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Abstract

The blood cancer T cell large granular lymphocyte (T-LGL) leukemia is a chronic disease characterized by a clonal
proliferation of cytotoxic T cells. As no curative therapy is yet known for this disease, identification of potential therapeutic
targets is of immense importance. In this paper, we perform a comprehensive dynamical and structural analysis of a
network model of this disease. By employing a network reduction technique, we identify the stationary states (fixed points)
of the system, representing normal and diseased (T-LGL) behavior, and analyze their precursor states (basins of attraction)
using an asynchronous Boolean dynamic framework. This analysis identifies the T-LGL states of 54 components of the
network, out of which 36 (67%) are corroborated by previous experimental evidence and the rest are novel predictions. We
further test and validate one of these newly identified states experimentally. Specifically, we verify the prediction that the
node SMAD is over-active in leukemic T-LGL by demonstrating the predominant phosphorylation of the SMAD family
members Smad2 and Smad3. Our systematic perturbation analysis using dynamical and structural methods leads to the
identification of 19 potential therapeutic targets, 68% of which are corroborated by experimental evidence. The novel
therapeutic targets provide valuable guidance for wet-bench experiments. In addition, we successfully identify two new
candidates for engineering long-lived T cells necessary for the delivery of virus and cancer vaccines. Overall, this study
provides a bird’s-eye-view of the avenues available for identification of therapeutic targets for similar diseases through
perturbation of the underlying signal transduction network.
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Introduction

Living cells perceive and respond to environmental perturba-

tions in order to maintain their functional capabilities, such as

growth, survival, and apoptosis. This process is carried out

through a cascade of interactions forming complex signaling

networks. Dysregulation (abnormal expression or activity) of some

components in these signaling networks affects the efficacy of

signal transduction and may eventually trigger a transition from

the normal physiological state to a dysfunctional system [1]

manifested as diseases such as diabetes [2,3], developmental

disorders [4], autoimmunity [5] and cancer [4,6]. For example,

the blood cancer T-cell large granular lymphocyte (T-LGL)

leukemia exhibits an abnormal proliferation of mature cytotoxic T

lymphocytes (CTLs). Normal CTLs are generated to eliminate

cells infected by a virus, but unlike normal CTLs which undergo

activation-induced cell death after they successfully fight the virus,

leukemic T-LGL cells remain long-term competent [7]. The cause

of this abnormal behavior has been identified as dysregulation of a

few components of the signal transduction network responsible for

activation-induced cell death in T cells [8].

Network representation, wherein the system’s components are

denoted as nodes and their interactions as edges, provides a

powerful tool for analyzing many complex systems [9,10,11]. In

particular, network modeling has recently found ever-increasing

applications in understanding the dynamic behavior of intracel-

lular biological systems in response to environmental stimuli and

internal perturbations [12,13,14]. The paucity of knowledge on

the biochemical kinetic parameters required for continuous

models has called for alternative dynamic approaches. Among

the most successful approaches are discrete dynamic models in

which each component is assumed to have a finite number of

qualitative states, and the regulatory interactions are described by

logical functions [15]. The simplest discrete dynamic models are

the so-called Boolean models that assume only two states (ON or

OFF) for each component. These models were originally

introduced by S. Kauffman and R. Thomas to provide a coarse-

grained description of gene regulatory networks [16,17].
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A Boolean network model of T cell survival signaling in the

context of T-LGL leukemia was previously constructed by Zhang

et al [18] through performing an extensive literature search. This

network consists of 60 components, including proteins, mRNAs,

and small molecules (see Figure 1). The main input to the network

is ‘‘Stimuli’’, which represents virus or antigen stimulation, and the

main output node is ‘‘Apoptosis’’, which denotes programmed cell

death. Based on a random order asynchronous Boolean dynamic

model of the assembled network, Zhang et al identified a minimal

number of dysregulations that can cause the T-LGL survival state,

namely overabundance or overactivity of the proteins platelet-

derived growth factor (PDGF) and interleukin 15 (IL15). Zhang

et al carried out a preliminary analysis of the network’s dynamics

by performing numerical simulations starting from one specific

initial condition (corresponding to resting T cells receiving antigen

stimulation and over-abundance of the two proteins PDGF and

IL15). Once the known deregulations in T-LGL leukemia were

reproduced, each of these deregulations was interrupted individ-

ually, by setting the node’s status to the opposite state, to predict

key mediators of the disease. Yet, a complete dynamic analysis of

the system, including identification of the attractors (e.g. steady

states) of the system and their corresponding basin of attraction

(precursor states), as well as a thorough perturbation analysis of the

system considering all possible initial states, is lacking. Performing

this analysis can provide deeper insights into unknown aspects of

T-LGL leukemia.

Stuck-at-ON/OFF fault is a very common dysregulation of

biomolecules in various cancer diseases [19]. For example, stuck-

at-ON (constitutive activation) of the RAS protein in the mitogen-

activated protein kinase pathways leads to aberrant cell prolifer-

ation and cancer [19,20]. Thus identifying components whose

stuck-at values result in the clearance, or alternatively, the

persistence of a disease is extremely beneficial for the design of

intervention strategies. As there is no known curative therapy for

T-LGL leukemia, identification of potential therapeutic targets is

of utmost importance [21].

In this paper, we carry out a detailed analysis of the T-LGL

signaling network by considering all possible initial states to probe

the long-term behavior of the underlying disease. We employ an

asynchronous Boolean dynamic framework and a network

reduction method, which we previously proposed [22], to identify

the attractors of the system and analyze their basins of attraction.

This analysis allows us to confirm or predict the T-LGL states of

54 components of the network. The predicted state of one of the

components (SMAD) is validated by new wet-bench experiments.

We then perform node perturbation analysis using the dynamic

approach and a structural method proposed in [23] to study to

what extent does each component contribute to T-LGL leukemia.

Both methods give consistent results and together identify 19 key

components whose disruption can reverse the abnormal state of

the signaling network, thereby uncovering potential therapeutic

targets for this disease, some of which are also corroborated by

experimental evidence.

Materials and Methods

Any biological regulatory network can be represented by a

directed graph G = (V, E) where V = {v1, v2,…, vn} is the set of

vertices (nodes) describing different components of the system, and

E is the set of edges denoting the regulatory interactions among the

components. The orientation of each edge in the network follows

the direction of mass transfer or information propagation from the

upstream to the downstream node. Each edge can be also

characterized with a sign where a positive sign denotes activation

and a negative sign signifies inhibition. The source nodes (i.e.

nodes with no incoming edges) of this graph, if they exist, represent

external inputs (signals), and one or more nodes, usually sink nodes

(i.e. nodes with no outgoing edges), are customarily designated as

outputs of the network.

Boolean dynamic models
Boolean models belong to the class of discrete dynamic models

in which each node of the network is characterized by an ON (1)

or OFF (0) state and usually the time variable t is also considered to

be discrete, i.e. it takes nonnegative integer values [24,25]. The

future state of each node vi is determined by the current states of

the nodes regulating it according to a Boolean transfer function

fi : f0,1gki?f0,1g, where ki is the number of regulators of vi. Each

Boolean function (rule) represents the regulatory relationships

between the components and is usually expressed via the logical

operators AND, OR and NOT. The state of the system at each

time step is denoted by a vector whose ith component represents

the state of node vi at that time step. The discrete state space of a

system can be represented by a state transition graph whose nodes

are states of the system and edges are allowed transitions among

the states. By updating the nodes’ states at each time step, the state

of the system evolves over time and following a trajectory of states

it eventually settles down into an attractor. An attractor can be in

the form of either a fixed point, in which the state of the system

does not change, or a complex attractor, where the system

oscillates (regularly or irregularly) among a set of states. The set of

states leading to a specific attractor is called the basin of attraction

of that attractor.

In order to evaluate the state of each node at a given time

instant, synchronous as well as asynchronous updating strategies

have been proposed [24,25]. In the synchronous method all nodes

of the network are updated simultaneously at multiples of a

common time step. The underlying assumption of this update

method is that the timescales of all the processes occurring in a

system are similar. This is a quite strong and potentially unrealistic

assumption, which in particular may not be suited for intracellular

biological processes due to the variety of timescales associated with

transcription, translation and post-translational mechanisms [26].

To overcome this limitation, various asynchronous methods have

been proposed wherein the nodes are updated based on individual

Author Summary

T-LGL leukemia is a blood cancer characterized by an
abnormal increase in the abundance of a type of white
blood cell called T cell. Since there is no known curative
therapy for this disease, identification of potential thera-
peutic targets is of utmost importance. Experimental
identification of manipulations capable of reversing the
disease condition is usually a long, arduous process.
Mathematical modeling can aid this process by identifying
potential therapeutic interventions. In this work, we carry
out a systematic analysis of a network model of T cell
survival in T-LGL leukemia to get a deeper insight into the
unknown facets of the disease. We identify the T-LGL
status of 54 components of the system, out of which 36
(67%) are corroborated by previous experimental evidence
and the rest are novel predictions, one of which we
validate by follow-up experiments. By deciphering the
structure and dynamics of the underlying network, we
identify component perturbations that lead to pro-
grammed cell death, thereby suggesting several novel
candidate therapeutic targets for future experiments.

Dynamical and Structural Analysis of T-LGL Network
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timescales [25,27,28,29,30], including deterministic methods with

fixed node timescales and stochastic methods such as random

order asynchronous method [27] wherein the nodes are updated

in random permutations. In a previous work [22], we carried out a

comparative study of three different asynchronous methods

applied to the same biological system. That study suggested that

the general asynchronous (GA) method, wherein a randomly

selected node is updated at each time step, is the most efficient and

informative asynchronous updating strategy. This is because

deterministic asynchronous [22] or autonomous [30] Boolean

models require kinetic or timing knowledge, which is usually

missing, and random order asynchronous models [27] are not

computationally efficient compared to the GA models. In addition,

the superiority of the GA approach has been corroborated by

other researchers [29] and the method has been used in other

studies as well [31,32]. We thus chose to employ the GA method

in this work, and we implemented it using the open-source

software library BooleanNet [33]. It is important to note that the

stochasticity inherent to this method may cause each state to have

multiple successors, and thus the basins of attraction of different

attractors may overlap. For systems with multiple fixed-point

attractors, the absorption probabilities to each fixed point can be

computed through the analysis of the Markov chain and transition

matrix associated with the state transition graph of the system [34].

Given a fixed point, node perturbations can be performed by

reversing the state of the nodes i.e. by knocking out the nodes that

stabilize in an ON state in the fixed point or over-expressing the

ones that stabilize in an OFF state.

Figure 1. The T-LGL survival signaling network. The shape of the nodes indicates the cellular location: rectangular indicates intracellular
components, ellipse indicates extracellular components, and diamond indicates receptors. Node colors reflect the current knowledge on the state of
these nodes in leukemic cells: highly active components in T-LGL are shown in red, inhibited nodes are shown in green, nodes that have been
suggested to be deregulated are in blue, and the state of white nodes is unknown. Conceptual nodes (Stimuli, Stimuli2, P2, Cytoskeleton signaling,
Proliferation, and Apoptosis) are represented by yellow hexagons. An arrowhead or a short perpendicular bar at the end of an edge indicates
activation or inhibition, respectively. The inhibitory edges from Apoptosis to other nodes are not shown. The full names of the node labels are given
in Table S2. This figure and its caption are adapted from [18].
doi:10.1371/journal.pcbi.1002267.g001

Dynamical and Structural Analysis of T-LGL Network
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Network reduction
A Boolean network with n nodes has a total of 2n states. This

exponential dependence makes it computationally intractable to

map the state transition graphs of even relatively small networks.

This calls for developing efficient network reduction approaches.

Recent efforts towards addressing this challenge consists of iteratively

removing single nodes that do not regulate their own function and

simplifying the redundant transfer functions using Boolean algebra

[35,36]. Naldi et al [35] proved that this approach preserves the fixed

points of the system and that for each (irregular) complex attractor in

the original asynchronous model there is at least one complex

attractor in the reduced model (i.e. network reduction may create

spurious oscillations). Boolean networks often contain nodes whose

states stabilize in an attracting state after a transient period,

regardless of updating strategy or initial conditions. The attracting

states of these nodes can be readily identified by inspection of their

Boolean functions. In a previous work [22] we proposed a method of

network simplification by (i) pinpointing and eliminating these

stabilized nodes and (ii) iteratively removing a simple mediator node

(e.g. a node that has one incoming edge and one outgoing edge) and

connecting its input(s) to its target(s). Our simplification method

shares similarities with the method proposed in [35,36], with the

difference that we only remove stabilized nodes (which have the

same state on every attractor) and simple mediator nodes rather than

eliminating each node without a self loop. Thus their proof regarding

the preservation of the steady states by the reduction method holds

true in our case. We employed this simplification method for the

analysis of a signal transduction network in plants and verified by

using numerical simulations that it preserves the attractors of that

system. In this work, we employ this reduction method to simplify the

T-LGL leukemia signal transduction network synthesized by Zhang

et al [18], thereby facilitating its dynamical analysis. We also note that

the first step of our simplification method is similar to the logical

steady state analysis implemented in the software tool CellNetAna-

lyzer [37,38]. We thus refer to this step as logical steady state analysis

throughout the paper.

Identification of attractors
It should be noted that the fixed points of a Boolean network are

the same for both synchronous and asynchronous methods. In

order to obtain the fixed points of a system one can solve the set of

Boolean equations independent of time. To this end, we first fix

the state of the source nodes. We then determine the nodes whose

rules depend on the source nodes and will either stabilize in an

attracting state after a time delay or otherwise their rules can be

simplified significantly by plugging in the state of the source nodes.

Iteratively inserting the states of stabilized nodes in the rules (i.e.

employing logical steady state analysis) will result in either the

fixed point(s) of the system, or the partial fixed point(s) and a

remaining set of equations to be solved. In the latter case, if the

remaining set of equations is too large to obtain its fixed point(s)

analytically, we take advantage of the second step of our reduction

method [22] to simplify the resulting network and to determine a

simpler set of Boolean rules. By solving this simpler set of

equations (or performing numerical simulations, if necessary) and

plugging the solutions into the original rules, we can then find the

states of the removed nodes and determine the attractors of the

whole system accordingly. For the analysis of basins of attraction

of the attractors, we perform numerical simulations using the GA

update method.

A structural method for identifying essential components
The topology (structure) and the function of biological networks

are closely related. Therefore, structural analysis of biological

networks provides an alternative way to understand their function

[39,40]. We have recently proposed an integrative method to

identify the essential components of any given signal transduction

network [23]. The starting point of the method is to represent the

combinatorial relationship of multiple regulatory interactions

converging on a node v by a Boolean rule:

v~(u11 AND ::: AND u1n1
) OR (u21 AND ::: AND u2n2

)

OR ::: OR (um1 AND ::: AND umnm )

where uij’s are regulators of node v. The method consists of two

main steps. The first step is the expansion of a signaling network to

a new representation by incorporating the sign of the interactions

as well as the combinatorial nature of multiple converging

interactions. This is achieved by introducing a complementary

node for each component that plays a role in negative regulations

(NOT operation) as well as introducing a composite node to

denote conditionality among two or more edges (AND operation).

This step eliminates the distinction of the edge signs; that is, all

directed edges in the expanded network denote activation. In

addition, the AND and OR operators can be readily distinguished

in the expanded network, i.e., multiple edges ending at composite

nodes are added by the AND operator, while multiple edges

ending at original or complementary nodes are cumulated by the

OR operator. The second step is to model the cascading effects

following the loss of a node by an iterative process that identifies

and removes nodes that have lost their indispensable regulators.

These two steps allow ranking of the nodes by the effects of their

loss on the connectivity between the network’s input(s) and

output(s). We proposed two connectivity measures in [23], namely

the simple path (SP) measure, which counts the number of all

simple paths from inputs to outputs, and a graph measure based

on elementary signaling modes (ESMs), defined as a minimal set of

components that can perform signal transduction from initial

signals to cellular responses. We found that the combinatorial

aspects of ESMs pose a substantial obstacle to counting them in

large networks and that the SP measure has a similar performance

as the ESM measure since both measures incorporate the

cascading effects of a node’s removal arising from the synergistic

relations between multiple interactions. Therefore, we employ the

SP measure and define the importance value of a component v as:

ESP(v)~
NSP(Gexp){NSP(GDv)

NSP(Gexp)

where NSP(Gexp) and NSP(GDv) denote the total number of simple

paths from the input(s) to the output(s) in the original expanded

network Gexp and the damaged network GDv upon disruption of node

v, respectively. This essentiality measure takes values in the interval

[0,1], with 1 indicating a node whose loss causes the disruption of all

paths between the input and output node(s). In this paper, we also

make use of this structural method to identify essential components

of the T-LGL leukemia signaling network. We then relate the

importance value of nodes to the effects of their knockout (sustained

OFF state) in the dynamic model and the importance value of

complementary nodes to the effects of their original nodes’

constitutive activation (sustained ON state) in the dynamic model.

Experimental determination of the T-LGL state of the
node SMAD

Patient characteristics and preparation of peripheral

blood mononuclear cells (PBMC). All patients met the

Dynamical and Structural Analysis of T-LGL Network
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clinical criteria of T-LGL leukemia with increased numbers

(.80%) of CD3+CD8+ T cells in the peripheral blood. Patients

received no treatment at the time of sample acquisition. Peripheral

blood specimens from LGL leukemia patients were obtained and

informed consents signed for sample collection according to a

protocol approved by the Institutional Review Board of Penn State

Hershey Cancer Institute. PBMC were isolated by Ficoll-Hypaque

gradient separation, as described previously [41]. CD3+CD8+ T

cells from four age- and gender-matched healthy donors were

isolated by a human CD8+ T cell enrichment cocktail RosetteSep

kit (Stemcell Technology). The purity of freshly isolated

CD3+CD8+ T cells (26105/sample in triplicate) in each of the

samples was determined by flow cytometry assay by detecting

positive staining of the CD3 and CD8 T cell markers. The purity

for normal purified CD3+CD8+ T cells was over 90%. Cell

viability was determined by trypan blue exclusion assay with more

than 95% viability in all the samples.

Phospho-Smad2 and phospho-Smad3 measurement.

Western blot was performed to detect Phospho-Smad2 (P-

Smad2) and Phospho-Smad3 (P-Smad3) in activated normal

CD3+CD8+ cells (CD3+CD8+ cells .90%) compared with PBMC

(CD3+CD8+ cells .80%) from T-LGL leukemia patients. Normal

CD3+CD8+ T cells were isolated by a human CD8+ T cell

enrichment cocktail RosetteSep kit (Stemcell Technology) from

four normal donors, then cultured in RPMI-1640 supplemented

with 10% fetal bovine serum in presence of PHA (1 mg/mL) for 1

day followed by IL2 (500 IU/mL) for 3 days (lanes 1–4). The

equal loading of protein was confirmed by probing with total

Smad2 or Smad3. Phospho-Smad2 (Ser465/467), Smad2,

Phospho-Smad3 (Ser423/425) and Smad3 antibodies were

purchased from Cell Signaling Technology Inc. (Beverly, MA).

Results

Network simplification and dynamic analysis
The T-LGL signaling network reconstructed by Zhang et al [18]

contains 60 nodes and 142 regulatory edges. Zhang et al used a

two-step process: they first synthesized a network containing 128

nodes and 287 edges by extensive literature search, then simplified

it with the software NET-SYNTHESIS [42], which constructs the

sparsest network that maintains all of the causal (upstream-

downstream) effects incorporated in a redundant starting network.

In this study, we work with the 60-node T-LGL signaling network

reported in [18], which is redrawn in Figure 1. The Boolean rules

for the components of the network were constructed in [18] by

synthesizing experimental observations and for convenience are

given in Table S1 as well. The description of the node names and

abbreviations are provided in Table S2.

To reduce the computational burden associated with the large

state space (more than 1018 states for 60 nodes), we simplified the

T-LGL network using the reduction method proposed in [22] (see

Materials and Methods). We fixed the six source nodes in the states

given in [18], i.e. Stimuli, IL15, and PDGF were fixed at ON and

Stimuli2, CD45, and TAX were fixed at OFF. We used the

Boolean rules constructed in [18], with one notable difference.

The Boolean rules for all the nodes in [18], except Apoptosis,

contain the expression ‘‘AND NOT Apoptosis’’, meaning that if

Apoptosis is ON, the cell dies and correspondingly all other nodes

are turned OFF. To focus on the trajectory leading to the initial

turning on of the Apoptosis node, we removed the ‘‘AND NOT

Apoptosis’’ from all the logical rules. This allows us to determine

the stationary states of the nodes in a live cell. We determined

which nodes’ states stabilize using the first step of our

simplification method, i.e. logical steady state analysis (see

Materials and Methods). Our analysis revealed that 36 nodes of

the network stabilize in either an ON or OFF state. In particular,

Proliferation and Cytoskeleton signaling, two output nodes of the

network, stabilize in the OFF and ON state, respectively. Low

proliferation in leukemic LGL has been observed experimentally

[43], which supports our finding of a long-term OFF state for this

output node. The ON state of Cytoskeleton signaling may not be

biologically relevant as this node represents the ability of T cells to

attach and move which is expected to be reduced in leukemic T-

LGL compared to normal T cells. The nodes whose stabilized

states cannot be readily obtained by inspection of their Boolean

rules form the sub-network represented in Figure 2A. The Boolean

rules of these nodes are listed in Table S3 wherein we put back the

‘‘AND NOT Apoptosis’’ expression into the rules.

Next, we identified the attractors (long-term behavior) of the

sub-network represented in Figure 2A (see Materials and

Methods). We found that upon activation of Apoptosis all other

nodes stabilize at OFF, forming the normal fixed point of the

system, which represents the normal behavior of programmed cell

death. When Apoptosis is stabilized at OFF, the two nodes in the

top sub-graph oscillate while all the nodes in the bottom sub-graph

are stabilized at either ON or OFF. As shown in Figure 3, the state

space of the two oscillatory nodes, TCR and CTLA4, forms a

complex attractor in which the average fraction of ON states for

either node is 0.5. Given that these two nodes have no effect on

any other node under the conditions studied here (i.e. stable states

of the source nodes), their behavior can be separated from the rest

of the network.

The bottom sub-graph exhibits the normal fixed point, as well

as two T-LGL (disease) fixed points in which Apoptosis is OFF.

The only difference between the two T-LGL fixed points is that

the node P2 is ON in one fixed point and OFF in the other, which

was expected due to the presence of a self-loop on P2 in Figure 2A.

P2 is a virtual node introduced to mediate the inhibition of

interferon-c translation in the case of sustained activity of the

interferon-c protein (IFNG in Figure 2A). The node IFNG is also

inhibited by the node SMAD which stabilizes in the ON state in

both T-LGL fixed points. Therefore IFNG stabilizes at OFF,

irrespective of the state of P2, as supported by experimental

evidence [44]. Thus the biological difference between the two

fixed points is essentially a memory effect, i.e. the ON state of P2

indicates that IFNG was transiently ON before stabilizing in the

OFF state. In the two T-LGL fixed points for the bottom sub-

graph of Figure 2A, the nodes sFas, GPCR, S1P, SMAD, MCL1,

FLIP, and IAP are ON and the other nodes are OFF. We found

by numerical simulations using the GA method (see Materials and

Methods) that out of 65,536 total states in the state transition

graph, 53% are in the exclusive basin of attraction of the normal

fixed point, 0.24% are in the exclusive basin of attraction of the T-

LGL fixed point wherein P2 is ON and 0.03% are in the exclusive

basin of attraction of the T-LGL fixed point wherein P2 is OFF.

Interestingly, there is a significant overlap among the basins of

attraction of all the three fixed points. The large basin of attraction

of the normal fixed point is partly due to the fact that all the states

having Apoptosis in the ON state (that is, half of the total number

of states) belong to the exclusive basin of the normal fixed point.

These states are not biologically relevant initial conditions but they

represent potential intermediary states toward programmed cell

death and as such they need to be included in the state transition

graph.

Since the state transition graph of the bottom sub-graph given

in Figure 2A is too large to represent and to further analyze (e.g. to

obtain the probabilities of reaching each of the fixed points), we

applied the second step of the network reduction method proposed

Dynamical and Structural Analysis of T-LGL Network
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in [22]. This step preserves the fixed points of the system (see

Materials and Methods), and since the only attractors of this sub-

graph are fixed points, the state space of the reduced network is

expected to reflect the properties of the full state space.

Correspondingly, the nodes having in-degree and out-degree of

one (or less) in the sub-graph on Figure 2A, such as sFas, MCL1,

IAP, GPCR, SMAD, and CREB, can be safely removed without

losing any significant information as such nodes at most introduce

a delay in the signal propagation. In addition, we note that

although the node P2 has a self-loop and generates a new T-LGL

fixed point as described before, it can also be removed from the

network since the two fixed points differ only in the state of P2 and

thus correspond to biologically equivalent disease states. We revisit

this node when enumerating the attractors of the original network.

In the resulting simplified network, the nodes BID, Caspase, and

IFNG would also have in-degree and out-degree of one (or less)

and thus can be safely removed as well. This reduction procedure

results in a simple sub-network represented in Figure 2B with the

Boolean rules given in Table 1.

Our attractor analysis revealed that this sub-network has two

fixed points, namely 000001 and 110000 (the digits from left to

right represent the state of the nodes in the order as listed from top

to bottom in Table 1). The first fixed point represents the normal

state, that is, the apoptosis of CTL cells. Note that the OFF state of

other nodes in this fixed point was expected because of the

presence of ‘‘AND NOT Apoptosis’’ in all the Boolean rules. The

second fixed point is the T-LGL (disease) one as Apoptosis is

stabilized in the OFF state. We note that the sub-network depicted

in Figure 2B contains a backbone of activations from Fas to

Apoptosis and two nodes (S1P and FLIP) which both have a

mutual inhibitory relationship with the backbone. If activation

reaches Apoptosis, the system converges to the normal fixed point.

In the T-LGL fixed point, on the other hand, the backbone is

inactive while S1P and FLIP are active.

We found by simulations that for the simplified network of

Figure 2B, 56% of the states of the state transition graph

(represented in Figure 4) are in the exclusive basin of attraction of

the normal fixed point while 5% of the states form the exclusive

basin of attraction of the T-LGL fixed point. Again, the half of

state space that has the ON state of Apoptosis belongs to the

exclusive basin of attraction of the normal fixed point. Notably,

there is a significant overlap between the basins of attraction of the

two fixed points, which is illustrated by a gray color in Figure 4.

The probabilities of reaching each of the two fixed points starting

from these gray-colored states, found by analysis of the

corresponding Markov chain (see Materials and Methods), are

given in Figure 5. As this figure represents, for the majority of cases

the probability of reaching the normal fixed point is higher than

that of the T-LGL fixed point. The three states whose probabilities

to reach the T-LGL fixed point are greater than or equal to 0.7 are

one step away either from the T-LGL fixed point or from the

states in its exclusive basin of attraction. In two of them, the

Figure 2. Reduced sub-networks of the T-LGL signaling network. The full names of the nodes can be found in Table S2. An arrowhead or a
short perpendicular bar at the end of an edge indicates activation or inhibition, respectively. The inhibitory edges from Apoptosis to other nodes are
not shown. (A) The 18-node sub-network. This sub-network is obtained by removing the nodes that stabilize in the ON or OFF state upon fixing
the state of the source nodes. (B) The 6-node sub-network. This sub-network is obtained by removing the top sub-graph of the sub-network in
(A) and merging simple mediator nodes in the bottom sub-graph.
doi:10.1371/journal.pcbi.1002267.g002
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backbone of the network in Figure 2B is inactive, and in the third

one the backbone is partially inactive and most likely will remain

inactive due to the ON state of S1P (one of the two nodes having

mutual inhibition with the backbone).

Based on the sub-network analysis and considering the states of

the nodes that stabilized at the beginning based on the logical

steady state analysis, we conclude that the whole T-LGL network

has three attractors, namely the normal fixed point wherein

Apoptosis is ON and all other nodes are OFF, representing the

normal physiological state, and two T-LGL attractors in which all

nodes except two, i.e. TCR and CTLA4, are in a steady state,

representing the disease state. These T-LGL attractors are given in

the second column of Table 2, which presents the predicted T-

LGL states of 54 components of the network (all but the six source

nodes whose state is indicated at the beginning of the Results

section). We note that the two T-LGL attractors essentially

represent the same disease state since they only differ in the state of

the virtual node P2. Moreover, this disease state can be considered

as a fixed point since only two nodes oscillate in the T-LGL

attractors. For this reason we will refer to this state as the T-LGL

fixed point. It is expected that the basins of attraction of the fixed

points have similar features as those of the simplified networks.

Experimental validation of the T-LGL steady state
Experimental evidence exists for the deregulated states of 36

(67%) components out of the 54 predicted T-LGL states as

summarized in the third column of Table 2. For example, the

stable ON state of MEK, ERK, JAK, and STAT3 indicates that

the MAPK and JAK-STAT pathways are activated. The OFF

state of BID is corroborated by recent evidence that it is down-

regulated both in natural killer (NK) and in T cell LGL leukemia

[45]. In addition, the node RAS was found to be constitutively

active in NK-LGL leukemia [41], which indirectly supports our

result on the predicted ON state of this node. For three other

components, namely, GPCR, DISC, and IFNG, which were

classified as being deregulated without clear evidence of either up-

regulation or down-regulation in [18], we found that they

eventually stabilize at ON, OFF, and OFF, respectively. The

OFF state of IFNG and DISC is indeed supported by

experimental evidence [44,46]. In the second column of Table 2,

we indicated with an asterisk the stabilized state of 17 components

that were experimentally undocumented before and thus are

predictions of our steady state analysis (P2 was not included as it is

a virtual node). We note that ten of these cases were also predicted

in [18] by simulations.

The predicted T-LGL states of these 17 components can guide

targeted experimental follow-up studies. As an example of this

approach, we tested the predicted over-activity of the node SMAD

(see Materials and Methods). As described in [18] the SMAD node

represents a merger of SMAD family members Smad 2, 3, and 4.

Smad 2 and 3 are receptor-regulated signaling proteins which are

phosphorylated and activated by type I receptor kinases while

Smad4 is an unregulated co-mediator [47]. Phosphorylated

Smad2 and/or Smad3 form heterotrimeric complexes with Smad4

and these complexes translocate to the nucleus and regulate gene

expression. Thus an ON state of SMAD in the model is a

representation of the predominance of phosphorylated Smad2

and/or phosphorylated Smad3 in T-LGL cells. In relative terms as

compared to normal (resting or activated) T cells, the predicted

ON state implies a higher level of phosphorylated Smad2/3 in T-

LGL cells as compared to normal T cells. Indeed, as shown in

Figure 6, T cells of T-LGL patients tend to have high levels of

phosphorylated Smad2/3, while normal activated T cells have

essentially no phosphorylated Smad2/3. Thus our experiments

validate the theoretical prediction.

Node perturbations
A question of immense biological importance is which

manipulations of the T-LGL network can result in consistent

activation-induced cell death and the elimination of the dysreg-

ulated (diseased) behavior. We can rephrase and specify this

question as which node perturbations (knockouts or constitutive

activations) lead to a system that has only the normal fixed point.

These perturbations can serve as candidates for potential

therapeutic interventions. To this end, we performed node

perturbation analysis using both structural and dynamic methods.

Structural perturbation analysis. For the structural

analysis, using the T-LGL network (Figure 1) and the Boolean

rules (Table S1), we constructed an expanded T-LGL survival

signaling network (see Materials and Methods) as represented in

Figure 3. The state transition graph corresponding to the two
oscillatory nodes, CTLA4 and TCR. In this graph the left binary digit
of the node identifier indicates the state of CTLA4 and the right digit
represents the state of TCR. The directed edges represent state
transitions allowed by updating a single node’s state; self-loops appear
when a node is updated but its state does not change.
doi:10.1371/journal.pcbi.1002267.g003

Table 1. Boolean rules governing the nodes’ states in the 6-
node sub-network represented in Figure 2B.

Node Boolean rule

S1P S1P* = NOT (Ceramide OR Apoptosis)

FLIP FLIP* = NOT (DISC OR Apoptosis)

Fas Fas* = NOT (S1P OR Apoptosis)

Ceramide Ceramide* = Fas AND NOT (S1P OR Apoptosis)

DISC DISC* = (Ceramide OR (Fas AND NOT FLIP)) AND NOT Apoptosis

Apoptosis Apoptosis* = DISC OR Apoptosis

For simplicity, the nodes’ states are represented by the node names. The
symbol * indicates the future state of the marked node.
doi:10.1371/journal.pcbi.1002267.t001
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Figure S1. In order to evaluate the importance of signaling

components mediating T-LGL leukemia, we introduced the

complementary node of Apoptosis (denoted by ,Apoptosis in

Figure S1) as an output representing the survival of the CTL cells,

which is activated by the complementary node of Caspase

(denoted by ,Caspase in Figure S1). The reason is that we are

interested in the question of how to make this outcome (i.e., the

disease state) disappear, or in graph terminology, disconnected

from the inputs of the network. In order to count all the simple

paths from a single (rather than multiple) input signal to the output

node, we fixed the states of Stimuli and IL15 at ON and those of

Stimuli2, CD45, and TAX at OFF. Once the Boolean rules were

simplified, we determined all the signaling paths from PDGF to

the output node ,Apoptosis. Interestingly, we found that the

number of signaling paths from PDGF to ,Apoptosis is much

smaller than the number of signaling paths from PDGF to

Figure 4. The state transition graph of the 6-node sub-network represented in Figure 2B. It contains 64 states of which the state shown
with a dark blue symbol is the normal fixed point and the state shown in red is the T-LGL fixed point. States denoted by light blue symbols are
uniquely in the basin of attraction of the normal fixed point whereas the states in pink can only reach the T-LGL fixed point. Gray states, on the other
hand, can lead to either fixed point.
doi:10.1371/journal.pcbi.1002267.g004

Figure 5. The probabilities of reaching the normal and T-LGL fixed points when both are reachable. These probabilities are computed
starting from the states that are shared by both basins of attraction (see gray-colored states illustrated in Figure 4).
doi:10.1371/journal.pcbi.1002267.g005
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Table 2. A summary of the dynamic analysis results of the T-LGL survival signaling network.

Node T-LGL state Ref.
Fixed point the disruption
leads to

Size of exclusive basin of
normal fixed point Ref.

DISC OFF [46] Normal 100% [46]

Ceramide OFF [48] Normal 100% [48]

Caspase OFF [46] Normal 100%

SPHK1 ON [21] Normal 100% [18]

S1P ON [21] Normal 100% [21]

PDGFR ON [59] Normal 100% [18]

GAP OFF* Normal 100%

RAS ON* Normal 100% [41]1

MEK ON [59] Normal 100% [41]1

ERK ON [50,59] Normal 100% [41]1

IL2RBT ON [60] Normal 100%

IL2RB ON [60] Normal 100%

STAT3 ON [49] Normal 100% [49]

BID OFF [45] Normal 100%

MCL1 ON [49] Normal 100% [49]

SOCS OFF* Both 81%

JAK ON [49] Both 81% [49]

PI3K ON [50] Both 75% [50]

NFkB ON [18] Both 75% [18]

Fas OFF [48] Both 72%

sFas ON [61] Both 72%

TBET ON [18] Both 63%

RANTES ON [44] Both 63%

PLCG1 ON* Both 63%

FLIP ON [46] Both 56%

IL2 OFF [62] Both 56%

IAP ON* Both 56%

TNF ON* Both 56%

BclxL OFF [49] Both 56%

GZMB ON [63] Both 56%

IL2RA OFF [62] Both 56%

NFAT ON* Both 56%

GRB2 ON* Both 56%

IFNGT ON [44,62] Both 56%

TRADD OFF* Both 56%

ZAP70 OFF* Both 56%

LCK ON [50] Both 56%

FYN ON* Both 56%

IFNG OFF [44] Both 56%

SMAD ON* This study Both 56%

GPCR ON [21,64] Both 56%

TPL2 ON [65] Both 56%

A20 ON [21] Both 56%

IL2RAT OFF [62] Both 56%

CREB OFF* Both 56%

P27 ON* Both 56%

P2 ON/OFF Both 56%

FasT ON [48] T-LGL 0%

FasL ON [48] T-LGL 0%

Cytoskeleton signaling ON* — —
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Apoptosis (78,827 versus 346,974), consistent with the finding from

dynamic analysis that the exclusive basin of attraction of the T-

LGL fixed point is much smaller than that of the normal fixed

point.

Our goal of identifying node state manipulations that lead to the

apoptosis of the abnormally surviving T-LGL cells can be

translated into the graph-theoretical problem of finding key nodes

that mediate paths to the node ,Apoptosis. Elimination of these

nodes has the potential to make ,Apoptosis unreachable, or in

other words to make Apoptosis the only reachable outcome. The

T-LGL fixed point determined in dynamic analysis serves as a list

of candidate deletions. Accordingly, we separately deleted each

node that stabilizes at ON in the T-LGL fixed point, and each

complementary node whose corresponding original node stabilizes

at OFF in the T-LGL fixed point (see Table 2 for the state of nodes

in the T-LGL fixed point). We then calculated the importance

values of these nodes by examining the cascading effects of their

deletion on the number of simple paths from PDGF to the

,Apoptosis output (see Materials and Methods). The importance

values of the signaling components are given in Figure 7. As we

can see in this figure, several components, including ,DISC,

,Ceramide, ,Caspase, SPHK1, S1P, PDGFR, PI3K, ,SOCS,

JAK, ,GAP, RAS, NFkB, MEK, and ERK have importance

values of one (or very close to one). This means that blocking any

of these nodes disrupts (almost) all signaling paths from the source

node to ,Apoptosis, thus these nodes are candidate therapeutic

targets.

Dynamic perturbation analysis. To identify manipulations

of the T-LGL network leading to the existence of only the normal

fixed point, we first considered the following scenario. We assumed

that the T-LGL network is the simplified network given in

Figure 2B. We examined the following dynamic perturbation

approaches as potential interventions propelling the system into

the normal fixed point. In the first two approaches, it is assumed

that the T-LGL fixed point has been already reached (i.e. the

disease has already developed), and in the last approach, all

possible initial conditions are considered.

1. Reverse the state of one node at a time in the T-LGL fixed

point for only the first time step, and keep updating the system.

This intervention may be accomplished by a pharmacological

intervention on a T-LGL cell.

2. Reverse the state of one node in the T-LGL fixed point

permanently and continue updating other nodes. This

Figure 6. Experimental validation of the increased activity (ON state) of Smad2/3 in leukemic T-LGL. Western blot detection of
phosphorylated Smad2 or Smad3, and total Smad2 (i.e. the sum of phosphorylated and non-phosphorylated Smad2) or Smad3 in activated normal T
cells compared with peripheral blood mononuclear cells from T-LGL leukemia patients confirms that Smad2 or Smad3 is unphosphorylated (inactive)
in normal T cells and predominantly phosphorylated (active) in T-LGL cells.
doi:10.1371/journal.pcbi.1002267.g006

Node T-LGL state Ref.
Fixed point the disruption
leads to

Size of exclusive basin of
normal fixed point Ref.

Proliferation OFF [43] — —

Apoptosis OFF [66] — —

TCR Oscillate* — —

CTLA4 Oscillate* — —

The first two columns from the left list the components of the network (except for the six source nodes) and their T-LGL states. The nodes’ states marked with a
* symbol were not documented experimentally in T-LGL before and were predicted by our steady state analysis. The references for the nodes’ states documented
before are given in the third column. The fixed point(s) obtained after each of the nodes’ states is reversed is given in the fourth column, while the size of the exclusive
basin of attraction of the normal fixed point, expressed as a percentage of the whole relevant state space, is indicated in the fifth column. The reference of the
perturbation cases for which experimental evidence exists is given in the last column. The first 19 nodes in the first column are potential therapeutic targets for T-LGL
leukemia.
1Evidence in NK-LGL leukemia.
doi:10.1371/journal.pcbi.1002267.t002

Table 2. Cont.
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intervention may be accomplished by genetic engineering of a

T-LGL cell.

3. Considering all possible initial states, fix the state of one node in

the opposite of its T-LGL state and keep updating other nodes.

This intervention may be accomplished by genetic engineering

of a population of CTLs.

For the first perturbation approach, we found that only the

trivial case of flipping the state of Apoptosis to ON leads

exclusively to the normal fixed point. Using the second

perturbation approach, we observed that fixing S1P at OFF or

Apoptosis at ON eliminates the T-LGL fixed point. In addition,

fixing either Ceramide or DISC at ON results in a new fixed point

which is similar to the normal fixed point of the unperturbed

system, with the only difference that the disrupted node’s state is

fixed at ON as long as the cell is alive. Using the last perturbation

approach, we found a result identical to that of the second

approach, indicating that the nodes S1P, Ceramide, and DISC are

candidate therapeutic targets for the simplified sub-network.

Experiments also confirm that Ceramide and DISC can serve as

therapeutic targets [46,48]. We note that the third approach is

superior to the second in that it provides additional information on

the size of the basin of attraction of each fixed point. For example,

we observed that in the case of over-expression of Fas, the

exclusive basin of attraction of the normal fixed point increases

significantly to 72% of the states. This suggests that although both

fixed points are still reachable, the normal fixed point is more

probable to be reached. This analysis revealed that the last

approach leads to more detailed results than the first two

approaches.

Next we focused our attention to the effects of node disruptions

on the whole network to make biologically testable predictions

about the occurrence of the disease state under different

conditions. To this end, we followed the third approach delineated

above. More precisely, for each node disruption we fixed the state

of that node in the opposite of its stabilized state in the T-LGL

fixed point given in Table 2 (i.e. we knocked out the nodes that

stabilize in the ON state in T-LGL fixed point and over-expressed

the ones that stabilize in the OFF state) and considered all possible

initial states for the remaining nodes (except for the six source

nodes). Of the 60 nodes of the network, six are source nodes, three

are output nodes and two (CTLA4 and TCR) have oscillatory

behavior in the T-LGL attractor. For each of the remaining nodes,

we fixed the state of that node in the opposite of its T-LGL state,

initiated the six source nodes as in the unperturbed case, and

identified the stabilized nodes using logical steady state analysis

(see Materials and Methods). We then simplified the network of

non-stabilized nodes according to the second step of our reduction

method (see Materials and Methods) and obtained all possible

fixed points by solving the corresponding set of Boolean equations.

For some cases we needed to construct the full state transition

graphs because of the possibility of oscillation (e.g. when the two

oscillatory nodes, CTLA4 and TCR, were connected to other

nodes in the simplified network and there was a possibility of

propagating the oscillation to other nodes in the T-LGL state). We

found that in the case of perturbation of TBET, PI3K, NFkB,

JAK, or SOCS, five additional nodes of the network connected to

CTLA4 and TCR, namely LCK, FYN, Cytoskeleton signaling,

ZAP70, and GRB2, oscillate as well. Also, for the knockout of

FYN, only two of these additional nodes, i.e. LCK and ZAP70

oscillate. In addition, in the case of perturbation of TBET, JAK,

SOCS, or IL2, the node IL2RA shows oscillatory behavior in the

T-LGL state.

In general, two types of fixed points were observed, the normal

fixed point with Apoptosis being ON and all other nodes being

OFF, and similar-to-TLGL fixed points with Apoptosis being OFF

and the state of some nodes being different from the wild-type T-

LGL fixed point due to the disruption imposed on the network.

We still consider these latter fixed points as the T-LGL fixed point.

A summary of the node disruption results, including the fixed

point(s) obtained after the disruption as well as the size of the

exclusive basin of attraction of the normal fixed point in the

respective reduced model, is given in the fourth and fifth columns

of Table 2. Our results indicate that disruption of any of the first

15 nodes in Table 2 leads to the disappearance of the T-LGL fixed

point (i.e., of the disease state). These nodes are thus predicted

candidate therapeutic targets. For example, our results suggest that

knockout of STAT3 or over-expression of Ceramide in deregu-

lated CTLs restores their activation induced cell death. We found

for the knockout of either FasT or FasL that the normal fixed point

and the 50% of the state transition graph which includes the ON

state of Apoptosis is separated from the rest of the state space and

thus they are not accessible from the biologically relevant initial

conditions. Therefore, the T-LGL fixed point is the only

biologically relevant outcome in this case. For this reason, the

size of the basin of attraction of the normal fixed point was

indicated as 0% in Table 2. Notably, these nodes can serve as

candidates for engineering of long-lived T cells, which are

Figure 7. Importance values of network components in T-LGL leukemia. These values are based on the relative reduction of the number of
paths from PDGF to ,Apoptosis after considering the cascading effects of node disruptions. The complementary nodes are denoted by the
corresponding original nodes with a symbol ‘,’ as prefix representing ‘negation’.
doi:10.1371/journal.pcbi.1002267.g007
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necessary for the delivery of virus and cancer vaccines. The

remaining node disruptions still retain both disease and normal

fixed points.

There is corroborating literature evidence for several of the

therapeutic targets predicted by our analysis. For example, it was

found experimentally that STAT3 knockdown by using siRNA or

down-regulation of MCL1 through inhibiting STAT3 induces

apoptosis in leukemic T-LGL [49]. Furthermore, in vitro Ceramide

treatment induces apoptosis in leukemic T-LGL [48]. It was also

found that treatment with IL2 and TCR stimulation facilitates

Fas-mediated apoptosis via induction of DISC formation [46]. In

addition, SPHK1 inhibition by using chemical inhibitors signifi-

cantly induces apoptosis in leukemic T-LGL [18]. These

experimental results validate that perturbation of these nodes

results in the normal fixed point as mentioned in Table 2.

Moreover, it was reported in [41] that inhibition of RAS through

introducing a dominant negative form of RAS, or inhibition of

MEK or ERK through chemical inhibitors, induces apoptosis in

leukemic NK-LGL, which indirectly supports our results on these

three nodes.

For the cases where both fixed points are still reachable, our

analysis of the relative size of the basins of attraction (i.e.

percentage of the whole relevant state space) of the fixed points

and the probabilities of reaching the fixed points (see Materials

and Methods) indicated that in most of these cases the trends are

similar to the wild-type model, e.g. the size of the exclusive basin of

attraction of the normal fixed point is 56%, the same as that for

the unperturbed system. In a few cases, however, including JAK,

PI3K, or NFkB knockout as well as SOCS over-expression, the

exclusive basin of attraction of the normal fixed point increased

significantly (to 75% or more). Thus, these nodes can be also

considered as potential therapeutic targets. Interestingly, for three

cases, namely JAK, PI3K, and NFkB, experimental data also

suggest that the balance between the incidence of the two fixed

points is shifted in the manipulated system compared to the

original one. For example, inhibition of JAK [49], PI3K [50] or

NFkB [18] through chemical inhibitors induces apoptosis in

leukemic T-LGL. In summary, our analysis leads to the novel

predictions that Caspase, GAP, BID, or SOCS over-expression as

well as RAS, MEK, ERK, IL2RBT, or IL2RB knockout can lead

to apoptosis of T-LGL cells.

Comparison between structural and dynamic pertur-

bation analysis. We performed the perturbation analysis

using a dynamic method as well as a structural method. How do

the results compare? From the dynamic analysis, a node is

classified as an important mediator of the T-LGL fixed point if

reversing its state from the value it achieves in the T-LGL fixed

point will lead the system to have only the normal fixed point.

From the structural analysis, a node can be classified as an

important mediator of the T-LGL behavior if its importance value

(see Materials and Methods) to the ,Apoptosis outcome is higher

than a pre-specified threshold. We used different importance

values as thresholds and compared the structure-based

classification with the dynamics-based classification by using the

latter as the standard. The sensitivity (the fraction of important

components based on dynamic perturbation analysis that are

recognized as important by the structural method) and specificity

(the fraction of non-important components based on dynamic

perturbation analysis that are recognized as non-important by the

structural method) values of the structure-based classification are

summarized by the red curve in Figure 8. The structural method

gives the best fit to the dynamic method (namely, sensitivity of 1.00

and specificity of 0.76) if a threshold of 0.9 is used. An important

feature of the structural method is its incorporation of the

cascading effects of a node’s deletion. To illustrate this point, we

also show the corresponding result without considering the

cascading effects of nodes’ deletions represented by the green

curve in Figure 8. As this figure demonstrates, the results using a

pure topological measure without considering the cascading effects

gives a much worse fit to the results of the dynamic method.

Interestingly, for all the components whose manipulation lead

the system to have only the normal fixed point according to the

dynamic analysis (the first 15 components in Table 2), the reported

importance values based on the structural method were larger

than 0.95. For four additional cases, namely, SOCS, JAK, PI3K,

and NFkB, which are identified as important for survival based on

the simple path measure, the dynamic analysis results also revealed

that the T-LGL outcome has a lesser probability to be reached as

mentioned earlier. Therefore, they can also be considered as

potential therapeutic targets.

We note that there are four cases, namely, TBET, FLIP, IAP,

and TNF, which were identified as important based on the

structural method while their disruption maintains the existence of

both fixed points based on dynamic analysis and the size of the

exclusive basin of attraction of the normal fixed point is either

close to or the same as that of the wild-type system. This may be

partly due to the fact that in the state space analysis we consider all

possible initial conditions for the system, whereas the topological

analysis implicitly refers to only one initial condition, wherein

three source nodes are ON and all other nodes are OFF. Another

potential reason regarding the discrepancies between the structural

and dynamic perturbation results might be related to the structural

method’s use of the simple path measure rather than the

elementary signaling modes (ESMs, see Materials and Methods).

Furthermore, although the reduction method used for the

dynamic analysis preserves the fixed points, it can change the

state transition graph and thus may have an impact on the relative

size of the basins of attraction, serving as an alternative source of

inconsistencies. However, this change is not expected to be drastic

as we found that the exclusive basin of attraction of the normal

fixed point in the 6-node network was approximately of the same

relative size as that in the 18-node network.

Figure 8. Comparison of structural perturbation analysis
results with and without cascading effects of node deletions.
SP+CE represents the simple path measure considering cascading
effects of node deletions, and SP-CE represents the simple path
measure without considering cascading effects of node deletions.
doi:10.1371/journal.pcbi.1002267.g008
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Discussion

In this paper we presented a comprehensive analysis of the T-

LGL survival signaling network to unravel the unknown facets of

this disease. By using a reduction technique, we first identified the

fixed points of the system, namely the normal and T-LGL fixed

points, which represent the healthy and disease states, respectively.

This analysis identified the T-LGL states of 54 components of the

network, out of which 36 (67%) are corroborated by previous

experimental evidence and the rest are novel predictions. These

new predictions include RAS, PLCG1, IAP, TNF, NFAT, GRB2,

FYN, SMAD, P27, and Cytoskeleton signaling, which are

predicted to stabilize at ON in T-LGL leukemia and GAP,

SOCS, TRADD, ZAP70, and CREB which are predicted to

stabilize at OFF. In addition, we found that the node P2 can

stabilize in either the ON or OFF state, whereas two nodes, TCR

and CTLA4, oscillate. We have experimentally validated the

prediction that the node SMAD is over-active in leukemic T-LGL

by demonstrating the predominant phosphorylation of the SMAD

family members Smad2 and Smad3. The predicted T-LGL states

of other nodes provide valuable guidance for targeted experimen-

tal follow-up studies of T-LGL leukemia.

Among the predicted states, the ON state of Cytoskeleton

signaling may not be biologically relevant as this node represents

the ability of T cells to attach and move which is expected to be

reduced in leukemic T-LGL compared to normal T cells. This

discrepancy may be due to the fact that the network contains

insufficient detail regarding the regulation of the cytoskeleton, as

there is only one node, FYN, upstream of Cytoskeleton signaling

in the network. While the network is able to successfully capture

survival signaling without necessarily capturing the cytoskeleton

signaling, this discrepancy suggests that follow-up experimental

studies should be conducted to determine the relationship between

cytoskeleton signaling and survival signaling in the T-LGL

network. We note that in the case of perturbation of TBET,

PI3K, NFkB, JAK, or SOCS, the node Cytoskeleton signaling

exhibits oscillatory behavior induced by oscillations in TCR. At

present it is not known whether this predicted behavior is relevant.

Using the general asynchronous (GA) Boolean dynamic

approach, we analyzed the basins of attraction of the fixed points.

We found that the basin of attraction of the normal fixed point is

larger than that of the T-LGL fixed point. The trajectories starting

from each initial state toward the T-LGL fixed point (Figure 4)

may be indicative of the accumulating deregulations that lead to

the disease-associated stable survival state. Although the fixed

points, being time independent, are the same for all update

methods or implementations of time, the update method may

affect the structure of the state transition graph of the system and

the basins of attraction of the fixed points. We note that the GA

method assumes that each node has an equal chance of being

updated. If quantitative or kinetic information becomes available

in this system, unequal probabilities may be implemented by

grouping the nodes into several ‘‘priority classes’’ and assigning a

weight to each class where higher weights indicate more probable

transitions [51]. Incorporating such information into the state

space may prune the allowed trajectories and give further insights

into the accumulation of deregulations.

We took one step further by performing a perturbation analysis

using dynamical and structural methods to identify the interven-

tions leading to the disappearance of the disease fixed point. We

note that our study has a dramatically larger scope than the

previous key mediator analysis of Zhang et al [18]. For the

dynamical analysis, we employed the GA approach instead of the

random order asynchronous method and considered all possible

initial conditions as opposed to performing numerical simulations

using a specific initial condition. Zhang et al only focused on the

node Apoptosis, and identified as ‘‘key mediators’’ the nodes

whose altered state increases the frequency of ON state of

Apoptosis. An increase in Apoptosis’ ON state does not necessarily

imply that apoptosis is the only possible final outcome of the

system. In this work, after finding the fixed points, which

completely describe the state of the whole system, we performed

dynamic perturbation analysis by fixing the state of each node to

its opposite state in the T-LGL fixed point and determining which

fixed points were obtained and what their basins of attraction

were. This way we were able to identify and distinguish the key

mediators whose altered state completely eliminates the leukemic

outcome, and those whose altered state reduces the basin of

attraction of the leukemic outcome. Moreover, numerical

simulations, as done in [18], may not be able to thoroughly

sample different timing. In this study, using a reduction technique,

we found the cases when timing does not matter with certainty

(where there is only one fixed point), and also the cases in which

timing and initial conditions may matter (where there are two

reachable fixed points). For the perturbation analysis using the

structural method, we used the simple path (SP) measure to

identify important mediators of the disease outcome and observed

consistent results with the dynamic analysis. Our dynamical and

structural analysis led to the identification of 19 therapeutic targets

(the first 19 nodes in the first column of Table 2), 53% of which are

supported by direct experimental evidence and 15% of which are

supported by indirect evidence.

Multi-stability (having multiple steady states) is an intrinsic

dynamic property of many disease networks [52,53], which is

related to the presence of feedback loops in the network. In a

graph-theoretical sense, a feedback loop is a directed cycle whose

sign depends upon the parity of the number of negative

interactions in the cycle. A positive/negative feedback loop has

an even/odd number of negative interactions. It was conjectured

that the presence of positive feedback loops in the network is

necessary for multi-stability whereas the existence of negative

feedback loops is required for having sustained oscillations [54].

From a biological point of view, the former dynamical property is

associated with multiple cell types after differentiation while the

latter is related to stable periodic behaviors such as circadian

rhythms [55]. We note that the T-LGL signaling network consists

of both positive and negative feedbacks and thus has a potential for

both multi-stability and oscillations. Indeed, the negative feedback

in the top sub-graph of Figure 2A causes the complex attractor

shown in Figure 3. In contrast, the negative feedback on the node

P2 of the bottom sub-graph is counteracted by the positive self-

loop on the same node, thus no complex attractor is possible for

the bottom sub-graph of Figure 2A. The two mutual inhibition-

type positive feedback loops present in the bottom sub-graph and

the self-loop on P2 generate the three fixed points, while the

positive self-loop on Apoptosis maintains the normal fixed point

once Apoptosis is turned ON.

Negative feedback loops can be a source of oscillations [56],

homeostasis [56], or excitation-adaptation behavior [57]. Espe-

cially, when the activation is slower than the inhibitory interaction

in the negative feedback, it can lead to sustained oscillations [56].

In the T-LGL network, the negative feedback loop between the T

cell receptor TCR and CTLA4 modulates stimulus-induced

activation of the receptor in such a way that CTLA4 is indirectly

activated after prolonged TCR activation, whereas the inhibition

of TCR by CTLA4 is a direct interaction [58]. That is, activation

is slower than inhibition in the negative feedback and thus an

oscillatory behavior reminiscent of that obtained by our asyn-
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chronous Boolean model would also be observed in continuous

modeling frameworks as well. Although no time-measurements of

the T cell receptor activity in T-LGL exist, it has been reported

that there is variability for TCR activation in different patients

([43] and unpublished observation by T.P. Loughran), supporting

the absence of a steady state behavior.

Our study revealed that both structural and dynamic analysis

methods can be employed to identify therapeutic targets of a

disease, however, they differ in implementation efficiency as well

as the scope and applicability of the results. The structural analysis

does not require mapping of the state space and thus is less

computationally intensive and is more feasible for large network

analysis, but it may not capture all the initial states and thus may

miss or inaccurately identify some important features. The

dynamic analysis method, while computationally intensive, yields

a comprehensive picture of the state transition graph, including all

possible fixed points of the system, their corresponding basins of

attraction, as well as the relative frequency of trajectories leading

to each fixed point. We demonstrated that the limitations related

to the vast state space of large networks can be overcome by

judicious use of the network reduction technique that we

developed in our previous study [22]. We conclude that the

structural method incorporating the cascading effects of node

disruptions is best employed for quick exploratory analysis, and

dynamic analysis should be performed to get a thorough and

detailed insight into the behavior of a system. Overall, the

combined analysis presented in this study opens a promising

avenue to predict dysregulated components and identify potential

therapeutic targets, and it is versatile enough to be successfully

applied to a large variety of signal transduction and regulatory

networks related to diseases.

Supporting Information

Figure S1 The expanded T-LGL survival signaling
network. Composite nodes are represented by small gray solid

circles, original nodes are represented by large ovals, and

complementary nodes are represented by rectangles. The labels

of complementary nodes are denoted by the labels for the

corresponding original nodes with a symbol ‘,’ as prefix

representing ‘negation’.

(TIF)

Table S1 Boolean rules governing the state of the T-LGL
signaling network depicted in Figure 1. For simplicity, the

nodes’ states are represented by the node names. The symbol

* indicates the future state of the marked node. The Boolean rule

for each node is determined based on the nature of interactions

between that node and the nodes directly interacting with it. This

rule can be expressed using the logical operators AND, OR and

NOT. For example, if the given node has a single upstream node,

the corresponding Boolean function would include only one

variable. This variable will be combined with a NOT operator if

the upstream node is an inhibitor. In cases where the given node

has multiple upstream nodes, their effect is combined with AND or

OR operators (potentially in conjunction with the NOT operator)

to correctly recast the regulatory interactions. For example, the

AND operator is used when the co-expression of two (or more)

activating inputs is required for activating the target node,

whereas, the OR operator implies that the activity of at least

one of the upstream activators is sufficient to activate the target

node. The type of each interaction (i.e. the logical rule) should be

extracted from the relevant literature and experimental evidence.

This table is adapted from [1]. The interested reader is referred to

[1] for the detailed explanation of the rules.

(PDF)

Table S2 The full names of components in the T-LGL
signaling network corresponding to the abbreviated
node labels used in Figure 1. Several network nodes represent

the union of a few proteins with similar roles. In such cases, a

single entry in the first column corresponds to several entries in the

second column. This table and its caption are adapted from [1].

(PDF)

Table S3 Boolean rules governing the state of the 18-
node sub-network depicted in Figure 2A. For simplicity, the

nodes’ states are represented by the node names. The symbol

* indicates the future state of the marked node.

(PDF)
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