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Abstract

Individual perception of vaccine safety is an important factor in determining a person’s adherence to a vaccination program
and its consequences for disease control. This perception, or belief, about the safety of a given vaccine is not a static
parameter but a variable subject to environmental influence. To complicate matters, perception of risk (or safety) does not
correspond to actual risk. In this paper we propose a way to include the dynamics of such beliefs into a realistic
epidemiological model, yielding a more complete depiction of the mechanisms underlying the unraveling of vaccination
campaigns. The methodology proposed is based on Bayesian inference and can be extended to model more complex belief
systems associated with decision models. We found the method is able to produce behaviors which approximate what has
been observed in real vaccine and disease scare situations. The framework presented comprises a set of useful tools for an
adequate quantitative representation of a common yet complex public-health issue. These tools include representation of
beliefs as Bayesian probabilities, usage of logarithmic pooling to combine probability distributions representing opinions,
and usage of natural conjugate priors to efficiently compute the Bayesian posterior. This approach allowed a
comprehensive treatment of the uncertainty regarding vaccination behavior in a realistic epidemiological model.
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Introduction

Since early vaccination campaigns against smallpox, vaccina-

tion policies have been a matter of debate [1]: mass vaccination

versus blocking strategies; compulsory versus voluntary, are some

highly debated issues. Despite these early controversies - and

consequent alternative policies implemented in different countries

- high disease scare in the past has led to very high vaccine

coverage and consequent successful eradication of smallpox, as

well as very low incidence of measles, polio, tetanus, diphtheria,

etc, resulting in over 98% mortality reduction by vaccine

preventable diseases in developed countries [2].

In recent years, after complete or almost complete elimination

of these diseases, the debate is shifting towards issues of vaccine

safety. Increased perception of vaccine risks and lowered

perception of disease risks has challenged previous willingness to

vaccinate (fundamental for the success of any immunization

program, either voluntary or compulsory) [3]. In this scenario,

understanding and predicting individual’s willingness to vaccinate

is paramount for estimating vaccine coverage and compare

strategies to achieve coverage goals.

Willingness to vaccinate is highly dependent on the perceived

risk of acquiring a serious disease [4]. When (perceived) disease

risk is low, however small risk of adverse events from the vaccine

become relatively important and may lead to vaccine coverage

lower than required to control transmission [4]. When (perceived)

serious disease risk is too high, on the other hand, vaccine

coverage may increase above that required to guarantee

population protection [5]. We illustrate these behaviors with two

examples:

The MMR vaccine scare
In the UK, MMR vaccine uptake started to decline after a

controversial study linking MMR vaccine to autism [6]. In a

decade, vaccine coverage went well below the target herd

immunity level of 95%. Despite the confidence of researchers

and most health professionals on the vaccine safety, the confidence

of the public was deeply affected. In an attempt to find ways to

restore this confidence, several studies were carried out to identify

factors associated with parent’s unwillingness to vaccinate their

children. They found that ‘Not receiving unbiased and adequate

information from health professionals about vaccine safety’ and

‘media’s adverse publicity’ were the most common reasons

influencing uptake [7]. Other important factors were: ‘lack of

belief in information from the government sources’; ‘fear of

general practitioners promoting the vaccine for personal reasons’;

and ‘media scare’. Note that during this period the risk of

acquiring measles was very low due to previously high vaccination

coverage.

The Brazilian Yellow Fever disease scare
Sylvatic yellow fever (SYF) is a zoonotic disease, endemic in the

north and central regions of Brazil. Approximately 10% of
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infections with this flavivirus are severe and result in hemorrhagic

fever, with case fatality of 50% [8]. Since the re-introduction of A.

aegypti in Brazil (the urban vector of dengue and yellow fever), the

potential reemergence of urban yellow fever is of concern [9]. In

Brazil, it is estimated that approximately 95% of the population

living in the yellow fever endemic regions have been vaccinated. In

this area, small outbreaks occur periodically, especially during the

rainy season, and larger ones are observed every 7 to 10 years

[10], in response to increased viral activity within the environ-

mental reservoir. In 2007, increased detection of dead monkeys in

the endemic zone, led the government to implement vaccine

campaigns targeting travellers to these areas and the small fraction

of the resident population who were still not protected by the

vaccine. The goal was to vaccinate 10–15% of the local

population. Intense notification in the press regarding the death

of monkeys near urban areas, and intense coverage of all

subsequent suspected and confirmed human cases and death

events led to an almost country-wide disease scare (Figure 1),

incompatible with the real risks [5], which caused serious

economic and health management problems, including waste of

doses with already immunized people (60% of the population was

vaccinated when only 10–15% would be sufficient), adverse events

from over vaccination (individuals taking multiple doses to

‘guarantee’ protection), national vaccine shortage and interna-

tional vaccine shortage, since Brazil stopped exporting YF vaccine

to supply domestic vaccination rush (www.who.int/csr/don/

2008_02_07/en/).

The importance of public perceptions and collective behavior

for the outcome of immunization campaigns are starting to be

acknowledged by theoreticians [9,11,12]. These factors have been

examined in a game theoretical framework, where the influence of

certain types of vaccinating behaviour on the stability and

equilibria of epidemic models is analyzed.

In the present work, we propose a model for individual

immunization behavior as an inference problem: Instead of

working with fixed behaviors, we develop a dynamic model of

belief update, which in turn determines individual behavior.

An individual’s willingness to vaccinate is derived from his

perception of disease risk and vaccine safety, which is updated in a

Bayesian framework, according the epidemiological facts each

individual is exposed to, in their daily life. We also explore the

global effects of individual decisions on vaccination adherence at

the population level.

In summary, we propose a framework to integrate dynamic

modeling of learning (belief updating) with decision and

population dynamics.

Author Summary

A frequently made assumption in population models is
that individuals make decisions in a standard way, which
tends to be fixed and set according to the modeler’s view
on what is the most likely way individuals should behave.
In this paper we acknowledge the importance of modeling
behavioral changes (in the form of beliefs/opinions) as a
dynamic variable in the model. We also propose a way of
mathematically modeling dynamic belief updates which is
based on the very well established concept of a belief as a
probability distribution and its temporal evolution as a
direct application of the Bayes theorem. We also propose
the use of logarithmic pooling as an optimal way of
combining different opinions which must be considered
when making a decision. To argue for the relevance of this
issue, we present a model of vaccinating behaviour with
dynamic belief updates, modeled after real scenarios of
vaccine and disease scare recorded in the recent literature.

Figure 1. Yellow fever cases, vaccination coverage, and adverse vaccination events. Coverage data is from Brasilia, which was the
epicenter of the outbreak.
doi:10.1371/journal.pcbi.1000425.g001
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Results

We ran the model as described above for 100 days with

parameters given by Table 1, under various scenarios to reveal the

interplay of belief and action under the proposed model. Figures 2

and 3 show a summary output of the model dynamics under

contrasting conditions. In Figure 2, we have VAE (Vaccine

adverse events) preceding the occurrence of severe disease events.

As expected, VAE become the strongest influence on vt, keeping

E½vt� low with consequences to the attained vaccination coverage

at the end of the simulation. We characterize this behavior as a

‘vaccine scare’ behavior.

In a different scenario, Figure 3, we observe the effect of severe

disease events occurring in high frequency at the beginning of the

epidemics. In this case, disease scare pushes willingness to

vaccinate (vt) to high levels. This is very clear in Figure 3 where

there is a cluster of serious disease cases around the 30th day of

simulation. right after the occurrence of this cluster, we see vt rise

sharply above st, meaning that willingness to vaccinate (vt) in this

week was mainly driven by disease scare instead of considerations

about vaccine safety(st). A similar effect can be observed in

Figure 2, starting from day 45 or so. Only here the impact of a

cluster of serious disease cases is diminished by the effects of VAEs,

and the fact that there aren’t many people left to make the decision

of wether or not vaccinate.

The impact of individual beliefs on vaccine coverage is highly

dependent on the visibility of the rare VAE. Figure 4 shows the

impact of the media amplification factor on E½vt� and vaccination

coverage after <14 weeks, for a infectious disease with psd~0:01
and pae~0:075. If no media amplification occurs, willingness to

vaccinate and vaccine coverage are high, as severe disease events

are common and severe adverse events are relatively rare. As

vaccine adverse events are amplified by the media, individual’s

willingness to vaccinate at the end of the 14 weeks tend to

decrease. Such belief change, however, has a low impact on the

vaccine coverage. The explanation for this is that vaccine coverage

is a cumulative measure and, when VAE appear, a relatively large

fraction of the population had already been vaccinated. These

results suggest that VAE should not strongly impact the outcome

of an ongoing mass vaccination campaign, although it could affect

the success of future campaigns.

Fixing amplification at a~8 and psd~0:01, we investigated

how vt (at the end of the simulation) and vaccine coverage

would be affected by increasing the rate of vaccine adverse

events, pae (Figure 5). As pae increases above psd , willingness to

vaccinate drops quickly, while vaccine coverage diminishes but

slightly.

Figure 2. Impact of occurrence of adverse vaccination events at the beginning of a vaccination campaign. Top-left: vaccination
coverage and vaccine uptake (68000 doses);top-right: adverse vaccination and serious disease events; Bottom-left: willingness to vaccinate (vt) and
perceived vaccine safety (st); Bottom-right: Epidemiological time-series. Time is in weeks. pae~0:01; psd~0:001.
doi:10.1371/journal.pcbi.1000425.g002

Table 1. Parameter values used for the simulations.

Symbol Meaning Value

psd prob. of serious illness [1026,1022]

(1{p) prob. of vaccine adverse effects [1026,1022]

bnh prob. of transmission/contact 0.2

bhh prob. of transmission/contact at home 0.3

c number of contacts per day 4

a media amplification factor [1,16]

doi:10.1371/journal.pcbi.1000425.t001

Vaccinating Behavior and Dynamic Beliefs
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Discussion

In the present world of mass media channels and rapid and

inexpensive communications, the spread of information, indepen-

dent of its quality, is very effective, leading to considerable

uncertainty and heterogeneity in public opinions. The yellow fever

scare in Brazil demonstrated clearly the impact of public opinion

on the outcome of a vaccination campaign, and the difficulty in

dealing with scare events. For example, no official press release

was taken at face value, as it was always colored by political issues

[5]. In multiple occasions, people reported to the press that they

would do the exact opposite of what was being recommended by

public health authorities due to their mistrust of such authorities.

This example shows us the complexity of modeling and predicting

the success of disease containment strategies.

The goal of this work was to integrate into a unified dynamical

modeling framework, the opinion and decision components that

underlie the public response to mass vaccination campaigns,

specially when vaccine or disease scares have a chance to occur.

The proposed analytical framework, although not intentionally

parameterized to match any specific real scenario, qualitatively

captured the temporal dynamics of vaccine uptake in Brasilia

(Figure 1), a clear case of disease scare (compare with simulation

results, presented on Figure 2).

After conducting large scale studies on the acceptance of the

Influenza vaccine, Chapman et al. [13] conclude that perceived

side-effects and effectiveness of vaccination are important factors

in people’s decision to vaccinate. Our model suggests that, if the

perception of disease risk is high, it leads to a higher initial

willingness to vaccinate, while adverse events of vaccination, even

when widely publicized by the media, tend to have less impact on

vaccination coverage. VAE are more effective when happening at

the beginning of vaccination campaigns, when they can sway the

opinions of a larger audience. Although disease scare can

counteract, to a certain extent the undesired effects of VAE,

public health officials must also be aware of the risks involved in

overusing disease risk information, in vaccination campaign

advertisements since this can lead to a rush towards immunization

as seen in the 2008 Yellow Fever scare in Brazil.

Vaccinating behavior dynamics has been modelled in different

ways in the recent literature, from behaviors that aim to

maximize self-interest [12] to imitation behaviors [14]. In this

paper we modeled these perceptions dynamically, and showed its

relevance to decision-making dynamics and the consequences to

the underlying epidemiological system and efficacy of vaccina-

tion campaigns. We highlight two aspects of our modeling

approach that we think provide important contributions to the

field.

First, the process through which people update beliefs which

will direct their decisions, was modeled using a Bayesian

framework. We trust this approach to be the most natural one

as the Bayesian definition of probability is based on the concept of

belief and Bayesian inference methodology was developed as a

representation human learning behavior [15]. The learning

process is achieved through an iterative incorporation of newly

available information, which naturally fit into the standard

Bayesian scheme. Among the advantages of this approach is its

ability to handle the entire probability distributions of the

parameters of interest instead of operating on their expected

values which would be the cased in a classical frequentist

framework. This is especially important where highly asymmet-

rical distributions are expected. The resulting set of probability

distributions, provides more complete model-based hypotheses to

be tested against data. The inferential framework has an added

Figure 3. Impact of occurrence of serious disease events at the beginning of a vaccination campaign. Top-left: vaccination coverage and
vaccine uptake (68000 doses);top-right: adverse vaccination and serious disease events; Bottom-left: willingness to vaccinate (vt) and perceived
vaccine safety (st); Bottom-right: Epidemiological time-series. Time is in weeks. pae~0:0001; psd~0:01.
doi:10.1371/journal.pcbi.1000425.g003
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Figure 4. Effect of media amplification factor on vaccination coverage and willingness to vaccinate. Coverage and vt values are averages
and standard deviations over the population values in the last week of simulation.
doi:10.1371/journal.pcbi.1000425.g004

Figure 5. Vaccine coverage and willingness to vaccinate for vaccines with different levels of safety. Coverage and vt values are averages
and standard deviations over the population values in the last week of simulation.
doi:10.1371/journal.pcbi.1000425.g005
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benefit of simplicity and computational efficiency due the use of

conjugate priors, which gives us a closed-form expression for the

Bayesian posterior without the need of complex posterior sampling

algorithms such as MCMC.

The second contribution is the articulation between the belief

and decision models through logarithmic pooling. Logarithmic

pooling has been applied in many fields [16,17] to derive

consensus from multiple expert opinions described as probability

distributions. Genest et al. [15], argue that Logarithmic pooling is

the best way to combine probability distributions due to its

property of ‘‘external Bayesianity’’. This means that finding the

consensus among distributions commutes with revising distribu-

tions using the Bayes formula, with the consequence that the

results of this procedure can be interpreted as a single Bayesian

probability update. Here, we apply logarithmic pooling to

integrate the multiple sources of information (equation (1)) which

go into the decision of whether or not to vaccinate. In this context,

the property of external bayesianity, is important since it allows the

operations of pooling and Bayesian update (of st, equation (2)) to

be combined in any order, depending only on the availability of

data.

This framework can be easily used as a base to compose more

complex models. Extended models might include multiple beliefs

as a joint probability distribution, more layers of decision or

multiple, independently evolving belief systems.

The contact strucure of the model was intentionally kept as

simple as possible, since the goal of the model was to focus on the

belief dynamics. Therefore, a reasonably simple epidemiological

model, with a simple spatial structure (local and global spaces) was

constructed to drive the belief dynamics without adding potentially

confounding extra dynamics.

In this work we have played with various probability levels of

VAEs and SDs in an attempt to cover the most common and likely

more interesting portions of parameter space. However, to model

specific scenarios, data regarding the actual probabilities of VAEs

and SDs are a pre-requisite. Also important are data regarding the

perception of vaccine safety and efficacy [18], obtainable through

opinion surveys which could also include questions about factors

driving changes in vaccination behavior. We therefore suggest that

questions regarding these variables should be included in future

surveys concerning vaccine-preventable diseases. This would

improve our ability to predict of the outcome of vaccination

campaigns.

Materials and Methods

We set the vaccination decision problem in the context of a

population experiencing a vaccine preventable disease outbreak

which leads to a mass vaccination campaign. Individuals receive

information regarding vaccine and disease events from local and

global sources. We assume that ’good’ events (prompt recovery

from infection or safe vaccine events) are visible locally only while

severe cases of disease or potentially adverse events from the

vaccine enjoy global visibility due to the natural preference of

media channels for scary stories. In order to integrate behavioral

and epidemiological dynamics, an individual based model was

developed. Individual’s behavior regarding vaccination is repre-

sented in a belief-decision model which describes the dynamics of

belief updates in response to epidemiological events and the

decision making based on the person’s current beliefs. The

epidemiological model determines the disease dynamics in a

population with hierarchical contact structure, representing a large

urban setting.

Belief model
The belief model describes the temporal evolution of each

individual’s willingness to vaccinate, vt, in response to his evaluation

of vaccine safety and disease risk. To account for the uncertainties

regarding vaccinating behavior, vt is modeled as a random variable,

whose distribution is updated weekly as the individual observes new

events. The update process is based on logarithmically pooling vt

with other random variables as described below. Logarithmic

pooling is a standard way of combining probability distribution

representing opinions, to form a consensus [15].

The belief update model takes the form:

vtz1~
va1

t sa2
t da3

t ra4
tÐ

va1
t sa2

t da3
t ra4

t

ð1Þ

where
X

ai must equal one as ai act as weights of the pooling

operation. We attributed equal weights to vt and st (a1~a2~1=4),

with remaining ai taking values according to the following

conditions:

f
if nsdw0 : a3~1=2, a4~0

otherwise : a3~0, a4~1=2

where nsd is the number of serious disease cases witnessed by the

individual, and st and dt are random variables describing

individual’s belief regarding vaccine safety and disease risk,

respectively. The values for a3 and a4 are set to 1/2 since either

dt or rt are to be pooled against the combination of st and vt:

(v
1=2
t s

1=2
t )1=2d

1=2
t r0

t . This choice of weights corresponds to the most

unassuming scenario regarding the relative importance of each

information source, different weights may be chosen for different

scenarios. Every individual starts off with a very low expected

value for the Beta-distributed vt : v0*Be 1,20ð Þ,E v0½ �&0:047.

The last term in (1), rt, is a reduction force which causes E½vt� to
move towards the minimum value of E½v0�. This term is important

since without it, the psychological effects of witnessing serious

disease events would continue to influence the individual’s

decisions for and indetermined period of time. Thus, rt allows us

to include the memory of such events in the model. By setting rt

appropriately, we can model events that leave no memory as well

as ones that are retained indefinetly.

Perceived vaccine safety (st). Regularly, during a mass

vaccination campaign, individuals will try to infer the value of

vaccinating based on available information regarding vaccine

events. During a campaign, the number of safe vaccine events, V
can naturally be modeled as a binomially distributed variable, with

parameters g and p standing for the number of doses given and the

probability of safe event, respectively [19]. However, since data

available to individuals is biased and incomplete, the observed

variable v that feeds each individual’s inferential process is a

Binomial(Bin) governed by n and s, the perceived number of doses

and perceived probability of a safe vaccine event, respectively:

V*Bin g,pvð Þ

v*Bin n,sð Þ

Note that v is not the true number of safe vaccine doses applied

in the population, but represents a subset of these events which the

Vaccinating Behavior and Dynamic Beliefs
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individual is aware of. This means that the perceived safety of the

vaccine will always be a biased estimate, and will vary from

individual to individual generating variation in the population

belief distribution.

Each individual will make inference of s based on n and v, This

is modelled as a iterative Bayesian inference. Let the prior

distribution for st be a Beta distribution, Be(a,b), which is the

natural conjugate for a binomial process. The posterior distribu-

tion stz1 is then given by:

stz1 n,vð Þ*Be azv,bzn{vð Þ ð2Þ

The posterior stz1 is used in the subsequent iteration cycle as the

prior (Figure 6).

To better emulate the biased availability of good versus bad

news in real populations, we assume that vaccine adverse events

are visible globally, while safe events are visible only within their

neighborhoods. To include the effects of an exaggerated media

coverage of vaccine adverse events, we considered scenarios where

the the observed number of adverse events (n{v) is amplified

by a constant a in equation (2), which then becomes

stz1 n,vð Þ*Be azv,bza n{vð Þð Þ. We call this factor (a) the

‘‘media-amplification factor’’ , which varies from 1 (no amplification)

to 16 in our simulations. The chosen range for this factor, has no

bearings in any real data, but instead was selected to be just enough

to demonstrate the sensitivity of the model to such an effect. If real

data is available, it may still require transforming to match this

intensity range in order to be properly incorporated into the model.

Perceived disease risk (dt). In this model, we try to emulate

a scary disease, that is, a disease severe enough that a few cases will

lead to a high willingness to get a vaccine shot.

Disease scare is defined as an increase in the individual’s vt,

upon witnessing disease cases with serious consequences. It must

be noted, however, that this probability refers to the decision of

Figure 6. Updating the perceived probability of a safe vaccination. The expected value of st will change towards one with more safe
vaccines witnessed and in the opposite direction with the accumulation of vaccine adverse effects (VAE) events. Y-axis are arbitrary units.
doi:10.1371/journal.pcbi.1000425.g006

Figure 7. Mean scare as a function of Serious disease cases
witnessed.
doi:10.1371/journal.pcbi.1000425.g007
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getting a vaccine, since effectively getting vaccinated will also

depend on the availability of the vaccine. This effect enters vt

update equation (1) as the variable dt*Be a,bð Þ, where:

a~E½dt�
E½dt�(1{E½dt�)

s2
{1

� �
ð3Þ

b~(1{E½dt�)
E½dt�(1{E½dt�)

s2
{1

� �

E dt½ �~E vt½ �z 1{E vt½ �ð Þtanh 0:3 nsdð Þ

and nsd is the number of serious disease cases witnessed. To put it

plainly, equation-set (3) shows how one can obtain the parameters

of a Beta distribution from its expected value, and demonstrates

how the expected value of dt is calculated from serious disease

cases. Figure 7 shows how E½dt� varies with the number of serious

disease cases witnessed. Serious disease cases are visible globally.

Here, dt has a fixed variance s2~0:005. The pooling between vt

and dt is done as in (1). In equation (1) a3 can be modified to make

the disease more or less scary to individuals.

Reduction (rt). The reduction term is a slow but continuous

change of the mean willingness to vaccinate, vt towards its initial

distribution vt~0. This will happen only in the absence of

perceived serious disease cases. The reduction term enter vt

update cycle as the variable rt in (1) and has a Beta distribution

with mean given by:

E½rt�~
5E½vt�zE½v0�

6

and parameters derived from E½rt� in the same way as in (3). The

reduction term is calculated as a weighted average between the

current probability to vaccinate, vt, and the initial probability to

vaccinate, v0, at the beginning of the simulation. the weights in this

average can be modified to change the magnitude of the reduction

term (rt) in equation (1).

Figure 8. Daily and weekly events that determine individual activity. Movement decisions take place on a daily basis.
doi:10.1371/journal.pcbi.1000425.g008
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Decision. Once a week, during the simulation, susceptible

and exposed individuals decide whether to go vaccinate with a

probability sampled from vt, updated according to equations (1)

and (2). This update is based on evidence collected during the past

seven days (Figure 8).

Only non-infectious individuals make the decision to whether or

not they should go vaccinate. We consider that exposed

individuals do not know they have been infected, so they also

may seek vaccination. This is important because there is a limited

amount of vaccine doses available per week and exposed

individuals will compete with susceptibles for them. Only

susceptibles are successfully immunized by the vaccine.

Population model
We model disease spread in a hypothetical city represented by a

multilevel metapopulation individual-based model where individ-

uals belong to groups that in turn belong to groups of groups, and

so on (Figure 9), forming a hierarchy of scales [20]. In this

hypothetical city, individuals live in households with exactly 4

members each; neighborhoods are composed by 100 households

and sets of 10 neighborhoods form the city’s zones. During the

simulation, individuals commute between home and a randomly

chosen neighborhood anywhere in the population graph. Each

individual has a probability 0.25 of leaving home daily.

This same hierarchical structure is used to define local and global

events. Locally visible events can only be witnessed by people living

in the same neighborhood while globally visible events are visible to

the entire population regardless of place of residence.

Epidemiological model
The epidemiological model describes a population being

invaded by a new pathogen. This pathogen causes an acute

infection, lasting 11 days (incubation period of 6 days and an

infectious period of 5 days). Once in the infectious period,

individuals have a fixed probability, psd of becoming seriously ill.

After recovery, individuals become fully immune. The proportion

of the population in each immunological state at time t is labeled

as S(t),E(t),I(t) and R(t), which stands for susceptibles, exposed,

infectious and recovered states.

At the same time the disease is introduced in the population, a

vaccination campaign is started, making available nd doses per

week to the entire population, meaning that individuals may have

to compete for a dose if many decide to vaccinate at the same time.

Once an individual is vaccinated, if he/she has not been

exposed yet, he/she moves directly to the recovered class, with full

immunity (thus, a perfect vaccine is assumed). If the individual is in

the incubation period of the disease, disease progression is

unaffected by vaccination. Vaccination carries with it a fixed

chance (pae~1{p) of causing adverse effects.

Transmission dynamics is modelled as follows: at each discrete

time step, t~1,2,3,:::,70, each individual contacts others in two

groups: in his residence and in the public space. The probability of

getting infected at home is given by p0~1{(1{bhh)ihh where bhh

is the probability of transmission per household contact and ihh is

the number of infected members in the house. In the public space,

that is, in the neighborhood chosen as destination for the daily

commutations, each infected person contacts c persons at random,

and if the contact is with a susceptible, infection is transmitted with

probability bnh.

Acknowledgments

The authors are grateful for the comments of three anonymous reviewers

which helped improve the quality of the text.

Author Contributions

Conceived and designed the experiments: FCC CTC. Performed the

experiments: FCC. Analyzed the data: FCC CTC. Wrote the paper: FCC

CTC.

Figure 9. Design of the hierarchical population model. Arrows show the possible patterns of daily movement of individuals.
doi:10.1371/journal.pcbi.1000425.g009

Vaccinating Behavior and Dynamic Beliefs

PLoS Computational Biology | www.ploscompbiol.org 9 July 2009 | Volume 5 | Issue 7 | e1000425



References

1. Hennock EP (1998) Vaccination policy against smallpox, 1835–1914: a

comparison of England with Prussia and Imperial Germany. Soc Hist Med
11: 49–71.

2. Ehreth J (2003) The global value of vaccination. Vaccine 21: 596–600.
3. Salmon DA, Teret SP, MacIntyre CR, Salisbury D, Burgess MA, et al. (2006)

Compulsory vaccination and conscientious or philosophical exemptions: past,

present, and future. Lancet 367: 436–442.
4. Serpell L, Green J (2006) Parental decision-making in childhood vaccination.

Vaccine 24: 4041–4046.
5. Camacho LAB (2008) Yellow fever and public health in brazil. Cad Saúde
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