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Abstract

Critical dynamics are assumed to be an attractive mode for normal brain functioning as information processing and
computational capabilities are found to be optimal in the critical state. Recent experimental observations of neuronal
activity patterns following power-law distributions, a hallmark of systems at a critical state, have led to the hypothesis that
human brain dynamics could be poised at a phase transition between ordered and disordered activity. A so far unresolved
question concerns the medical significance of critical brain activity and how it relates to pathological conditions. Using data
from invasive electroencephalogram recordings from humans we show that during epileptic seizure attacks neuronal
activity patterns deviate from the normally observed power-law distribution characterizing critical dynamics. The
comparison of these observations to results from a computational model exhibiting self-organized criticality (SOC) based on
adaptive networks allows further insights into the underlying dynamics. Together these results suggest that brain dynamics
deviates from criticality during seizures caused by the failure of adaptive SOC.
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Introduction

In the terminology of physics, a system is said to be in a critical

state if it is poised on a threshold where the emergent macroscopic

behavior changes qualitatively. The hypothesis that the brain is

operating in such a critical state is attractive because criticality is

known to bring about optimal information processing and

computational capabilities [1–4]. Recent experimental observa-

tions of patterns of neuronal activity exhibiting scale-free

distributions, a typical hallmark of phase transitions, provided

further evidence for this hypothesis. Bursts of neuronal activity

were first shown in reduced preparations in rat brains to follow

power-law probability distributions, termed neuronal avalanches

[1,5]. More recently, neuronal avalanches were also observed in

invasive recordings from monkeys and cats, strongly suggesting

that criticality is a generic property of cortical network activity in

vivo [6–8].

Additional evidence for the existence of a critical state in human

brain dynamics comes from a recent study by Kitzbichler et al. [9].

Using magnetoencephalography (MEG) and functional magnetic

resonance imaging (fMRI), the authors found power-law proba-

bility distributions of two measures of phase synchronization in

brain networks. As confirmed by computational models, these

distributions show power-law scaling specifically when those model

systems are in a critical state resulting in strong evidence that

human brain functional systems exist in an endogenous state of

dynamical criticality at the transition between an ordered and a

disordered phase.

Theory predicts local events to percolate through the system in

the form of avalanches of activity at the critical state [10]. Such a

critical state requires a homeostatic regulation of activity leading to

a balance of excitation and inhibition in order to prevent states

where events are either small and local or very large, engaging

most of the network. A promising mechanism showing robust self-

organized criticality (SOC) - the ability of systems to self-tune their

operating parameters to the critical state - came from the discovery

of network-based mechanisms, which were first reported in [11]

and explained in detail in [12,13]. These works showed that

adaptive networks, i.e., networks that combine topological evolution

of the network with dynamics in the network nodes [14], can

exhibit highly robust SOC based on simple local rules. In

computational models it could be shown that realistic local

mechanisms based on this adaptive interplay between network

activity and topology are sufficient to self-organize neuron

networks to a critical state, providing a plausible explanation of

how criticality in the brain can be achieved and sustained [15–17].

A so far unresolved question concerns the medical relevance of

critical brain activity. Diseases in the central nervous system are

often associated with altered brain dynamics. It has been

hypothesized that the dynamical properties characterizing a

critical state may be seen as an important marker of brain well-

being in both health and disease [18]. Epilepsy is a malfunction of

the brain associated with abnormal synchronized firing of neurons

during a seizure [19]. The increased collective neuronal firing

during attacks has been speculated to be linked to a pathological

deviation away from a critical state [20]. Evidence supporting this
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idea comes from recent in vitro studies of animal brains. There,

application of receptor blockers could drive network dynamics

away from its normal state where activity patterns of neuron

dynamics deviated from a power-law [6,21].

Here, we confirm the previously observed power-law distribu-

tion of phase-lock intervals (PLI) with a complementary experi-

mental methodology, providing additional evidence for the

criticality hypothesis. Furthermore, we present evidence that

human brain networks in vivo are not in a critical state during

epileptic seizure attacks. Deriving the distribution of PLI from

electrocorticogram (ECoG) data as an indicator of critical brain

dynamics as proposed in [9], we find that the system deviates from

scale-free behavior during seizures. Combined with results from a

computational model exhibiting SOC these observations suggest

that dynamics of brain networks is typically close to criticality, but

departs from the critical state during epileptic seizures. Together

these results hint to the failure of adaptive SOC as a cause for

seizure generation.

Results

Analysis of ECoG Data
We investigated data sets from ECoG acquired during

presurgical monitoring of patients suffering from focal epilepsy.

Data were continuously sampled at 200 Hz (patients 1–7) or

256 Hz (patient 8) with the number of channels ranging from 30 to

45 for different patients. The time series recorded from the

anatomical site where the epileptic focus was assumed typically

included one or more neurographically-identifiable seizure attacks.

To test brain dynamics for signatures of criticality we analyzed

ECoG activity in different time windows. The data sets were split

in intervals of 150 seconds length (30000 sample steps at 200 Hz

sampling, 38400 in the case of 256 Hz) with consecutive intervals

overlapping by 100 seconds (20000 sample steps at 200 Hz, 25600

at 256 Hz). Following the approach in [9], we determined the

distribution of phase-locking intervals (PLI) as an experimentally

accessible indicator of critical brain activity. The length of time

windows was chosen to be long enough to give a reliable estimate

of the distribution of PLI on the one hand and allow observation of

its evolution in time on the other hand. For each of these sets, we

calculated phase-lock intervals and determined their cumulative

density distributions for scales 2, 3 and 4 corresponding to

frequency intervals 50–25 Hz, 25–12.5 Hz and 12–6 Hz for

patients 1–7 (P1–P7) and 64–32 Hz, 32–16 Hz, 16–8 Hz for

patient 8.

The distributions for all scales closely follow a power-law

probability distribution with p(PLI)*PLIa during pre-ictal time

intervals and a between 22 and 23.5. Statistical tests based on the

Kolmogorov-Smirnov statistic and likelihood ratios [22] showed

that the hypothesis of a power-law PLI distribution could not be

rejected for most pre-ictal data sets, furthermore a recent

comprehensive analysis of various fitting functions applied to

PLI distributions had revealed a power-law to be the most likely fit

[9]. The apparent robustness of the power-law against exact

conditions (different anatomical regions with varying number of

channels) strengthens the hypothesis of the relevance of a critical

state in human brain dynamics.

While the PLI distribution followed a power-law in time

intervals preceding the seizure onset, a deviation from power-law

behavior was observed in intervals containing the seizure attack.

Figure 1 shows distributions of PLI derived from a pre-ictal, an

ictal and a post-ictal time interval. The probability to find longer

PLI increased during attacks thereby destroying the scale-free

property of the original distribution. After the seizure this

distribution slowly relaxed back to a power-law. In Figure 1 this

relaxation is not yet complete in the post-ictal time interval as

there is still some residual seizure dynamics in the ECoG

recording. The qualitative change away from a power-law

distribution during seizures could be observed in all 8 patients

and across scales (Figure 2). Distributions for all consecutive time

windows and all scales from patient 1 can be found in the

supplementary material (Figure S1).

A more quantitative estimate of the deviation from the pre-ictal

state can be obtained by calculating Dp, a measure previously

proposed to characterize the divergence from a critical state [17].

This measure captures the deviation from a given empirical

distribution from a power-law. The power-law fitted to the first

(pre-ictal) interval was thereby taken as a reference and subtracted

from the cumulative PLI distributions of subsequent time intervals.

During time intervals preceding the seizure Dp stayed at low

values indicating no significant deviation from a power-law. In

time windows containing seizure activity, Dp increased to positive

values, which is in agreement with the qualitative assessment from

visual inspection showing a divergence from the initial distribution.

After seizure attacks, a slow decrease of Dp could be observed

suggestive of a relaxation process back toward a power-law

distribution (Figure 3).

Computational Model
For obtaining further insights into the underlying dynamics of

the power-law probability distribution of PLI and its absence

during epileptic seizure attacks, we compared experimental results

to a simple computational model exhibiting self-organized

criticality. Our numerical results build on a model proposed by

Bornholdt and Rohlf [12]. This model robustly self-organizes

toward a critical state and is sufficiently simple to allow for an

understanding of the underlying mechanism by which this self-

tuning is accomplished. Specifically, the adaptive interplay of

network dynamics and topology, a mechanism also at work in

more elaborate models of SOC in neural networks [15–17],

robustly organizes systems parameters, in this case the average

connectivity K , toward values Kc where the network’s state is at a

phase transition between ordered and disordered dynamics.

Author Summary

Over the recent years it has become apparent that the
concept of phase transitions is not only applicable to the
systems classically considered in physics. It applies to a
much wider class of complex systems exhibiting phases,
characterized by qualitatively different types of long-term
behavior. In the critical states, which are located directly at
the transition, small changes can have a large effect on the
system. This and other properties of critical states prove to
be advantageous for computation and memory. It is
therefore suspected that also cerebral neural networks
operate close to criticality. This is supported by the in vitro
and in vivo measurements of power-laws of certain scaling
relationships that are the hallmarks of phase transitions.
While critical dynamics is arguably an attractive mode of
normal brain functioning, its relation to pathological brain
conditions is still unresolved. Here we show that brain
dynamics deviates from a critical state during epileptic
seizure attacks in vivo. Furthermore, insights from a
computational model suggest seizures to be caused by
the failure of adaptive self-organized criticality, a mecha-
nism of self-organization to criticality based on the
interplay between network dynamics and topology.

Failure of aSOC during Epileptic Seizures
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For a network with N~1024 nodes adaptive self-organization

(aSO) leads the average connectivity to settle at values around 2.55

independent of initial conditions (Figure 4A). The frozen

component C(K) defined as the fraction of nodes that do not

change their state along the attractor undergoes a transition at this

self-organized connectivity (Figure 4B). In the large system size

limit N?? the networks evolve to a critical connectivity Kc~2
where the transition from the frozen to the chaotic phase becomes

a sharp step function [12]. The system therefore exhibits a phase-

transition with a frozen/ordered phase at lower connectivities and

a disordered phase of network dynamics at higher connectivities.

Our goal was to compare the distribution of PLI at the self-

organized connectivity and at connectivities below and above it.

This would correspond to critical dynamics as well as dynamics in

the ordered/frozen and disordered phase respectively. We

therefore let the network evolve according to the adaptive self-

organization (aSO) process described in [12] and the methods

section (iterations 0–8000) and derived PLI of 100 consecutive

iterations at some point when the average connectivity had settled

around K~2:55. There, the distribution of PLI appeared to

follow a power-law (Figure 4C). More precisely, statistical tests

[22] revealed that the hypothesis of a power-law for the

distribution of PLI cannot be rejected at the self-organized

connectivity.

Next, we switched the aSO off at 8000 iterations, instead adding

and deleting links with a certain probability independent of node

activity after this point (iterations 8001–12000). We considered two

cases: First, where links were added with probability p~0:9 and

deleted with p~0:1 and second, where links were added with

p~0:1 and deleted with p~0:9 after each iteration following the

first 8000 iterations. In the first case more links were effectively

added so that the average connectivity organized to higher values.

The second case led to a net decrease in links resulting in a lower

average connectivity (Figure 4C). We again derived PLI of 100

consecutive iterations at some time for each of the two cases. In both

cases the distribution of PLI deviated from a power-law consistent

Figure 1. The distribution of phase-locking intervals deviates from a power-law during epileptic seizures. Top: The electrocorticogram
(ECoG) recording shows the onset of a focal epileptic seizure attack around 300 seconds time. Bottom: Cumulative distributions of phase-locking
intervals (PLI) are obtained during three time intervals of 150 seconds: pre-ictal (left), ictal (middle) and post-ictal (right). Dashed lines indicate a
power-law with exponent 23.1. While the distribution appears to follow a power-law during the pre-ictal period, intervals of increased phase-locking
disturb this characteristic distribution with the onset of seizure activity. Data shown are from patient 1 at scale 3, corresponding to the frequency
band 25–12.5 Hz.
doi:10.1371/journal.pcbi.1002312.g001
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with a state away from critical dynamics (Figure 4C). The

distribution at connectivities corresponding to the ordered phase

of network dynamics is shifted towards larger PLI similar to the one

observed during epileptic seizure attacks (bottom right in Figure 4C).

The close agreement between patient and model data suggests

that the deviation from a power-law observed during epileptic

seizure attacks indicates a shift of dynamics toward an ordered

phase. In the model above this corresponds to the phase of frozen

dynamics. It further hints that it is the mechanism of adaptive

SOC, the ability to tune system parameters to values where

network dynamics is at a phase transition and PLI are distributed

according to a power-law, that could fail during epileptic seizure

attacks in neuron networks in the brain.

Discussion

The relevance of critical brain dynamics is currently a heavily

debated topic. Indirect evidence for such a state comes from

power-law distributed observables in neurophysiological data.

Power-laws can arise through various mechanisms such as the

combination of two exponential distributions or random extremal

processes such as the Omori law for earthquake aftershocks for

example [23]. With respect to neural dynamics power-law

behavior can be generated by filtering properties of neural tissue

[24]. Although various mechanisms can result in an event size

distributions exhibiting power-laws [25], such distributions also

arise when a system is in a critical state [10]. The observation of

power-laws therefore provides an indication but not a proof of

critical dynamics. Conversely, the absence of power-law scaling

would provide a strong evidence against criticality.

The power-laws observed in neural data are consistent with the

hypothesis of neural criticality. The hypothesis is further supported

by a) evolutionary arguments highlighting the advantages of

operating in a critical state [26] and b) the formulation of fairly

realistic models [13,15–17] explaining how a critical state can be

reached as a result of well-known neural and synaptic mechanisms.

Comparison of experimental data to data from a computational

models known to exhibit critical dynamics can provide support for

the conclusion that an experimentally observed power-law is a

signature for critical dynamics.

Recently, the power-law distribution of phase-lock intervals

between pairs of neurophysiological time series was shown to be a

specific hallmark of dynamic criticality in human brain dynamics

[9]. Following the line of arguments outlined above, the authors

demonstrated power-law scaling of PLI both in neurophysiological

data and also in Ising and Kuramoto model when these systems

were tuned to a phase transition. In this work we extend these

computational results to a third model known to exhibit SOC [12].

Together these numerical results provide strong support that the

observed power-law distribution of PLI is characteristic for a

system at a phase transition between ordered and disordered

dynamics.

Using this indicator on ECoG data, a complementary

experimental methodology to [9], we confirm the previously

observed power-law distribution of PLI, providing additional

evidence for the criticality hypothesis. Secondly, we show that the

critical state is disturbed during epileptic seizure attacks. More

precisely, the distribution of the PLI synchronization measure

deviates from a power-law, characterizing the critical state of

normal neuronal dynamics, during epileptic seizures, providing

the first direct evidence of disturbed critical dynamics related to a

pathology in vivo.

Our findings support the notion of a physiological default state

of balanced brain dynamics between regimes of exuberant and

frozen activity. Physiological neuronal activity is characterized by

intermittent periods of synchronization between different anatom-

ical regions. In terms of dynamical system’s theory, such a state

corresponds to a critical state at a phase transition between order

and disorder. A deviation from this balanced state toward

dynamics with pathologically increased times of synchronous

activity as observed in epileptic patients leads to a deviation from

the physiological critical state resulting in impaired functionality.

Optimal information processing capabilities of neuron networks

have been related to a critical state before [1,26,27]. The

requirement for such functional capabilities could be differently

pronounced in different brain networks and at different times.

From this perspective, it is very unlikely that all regions in the

brain are tuned to a critical state at all times. Our results in fact

show that the goodness of the power-law in the PLI distribution

varies between different regions and times (see for example the

rather poor power law of P7 in Figure 2). One could speculate that

self-organization to a critical state is differently pronounced in

Figure 2. Comparison of PLI distributions derived from the first
(pre-ictal) time interval (blue curve) and an interval during the
seizure attack (red curve). Distributions from seizure intervals tend
to exhibit longer periods of phase-locking resulting in a deviation from
a power-law of the distribution’s tail. Plots are shown for scale 3
corresponding to the frequency band 25-12.5 Hz for patients 1–7 (P1–
P7) and 32-16 Hz for patient 8 (P8), respectively.
doi:10.1371/journal.pcbi.1002312.g002

Failure of aSOC during Epileptic Seizures
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distinct anatomical regions perhaps dependent on distinct

functional requirements.

A mechanism by which complex networks can self-organize

toward a critical state is based on the adaptive interplay between

the dynamics on the network, i.e. neuronal activity, and the

dynamics of the network, i.e. the shaping of synaptic connections.

Through this interaction system parameters can be locally tuned to

a state of global criticality [12,13]. While the simple model

described in this work captures these essential ingredients allowing

for an understanding of the underlying concept, more elaborate

mechanism can be expected to be at work in real-world neuron

networks [15–17,28]. It is conceivable that physiological neuron

networks in the brain tune their parameters to more than one

parameter to reach a state of criticality. Besides the average

connectivity of the network K , the balance between excitation and

inhibition, for example, has been shown to be an important

parameter to sustain a homeostatically balanced critical state and

prevent regimes of overly synchronized activity. The robust

mechanism of adaptive SOC allows neuron networks in the brain

to maintain close to a critical state characterized by dynamics

Figure 3. Development of the deviation from a power-law. ECoG recordings from 8 patients showing a focal seizure attack are shown along
with Dp values for consecutive time windows of 150 seconds duration overlapping by 100 seconds. The power-law fit of data in the first time
window was taken as the reference to calculate Dp. Although different in extent, an increase of Dp quantifying the deviation from the initial pre-ictal
distribution can be observed during seizures for all patients and different scales (scale 2 red, scale 3 blue, scale 4 green).
doi:10.1371/journal.pcbi.1002312.g003

Failure of aSOC during Epileptic Seizures
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Figure 4. Distribution of PLI in a model exhibiting self-organized criticality. A Through an adaptive interplay of network dynamics and
topology, the Bornholdt model self-organizes toward a characteristic connectivity independent of initial conditions. The plot shows the evolution to a
characteristic connectivity of approximately K~2:55 in a network of 1024 nodes for three different initial connectivities, Kini~1:5, Kini~4 and
Kini~6. B At this self-organized connectivity the network exhibits a phase transition between order and disorder. The plot shows the frozen
component C(K) defined as the fraction of nodes that do not change their state along the attractor as a function of networks’ average connectivities
K for a network of 1024 nodes. The data were measured along the dynamical attractor reached by the system, averaged over 100 random topologies
for each value of K . A transition around a value K&2{3 can be observed. C After a period of self-organization based on the adaptive interplay
between topology and dynamics (aSO on, full black line), links were added and deleted solely with a certain probability independent of node activity
(aSO off, dashed line: links were added with p~0:9 and deleted with p~0:1, point-dashed line: links added with p~0:1, deleted with p~0:9). Each

Failure of aSOC during Epileptic Seizures
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exhibiting power-law probability distributions even while network

dynamics and topology undergo changes.

Along this line of arguments the deviation from a power-law

distribution of PLI reported here can be interpreted as a shift away

from a balanced critical state and to our knowledge constitutes the

first proof of impaired critical dynamics related to a pathology in

vivo. This observation is supported by experimental results from in

vitro studies. The application of receptor blockers in slice

preparation of animal brains resulting in an excess of excitation

in the network destroyed the power-law distributed avalanches of

neuronal activity and led to increased avalanche sizes correspond-

ing to a super-critical state [5,6]. Analogously, human tissue

removed from epilepsy patients exhibited abnormally regulated

avalanches with periods of hyperactivity [29].

In summary, experimental results from in vitro experiments [5,6]

and in vivo observations presented here combined with insights

from computational models based on adaptive SOC [12,15–

17,28] suggest the failure of the adaptive interplay between neuron

activity and network topology to lead to the deviation from a

critical state. There pathological, in the case of epilepsy overly

synchronized, activity patterns are observed. A deviation from the

default critical state towards a dynamical regime with decreased

phase-locking is also conceivable. For instance in neurodegener-

ative diseases with impaired neuronal connectivity, the deviation

from a power-law of PLI could potentially be used to identify and

characterize these pathological conditions.

Materials and Methods

Acquisition and Preprocessing of Experimental Data
Eight patients undergoing surgical treatment for intractable

epilepsy participated in the study. Patients underwent a craniot-

omy for subdural placement of electrode grids and strips followed

by continuous video and ECoG monitoring to localize epilepto-

genic zones. Solely clinical considerations determined the

placement of electrodes and the duration of monitoring. Positions

of the electrodes from patients 1–7 can be found in the

supplementary material (Figure S2). All patients provided

informed consent. ECoG signals were recorded by the clinical

EEG system (epas 128, Natus Medical Incorporated) and bandpass

filtered between 0.53 Hz and 70 Hz. Data were continuously

sampled at a frequency of 200 Hz (patients 1–7) and 256 Hz

(patient 8, [30]). The study protocols were approved by the Ethics

Committee of the Technical University Dresden.

Estimation of Phase Synchronization
To derive a scale-dependent estimate of the phase difference

between two time series, we follow the approach described in ref.

[9] using Hilbert transform derived pairs of wavelet coefficients

[31]. We define the instantaneous complex phase vector for two

signals Fi and Fj as:

Ci,j(t)~
Wk(Fi)

{Wk(Fj)

jWk(Fi)jjWk(Fj)j
, ð1Þ

where Wk denotes the k-th scale of a Hilbert wavelet transform

and { its complex conjugate. A local mean phase difference in the

frequency interval defined by the k-th wavelet scale is then given

by

Dwi,j(t)~Arg(Ci,j), ð2Þ

with

Ci,j(t)~
SWk(Fi)

{Wk(Fj)Tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SjWk(Fi)j2TSjWk(Fj)j2T

q ð3Þ

being a less noisy estimate of Ci,j averaged over a brief period of

time Dt~2k8 [9]. Intervals of phase-locking can then be identified

as periods when jDwi,j(t)j is smaller than some arbitrary threshold

which we set to p=4 here. We also require the modulus squared of

the complex time average, s2
i,j~jCi,j j2, to be greater than 0.5,

limiting the analysis to phase difference estimates above this level

of significance.

Estimation of Deviation from a Power-law Distribution
To quantify the deviation from a power-law we defined a

measure Dp similar to ref. [17]. Dp measures the difference

between the cumulative density distribution of phase-lock intervals

and a theoretical power-law distribution ptheo obtained from a fit

of the experimental data [22]. ptheo is calculated from the first

time-interval (0–150 seconds) of a data set. For each time-interval

of 150 seconds duration, ptheo is then subtracted from the

cumulative density distribution of PLI, porig, for each data point

corresponding to a phase-lock interval x and normalized by the

number of data points N:

Dp~
1

N

X
x

porig
x {ptheo

x : ð4Þ

Positive values of Dp indicate a deviation with increased

intervals of phase-locking, negative values indicate decreased

phase-locking compared to the reference power-law distribution.

Computational Model
An influential model explaining how dynamical systems can self-

organize towards a critical state was introduced in ref. [12]. The

mechanism is based on the adaptive interplay between the

dynamics of the nodes in the network (dynamics on the network)

and the rewiring of the network’s topology (dynamics of the

network). More precisely, the topology of the network is changed

according to the activity of the nodes in the network so that on

average active nodes lose links and frozen nodes grow links. This

local rewiring leads to a robust evolution towards a critical

connectivity Kc where the system is at a phase transition between

order and disorder [12].

We first instantiated this model in a network of 1024 randomly

interconnected binary elements with states si~+1 which are

updated in parallel and scanned for local rewiring of connections.

After 1000 time steps the network’s topology was updated by

iteration marks a topological update of the network, between iterations network activity was limited to 1000 time steps where topology was not
changed. Phase-lock intervals between 20 randomly chosen nodes were calculated for scale 1 from 100 consecutive iterations at three time points: at
the self-organized connectivity (bottom left), at a connectivity lower (bottom middle) and higher (bottom right) than the evolved connectivity. The
distribution of PLI follows a power-law only at the self-organized connectivity (bottom left). All depicted distributions are cumulative distributions.
The dashed line marks a power-law with exponent 21.5 to guide the eye.
doi:10.1371/journal.pcbi.1002312.g004
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picking one random node and either adding/deleting an incoming

link to it depending on its activity during the last 1000 time steps

[12]. This process was iterated many time leading the network’s

topology to evolve towards a critical connectivity of Kc*2:55.

Our objective was to compare the distribution of phase-lock

intervals between the activity of pairs of nodes for different average

connectivities to provide a reference for comparable analysis of

neurophysiological time series. We therefore monitored states si(t)
of 20 randomly chosen nodes in a network after it had self-

organized to the critical connectivity and derived the distribution

of PLI.

To organize the network away from Kc we added and deleted

links solely based on probability, independent of node activity after

8000 iterations. Dependent on the probalitiy with which links were

added/deleted the average connectivity organized to higher/lower

values at which we again monitored the states si(t) of 20 randomly

chosen nodes and derived the distribution of PLI. We found that

the probability distribution of phase-lock intervals demonstrated

power-scaling specifically when the system was at the self-organized

critical connectivity whereas distributions at lower/higher connec-

tivities deviated from a power-law showing periods of increased/

decreased phase-locking.

Supporting Information

Figure S1 Cumulative distribution of phase-lock intervals for

consecutive time windows and different scales (scale 2 green, scale

3 red, scale 4 blue) from patient 1.

(TIFF)

Figure S2 Schematic drawings of the positions of the electrodes

from patients 1 to 7.

(TIFF)
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