
Education

A Quick Guide to Software Licensing for the Scientist-
Programmer
Andrew Morin1, Jennifer Urban2, Piotr Sliz1*

1 Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, United States of America, 2 Samuelson Law,

Technology & Public Policy Clinic, School of Law, University of California Berkeley, Berkeley, California, United States of America

Computing is ubiquitous in every

domain of scientific research. Software is

the means by which scientists harness the

power of computers, and much scientific

computing relies on software conceived

and developed by other practicing re-

searchers. The task of creating scientific

software, however, does not end with the

publication of computed results. Making

the developed software available for in-

spection and use by other scientists is

essential to reproducibility, peer-review,

and the ability to build upon others’ work

[1,2]. In fulfilling expectations to distribute

and disseminate their software, scientist-

programmers are required to be not only

proficient scientists and coders, but also

knowledgeable in legal strategies for li-

censing their software. Navigating the

often complex legal landscape of software

licensing can be overwhelming, even for

sophisticated programmers. Institutional

technology transfer offices (TTOs) exist

to help address this need, but due to

mismatches in expectations or specific

domain knowledge, interactions between

scientists and TTO staff can result in

suboptimal outcomes.

As practitioners in the scientific com-

puting and technology law fields, we

have witnessed firsthand the confusion

and difficulties associated with licensing

scientifically generated software. SBGri-

d.org is a consortium of scientific

software developers and users in hun-

dreds of biomedical research laborato-

ries worldwide. As facilitator and mid-

dleman between developers and end-

users, we commonly assist in the dissem-

ination and use of scientifically generat-

ed software. Through research and

advocacy, the Samuelson Law, Technol-

ogy and Public Policy Clinic works with

software developers and other creators

on licensing issues, particularly issues

related to facilitating ‘‘open access’’ to

scientific, technical, or creative materi-

als. Together, we offer a primer on

software licensing with a focus on the

particular needs of the scientist software

developer. The aim of this guide is to

help scientists better engage with their

institutional TTO when choosing soft-

ware licenses.

Why Software Licenses Are
Important

Licenses are important tools for setting

specific terms on which software may be

used, modified, or distributed. Based on

the copyright protection automatically

granted to all original works, a software

license—essentially, a set of formal per-

missions from the copyright holder—may

include specific ‘‘conditions’’ of use, and

are an important part of the legally

binding contract between program author

(or rights owner) and end-user.

Without a license agreement, software

may be left in a state of legal uncertainty in

which potential users may not know which

limitations owners may want to enforce,

and owners may leave themselves vulner-

able to legal claims or have difficulty

controlling how their work is used. This is

equally true for software that is commer-

cialized and offered for a fee, and software

that is made available without cost to

others. While end-users often balk at overly

restrictive software licenses, the uncertainty

caused when no license is given can also

discourage those wishing to make use of a

piece of code. It is important to note that

licenses can be used to facilitate access to

software as well as restrict it.

Software Licensing in Academic
and Research Environments

For a license to be valid it must be

granted by the owner of the work’s

intellectual property (IP) rights. Under

the policies of most academic and

research institutions, researchers who

have created a piece of software are

unlikely to own full rights to their works.

Instead, the institution generally holds or

shares legal right to developed software.

Institutions’ policies on IP ownership

vary, but in most cases your institution

will be the legal ‘‘rights owner,’’ and will

be the entity that actually grants the

license you choose for your software.

Although many types of licenses, espe-

cially of the ‘‘free and open source’’

variety, are simple enough for the non-

legal expert to understand and apply

(Figure 1), it is generally necessary to

consult your institutions’ TTO before

imposing a license. See below for more

information about working with your

institution in applying a license.

Types of Software Licenses

Colloquially speaking, the spectrum of

software licensing strategies can be divided

into three categories: ‘‘proprietary,’’ ‘‘free

and open source,’’ or a hybrid of the two.

Proprietary Licensing
This strategy is familiar from the ‘‘click-

thru’’ agreements that govern commercial

software packages. The primary purpose

of a proprietary software license is to limit

the use of software according to the rights

owner’s business strategy. As a result,

proprietary licenses are often very restric-

tive for end-users. They typically allow use

of the software only for its stated purpose,

often only on a single computer, forbid

Citation: Morin A, Urban J, Sliz P (2012) A Quick Guide to Software Licensing for the Scientist-
Programmer. PLoS Comput Biol 8(7): e1002598. doi:10.1371/journal.pcbi.1002598

Editor: Fran Lewitter, Whitehead Institute, United States of America

Published July 26, 2012

Copyright: � 2012 Morin et al. This is an open-access article distributed under the terms of the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited.

Funding: The work was supported by the National Science Foundation grant 0639193 (PS). The funders had
no role in the preparation of the manuscript.

Competing nterests: The authors have declared that no competing interests exist.

* E-mail: piotr_sliz@hms.harvard.edu

PLoS Computational Biology | www.ploscompbiol.org 1 July 2012 | Volume 8 | Issue 7 | e1002598

i

users from copying, redistributing, or

altering the work, and specifically prohibit

the creation of derivatives using parts of

the work. Importantly, programs under

proprietary licenses are typically distribut-

ed only in binary form and forbid

examination of the program code or

reverse engineering of any part of the

program. In academic settings, proprietary

software may occasionally release source

code ‘‘for inspection purposes only’’ due to

scientific publishing and peer-review re-

quirements (Table 1).

Free and Open Source Software
(FOSS) Licensing

Free and open source software (FOSS)

represents a fundamentally different ap-

proach to software licensing. The primary

intent of FOSS is to maximize openness

and minimize barriers to software use,

dissemination, and follow-on innovation.

There are a wide variety of popular FOSS

licenses [3], each of which vary in some

important ways, but all grant free (as in

freedom), open, and non-discriminatory

access and rights to modify licensed

software and associated source code. A

common misconception is that FOSS is

synonymous with ‘‘noncommercial.’’ In

fact, as described by the two most

influential definitions of FOSS [3,4],

‘‘non-discriminatory’’ means that no cate-

gory of user or distributor can be prohib-

ited, including for-profit commercial enti-

ties. As such, FOSS-licensed software can

be, and regularly is, commercially exploit-

ed. Some cited benefits of a FOSS strategy

include widespread adoption, user contri-

butions, and ease of collaboration [5].

Additionally, because of their open and

non-discriminatory nature, FOSS licenses

can simplify continued development and

collaboration when researchers switch

institutions, and when they collaborate

across institutions. FOSS can also help to

extend the useful lifetime of a piece of

software beyond the direct involvement of

the creators. We discuss some important

differences in FOSS licenses below.

Hybrid Software Licensing
Some software developers find that their

needs are not well met by using either

proprietary or FOSS licensing models

exclusively. In these cases, ‘‘hybrid’’ (also

called dual- or multi-licensing) approach-

es—combining a FOSS license with a

proprietary ‘‘closed’’ license—are some-

times used. Under this strategy, the rights

owner chooses which license to apply on a

case-by-case basis. When ownership and

licensing rights are clear, these licensing

schemes can maintain some of the benefits

of FOSS while also permitting creators to

employ multiple business models [6]. The

downside can be a significant added

burden for the rights owner in applying,

administering, and enforcing multiple

licenses. This has generally limited the

adoption of hybrid license models to large

software development initiatives.

Terms, Concepts, and Examples
Useful in Understanding
Software Licenses

Open Source versus Closed Source
Source code is the human readable form

of a computer programming language.

‘‘Open source’’ refers to licenses that

require the source code be available to

users, and that users be able to reuse,

modify, and distribute the code [3]. Without

Figure 1. Example of FOSS license with ‘‘academic’’ style copyright statement. The example shown is the entirety of a 2-Clause BSD [8]
license with copyright statement (at top, within quotes). The text of the license is in black. Red highlighted text is where the copyright holder
applying the license inserts their specific information. Application of this and many FOSS licenses simply require that the text of the license be
included (usually as ‘‘License.txt’’) in the directory containing the distributed program binary and or source code.
doi:10.1371/journal.pcbi.1002598.g001

PLoS Computational Biology | www.ploscompbiol.org 2 July 2012 | Volume 8 | Issue 7 | e1002598

access to source code, researchers cannot

effectively inspect, understand, or manipu-

late the inner workings of a program.

Source code availability is of increased

importance in the context of scientific

research, where peer review, reproducibil-

ity, and building upon prior work are

integral to the advancement of science.

Source code access helps researchers quick-

ly identify and remedy bugs that might lead

to spurious results and adapt programs or

pieces of code to suit individual needs, and

allows expert users to contribute to code

development on an informal basis. An

active open source user community partic-

ipating in maintaining and improving the

code base can free the original developer to

concentrate on major enhancements or

move on to other projects without sacrific-

ing continued utility of the software.

Permissive versus Copyleft
‘‘Permissive’’ and ‘‘copyleft’’ are terms

used to compare legal philosophies and

attributes of FOSS licenses to traditional

proprietary licenses.

Permissive licenses are those that place the

fewest restrictions on users and adopters,

often only requiring that the original

creators be attributed in any distribution

or derivative of the software or source

code. For example, permissively licensed

software may be incorporated into

‘‘closed’’ proprietary programs with no

requirement that the source code be

disclosed if the combined software is

distributed. Permissive open source licens-

es are also sometimes called ‘‘research’’ or

‘‘academic’’ style licenses because of their

origins in, and frequent use by, academic

institutions [7].

Examples of popular permissive FOSS

licenses include the Berkeley Software

Distribution (BSD) [8], MIT [9], Apache

[10], and Educational Community Li-

cense (ECL) [11] licenses. The BSD and

MIT licenses are often mentioned inter-

changeably due to very similar language

and terms that accomplish largely identical

goals. The primary intent of these licenses

is to allow the use, distribution, and

modification of your code for any purpose,

while making sure that you as the creator

receive credit for your work (see Figure 1

for an example of an FOSS license with an

academic style attribution/citation copy-

right statement). The Apache and ECL

licenses are similar in effect to the BSD/

MIT, but include a license for patents

related to the software (this can be

desirable or not, depending on the situa-

tion—see below). The ECL differs from

Apache in a slightly weakened patent

grant to accommodate the often complex

IP environments of academic institutions.

For developers who want to guarantee

perpetual open source access to their work,

some licenses employ the concept of copyleft, a

punning reference to ‘‘copyright.’’ Copyleft

uses copyright’s legal framework to guaran-

tee continued open access to a software and

its source code. This is done by requiring, as

a condition of the license, that any derivative

works also be distributed under the same

licensing terms as the original. These copyleft

licensing terms are also sometimes referred to

as reciprocity or ‘‘share-alike’’ provisions.

Because of these reciprocity requirements,

copyleft licenses are considered ‘‘restrictive’’

licenses, though these restrictions guarantee

perpetual open access.

Examples of popular copyleft FOSS

licenses include the GNU General Public

License (GPL) [12], GNU Lesser General

Public License (LGPL) [13], and the

Mozilla Public License (MPL) [14]. The

GNU Licenses are the most well known of

all the FOSS licenses and have a strong

community of supporters and advocates.

Of these, the GPL has the strongest

reciprocity requirements and is considered

a ‘‘strong’’ copyleft license. The LGPL (the

‘‘Lesser GPL,’’ denoting its weaker copyleft

requirements) is very similar to the GPL

from which it is derived, but allows for

linking to proprietary code under certain

circumstances. Similarly, the MPL allows

copyleft to be applied to some parts of the

code and not others. The LGPL and MPL

are considered a compromise between the

strong copyleft of GPL and permissive

licenses such as the BSD/MIT.

Compatibility, Proliferation,
Fragmentation, and Directionality

A fundamental goal of FOSS is to

promote the free exchange of ideas and

technology without fear of infringing the

rights of others. Ideally, code licensed

under like-minded FOSS terms should be

freely combinable to create new products.

Compatibility is the attribute of software

licenses that allows combining of program

code. To be compatible, license terms

must be free of contradictory or mutually

exclusive requirements. Alas, some FOSS

licenses contain terms ‘‘incompatible’’

Table 1. Summary of select attributes of cited licenses types.

Name Latest Version Copyleft
Patent
Granta

Permitsb

Code
Linking Used byc

FOSS BSD
MIT
ECL
Apache
MPL
LGPL
GPL

2-Clause
1.0
2.0
2.0
2.0
3.0
3.0

No
No
No
No
Partial
Weak
Strong

No
No
Yes
Yes
Yes
Yes
Yes

Yes
Yes
Yes
Yes
Yes
Yes
No

Gabedit, Chemkit, SciPy
Weblogo, APBS
RCrane, Sakai Project
Imagemagick, Autodock Vina, GenMAPP
Firefox, Thunderbird
ClustalW/X, IMP, BioJava, Taverna Workbench
R Project, Perl, Coot, OpenBabel, GROMACS

Proprietary Traditional ‘‘bespoke’’d

‘‘Inspection only’’e

Commercial

No
No
No

Varies
Varies
No

Varies
Varies
No

Majority of scientist-created software
Satisfies minimum publishing & peer-review requirement
MS Windows, iTunes, Acrobat

Hybrid Any combination Varies Varies Varies Pymol, MySQL, BDB, Phenix

Note that the values assigned in the table are only a general summary of each license attribute and may not fully reflect the specific details of each license.
aLicense text explicitly describes the treatment of patents related to the software.
bAllows the linking of computer code under different licenses.
cSelect examples of popular software employing these licenses.
dRefers to a range of custom-tailored licenses traditionally used by academic and research institutions.
eTraditional ‘‘bespoke’’ license that also makes source code available for inspection purposes only.
doi:10.1371/journal.pcbi.1002598.t001

PLoS Computational Biology | www.ploscompbiol.org 3 July 2012 | Volume 8 | Issue 7 | e1002598

with other FOSS licenses, thereby diluting

the ability to easily combine code.

This unfortunate situation has been

exacerbated by the proliferation of incom-

patible FOSS licenses, many of which

differ in only trivial ways. The Open

Source Initiative (OSI) [15] was created in

part to reduce the fragmentation of the

FOSS license space cause by incompatible

and redundant licenses. OSI thus strongly

encourages using an existing FOSS license

instead of creating a new, ‘‘bespoke’’

license, and offers a categorization of

licenses to help developers avoid redun-

dancy [16].

In general, the more restrictive the

license, the less compatible it is with other

licenses. Proprietary licensed software, by

design, cannot be incorporated into other

codebases absent a separately negotiated

licensing agreement.

License compatibility is further compli-

cated, however, in that it is directional.

License directionality refers to how a license

behaves differently with code feeding into it

(upstream, or backward-compatible) or out

of it (downstream, or forward-compatible)

(Figure 2). For example, a permissive

license like the BSD is forward-compatible

with nearly any other kind of license, but

backward-compatible only with other per-

missive licenses. Likewise, a copyleft license

like the GPL can incorporate (upstream)

both permissive and other GPL’d code, but

the resulting software may only be licensed

(downstream) under the GPL.

Directionality is an important reason

why, if you’re trying to integrate code

written by others with your own, you’ll

want to be aware of what license the code

you are incorporating carries. When

attempting to combine code from multiple

projects each under different license types,

issues of compatibility can become very

complex.

‘‘Form’’ versus ‘‘Bespoke’’ Licenses
FOSS license are generally form licenses,

meaning that their terms are standardized

and a developer need only apply them

(Figure 1). This standardization is critical

to the success of FOSS strategies because it

maximizes license compatibility and min-

imizes the cost of administering and

understanding the terms of a given license.

Conversely, bespoke licenses are custom-

tailored for each individual project. Tai-

lored licenses allow for greater control, but

require more resources to develop and

administer and are highly likely to be

incompatible with other licensing schemes.

Nearly all proprietary licenses are bespoke.

Hybrid and Multi-Licensed Software
These license schemes differ from single

licensing in allowing rights owners to

choose which licenses best serve their

needs on a case-by-case basis. One form

of multi-licensing permits users and con-

tributors to select among multiple licenses

offered by the rights owner. Another

example is when owners enter into

separate ‘‘side’’ agreements not to enforce

certain provisions of FOSS licenses, often

for a fee. Limiting the reach of FOSS

licenses in this manner is controversial

within the open source community due to

the partial circumvention of share-alike

principles.

MySQL [17] and Oracle Berkeley DB

[18] (BDB) are two well-known examples

of multi-licensed software and are both

made freely available for use, distribution,

and modification under open source

licenses. However, each of these programs

is additionally offered for a fee under

alternative licenses more amenable to

proprietary business strategies.

FOSS Licenses and
Commercialization

It is a common misconception that

FOSS licensing strategies preclude com-

mercialization. In fact, OSI-approved [3]

FOSS licenses cannot discriminate against

commercial use. (This is one reason why

institutional TTOs have sometimes pre-

ferred a bespoke ‘‘non-profit-use-only’’

license.) Though FOSS licenses preclude

charging for the license rights themselves,

developers are free to charge a fee for

additional services such as technical sup-

port, priority feature development, consul-

tation, etc. Hybrid licensing schemes (see

above) offer further avenues for FOSS

commercialization.

Choosing a Software License

Determining which license will work best

for you can require some thought, and

depends not only on specific attributes of

your software, but also on your particular

goals. While both FOSS and proprietary

licenses generally require attribution and

Figure 2. Schematic representation of license directionality. In general, permissively
licensed code is forward compatible with any other license type. However, only permissive
licenses, such as the BSD and MIT, can feed into other permissive licenses. Restrictive licenses like
the GPL are backward compatible with themselves and permissive licenses, but must adopt the
restrictive license from then on. Proprietary licenses can incorporate upstream permissively
licensed code, but by definition are incompatible with any other downstream license. Grey
represents actions that are not permitted without negotiating a separate license agreement with
the rights owner.
doi:10.1371/journal.pcbi.1002598.g002

PLoS Computational Biology | www.ploscompbiol.org 4 July 2012 | Volume 8 | Issue 7 | e1002598

include standard protections such as dis-

claimers of warranty, they differ in key

aspects both philosophical and practical.

If you want…

…the widest possible distribution and adoption,

fewest restrictions on users, open and transparent

source code, peer review, community contributions

to the codebase, and easy incorporation of your code

by others… then a permissive FOSS
license such as the BSD/MIT, Apache,

or ECL licenses may work well. Because of

the few requirements on users, these

licenses are amongst the easiest to apply

and administer, and promote unfettered

incorporation of your code into other

software—including copyleft or commer-

cial software. Despite their general per-

missiveness, they do assure continued

author attribution in any and all redistri-

butions or derivative works.

…to assure the benefits and openness of FOSS

in all future derivatives of your work, open and

transparent source code, peer review, community

contributions to the codebase, and the potential

incorporation of your code into other copyleft-

licensed works… then you should consider a

copyleft FOSS license like the GPL,

LGPL, or MPL. These licenses, by

requiring anyone who distributes the

unmodified or modified code to do so

under the same license, guarantee perpet-

ual open source of your work. Some

copyleft licenses, such as the GPL, have

particularly strong developer communi-

ties, encouraging community contribu-

tions to your software. The copyleft

requirements of these licenses can some-

times, however, dissuade others from

adopting or incorporating your code.

…the ability to separately pursue proprietary

models while leveraging the wide distribution,

adoption, community contributions, and other

benefits of open source software… then a hybrid
or multi-license scheme may be ap-

propriate. Hybrid or multi-licensing can

achieve the benefits of both open source

and proprietary software licenses. Howev-

er, as in everything, there is no free lunch.

The legal, administrative, and organiza-

tional complexity of managing multiple

licenses, as well as other administrative

costs, often limits multi-license schemes to

large software projects whose anticipated

revenue stream justify the cost of dedicated

licensing personnel. As noted above, this

strategy is sometimes also controversial

within FOSS developer communities.

…protect the confidentiality of your source code,

reserve maximum control over the distribution and

use of your software, and derive licensing revenue…

then you should consider a proprietary
license. Institutional TTOs sometimes

default towards applying proprietary

licenses due to staff’s greater familiarity

with them and a desire to preserve what is

perceived (sometimes inaccurately) as the

maximum potential for commercial exploi-

tation. Institutions receiving public funds

will typically license proprietary software to

other academic or non-profit users at no

charge but require a fee for licensing to for-

profit and industry users.

Applying a License to Your
Software

Once you have chosen a license strategy

for your software, the usual first step in

applying it is to contact your institutional

TTO. Although many FOSS licenses are

easy to apply even by the non-legal-expert,

as researchers and academics it is unlikely

you personally own all of the rights to your

work. Instead, these rights typically belong

to, or are at least shared with, your

institution. Therefore it is usually neces-

sary to work with your institution when

applying a license.

TTOs exist to help you make and

execute these types of decisions. Nonethe-

less, coming with a clear idea of what kinds

of licenses are available, which one you

want, and why, will likely be both

appreciated by your TTO staff and result

in a more favorable outcome for you.

Once you’ve contacted your TTO, the

process generally begins by helping the

staff understand the ‘‘who, what, why,

where, and how’’ of your work: how it

works, who would be interested in it, what

the innovation is, why you made it, where

the funding came from, and other similar

facts. Once TTO staff have this general

understanding, they will discuss with you

possible IP schemes—everything from

placing the work in the public domain to

creating a company to commercialize it.

Most of the time, some form of license

arrangement will be preferred. Be pre-

pared, however. Some institutions’ philos-

ophies on protecting and exploiting IP are

more aggressive than others. You may

need to explain, for example, why using a

FOSS license does not preclude commer-

cialization (see above), why you think

commercialization is not the most appro-

priate goal for your work, or why broad

dissemination is an important goal for you.

If you wish to propose a license that limits

or forgoes the potential for generating

revenue, you may first have to convince

your TTO staff that your work lacks

commercial value. While the process can

sometimes be a bit of a negotiation, most

institutions care a great deal about the

scientific and societal impact of their IP,

and we find that it is rare for an institution

to act contrary to the express wishes of the

creator of a work. Knowing what you

want and why you want it should go far in

making the licensing process as painless as

possible.

The Complication of Software
Patents

An additional reason to contact your

TTO before applying a license is software

patents. Modern TTOs arose following

the Bayh-Dole Act of 1980, which allows

US research institutions to patent inven-

tions developed using public funds and to

license those patents [19,20]. Because the

vast majority of academic and research

inventions are unlikely to have significant

commercial value, most are never patented,

but institutions typically require the disclo-

sure of any patentable invention to the

TTO. Many FOSS licenses (like the BSD

or MIT licenses) are agnostic regarding

patents, while some explicitly include

patent grants in the license text (like the

Apache or GPL licenses) (Table 1). Soft-

ware patents are highly complex and

generally outside the scope of this guide,

but be aware that your TTO will want to

discuss patent strategy, as well as copyright.

Software Licensing and the
Open Culture of Science

The needs and obligations of academic

and publically funded research create

unique considerations for scientist-pro-

grammers choosing a software license.

Unlike in the software industry, where

licensing strategy is primarily a matter of

business strategy, it can be highly beneficial

for scientists to publish, disseminate, and

share the fruits of their work as widely as

possible, independent of commercial po-

tential. In addition, academic ethics en-

courage the wide sharing of research

materials and information, including code.

For programmers, this generally means

sharing not just the binary executable, but

also the source code so that others may use,

validate, reproduce, and extend the work.

FOSS licenses such as those listed above

are consistent with the open culture and

obligations of scientific research, as well as

the attribution and citation benefits academ-

ics have come to rely on. Permissive licenses

may be preferred due to their ease of

application and universal downstream com-

patibility. Copyleft licenses may be useful in

accommodating upstream encumbered

code or preferred by researchers seeking to

assure perpetual open access, but their

reciprocity requirements can limit down-

stream options. Hybrid licensing schemes,

due to their added complexity, are more

PLoS Computational Biology | www.ploscompbiol.org 5 July 2012 | Volume 8 | Issue 7 | e1002598

limited in their utility, but if appropriate, can

offer many of the benefits of both proprie-

tary and open source models.

Due to their closed and restrictive

nature, proprietary software licensing

schemes should probably be avoided

whenever possible. As with other restric-

tive license models, the administrative

burden of managing compliance and

collecting revenues can be significant.

For this reason, if anticipated total reve-

nues are not high, it can often be more

beneficial for scientists to take advantage

of the reputational benefits and increased

influence that come with the wide adop-

tion and dissemination open licensing

models encourage.

More broadly, especially in the context

of scientific openness, collaboration, and

peer review, the lack of available source

code is a substantial drawback. In

contrast to open source code, closed-

source programs are essentially ‘‘black

boxes’’ in the research workflow [21],

opaque to both reviewers and users. The

failure to release source code can be

detrimental to the validation and accep-

tance of scientific results derived using

the software. Although some traditional

‘‘bespoke’’ academic licenses attempt to

mitigate the negative effects of proprie-

tary licensing by offering software ‘‘free

for non-profit use’’ or by publishing

source code ‘‘for inspection only’’, this

nullifies the many significant benefits of

community contribution, collaboration,

and increased adoption that come with

open source licensing.

References

1. Peng RD (2011) Reproducible research in

computational science. Science 334: 1226–1227.

doi:10.1126/science.1213847.

2. Stodden V (2009) The legal framework for
reproducible scientific research: licensing and

copyright. Comput Sci Eng 11: 35–40.
doi:10.1109/MCSE.2009.19.

3. Open Source Initiative (n.d.) Open Source

Initiative. Available: http://www.opensource.

org/. Accessed 10 November 2011.

4. Free Software Foundation (n.d.) Free Software
Foundation website. Available: http://www.fsf.

org/. Accessed 5 January 2012.

5. Scacchi W (2007) Free/open source software
development: recent research results and emerg-

ing opportunities. Proceedings of the 6th Joint

Meeting of the European Software Engineering
Conference and the ACM SIGSOFT Symposium

on the Foundations of Software Engineering; 3–7
September 2007; Dubrovnik, Croatia. New York:

ACM Press. pp. 459–468. doi:10.1145/

1287624.1287689.

6. Hecker F (1999) Setting up shop: the business of

open-source software. IEEE Softw 16: 45–51. doi:
10.1109/52.744568

7. Bretthauer D (2001) Open source software: a
history. UConn Libraries Published Works. Paper

7: 1–22. Available: http://digitalcommons.
uconn.edu/libr_pubs/7. Accessed 22 June 2012.

8. The BSD License (n.d.) The BSD license.
Available: http://www.opensource.org/licenses/

bsd-license.php. Accessed 12 December 2011.

9. The MIT License (n.d.) The MIT license.

Available: http://www.opensource.org/licenses/

MIT. Accessed 12 December 2011.

10. Apache License, version 2.0 (n.d.) Apache license,

version 2.0. Available: http://opensource.org/
licenses/apache2.0. Accessed 12 December

2011.

11. Educational Community License, version 2.0

(ECL-2.0) (n.d.) Educational Community License,
version 2.0 (ECL-2.0). Available: http://

opensource.org/licenses/ECL-2.0. Accessed 12

December 2011.

12. Free Software Foundation (FSF) (n.d.) The GNU

general public license (GPL) v3.0. Available:
http://www.gnu.org/licenses/gpl.html. Accessed

12 December 2011.

13. Free Software Foundation (FSF) (n.d.) GNU lesser
general public license (LGPL) v3.0. Available:

http://www.gnu.org/licenses/lgpl.html. Ac-
cessed 12 December 2011.

14. Mozilla (n.d.) Mozilla public license, version 2.0.

Available: http://www.mozilla.org/MPL/2.0/.

Accessed 5 January 2012.

15. Open Source Initiative (n.d.) Open Source
Initiative website. Available: http://www.

opensource.org. Accessed 10 November 2011.

16. Open Source Initiative (n.d.) Open source licenses
by category. Available: http://www.opensource.

org/licenses/category. Accessed 2 April 2012.

17. MySQL (n.d.) MySQL licensing policy. Available:
http://www.mysql.com/about/legal/licensing/

index.html. Accessed 12 December 2011.

18. Oracle (n.d.) Oracle Berkeley DB licensing informa-

tion. Available: http://www.oracle.com/

Editorial Comment

Andreas Prlić, Hilmar Lapp, Software Editors PLoS Computational Biology

Scientists are ‘‘dwarfs, standing on the shoulders of giants’’ (Bernard of Chartres). That is, in their pursuit to acquire new
knowledge, they are building on the work of others. For this to be possible, already established scientific information must be
widely accessible and reusable. This need for access to information is in conflict with a desire, the one to protect the value of
intellectual innovation.

Copyright laws have been created with the goal of protecting the rights of copyright holders for a certain amount of time. In
fact, in our software-dependent information age, few laws are influencing our professional (and personal) pursuits more than
these. For example, at the time of writing this article, the two software giants Oracle and Google are facing each other in court
over the question of whether Google’s use of the Java programming language’s application programming interface (API)
infringed on Oracle’s copyright. The outcome of the trial could have an impact on the freedom of software developers to use
APIs and thus potentially hinder software interoperability.

Clearly, when developing software, choosing the terms under which the software can be reused, distributed, and built upon is
an important consideration. Yet, many scientists and scientific developers have little training in or knowledge of the
consequences of the choices they can make. Depending on how licenses are used they can either protect individuals’ ability to
capitalize on their creative works or ensure the public’s ability to reuse. Licenses differ where in this spectrum they are
positioned. This article, the ‘‘Quick Guide to Software Licensing for the Scientist-Programmer,’’ provides a summary of a variety
of licenses and discusses their benefits and disadvantages. We hope that this guide helps in illuminating the seemingly complex
jungle of licensing choices and their consequences, and that it serves as counsel to scientists and developers for what license is
best suited in a particular situation.

PLoS Computational Biology supports open and unrestricted access to scientific publication and software. To foster a culture of
open exchange and reuse of software, we have recently created a new category of Software Articles. For a manuscript to be
published under this category in PLoS Computational Biology, we require that all software uses a license that is approved as
open source by the Open Source Initiative (OSI). The approval criteria (http://www.opensource.org/docs/osd) set forth by OSI
emphasize that the distribution terms must allow the software to be freely re-used, re-distributed, or modified. These
requirements ensure transparency and reproducibility and, if applied to scientific software, push science forward by allowing
researchers to build on existing work.

PLoS Computational Biology | www.ploscompbiol.org 6 July 2012 | Volume 8 | Issue 7 | e1002598

technetwork/database/berkeleydb/downloads/

licensing-098979.html. Accessed 12 December 2011.
19. US House of Representatives (1980) Bayh-Dole

Act, 35 U.S.C. 1 200–212. Available: http://

uscode.house.gov/download/pls/35C18.txt. Ac-

cessed 29 May 2012.
20. Sampat BN (2010) Lessons from Bayh-Dole.

Nature 468: 755–756. doi:10.1038/468755a.

21. Morin A, Urban JM, Adams PD, Foster I, Sali A,

et al. (2012) Shining light into black boxes.
Science 336: 155–156. doi:10.1126/sci-

ence.1218263.

PLoS Computational Biology | www.ploscompbiol.org 7 July 2012 | Volume 8 | Issue 7 | e1002598

