30% H18
2 O while subplot (B)

shows the simulations with a step change to 100% H18
2 O. Flux

distributions 4 and 5 (in green) deviate with respect to b{ATP
labeling state and are the only solutions with unidirectional AdK

flux. Solution 1 has a larger AdK flux and also deviates with

respect to b{ATP labeling. Greater differences between

solutions and a more complex dynamic component is observed

in the lower plot with 100% H18
2 O labeling. The vertical black

line indicates the 30 s sampling point used in [20]. Colors

represent flux distributions in Table S1, and symbols indicate the

number of 18O atoms attached to either Pi or the phosphoryl

group of the species being plotted (indicated in the top right

corner of each subplot).

(PDF)

Figure S2 Additional time slices for Figure 6. Influence of total

AdK flux on the labeling state at 30 s and 60 s after a step change

to 30% H18
2 O (A), and at 30 s and 60 s after a step change to

100% H18
2 O (B). The first two grey bars are the regions plotted in

Figure S6. The third grey bar shows the high value of AdK flux

estimated from the ratio of AdK and CK activity measurements

made by Aksentijević et al. [47].

(PDF)

Figure S3 Influence of compartmental location of AdK flux on

the labeling state at 30 s after a step change to 30% H18
2 O (A), and

100% H18
2 O (B). All flux parameters are given in Table S1. When

100% H18
2 O is used as the labeling agent, the labeling state is

weakly sensitive to the compartmental location of AdK flux. Line

color and symbol notation are identical to Figure S1.

(PDF)

Figure S4 Additional time slices for Figure 7. Influence of total

CK flux on the labeling state at 30 s after a step change to 30%

H18
2 O (A), and 100% H18

2 O (B). The plots at 10 s show that it may

be possible to gain information about the total CK flux in

experiments shorter than 10 s when using 100% H18
2 O, although,

it would be technically challenging to perform such an experiment.

(PDF)

Figure S5 Additional time slices for Figure 8. Change in

metabolic labeling state at 30 s with a transition from the

maximum possible CK shuttle export ratio to the maximum

possible ATP export ratio after a step change to 30% H18
2 O (A)

and 100% H18
2 O (B).

(PDF)

Figure S6 Change in labeling state with increasing energy

export via AdK at 30 s after a step change to 30% H18
2 O (A), and

100% H18
2 O (B). All flux parameters are given in Table S1. The

two ranges (0–0.112 and 0.188–0.3) correspond to the first two

grey bars in Figure S2. The vertical grey line indicates the total

AdK flux found in [20]. This line lies in a region where only the
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labeling state of b{ATP can be used to find total AdK flux. In

contrast, using 100% H18
2 O, total AdK flux is weakly sensitive to

the labeling state of the other species. Line color and symbol

notation are identical to Figure S1.

(PDF)

Table S1 Flux distributions used in Figures 6–8 and Figures

S1, S2, S3, S4, S5, S6. The rows in this table summarize all flux

distributions considered in this paper. These flux distributions

were selected to range between physiologically feasible states.

Figures S2, S3, S4, S5, S6 plot predictions of the labeling state

as one flux parameter (shown in bold) is varied over the range

of the plot. Relationships between all other flux parameters are

provided. Flux distribution and figure(s), are denoted by FD

and Fig., respectively. Subscripts x, f, and r refer to the fraction

of net flux, forward, and reverse fluxes, respectively. Super-

scripts o, i, and t refer to cytosolic, IMS, and total fluxes,

respectively.

(PDF)

Table S2 Parameter ranges used to construct Figure 4. In total,

36 fluxes are listed, however, these are derived from 18 exchange

flux parameters. In addition, 18 pool size parameters are included.

(PDF)

Text S1 Derivation of the model equations with all intermediate

steps.

(PDF)
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