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Abstract

Numerous psychophysical experiments found that humans preferably rely on a narrow band of spatial frequencies for
recognition of face identity. A recently conducted theoretical study by the author suggests that this frequency preference
reflects an adaptation of the brain’s face processing machinery to this specific stimulus class (i.e., faces). The purpose of the
present study is to examine this property in greater detail and to specifically elucidate the implication of internal face
features (i.e., eyes, mouth, and nose). To this end, I parameterized Gabor filters to match the spatial receptive field of
contrast sensitive neurons in the primary visual cortex (simple and complex cells). Filter responses to a large number of face
images were computed, aligned for internal face features, and response-equalized (‘‘whitened’’). The results demonstrate
that the frequency preference is caused by internal face features. Thus, the psychophysically observed human frequency
bias for face processing seems to be specifically caused by the intrinsic spatial frequency content of internal face features.
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Introduction

In the brain, the structure of neuronal circuits for processing

sensory information matches the statistical properties of the

sensory signals [1]. Taking advantage of these statistical regular-

ities contributes to an ‘‘optimal’’ encoding of sensory signals in

neuronal responses, in the sense that the code conveys the highest

information with respect to specific constraints [2–6]. Among the

various constraints which were formulated we find, for example,

keeping metabolic energy consumption as low as possible [7–9], or

keeping total wiring length between processing units at a minimum

[10], or maximizing the suppression of spatio-temporal redun-

dancy in the input signal [2,11–14].

As for visual stimuli, natural images reveal (on the average) a

conspicuous statistical regularity that comes as an approximately

linear decrease of their (logarithmically scaled) amplitude spectra

as a function of (log) spatial frequency [15–17]. This means that

pairs of luminance values are strongly correlated [18], and this

property could be exploited for gain controlling of visual neurons.

Then, visual neurons would have equal sensitivities or response

amplitudes independent of their spatial frequency preference [16].

According to this response equalization hypothesis, gain should thus be

incremented with increasing spatial frequency, such that the

distribution of response amplitudes of frequency-tuned neurons to

a typical natural image is flat.

An argument in favor of employing response equalization

(‘‘whitening’’) is that it would lead to an improvement of

information transmission from one neuronal stage to another,

because the output of one stage would match the limited dynamic

range of a second one [19].

The present article builds upon previously reported results for

whitened amplitude spectra of face images [20]: the whitened

spectra reveal a spatial frequency maximum at 10–15 cycles per

face, but only if external face features (such has hair) are

suppressed. The predicted frequency maximum nevertheless

agrees well with numerous psychophysical experiments, which

found that face identity is preferably processed in a narrow band

(bandwidth <2 octaves) of spatial frequencies from 8 to 16 cycles

per face [21–29].

Despite of it all, the results presented in [20] indicate that the

maxima in the amplitude spectra are caused by the compound

effect of horizontally oriented internal face features (eyes, mouth &

nose). Quantitatively, the maxima thus occur in units of ‘‘cycles

per face height’’, whereas most psychophysical studies instead

measure their results in terms of ‘‘cycles per face width’’.

Furthermore, although a clear enhancement of horizontal

amplitudes could be observed in the spectra, horizontal amplitudes

showed a somewhat ‘‘noisy’’ dependence on spatial frequency.

Both effects are a consequence of that face features were not

considered individually, what causes a mixing of the spatial

frequency content of individual face features in the spectra. The

mixing leads to averaging-out effects such that any possible

enhancement of spectral amplitudes at other than the horizontal

orientation goes unnoticed, but also may cause interference effects

which lead to the mentioned noisy dependence of amplitudes on

spatial frequency.

The present study addresses the two issues by means of an

extensive analysis of face images by means of Gabor filters. The

filters were thereby parameterized (according to [30]) to match the

spatial receptive field of band-limited, oriented and contrast

PLoS Computational Biology | www.ploscompbiol.org 1 March 2009 | Volume 5 | Issue 3 | e1000329



sensitive neurons in the primary visual cortex [31–34]. (These

cortical neurons are referred to as simple and complex cells, cf.

[35–37]). Great care has been taken to guarantee the correct

alignment of filter responses with respect to the position of internal

face features (left eye, right eye, nose and mouth) prior to their

averaging. Doing so permits to precisely elucidate how the

frequency dependence of Gabor responses (and specifically the

predicted frequency maxima) is related to each of the four internal

face features.

The resulting graphs of whitened Gabor amplitudes versus

spatial frequency are smooth and reveal distinct maxima at nearly

all orientations. The most stable maxima, however, are observed

at horizontal feature orientations in the first place, but also at

vertical orientations. This observation holds true for all of the

internal face features (even for the nose). The present study

therefore shows how the individual internal face features

contribute to the psychophysically observed frequency preference,

and proposes concrete mechanisms of how higher amplitudes of

whitened cell responses at an early level could possibly lead to the

psychophysically measured effects.

Methods

Face Images
For the present study, 868 female face images and 868 male face

images were used (Face Recognition Grand Challenge database FRGC,

http://www.frvt.org/FRGC or www.bee-biometrics.org) [38].

Original images (170462272 pixels, 24-bit true color) were

adjusted for horizontal alignment of eyes, before they were

down-sampled to 2566256 pixels and converted into 8-bit

grey-scale. Positions of left eye, right eye, and mouth

[ xle,yleð Þ, xre,yreð Þ, and xmouth, ymouthð Þ, respectively] were man-

ually marked by two persons (M.S.K. and E.C.) with an ad hoc

programmed graphical interface. The face center position (<nose)

was approximated as xnose~rnd xlezxreð Þ=4zxmouth=2ð Þ and

ynose~rnd 0:95 � rnd ylez ymouth{ ylezyreð Þ=2ð Þ=2ð Þ½ , where

rnd :ð Þ denotes rounding to the nearest integer value.

Due to copyright issues it was not possible to include original

sample images from the FRGC database in this paper. The

persons that are shown in Figures 1, 2, and 3 are surrogate images

that were taken in the style of the database images. The depicted

individuals gave their expressive permission to publish their

photographs. Sample images from the FRGC database are shown

in Figure 3 of [39], and in the supplementary material of [20].

Dimension of Spatial Frequency
For conversion of spatial frequency units, face dimensions were

manually marked with an ad hoc programmed graphical interface.

The factors for multiplying ‘‘cycles per image’’ to obtain ‘‘cycles

per face width’’ were 0.4160.013 (females, n~868) and

0.4360.012 (males, n~868). Corresponding factors for obtaining

‘‘cycles per face height’’ were 0.4660.021 (females) and

0.4760.018 (males). Conversion factors oblique orientations were

calculated under the assumption that horizontal and vertical

conversion factors define two main axis of an ellipse. Pooling of

results over gender implied also a corresponding averaging of

conversion factors.

Slopes of Amplitude Spectra
The amplitude spectra of face images fall approximately linear

as a function of frequency when both variables are scaled

logarithmically [20]. Each amplitude spectrum was subdivided

into 12 pie slices (DH~300) for computation of oriented spectral

slopes a Hð Þ (Figure 1). A straight line with slope a Hð Þ was fitted

within the spatial frequency range from kmin~8 to kmax~100
cycles per image to each pie with orientation H. We used the

function ‘‘robustfit’’ (linear regression with less sensitivity to

outliers) provided with Matlab’s statistical toolbox (Matlab version

7.1.0.183 R14 SP3, Statistical Toolbox version 5.1, see www.

mathworks.com). In total, four amplitude spectra were considered

(see Figure 1 & [20] for further details).

Modeling Simple and Complex Cells
A 2-D-Gabor wavelet transform was used as a simplified model of

V1 visual processing [16,32,34,40–42]. Let W denote the spatial

frequency bandwidth in octaves and k~log 4: 2Wz1
� ��

2W{1
� �

.

Let s~k=k, where k denotes spatial frequency in units of cycles per

image. Let r be the phase shift of each of the components of the pair

of Gabor filters (the phase shift r is not a relative phase shift:

choosing rw0 makes both the even and the odd Gabor wavelet shift

by r, and does not affect their relative phase, i.e. they maintain their

quadrature relationship). Let H be an rotation angle in units of

degrees. Then, in Fourier space, a constrained Gabor wavelet

ŶY H, kð Þ with spatial frequency k and orientation H is defined as

ŶY H, kð Þ~s
ffiffiffiffiffiffi
8p
p

:eir: e{s2

2 uzk½ �2Hz4v2
Hð Þ

�
ð1Þ

{e{s2

2
u2
H

zv2
H
zk2ð Þ

i
ð2Þ

(Convention: H~00 means that the wave vector points to the east,

cf. Figure 1; u and v are frequency coordinates). Real and complex

Gabor wavelets were parameterized to fit the receptive field data of

even and odd simple cells, respectively [30] (spatial frequency

bandwidth W~1:35 octaves [41,43], orientation bandwidth 30

degrees [44,45], aspect ratio 1.5 [41,43,46], and r~0 without loss of

generality). Notice that here W is constant (such that wavelets are self-

similar with scale) whereas neuronal bandwidths generally decrease

with the logarithm of k. Gabor wavelets integrated to zero

(admissibility constraint). Simple cell responses were taken as the

rectified amplitudes of Gabor wavelets (positive even, negative even,

Author Summary

Imagine a photograph showing your friend’s face.
Although you might think that every single detail in his
face matters for recognizing him, numerous experiments
have shown that the brain prefers a rather coarse
resolution instead. This means that a small rectangular
photograph of about 30 to 40 pixels in width (showing
only the face from left ear to right ear) is optimal. But why?
To answer this question, I analyzed a large number of male
and female face images. (The analysis was designed to
mimic the way that the brain presumably processes them.)
The analysis was carried out separately for each of the
internal face features (left eye, right eye, mouth, and nose),
which permits us to identify the responsible feature(s) for
setting the resolution level, and it turns out that the eyes
and the mouth are responsible for setting it. Thus, looking
at eyes and mouth at the mentioned coarse resolution
gives the most reliable signals for face recognition, and the
brain has built-in knowledge about that. Although a
preferred resolution level for face recognition has been
observed for a long time in numerous experiments, this
study offers, for the first time, a plausible explanation.

I Look in Your Eyes, Honey
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pos. odd, neg. odd). Complex cell responses were computed with the

contrast energy [16] or local energy [47,48] model. Convolutions were

performed in the Fourier space. We considered wavelet responses at

spatial frequencies from kmin~4 to kmax~80 cycles per image, with

increments Dk~2 cycles per image. With this value of kmax, the

maximum amplitude of the impulse response function was about two

orders of magnitude higher than the spurious high frequency ripples

that resulted as a consequence of filter truncation.

Compacting Feature Maps
In order to make the evaluation of results tractable, each

(average) feature map was represented by a single scalar value

(‘‘compacted’’), called feature map amplitude. This value is usually the

spatial average. Spatial averaging could either take place over all

feature map positions, or over feature-map-specific regions of

interest as depicted in Figure 4 (‘‘ROIs’’). The overall predictions

with respect to whitened feature map amplitudes remain similar if

feature maps were compacted differently, for example by taking

the maximum value, or by computing the average of only those

values which exceed a given threshold value.

Results

Overview and Nomenclature
Because the analysis is intricate at first sight, this section

summarizes the main concepts and terms. The analysis takes the

following steps. First, slopes of amplitude spectra are computed

( = spectral slopes a). To this end four different types of amplitude

spectra were considered, giving rise to four respective sets of slope

values (summarized in Figure 1, see methods section). (A set of

slope values contains the spectral slopes computed at different

orientations). Second, each face image is projected on Gabor filters

at different scales and orientations (Figure 2). Each projection

results in a new ‘‘image’’ that is composed of a filter’s response at

the corresponding position of the face image. This filtered image

defines a response map at a certain spatial frequency k and

orientation H. Five different types of response maps are

distinguished: two with even symmetry, two with odd symmetry,

and one combination involving both symmetries (more details are

given below). Third, response maps are aligned according to the

position of internal face features (left eye, right eye, mouth or nose

Figure 1. Computing slope values. The sketch summarizes the main steps that were taken in [20] for computing the slope values. Four types of
spectra were considered (yielding four respective sets of slope values): (i) spectra of the original face images ( = raw), (ii) raw spectra corrected for
truncation artifacts with inward diffusion ( = corrected raw), (iii) spectra of minimum 4-term Blackman-Harris (B.H.) windowed face images to suppress
external face features [90], (iv) B.H. spectra corrected for the spectral ‘‘fingerprint’’ left by the application of the Blackman-Harris window. Now, in
order to compute oriented slopes, a spectrum was subdivided into 12 pie slices (denoted by different shades of gray in the last image in the top row).
Spectral amplitudes with equal spatial frequencies lie on arcs in the spectrum (schematically indicated by k1, k2, k3). Amplitudes on arcs were
averaged, either by ‘‘normal’’ statistical measures (i.e., location = mean & spread = standard deviation), or by outlier-insensitive ‘‘robust’’ measures
(median & median absolute deviation MAD). Averaging yields a one dimensional (1-D) isotropic spectrum at each orientation (bottom right). A line
with slope a was then fitted to the double logarithmic representation of the 1-D spectra.
doi:10.1371/journal.pcbi.1000329.g001
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– see Figure 3) and subsequently averaged. The averaged response

maps are called feature maps (Figure 5). Each feature map F is

parameterized by F H, k, response type, feature type, genderð Þ.
Fourth, the feature maps are response equalized (‘‘whitened’’) by

using the spectral slopes at corresponding orientations. Fifth, to

facilitate the analysis (18720 feature maps with 1276127 values

each), each whitened feature map is compacted such that it is

represented by a single scalar value ( = feature map amplitude).

Compacting is carried out by computing the spatial average across

the entire map (full compacting), or just over a small region around a

feature of interest (ROI-compacting). The regions of interest (‘‘ROIs’’)

are shown in Figure 4.

Response Whitening
Oriented spectral slopes a Hð Þ from the amplitude spectra were

used to adjust the response gain ( = whitening) of Gabor filters [49].

The symbols in Figure 6 indicate the four sets of a Hð Þ. Gabor filters

were parameterized such that they matched the spatial receptive

fields of simple and complex cells in the primary visual cortex (see

methods section). Cell responses (‘‘response maps’’) R to a face image

I (size 2566256 pixels) were simulated by projecting the image onto

a wavelet Y H, kð Þ with spatial frequency k and orientation H, that

is R H, kð Þ~Y H, kð Þ � I (convolutions were carried out in the

Fourier domain, see equation 1 in the methods section). Response

maps are complex-valued images with the same size as the face

images. Cell types were distinguished by five corresponding response

map types. Specifically, simple cell responses were taken as the

rectified amplitudes of Gabor wavelets (H and k are omitted):

positive even E+~max Re R½ �,0ð Þ (with Re[.] denoting the real part)

and negative even E7~max {Re R½ �,0ð Þ. Positive and negative odd

responses O+ and O7, respectively, are defined analogously as the

imaginary part Im R½ �. Complex cell responses C were computed

with the local energy model [16,48]: C~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Re R½ �2zIm R½ �2

q
.

To compute average cell responses over face images, each

response map was centered in turn at the positions of the left eye,

right eye, mouth and nose (internal face features, Figure 3),

symmetrically cropped, and then summed separately for each of

the four features. In this way, four types of so-called feature maps (size

1276127 pixels) were obtained for each of the five response maps,

with 39 spatial frequencies k~4,6,8, . . . ,80 cycles per image, and at

12 orientations H~0,30, . . . ,330 degrees (Figures 2 and 5).

Now, to test whether the response equalization hypothesis could

account for face perception data, feature maps F ij H, kð Þ were

whitened by multiplying each position i,jð Þ with k a Hð Þj j, that is

F ij H, kð Þ:k a Hð Þj j (with 1ƒ i,jð Þƒ127) [50].

All in all we are left with four feature maps for each gender

( = 2), response type ( = 5), orientation ( = 12), and spatial

frequency ( = 39). Each feature map in turn is composed of the

responses of 1276127 model cells. This amounts to a data load of

18720616129 (feature maps6values). To reduce this data load,

each whitened feature map was represented by a single scalar

value ( = feature map amplitude). This representative value was

computed by either computing the average of response magni-

tudes over all 1276127 feature map positions (‘‘full compacting’’),

or only over a region of interest that contained a single internal

face feature (‘‘ROI compacting’’, Figure 4). A response distribution (or

response curve) is then defined by considering feature map

amplitudes as a function of k at some orientation H.

If, as a result of whitening, response distributions were

completely flat, we would not have gained any new insight.

Therefore, we expect that the response distributions reveal residual

structures as a function of k (ideally unimodal), which could be

linked to face perception data.

Response Distributions
Figure 7A (and corresponding Figures S1, S2, S3, S4) shows

response distributions at different orientations for full compacting.

Response distributions (‘‘curves’’) for different response types and

gender were pooled together for compiling these figures.

The curves are not flat, but all have maxima (valid maxima are

indicated by encircled black crosshairs). The average spatial

Figure 2. From images to feature maps. Illustration of the various steps involved in processing the face images (i) (size 2566256 pixels) with
Gabor wavelets of orientation H and spatial frequency k (ii), where five response maps (iii) (size 2566256 pixels) are obtained at each H,kð Þ.
Response maps are subsequently centered at the four feature positions and cropped as illustrated with Figure 3. The aligned and cropped maps are
averaged, giving rise to corresponding feature maps (iv) (size 1276127 pixels). Feature maps are parameterized by feature (4 possible values), gender
(2), spatial frequency (39), orientation (12), and response type (5), what amounts to a total of 18720 feature maps.
doi:10.1371/journal.pcbi.1000329.g002

Figure 3. Alignment of face features. This figure illustrates the alignment procedure with a face image (note that this procedure is actually used
for aligning response maps, cf. previous figure). Four subregions are extracted from each face image as shown, such that the corresponding feature
of interest (left eye, right eye, nose, or mouth) is in the image center. Feature coordinates are indicated by crosshairs in the big ( = original) image, and
were obtained through manual marking.
doi:10.1371/journal.pcbi.1000329.g003
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frequency (6s.d.) of the valid maxima in Figure 7A is 6.5463

cycles per face (n~12 orientations). Observe that the maxima of

response distributions at horizontal feature orientations (90u and

270u, turquoise curves) are always situated at <10 cycles per face,

irrespective of feature type. Specifically, the ‘‘horizontal’’ curves

vary by far less than the others as a function of ROI. Furthermore,

curves at horizontal and nearby oblique orientations (630u) also

reveal the most pronounced deviation from a flat response

distribution. Notice that horizontally oriented Gabor filters match

the orientations of eyes, mouth and the nose bottom.

Upon introducing a ROI, the response curves at horizontal

feature orientations are shifted upwards relative to the curves at

remaining orientations. This effect is particularly striking when

comparing response distributions at horizontal and vertical

orientations, where ‘‘horizontal’’ curves are getting enhanced

relative to ‘‘vertical’’ curves with ‘‘ROI = on’’. Often, curves that

coincide with feature orientations revealed also clearer maxima in

the sense that the maxima were lifted with respect to smaller values

(Figure 7B & corresponding panels in Figures S1, S2, S3, S4). In

contrast, curves at oblique orientations (e.g., 150u) sometimes get

flatter and/or reveal multi-modal distributions.

Especially interesting in this context is to consider the response

distributions for the nose (Figure S4): Here, the up-shifting of the

‘‘horizontal’’ curve relative to the ‘‘vertical’’ one is the smallest

(compared to the rest of features), and the ‘‘vertical’’ curve is

showing a more pronounced maximum then. A consistent

interpretation of this behavior is that the nose has of course an

important vertical orientation component (the bridge of the nose),

whereas with eyes and mouth vertical orientations are less

important. Nevertheless, as with the other features, also the nose

has its most ‘‘important’’ orientation component situated horizon-

tally (the bottom termination). Furthermore, the spatial frequency

maximum of the bridge of the nose is smaller than the maximum

of the ‘‘horizontal’’ curve.

Standard Deviations
The standard deviations of the pooled data were computed from

three components: (i) averaging the aligned response maps to

compute feature maps, (ii) compacting the feature maps to obtain

feature map amplitudes, and finally (iii) pooling feature map

amplitudes. High standard deviations are produced (i) because of

the variation between individual face images, and (ii) because Gabor

wavelets produce responses to face images with only a few wavelets

generating relatively high responses (sparse responses: [16]).

Standard deviations always decreased upon using a ROI for two

reasons. First, secondary features that appear beside of the feature

of interest in the center are cropped (cf. insets in Figure 7), and the

variation around the aligned features is smallest between face

images. Second, high Gabor wavelet responses occur mainly to the

feature of interest. As a consequence, peak feature map amplitudes

with ROI are bigger than without, because the relative amount of

small-valued Gabor responses is smaller within a ROI.

Valid Maxima
Here, the behavior of the spatial frequency maxima of the

response distributions ( = valid maxima) is summarized. Upon

introducing a ROI, the great majority of the maxima shifted to

higher spatial frequencies (e.g., Figure 7A: from 6.5463 cycles per

face without ROI to 8.9763 with ROI). As already mentioned,

most of the maxima which did not shift at all were those at

horizontal orientations. Valid maxima of response distributions

are summarized in Figure 8 and Figures S5, S6, S7, S8,

respectively, with juxtapose data for ‘‘ROI = off’’ and ‘‘ROI = on’’.

The up-shifting-effect of spatial frequency maxima can be clearly

seen in these figures, with valid maxima associated with ROI-

compacting being situated at around 10 cycles per face.

The results discussed so far were obtained with the mean spectral

slopes a Hð Þ:amean Hð Þ. In order to probe the robustness of the

predicted spatial frequency maxima, a further set of slope values

were considered for whitening, that is the median amed of individual

slope values (remember: one slope value per face image). Whitening

with amean Hð Þ and amed Hð Þ led to similar predictions for the spatial

frequencies of the maxima at virtually all orientations (see

corresponding colors in Figure 8 and Figures S5, S6, S7).

Bandwidths
For a subset of all response distributions it was possible to

estimate spatial frequency bandwidths (Figure 9): ‘‘ROI = off’’ had

Figure 4. Regions of interest (ROIs). The regions over which representative feature map values were computed by spatial averaging (‘‘ROI-
compacting’’) are highlighted in averaged face images. Note that the face images are shown only to illustrate ROI locations, since representative
values were computed from feature maps. (Note furthermore that ‘‘full compacting’’ involves averaging across the entire feature map). For each
feature type, a ROI thus defines a suitable set of spatial indices V, which contained Vj j~2289 points (left and right eye), 2511 (mouth), and 2687
(nose), respectively, of a total of 1276127 feature map positions. The ROIs were selected manually. Identical ROIs were used for both gender.
doi:10.1371/journal.pcbi.1000329.g004

I Look in Your Eyes, Honey

PLoS Computational Biology | www.ploscompbiol.org 6 March 2009 | Volume 5 | Issue 3 | e1000329



a greater variation of bandwidths than ‘‘ROI = on’’. With

‘‘ROI = off’’, most of the bandwidth estimates lie between 1 and

2 octaves. With ‘‘ROI = on’’, bandwidth showed a tendency to

increase on the average, with the majority of the bandwidth

estimates lying in the range from 1.6 to 2.4 octaves. These

estimated bandwidths are in good agreement with the psycho-

physically predicted bandwidths for face processing.

How White Is White? Maximum Entropy Slopes
As the function for whitening k a Hð Þj j was parameterized with

slopes computed from the the different types of amplitude spectra,

I asked whether these slopes indeed produced the ‘‘most

whitened’’ response distributions. Accordingly, another set of

slope values bmax Hð Þ was computed as follows. Feature maps were

compacted without previous whitening. Whitening rather was

iteratively performed through gain adjustment of feature map

amplitudes – by multiplication with k b Hð Þj j. For each b Hð Þ from

22.5 to 21, the degree of whitening was quantified in steps of

0.01 by computing the Shannon entropy [51] of the whitened

response distributions. Maximally white response distributions are

associated with a maximum in entropy at b Hð Þ:bmax Hð Þ
(maximum entropy slope).

Figure 5. Odd feature maps. The display shows feature maps F H, k, odd, nose, femaleð Þ, with response types positve odd (~O+) and negative
odd (~O7) being displayed simultaneously according to Oij H, kð Þ+{Oij H, kð Þ7. Brighter grey levels correspond to Oij H, kð Þ+w0, and darker
grey levels correspond to Oij H, kð Þ7w0. Thus, the mid grey level of each feature map indicates the zero response level. Each image represents the
average of 868 response maps centered at the position of the nose. Along rows, orientation H varies from top 0u to bottom 330u in steps of DH~300.
Along columns, the spatial frequency k increases from left 8 to right 80 cycles per image in steps of Dk~6 cycles per image, thus showing only 13 of
a total of 39 spatial frequencies that were used in the analysis. For displaying, each feature map was normalized individually in order to improve the
overall view.
doi:10.1371/journal.pcbi.1000329.g005

I Look in Your Eyes, Honey
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Figure 7. Response distributions with and without ROI. Both plots show pooled feature map amplitudes vs. spatial frequency (‘‘response
distribution’’) for the left eye. Corrected Blackman-Harris slopes of individual face images were averaged by computing a mean slope value (as
opposed to computing the median), which was used for whitening in this figure (see Figure S1 for whitening with uncorrected B.H. slopes). Line
fitting was carried out by ‘‘normal’’ averaging of spectral amplitudes with equal frequencies (as explained in Figure 1). Response distributions were
pooled across gender (male, female) and response type (positive even, negative even, positive odd, negative odd, local energy). Symbol sizes were
scaled in proportion to standard deviations ( = overall standard deviation from averaging response maps, compacting and subsequent pooling). The
standard deviations (s.d.) are usually very high with maxima exceeding often 100% (see text for an explanation). (A) Compacting the full feature map
(inset, ‘‘ROI = off’’). Relative s.d. lie between 105.4% (smallest symbol size) and 156.9% (biggest symbol). (B) Compacting over the circular region
highlighted in the inset (‘‘ROI = on’’). Relative s.d. were 93.2% (minimum) and 142.1% (maximum). Crosshairs ‘‘›’’ indicate valid maxima (summarized
in Figure 8). The average spatial frequency (61 s.d.) of the valid maxima is shown at the top of each figure (robust: median 61 MAD). Notice that
mathematically curves at orientations 0u,30u,60u,90u,120u,150u are equivalent to the respective curves in the angular domain from 180u to 330u.
However, numerical errors (especially due to sampling artifacts associated with the convolution kernels) can cause small deviations. The relative
absolute deviations (mean 61 s.d. in %) are 0.2660.15 (normal partition; maximum 0.52%) and 0.1560.15 (robust partition; maximum 0.46%).
doi:10.1371/journal.pcbi.1000329.g007

Figure 6. Slopes. Symbols denote oriented spectral slopes a Hð Þ from the four amplitude spectra (circles = raw, squares = corrected raw,
diamonds = Blackman-Harris (B.H.), and triangles = corrected B.H. – see methods section and Figure 1). The solid curve centered in the light-colored
area denotes maximum entropy slopes bmax Hð Þ of feature map amplitudes (label ‘‘mean (FM)’’). The light-colored area indicates 61 standard
deviation. Open symbols indicate where spectral slopes and maximum entropy slopes are significantly different from each other (one-way ANOVA at
each orientation, pv0:01). Filled symbols denote the opposite case (p§0:01). A further ANOVA test served to compare whether orientation-averaged
slope values were drawn from the same underlying distribution. The respective probabilities are p~0:201 (raw spectrum versus maximum entropy
slopes), p~0:179 (corrected raw), p~0:414 (B.H.), and p~0:952 (corrected B.H.). Notice that slope values in the angular domain from 180u to 360u are
equivalent to those being shown.
doi:10.1371/journal.pcbi.1000329.g006
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Figure 6 juxtaposes averaged maximum entropy slopes (n~40
samples for each H) with averaged amplitude spectrum slopes

(n~1736). Averaging took place over all parameters but

orientation.

Maximum entropy slopes achieve the best agreement with the

corr.B.H.-slopes, both when averaging over orientations (p~0:952),

and when evaluating statistical significance at each orientation

separately (filled symbols indicate p bmax Hð Þ~amean Hð Þ½ �§0:01).

In comparison with the B.H. data, slopes from the raw spectra

have the worst agreement with the maximum entropy slopes. This

discrepancy is ascribable to external face features: Slopes were

computed individually for each face image, and external face

features like the hairline could influence individual slopes directly

in the raw and corr.raw spectra. By contrast, in the feature maps

the external features are averaged out and partially cropped (fully

cropped with ROI). The mismatch between using slopes (raw &

corr.raw) with external face features being present in order to

whiten feature maps that are nearly devoid of the external features

causes corresponding response distributions to be not ‘‘optimally’’

white.

Discussion

Here, I studied whitened and averaged responses of Gabor

filters to large number of face images (whitening refers to response

equalization). Gabor filters were parameterized as to match spatial

receptive field properties of simple and complex cells in the cortex

(see methods), and averaging was feature-specific (Figure 3). The

results obtained here extend the predictions of a previously

conducted analysis (ref. [20]) of averaged and whitened amplitude

spectra in three important ways. (i) The use of Gabor wavelets

permitted the examination of the orientation dependence of spatial

frequency predictions, whereas in the previous study only an

amplitude enhancement at horizontal orientations was revealed.

(ii) Averaging of Gabor response maps was done according to

features (yielding corresponding feature maps), whereas the spatial

frequency content of internal face features was mixed in the

previous study (‘‘mixing’’ occurs because Fourier spectra do not

retain absolute spatial information explicitly). Mixing caused

interference effects and averaging-out of any amplitude enhance-

ment at others than the horizontal orientation. (iii) The previous

study showed a somewhat noisy dependence of the spatial

frequency versus amplitude curve, due to mixing effects. The

response amplitude curves shown here are in contrast very

smooth.

For the whitening procedure, the slopes of four different types of

amplitude spectra were considered (Figure 1), in order to probe

robustness of predictions. The slopes obtained from the corrected-

Blackman-Harris-window spectrum (corr. B.H.) were thereby the

closest to a flat response distribution in the sense that they best

maximized Shannon entropy (cf. maximum entropy slopes,

Figure 6).

As a consequence of whitening, most response distributions

( = compacted feature maps) were not flat or ‘‘white’’ (Figure 7),

but revealed unimodal distributions irrespective of their orienta-

tion, with maxima centered at around 8–12 cycles per face when

compacted with a feature-specific region of interest (ROI), and

somewhat lower without it (<4–10 cycles per face, Figure 8).

Responses at horizontal feature orientations were scarcely

affected by employing a ROI: their maxima did not shift

significantly, and curve shape did not alter either (Figure 7,

turquoise curve). This behavior stands in contrast to response

distributions at oblique feature orientations, which showed the

strongest changes. Estimated bandwidths of the response distribu-

tions were about 1.6 to 2 octaves with ROI. Somewhat smaller

bandwidth estimates were obtained without ROI (Figure 9).

Figure 8. Summarising the maxima of response distributions. Data points indicate spatial frequencies associated with a peak of a response
distribution curve (‘‘valid maximum’’). Whitening was performed with slopes from the corrected Blackman-Harris amplitude spectra. Oriented spectral
slopes were either computed according to the (i) normal partition (amplitude-averaging according to mean) or the (ii) robust partition (median). The
spectral slopes in turn were either averaged by (iii) computing their mean value ~amean Hð Þ½ � or by (iv) computing their median ~amed Hð Þ½ �. Symbol
colors (and sizes) indicate corresponding combinations: yellow = normal partition & mean of slopes (i.e.,i together with iii), violet = robust & mean,
green = normal & median, and red = robust & median. Symbol shapes, on the other hand, denote the different features: #= left eye, %= right eye,
e = mouth, and D~nose. The mean value (median value) of the data points at each orientation is indicated by the solid red line (dash dotted line),
with the shaded area indicating 61 standard deviation. The error bars denote a robust estimate of standard deviation (by means of median absolute
deviation MAD) with respect to the median value ( = dash dotted line). (A) ‘‘ROI = off’’, pooling together response type and gender. (B) Same as with a,
but for ‘‘ROI = on’’.
doi:10.1371/journal.pcbi.1000329.g008
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Feature maps (Figure 2) were obtained by properly centering

Gabor response maps at feature positions prior to averaging the

latter (Figure 3). In this way external face features (e.g., hair) and

uncentered features were averaged out (since they varied strongly

between face images), while centered features were kept well

focused (Figure 4). The unfocused features correspond to low

spatial frequencies, what generates maxima at lower spatial

frequencies than with ROI.

The ROI versus no-ROI data therefore demonstrate that higher

responses are obtained by filters matching the orientation and

spatial frequency of internal face features. The results furthermore

suggest an orientation dependence of preferred spatial frequencies,

similar to the oblique effect (e.g., [52–54], but see [55]): Horizontal

and vertical oriented features have more ecological ‘‘importance’’

than features at oblique orientations.

Several psychophysical studies suggest that recognition of face

identity works best in a narrow band (bandwidth about 2 octaves)

of spatial frequencies from <8 to <16 cycles per face [21–

25,27,56,57]. Notice that this does not mean that face recognition

exclusively depends on this frequency band, as faces can still be

recognized when corresponding frequency information is sup-

pressed [27,29]. In addition, it seems that observers can

specifically attend to the spatial frequencies that support

recognition (‘‘diagnostic spatial frequencies’’), and that the

allocation of attended frequencies can be altered in a task-specific

fashion [58,59]. Hence, observers could intentionally attend to

other than the preferred spatial frequencies if the latter frequencies

are not available, but the non-preferred frequencies may be

associated with a reduced signal-to-noise ratio (e.g., in terms of

class separation [39]) and/or may imply a corresponding increase

in time for completing a successful face recognition [29].

The preferred spatial frequencies for face recognition are not

significantly affected by the structure of the background on which

a face does appear [60], so the results presented here are unlikely

to be specific for the considered set of face images.

How can higher response amplitudes be linked to an enhanced

perceptual sensitivity for face identification? The proposed

whitening mechanism implies that neural populations which

encode a natural scene at an instant in time adapt in order to

match the statistics of the input such as to similar sensitivities are

established for neurons with different spatial frequency selectivity

(response equalization). A flat or white distribution of responses is

also compatible with the notion of sparse coding. For face images,

we saw that a completely flat distribution could not be obtained (at

least with the proposed mechanism), and that the flattest possible

distributions rather were unimodal (in most cases). As we could

readily interpret the distribution as being proportional to the

underlying probability distribution, the brain could increase

processing speed for face recognition if it ‘‘looked’’ first at those

spatial frequencies which occur more often. If these frequencies

are removed (as it happened in some of the mentioned

psychophysical experiments), then the brain has to actively

examine other spatial frequencies to complete a successful

recognition, what would yield to an increase in recognition time.

A corresponding increase in recognition time has indeed been

observed experimentally [29].

Also from an biophysical point of view, the whitened response

distributions could translate into a decreased processing time. In

the response-equalized population of neurons, higher response

amplitudes (which occur at around 10 cycles per face) are

associated with shorter response latencies. Or, more specifically, if

we assume that whitening changes synaptic efficiency, then

neurons tuned to 10 cycles per face will reach spiking threshold

faster because they are driven by higher post-synaptic currents,

and thus corresponding information could in principle arrive

earlier at successive face recognition stages.

The critical retinal illumination is the transition luminance between

deVries-Rose [61,62] and Weber’s law, describing the increasing

and the saturating part, respectively, of the human contrast

sensitivity function. (The transition luminance is described by the

van Nes-Bouman law [63]). Interestingly, this critical retinal

illumination was found to vary with k2 for foveally viewed cosine

gratings [64]. This result permits to derive an explicit expression

for the neural modulation transfer function (MTF) of the visual

pathway [65], with a linear dependence of the MTF on k. So,

could whitening of face images be conveyed by the neural

modulation transfer function? Amplitude spectra of natural images

vary approximately with ka, where a&{1 [15–17], but for our

face images av{1:5 (Figure 6; [20]). Thus, the MTF could in

principle carry out a pre-whitening of spatial frequency channels,

leaving some residual whitening to the specific neural systems for

face processing (according to kazb~ka:kb). Notice, however, that

whitening with a~{1 produces a smaller number of valid spatial

frequency maxima in the response distribution curves (without

ROI: 8%, with ROI: 71%), and these maxima underestimate the

psychophysically found frequencies (without ROI<3, with

ROI<4 cycles per face).

Figure 9. Estimating bandwidths of response distributions.
Estimated full bandwidths at half height log2 kmax=kminð Þ (in octaves) of
response distributions, where gender and response type were pooled.
Each response distribution curve was considered individually. A
bandwidth estimate (‘‘sample’’) was proposed by the computer, which
had to be accepted or rejected by user interaction. Less than half of the
curves had a shape which allowed for a reasonable estimation (47.5% of
n~1536 curves), with most samples at 90u. Bandwidths from 210u to
360u are equivalently to the corresponding shown bandwidths (0 to
180u). This fact was exploited to remove inconsistently accepted or
rejected bandwidth estimates, as user interaction proceeded across the
full angular domain. The red curve shows the mean of all samples at an
orientation. The lightly colored area indicates 61 standard deviation.
The dash-dotted line is the mean of the samples with ‘‘ROI = on’’ (filled
symbols), the dotted line for the ‘‘ROI = off’’ samples (open symbols).
Symbol shape denotes feature type as with the previous figure, and
symbol color denotes spectra: yellow = raw, violet = corr.raw, green = B.H.
& red = corr.B.H. The partition/slope-averaging combinations listed in
the previous figure (items i to iv) are not further distinguished here,
meaning that the same symbols were used for all of these
combinations.
doi:10.1371/journal.pcbi.1000329.g009

I Look in Your Eyes, Honey

PLoS Computational Biology | www.ploscompbiol.org 10 March 2009 | Volume 5 | Issue 3 | e1000329



What about other stimulus classes? A comparison can be readily

drawn between the perception of letters and faces. Letter

identification has been found to be sensitive to spatial frequencies

of about 3 cycles per letter height, e.g., [66–69]. Similar to the

present study and ref. [20], Põder performed an analysis of letter

power spectra (i.e., the squared amplitude spectra; [70]). He

subdivided power spectra into annuli that were one octave wide,

and then integrated power across each annulus. This procedure

yielded an energy maximum at 2–3 cycles per letter, consistent

with psychophysical results and an interpretation of the maximum

in terms of letter stroke frequency [71].

Faces and letters are examples of relatively ‘‘constrained’’

objects: Characters printed on a paper are two-dimensional

objects which do not reveal additional information when the paper

is rotated in three dimensional space. Similarly, we usually see

upright faces in our visual field, and face recognition performance

decreases significantly with inverted faces [72,73]. It seems that

this drop in recognition performance is associated with corre-

sponding changes in face processing strategies. In brief, upright

faces seem to undergo an increasingly holistic or configural

processing in the brain (i.e., in terms of relationships between

internal face features or face parts, respectively), as opposed to

inverted faces, e.g., [74–79]. It has been proposed that inverted

faces are processed in a similar way as arbitrary objects (but see,

e.g., [80] or [81] for a discussion). Indeed, there is evidence for

part-processing at early stages for face processing (e.g., [80,82]

with references), and it appears that the familiarity with a face

modulates the degree to which configural processing is evoked

over part-based processing ([83,84] including references).

The findings of the present study relate best to early face

processing, and specifically to part-based processing (ROI versus

no-ROI). In this context, it is interesting that the N170 or M170

response (an early face-selective response which is observed in

electro- or magnetoencephalography data, respectively) can be

evoked by the presence of isolated internal face features, especially

the eyes [85,86]. This result is consistent with the present data,

where all internal face features induced distinct spatial frequency

maxima.

Further evidence supports the notion that the eye region is

especially important for face identification [87], and that subjects

use the same spatial frequencies for identifying upright and

inverted faces [57]. The latter result can be interpreted such that

the frequency preference for face recognition indeed reflects

properties of early and part-based face processing.

Different spatial frequency bands were nonetheless found to

support part-based and configural face processing, respectively

([88] - but see [81]). For instance, matching performance with

configural changes was found to be superior for low-pass filtered

faces [89] (cut off <8 cycles per face width), whereas for detecting

differences between internal face features, high-pass filtered faces

(.32 cycles per face width) seem to give a better performance. The

results here bear some loose similarity with this notion in two ways.

First, the ROI versus no-ROI data revealed that feature-specific

results with ‘‘ROI = on’’ yielded slightly higher spatial frequency

predictions than the whole-face condition ‘‘ROI = off’’. However,

as discussed above, this frequency shift is a consequence of

averaging feature-map amplitudes within a region around a

feature of interest (‘‘ROI = on’’), versus averaging of feature map

amplitudes unspecifically (‘‘ROI = off’’). The unspecific averaging

includes both the feature of interest (well focused), and secondary

features and external face features, which appear unfocused or

blurry (Figure 4), thus introducing low spatial frequency content

which, upon averaging feature map amplitudes (‘‘compacting’’),

causes the observed frequency shift.

Second, predicted spatial frequencies were higher at horizontal

(90u, 270u) than at vertical orientations (0u, 180u), and predicted

spatial frequencies increased relatively more upon applying a ROI

at vertical orientations. (In contrast, horizontal Gabor filters match

the orientations of internal face features, and consequently a ROI

has only a smaller effect; oblique orientations reveal compound

effects). The response distribution curves for vertical orientations

(Figure 7) show similar magnitudes for ‘‘ROI = on’’ and ‘‘ROI =

off’’. Therefore, vertically oriented Gabor filters do not only pick

up spatial frequency content of internal face features, but also an

important part from the rest of the face. This suggests that vertical

spatial frequency content may be better suitable for processing

configural parts of the face, for example for measuring inter-ocular

distance. Because the predicted frequencies at vertical orientations

are lower than at horizontal orientations (both for ‘‘ROI = on’’

and ‘‘ROI = off’’), this orientational effect resembles the afore-

mentioned psychophysical findings which reported that part-based

processing is supported by higher spatial frequencies than holistic

processing.

How general are the results of the present study? Here it has

been shown that the preferred spatial frequency band for human

face recognition originates from internal face features, and that

each of the internal features in isolation induces the same

frequency preference. My result of course is rather invariant to

inversion: the predicted spatial frequencies would not change if the

study would have been conducted with a database of inverted

faces. As aforesaid, a corresponding invariance has also been

found by a recent psychophysical experiment: humans use the

same spatial frequencies for recognition of upright and inverted

faces [57]. What about horizontal head turning? Assume a

moderate head turning such that internal face features remain

visible. Then, a differential effect would occur for horizontally

(90u) and vertically (0u) oriented spatial frequencies. Horizontal

spatial frequency predictions can be expected to remain

approximately constant, although response distribution curves

may appear noisier. Vertical and oblique spatial frequency

predictions, however, can be expected to reveal a stronger

variation (this variation is suggested by comparing the ROI versus

non-ROI data of the fronto-parallel case). Also, the magnitude and

type of variation (for all orientations) may depend on the specific

feature (eye, mouth, or nose), and the degree of head turning.

Recently, we were able to show that an enhanced class

discrimination for face images is obtained at similar spatial

frequencies which humans preferably use for face recognition [39].

This suggests that also artificial face recognition systems could

exploit the spatial frequency dependency of face recognition in

order to increase efficiency, either in terms of speed, accuracy, or

memory economy. And it also suggests that humans may use this

special range of spatial frequencies because it is best suited for

distinguishing between different individuals.

Supporting Information

Figure S1 More response distributions I (left eye, B.H. slopes).

Same as Figure 7, but here for Blackman-Harris (i.e., not

corrected) spectral slopes. (a) Compacting the full feature map

with relative s.d. lying between 105% (smallest symbol size) and

156.8% (biggest symbol). (b) ROI-compacting with relative s.d.

between 93.2% and 142.1%.

Found at: doi:10.1371/journal.pcbi.1000329.s001 (0.11 MB EPS)

Figure S2 More response distributions II (right eye, corr. B.H.)

Same as Figure 7, but here for the right eye. (a) no ROI, relative

s.d. between 103.4% and 158.9%. (b) ROI-compacting, relative

s.d. between 92.9% and 137.4%.
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Found at: doi:10.1371/journal.pcbi.1000329.s002 (0.10 MB EPS)

Figure S3 More response distributions III (mouth, corr. B.H.)

Same as Figure 7, but here for the mouth. (a) no ROI, relative s.d.

between 84% and 142.5%. (b) ROI-compacting, relative s.d.

between 72.1% and 125.1%.

Found at: doi:10.1371/journal.pcbi.1000329.s003 (0.10 MB EPS)

Figure S4 More response distributions IV (nose, corr. B.H.)

Same as Figure 7, but here for the nose. (a) no ROI, relative s.d.

between 106.2% and 148.3%. (b) ROI-compacting, relative s.d.

between 82.8% and 116.7%.

Found at: doi:10.1371/journal.pcbi.1000329.s004 (0.10 MB EPS)

Figure S5 Maxima of response distributions II (raw). Like

Figure 8, but here for the raw slopes. (a) ‘‘ROI = off’’, (b)
‘‘ROI = on’’.

Found at: doi:10.1371/journal.pcbi.1000329.s005 (0.06 MB EPS)

Figure S6 Maxima of response distributions III (corr. raw). Like

Figure 8, but here for the corrected raw slopes. (a) ‘‘ROI = off’’,

(b) ‘‘ROI = on’’.

Found at: doi:10.1371/journal.pcbi.1000329.s006 (0.06 MB EPS)

Figure S7 Maxima of response distributions IV (B.H.). Like

Figure 8, but here for the B.H. slopes. (a) ‘‘ROI = off’’, (b)
‘‘ROI = on’’.

Found at: doi:10.1371/journal.pcbi.1000329.s007 (0.06 MB EPS)
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58. Özgen E, Sowden P, Schyns P, Daoutis C (2005) Top-down attentional

modulation of spatial frequency processing in scene. Cognition 12: 925–937.
59. Sowden P, Schyns P (2006) Channel surfing in the visual brain. Trends Cogn Sci

10: 538–545.

60. Collin C, Wang K, O’Byrne B (2006) Effects of image background on spatial-
frequency threshold for face recognition. Perception 35: 1459–1472.

61. DeVries H (1943) The quantum character of light and its bearing upon
threshold vision, the differential sensitivity and visual acuity of the eye. Physica

10: 553–564.
62. Rose A (1942) The relative sensitivities of television pickup tubes, photographic

film, and the human eye. Proc Inst Radio Eng 30: 293–300.

63. van Nes F, Bouman M (1967) Spatial modulation transfer in the human eye.
J Opt Soc Am 57: 401–406.

64. van Nes F, Bouman M (1967) Spatiotemporal modulation transfer in the human
eye. J Opt Soc Am 57: 1082–1088.

65. Romavo J, Mustonen J, Näsänen R (1995) Neural modulation transfer function

of the human visual system at various eccentricities. Vision Res 35: 767–774.
66. Parish D, Sperling G (1991) Object spatial frequencies, retinal spatial

frequencies, noise, and the efficiency of letter discrimination. Vision Res 31:
1399–1415.

67. Alexander K, Xie W, Derlacki D (1994) Spatial frequency characteristics of
letter identification. J Opt Soc Am A 11: 2375–2382.

68. Solomon J, Pelli D (1994) The visual filter mediating letter identification. Nature

369: 395–397.
69. Chung S, Legge G, Tjan B (2002) Spatial-frequency characteristics of letter

identification in central and peripheral vision. Vision Res 42: 2137–2152.
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