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Abstract

Phages play critical roles in the survival and pathogenicity of their hosts, via lysogenic conversion factors, and in nutrient
redistribution, via cell lysis. Analyses of phage- and viral-encoded genes in environmental samples provide insights into the
physiological impact of viruses on microbial communities and human health. However, phage ORFs are extremely diverse of
which over 70% of them are dissimilar to any genes with annotated functions in GenBank. Better identification of viruses
would also aid in better detection and diagnosis of disease, in vaccine development, and generally in better understanding
the physiological potential of any environment. In contrast to enzymes, viral structural protein function can be much more
challenging to detect from sequence data because of low sequence conservation, few known conserved catalytic sites or
sequence domains, and relatively limited experimental data. We have designed a method of predicting phage structural
protein sequences that uses Artificial Neural Networks (ANNs). First, we trained ANNs to classify viral structural proteins
using amino acid frequency; these correctly classify a large fraction of test cases with a high degree of specificity and
sensitivity. Subsequently, we added estimates of protein isoelectric points as a feature to ANNs that classify specialized
families of proteins, namely major capsid and tail proteins. As expected, these more specialized ANNs are more accurate
than the structural ANNs. To experimentally validate the ANN predictions, several ORFs with no significant similarities to
known sequences that are ANN-predicted structural proteins were examined by transmission electron microscopy. Some of
these self-assembled into structures strongly resembling virion structures. Thus, our ANNs are new tools for identifying
phage and potential prophage structural proteins that are difficult or impossible to detect by other bioinformatic analysis.
The networks will be valuable when sequence is available but in vitro propagation of the phage may not be practical or
possible.
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Introduction

As modern sequencing technologies exponentially increase the

amount of DNA sequence data available, the discovery of

sequences that encode proteins with unknown functions continue

to accumulate. For example, a large majority of microbial and

viral metagenome sequences sampled from different environments

have unknown function based on similarity to known sequences

[1–4]. The remarkable biodiversity of viruses and the fact that

sampling and in-depth genetic and biochemical studies of protein

functions have been biased until relatively recently toward

biomedically important or model organisms limits the utility of

similarity-based annotation methods.

Viruses, largely prokaryotic viruses (bacteriophages or phages)

are the most abundant carrier of genetic material in marine

environments [5], most of which are phages [6] that directly

influence their host populations by lysing their hosts or by

providing genes that confer selective advantages, such as antibiotic

resistance, detoxifying enzymes, etc. Viral diversity is partly driven

by viral structural protein genes, such as those encoding tails and

tail fibers, which participate directly in the evolutionary contest

between viruses and their hosts. Moreover, phage genes that

encode proteins used in recombination mechanisms accelerate

bacterial evolution through horizontal gene transfer and the

development of new varieties of pathogenic strains [5]. Discover-

ing the functions of unknown viral sequences is important for

understanding the lifestyle and effects of viruses in the environ-

ment, the genetic relationship between viruses and their hosts, and

the influence of viruses on the development of new pathogens.

Roughly 85% of phages have a double stranded (ds) DNA

genome [7], which is protected by a protein shell. The genomes of

most characterized phages are introduced into a host cell through

a tail structure [8]. Both head and tail structures are much more

complex than previously thought [9]. The protein shell of a ds
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DNA bacteriophage is composed of subunits called capsomeres

that polymerize into structures called procapsids or proheads.

Further assembly and restructuring of procapsids generate the

head structure that houses and protects the phage genome.

Attached to the phage head via portal or connector proteins is a

tail structure that has been used to classify tailed phages into

families (http://www.ictvdb.org). Myophages have contractile

tails, Siphophages have long non-contractile tails, and Podophages

have short tails. Other proteins that are involved in the assembly of

the phage particle may be degraded or left behind after phage

assembly is completed and do not become part of the phage

particle. Examples of these types of proteins are proteases, some

scaffold proteins, and chaperone proteins. Evolutionary informa-

tion from secondary structure alignments of the l tail structure

[10] and T4-like capsids is known [11], and the number of crystal

and cryo-EM structures of numerous capsid and tail proteins from

tailed phages is increasing. However, this information is restricted

to a limited number of viruses, and the degree to which all phage

structural protein sequences are similar to one another is not fully

understood.

The lack of sequence similarity is problematic because nearly all

machine learning algorithms applied to biological data rely on

conserved sequence motifs or functional domains. Dynamic

Bayesian networks have been used to classify signal peptides [12]

and to study secondary structure [13]. Support Vector Machines

have been applied to classification tasks, such as the recognition of

cysteine and histidine metal binding sites [14], and predicting

sequence motifs in tertiary structures [15]. Hidden Markov

Models have been successfully used in the prediction of HTH

domains [16] and transcription factor binding sites [17]. In

addition, neural networks have previously been trained by protein

sequences with at least one conserved motif, such as 3 conserved

catalytic residues in the phage integrase enzyme [18], conserved

signal sequences in signal peptides [19–20], metal binding sites

[14], transmembrane proteins [21], and protein functional

domains from primary sequence alignments [22]. As an alternate

to sequence similarity, protein fold recognition servers such as

PHYRE [23], CSBLAST [24], and pGenTHREADER [25] may

be used to compare an unknown sequence to known 3D structures

by ‘‘threading’’, a process that compares the fold profile of a query

sequence to the fold profiles from known structures. Structure

prediction servers, however, are poor at predicting the orientation

of protein domains [23] and may match a query to several

different types of proteins with similar domains, which may lead to

false predictions. These are only a few examples from a long list of

machine learning applications that predict protein function from

primary DNA or protein sequence data. Invariably, these

approaches rely on known sequence motifs or multiple sequence

alignments to generate models.

Sequence alignments between known and unknown structural

sequences generally form the basis for homology assignments, in

which an unknown primary sequence is annotated with the

function of a known sequence that best aligns to the unknown

sequence. Identifying conserved phage structural protein sequenc-

es by pair-wise sequence alignments, however, is very difficult if

possible, because of inadequate data showing sequence similarity

between known phage genomes [26]. Almost none of the

structural proteins encoded by tailed-phages, with the exception

of portal proteins, are identifiable by sequence similarity, which is

too weak to be useful for classification tasks. Tail fiber proteins are

also difficult to identify by computational methods because of

extensive swapping of gene fragments between loci [27]. This

highlights the challenge of predicting phage structural proteins:

unlike enzymes that may share metal or nucleotide binding motifs,

signal peptides, or transmembrane regions, structural protein sub-

domains are not well conserved or well characterized. In addition,

some structural proteins possess multiple functional domains. For

instance, the procapsid of bacteriophage phi6 [28–29] and the

major coat protein of filamentous phage M13 [30] contribute both

to the virion structure and bind directly to nucleic acids. The

morphogenesis protein of phage w29 is a structural component of

a tail fiber that also lyses the host cell wall during infection [31],

and hence has both structural and enzymatic functions. Like many

proteins of RNA viruses, nearly all hepatitis C virus proteins are

multifunctional and contribute to viral assembly as well as

replication [32].

As mentioned above, sequence similarities among viral struc-

tural proteins are known but extremely limited, although evidence

of structural similarities for viral structural proteins have been

accumulating. For example, a fusion of two-barrel folds,

commonly called the double ‘‘jelly roll’’ fold, is found in the

capsid proteins of the mammalian adenovirus [33], Sulfolobus

turreted icosahedral virus (STIV), bacteriophage PRD1, and

Paramecium bursaria Chlorella virus [34]. The capsid proteins of

bacteriophage SPO1 and Herpes viruses share some structural

similarity based on asymmetrical capsid surface molecules and

triangulation number [35]. In addition, orthogonal sheets and

loops are common in the proteins of the non-contractile tail of

phage l and the contractile tail of the induced prophage PBSx

[10]. The use of structural information by X-ray crystallography

may be ideal for predicting the function of an unknown protein

sequence; however, crystallography is a lengthy and expensive

process with a relatively low rate of success.

Structural protein sequences are ideal targets for the detection

of viruses because they are absolutely required and present in

essentially all viruses, and in principle may serve as the analog of

rRNA genes in the classification of cells. Here we describe the

design of Artificial Neural Networks (ANNs) that detect virus and

phage structural protein sequences based on the frequencies of

amino acids predicted from the translated gene sequence. The

sections below describe our methods of training, testing, and

evaluating ANNs to identify virus and phage structural protein

Author Summary

Bacteriophages are extremely abundant and diverse
biological entities. All phage particles are comprised of
nucleic acids and structural proteins, with few other
packaged proteins. Despite their simplicity and abun-
dance, more than 70% of phage sequences in the viral
Reference Sequence database encode proteins with
unknown function based on FASTA annotations. As a
result, the use of sequence similarity is often insufficient
for detecting virus structural proteins among unknown
viral sequences. Viral structural protein function is
challenging to detect from sequence data because
structural proteins possess few known conserved catalytic
motifs and sequence domains. To address these issues we
investigated the use of Artificial Neural Networks as an
alternative means of predicting function. Here, we trained
thousands of networks using the amino acid frequency of
structural protein sequences and identified the optimal
architectures with the highest accuracies. Some hypothet-
ical protein sequences detected by our networks were
expressed and visualized by TEM, and produced images
that strongly resemble virion structures. Our results
support the utility of our neural networks in predicting
the functions of unknown viral sequences.

Neural Networks Detect Viral Structural Proteins
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sequences without the direct use of sequence similarity. We chose

to use ANNs because they have been successfully used in a

multitude of problems involving pattern recognition and classifi-

cation. Neural networks have been trained using different methods

of encoding sequence data, such as sliding windows [36] or

focusing on residues surrounding a catalytic site [18]. Due to a lack

of sequence homology among all phage structural proteins, we

represented our protein sequences in the most general way

possible, by the percent composition of the 20 naturally occurring

amino acids. To determine an optimal ANN architecture, we

trained thousands of ANNs with varying training parameters, then

assessed the optimized networks for their ability to correctly

classify test cases using K-fold cross validation.

The estimate of a network’s accuracy in classifying data that was

not used in training is known as generalization. We assessed an

ensemble’s ability to generalize phage structural proteins by

specificity and sensitivity measures, which are based on the

classification of a curated test set of phage sequences by an

optimized voting scheme among ANNs. Sensitivity and specificity

are commonly used, for example, to assess the performance of

trained ANNs that recognize the biochemical markers associated

with various forms of cancers [37–40]. Statistical measures have

also been used to assess ANNs that were trained from sequence

data to predict the presence of protein features, such as functional

groups [41], secretory proteins [42], and protein functional

domains [43]. In addition to testing our ANNs against phage

structural protein sequences, we assessed network classifications of

capsid and coat protein sequences from the genomes of viruses

that infect archaea and eukarya. Lastly, we describe our method of

experimentally validating ANN predictions of hypothetical pro-

teins using transmission electron microscopy. Most of our

validation results corroborate the predictions of our neural

networks.

Results

Our aim was to recognize phage structural proteins by ANNs

having minimum possible error rates, and to use this computa-

tional tool to predict the functions of unknown viral sequences.

Training ANNs for high accuracy and to generalize patterns well

is dependent upon many factors, such as data complexity, network

architecture, and validation set size. The results that address these

issues are described below.

Overview of the ANN Training Strategy
Our training strategy is summarized in Figure 1. For training

the ANNs, we selected positive examples consisting of over 6000

phage structural protein sequences from GenBank’s non-redun-

dant database. An equal number of negative examples consisted of

randomly chosen non-structural protein sequences from phage

and prokaryotic genomes. The complexity of our data was

highlighted by the diversity of annotated phage structural protein

sequences in GenBank. For instance, we were unable to determine

a consensus sequence from a single structural protein family, such

as major capsid proteins. We chose to represent protein sequences

by amino acid percent composition because ANNs trained by

other encodings, such as the hydropathy index of individual amino

acids, were not as successful [44]. We chose our parameters by

comparing network performances trained with a range of

parameter values, which follows a prescription for evolutionary

programming [45]. For such tuning purposes, neural networks

were trained and evaluated using 10-fold cross validation

(explained further below). The ANNs with the highest mean

accuracy were used to define our network architecture and to

determine the best division of our data into training and validation

sets. To increase performance even further, the resulting ANNs

‘‘voted’’ on the classification of ORFs, and we assessed various

possible levels of voting. The total number of ANNs used for

voting is 160 (see Cross Validation Partitioning in Materials and

Methods) from which the optimum values of the training error,

specificity, and sensitivity were then assessed using the best voting

scheme against a curated test set of phage sequences that we

manually labeled as structural or non-structural proteins.

Viral Structural Protein Sequences
Our structural protein sequences came from genome sequences

of organisms and viruses, which are summarized in Figure 2. The

pie chart in the center of Figure 2 is divided into four slices that

represent the sources of our protein sequences. We collected 6,303

protein sequences based on keyword searches against the non-

redundant database (see Materials and Methods). Although we

intended to focus on phage proteins, our positive training set

contained 1001 proteins from over 300 phage genomes and 2,216

proteins from over 1,200 virus genomes. Among 2,603 proteins

from 2,214 microbial, archaeal, or eukaryotic genomes (‘‘Other’’

slice), 245 non-structural protein sequences came from eukaryotic

genomes that inadvertently passed our filtering process because a

keyword used to search for structural proteins was part of the

name of a gene or organism. Although nearly all of the phage

major capsid and tail protein sequences in our positive training set

came from the genomes of tailed phages, our training set used to

train structural protein neural networks contained the structural

protein sequences from a variety of viral genomes (11 phage

families and 81 virus families). Furthermore, our training set

contains viral protein sequences from 7 archaeal, 277 eukaryotic,

and 1,929 prokaryotic genomes. Seven archaeal structural protein

sequences contained in our dataset are capsid portal (gi148552749)

and minor tail (gi148552761) proteins from Methanobrevibacter

smithii ATCC 35061, a tape measure protein (gi159885966)

Methanococcus maripaludis C6, a head-tail adapter (gi170935066)

Thermoproteus neutrophilus V24Sta, and a minor tail protein

(gi118194002) from Cenarchaeum symbiosum A.

Architecture and Validation Set Size
To identify an optimum architecture, we examined the

performance of a large number of neural networks that have

between 1 and 100 neurons in one hidden layer, and between 1

and 30 neurons in a second hidden layer. To determine an

optimum validation set size, we tested networks that were trained

with sequences that were distributed differently between training

and validation sets, as follows: 50:50, 60:40, 70:30, 80:20, and

95:5, where the second number denotes the fraction of ORFs in

the validation set. While no single architecture or ratio was found

to be statistically different from others, the final set of voting ANNs

were trained using the parameters that gave the best classifications

of test cases.

Structural Protein ANNs
Initially, we trained ANNs using all structural protein types

(including, for example, capsid proteins, tail proteins, tail fiber

proteins, portal and connector proteins, etc.). Of all single and

double hidden layer ANNs we tested, the ANNs with 2069061

topology (20 input neurons, 90 hidden layer neurons, one output

neuron) correctly classified the greatest number of test cases, or

85.6% (left panel of Figure 3A). The validation set was used to

decide when training should stop, i.e. when the classification error

Neural Networks Detect Viral Structural Proteins

PLOS Computational Biology | www.ploscompbiol.org 3 August 2012 | Volume 8 | Issue 8 | e1002657



on the validation set remained the same or increased within 6

consecutive training iterations. We observed the highest mean

accuracy, or 86.2%, from the fully trained ANNs when the

distribution of sequence data into training and validation sets was

80/20, respectively. Figure 3A summarizes the performance of the

resulting ANNs, which were assessed by 10-fold cross validation.

K-fold cross validation refers to an evaluation process that splits a

dataset into K disjoint subsets, each of which is used to train and

evaluate an ANN’s performance. The accuracy of a network is

evaluated by test sequences that were not used for training.

Networks with the optimal topology (2069061) and validation set

size (20% of total sequences) had an average accuracy of 86.2%

based on 160-fold cross validation. The resulting 160 networks

were used to determine the optimal number of voting ANNs that

Figure 1. Overview of neural network training and evaluation. Protein sequences were downloaded and unwanted sequences were
removed. The percent compositions of amino acids in all protein sequences were calculated and distributed into training, validation, and test sets.
The network architecture and an appropriately sized validation set were determined ad hoc by training many networks. We selected those ANNs that
correctly classified the highest number of test cases based on 10-fold cross validation. Voting neural networks were generated from 160-fold cross
validation and the appropriate number of networks to use in an ensemble was determined by the ensemble with the best accuracy. The voting
ensemble that correctly classified the most test cases was used to determine the overall correct classification rate, specificity, and sensitivity.
doi:10.1371/journal.pcbi.1002657.g001

Neural Networks Detect Viral Structural Proteins
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gave the highest instance of accurate classifications of the curated

test sequences, which are sequences that we manually labeled as

structural or non-structural proteins.

Capsid and Tail Protein ANNs
To test whether the performance of the structural ANNs could

be improved by focusing the training on sub-classes of structural

proteins, we trained ANNs to classify either major capsid proteins

(MCP) or tail proteins (this training set included tail proteins as

well as tail fibers, etc.). We also tested the effect of different ratios

of positive and negative examples on ANN performance. All

capsid and tail network architectures described in this section,

however, were tested using data sets that contained equal numbers

of positive and negative examples (1:1 ratio), and one hidden layer

of neurons. The performance of the trained ANNs was based on

the average output of 10 voting ANNs. Figure 3B shows that MCP

neural networks with 40 hidden layer neurons correctly classified

the most test cases (91.3%). Tail neural networks with 10 hidden

layer neurons correctly classified the most test cases (79.9%)

(Figure 3C). The MCP and Tail networks with the highest

accuracies were those trained with a training:validation set ratio of

70:30.

Performance of Voting ANNs in Detecting Structural
Proteins from Phage Genomes

In addition to accuracy, we used sensitivity and specificity to

measure neural network performance. Specificity and sensitivity

may be used in different contexts, for example, to describe

biochemical interactions between molecules or the performance of

binary classifiers. The latter sense was used here, in which we

classified phage protein sequences into two categories, positive and

negative examples. The correct classification frequency, specificity,

Figure 2. Taxonomic information of positive structural protein sequences. The large pie chart in the center of the figure shows the number
(in parentheses) and percentage of sequences in the training set that came from virus genomes. Training sequences came from one of the following
sources: phages, viruses, other (i.e., prophage genes from bacterial chromosomes; see text), or obsolete. Protein sequences for which GenBank
records are no longer available are labeled as ‘‘Obsolete’’. Adjacent pie charts with colors that are similar to slices in the central chart show the
distributions of sequences based on taxonomic information. Sequences that do not have taxonomic data available were labeled as ‘‘unclassified’’.
doi:10.1371/journal.pcbi.1002657.g002

Neural Networks Detect Viral Structural Proteins
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Figure 3. Accuracies of networks trained with different architectures and distributions of training and validation sets. The correct
classification rates of Structural, MCP, and Tail ANNs are shown on the Y-axes in all panels. Red diamonds represent mean correct classification
frequencies, and the maximum mean frequencies are labeled as red percentage values. In the left set of boxplots, a single number on the x-axis

Neural Networks Detect Viral Structural Proteins
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and sensitivity measures were calculated from trained ANNs that

voted on 3,012 curated phage test sequences from 51 phage

genomes. These genomes, listed in Table S2, were sequenced in

2010 and 2011, after our original data set was collected in 2009.

Each of our voting ANNs correctly classified between 72% and

96% of all test cases, and each ANN voted independently. Based

on the results described above, we used 2069061 ANNs that were

trained with a validation set size containing approximately 20% of

total sequences. Validation set sequences were not part of either

the training or the test sets. An odd number of ANNs with the top

mean correct classification frequencies from 160-fold cross

validation were used to vote on curated phage test sequences.

We also tested the correct classification frequency of all 160 ANNs.

Voting results (Figure 4A) indicate that using the 5 most accurate

ANNs increased the number of test cases that were correctly

classified by nearly 2% (76.4%) versus our single most accurate

ANN (74.5%). Similarly, the specificity of ensemble predictions

increased by 2% over the specificity of the ANN with the highest

accuracy. Moreover, the sensitivity of the top 5 ANNs was nearly

3% higher than the top single ANN. As expected, averaging the

outputs of the voting ANNs produced very similar results to voting

by a majority rule (data not shown). To visualize the performance

of our networks we mapped the predictions of the Structural

Protein ANNs against two phage genomes, T4 and T7, using

CGView [46] (results are shown in Figure S1). These phage

genomes were chosen because their genomes have been exten-

sively studied and gene constructs that were used to validate

network predictions come from two marine phages, wP-SSM2 and

wMa-LMM01, that have T4-like genomes (below). The detection

of structural proteins by our networks appears to be accurate;

however, several proteins were missed by the networks: the

‘‘internal virion protein A’’ from T7, and two ‘‘prohead core’’

proteins, two ‘‘internal head’’ proteins, and a Soc small outer

capsid proteins from T4 (Figure S1).

Performance of Voting ANNs in Detecting Phage Major
Capsid and Tail Proteins

Networks trained to detect MCPs correctly classified ,90% of

test cases. Tail ANNs accurately categorized ,80% of positive (tail

proteins) and negative sequences. Figure 5A shows that the Major

Capsid Protein ANNs using a 1:1 ratio of positive (major capsid

protein) to negative examples correctly distinguished more capsid

protein sequences from non-capsid protein sequences than did the

Structural Protein ANNs (Figure 4B, MCP Test Data histograms)

by as much as 15%. While the Tail ANNs showed only slight

improvements in accuracy and specificity (Figure 5B) over the

Structural Protein ANNs, the sensitivity of the Structural Protein

networks to detect tail proteins was slightly higher (Figure 4B, Tail

Test Data histograms).

A marked improvement in the performance of Capsid and Tail

ANNs was observed when isoelectric point information was added

to the training data. The accuracy of the Capsid ANNs increased

by as much as 5% in the ANNs that were trained with a 1:1 ratio

of positive to negative sequences. For the Capsid networks that

were trained at ratios other than 1:1, we observed 5–20%

increases in ANN sensitivities. Isoelectric point information

appears to have little effect on the specificity of the Capsid ANNs.

The accuracy and specificity of the Tail networks are roughly the

same, though slightly lower (1–2%) in the Tail PC + pI data,

between the networks trained with and without isoelectric point

values. The sensitivity of the Tail ANNs, however, was improved

by as much as 15% in comparison to the Tail networks that were

trained by amino acid frequency alone.

represents the number of neurons in 1 hidden layer; two numbers delimited by an ‘x’ indicate the number of neurons in hidden layers 1 and 2. The
left side of Panel A summarizes the 1- and 2-layer architectures of the top 4 networks based on correct classifications, whereas Panels B and C show
all networks architectures that were tested. In the right set of boxplots the pairs of numbers on the x-axis represent the percentage of non-test set
sequences that were split into the training and validation sets.
doi:10.1371/journal.pcbi.1002657.g003

Figure 4. Performance of Structural ANNs. Panel A summarizes the performance of Structural ANN ensembles. Each ensemble consists of an
odd number of networks ranging between 5 and 141 voting ANNs, with the exception of the single best performing ANN and the ensemble
containing all 160 ANNs. Performance is measured by the accuracy, specificity, and sensitivity of the networks, which were presented the amino acid
frequencies of curated phage sequences. The sequences were best classified by the top 5 voting ANNs, which is based on mean accuracy, specificity,
and sensitivity values that appear above the red striped columns. The performance of an ensemble of the top 5 voting ANNs was also assessed by
curated sequences that were used to test the MCP and Tail ANNs. Histograms in panel B show the accuracy of the Structural ANNs in classifying
capsid from non-capsid and tail from non-tail test sequences that were also used to test MCP and Tail ANNs.
doi:10.1371/journal.pcbi.1002657.g004

Neural Networks Detect Viral Structural Proteins
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We observed a trend in the sensitivity and specificity of the

Capsid and Tail ANNs with respect to changes in the ratio of

positive to negative examples in the training sets. As the ratio of

negative to positive examples increased (X axes in Figure 5), the

sensitivities of the networks decreased while the specificities

increased. These trends can be explained by the frequency with

which the networks classified true negative examples. Decreases in

the positive to negative ratios in the training set produced networks

that predict negative sequences at a higher rate. An increase in the

number of negative ANN calls, however, increases the false

negative frequencies of the networks, and hence decreases the

overall network sensitivity (see Equation 1 in Materials and

Methods).

Performance of Neural Networks in Detecting Capsid
Proteins from Archaea and Eukarya

To test the accuracy of network predictions against capsid

proteins from non-phage genomes, we collected additional capsid

and coat protein sequences from the Reference sequence database.

Table 1 summarizes the performance of our Major Capsid and

Structural Protein ANNs. Protein sequences used for this round of

testing did not overlap with any of our training sequences or test

sequences from previous testings. We grouped protein sequences

by the genome type from which each sequence came: double-

stranded DNA, double-stranded RNA, single-stranded DNA, and

single-stranded RNA. We also show capsid proteins sequences

from archaeal viruses, which includes phage sequences to form a

test set with as many sequences as possible. Also shown in Table 1

are the performances of our ANNs based on capsid sequences

from phage genomes that were added to the Reference Sequence

Database between February and May of 2011. The accuracy of

predictions made by our Structural Protein neural networks were

quite high (77–95% accuracy) for eukaryotic viruses and 73% for

archaeal viruses in comparison to the performance of the Major

Capsid 1:1 ANNs (4–15%). Although there are very few capsid

proteins from archaeal virus genomes in GenBank, our Structural

Protein ANNs correctly classified 19 of 26, or roughly 3/4, of

capsid protein sequences from archaeal viruses.

Figure 5. Performance of major Capsid and Tail ANNs. The accuracy, sensitivity, and specificity of Capsid and Tail ANN based on the
classifications of test cases from the RefSeq database. All training sets contained the amino acid percent composition (PC) of positive and negative
examples. Capsid ANNs trained without and with isoelectric point (pI) values are shown in the left and right histograms of panel A. Tail Protein ANNs
trained without and with isoelectric point values are shown in left and right histograms of panel B. Ratios of positive to negative examples are show
on the X-axis in ascending order. Error bars represent standard error.
doi:10.1371/journal.pcbi.1002657.g005
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99% Confidence Intervals
The reliability of our neural network predictions at a 99%

confidence level is shown in Figure S2 for different levels of

network output, or threshold values. We observed an increase in

the accuracies of our ensembles’ true positive predictions as the

threshold value increases. At the 99% confidence level, Structural

protein ANN outputs of $0.6 correspond to 71–76% accurate

predictions of true positive examples, while outputs of $0.9

correspond to 85–88% accurate predictions. The more specific

MCP protein (1:1) neural network scores of $0.6 correspond to

81–91% accurate predictions of true positive examples, as

expected for networks that classify a more homogeneous sample

of proteins. Due to the need to use a test set of proteins not ‘‘seen’’

before by the ANNs and the relatively few newly available tail

proteins relative to the diversity of protein classes included in the

Tail ANNs training set, we have not yet been able to calculate

accurate confidence intervals in the case of these ANNs; this will

be done as new phage genomes are entered in GenBank, and the

information will be added to the iVIREONS web site that we are

building as a web-based interface for the ANNs.

Experimental Validation of ANN Predictions
In order to validate experimentally the predictions of the

structural ANNs, we explored whether proteins predicted as

Table 1. Capsid and Structural ANN predictions of capsid sequences from viruses that infect prokaryota, archaea, and eukaryota.

Genome Type (Number of
Genomes) MCP 1:1 MCP 2:1 MCP 3:1 MCP 4:1 MCP 6.6:1 Structural

Phage (59) 91.5% 83.1% 81.4% 78.0% 42.4% 80.4%

Archaea (26) 15.4% 11.5% 11.5% 11.5% 3.8% 73.1%

dsDNA (123) 15.4% 11.4% 11.4% 10.6% 11.4% 85.9%

dsRNA (44) 4.5% 4.5% 0.0% 2.3% 0.0% 77.3%

ssDNA (325) 0.9% 0.0% 0.0% 0.0% 0.0% 95.1%

ssRNA (338) 16.9% 12.1% 10.9% 6.2% 4.1% 91.4%

Performance of Major Capsid Protein (MCP) and Structural Protein neural networks on capsid and coat protein sequences from prokaryotic, archaeal, and eukaryotic
virus genomes from the Reference Sequence Database. Protein sequences are listed by genome type (first column) and the number of protein sequences from each
genome type is shown in parentheses.
doi:10.1371/journal.pcbi.1002657.t001

Figure 6. Flow chart of the expression and visualization of hypothetical proteins. Sequences were searched against the RefSeq and
Conserved Domain Databases to remove proteins that have a known function based their annotations. Hypothetical protein sequences are
synthesized into genes that are expressed and purified in vivo. Soluble proteins are negatively stained for visualization by TEM. An example image
[47] is shown at the bottom right corner of the figure.
doi:10.1371/journal.pcbi.1002657.g006
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structural could self-assemble into structures that resemble

structural features of phages, using TEM (gray boxes, right side

in Figure 6). We chose 16 genes whose functions were unknown

from the genomes of two marine phages, wP-SSM2 and wMa-

LMM01, one Bacillus phage, wIEBH, and Burkholderia wBcepC6B.

We are aware that phage assembly is a highly ordered and

complicated process, and that normally neither head nor tail

structures are assembled from single, isolated proteins. We thus

expected that relatively few of our test cases would in fact be able

to self-assemble, presumably driven by a relatively high in vitro

concentration of the single proteins. Moreover, we did not expect

that a single protein would be able to self-assemble into the correct

structure, as many proteins are necessary to regulate the correct

assembly of the final structure of either phages or viruses.

Nevertheless, for validation purposes, we considered that, even

with the aforesaid limitations, self-assembly into a structure

resembling the head or tail of a phage would be sufficiently

indicative of the success of the ANN predictions.

Neural network predictions of unknown sequences. The

genome maps of wMa-LMM01, wP-SSM2, wIEBH, and

wBcepC6B are shown in the A panels of Figures 7, 8, 9, and 10,

respectively. To highlight proteins with functional annotations,

maps were rendered such that all ORFs that have a functional

annotation were drawn as red (coded on the ‘‘+’’ strand) or blue

(coded on the ‘‘2’’ strand) arrows, while hypothetical proteins

were drawn as orange arrows. The tip of the arrows denotes the C-

terminus of the translated protein. ANN-predicted structural

proteins were shown as black arcs or bars that are adjacent to ‘‘+’’

strand genes. Hypothetical protein sequences that are identified as

structural proteins by our ANNs are indicated by black labels

showing their corresponding sample identification number fol-

lowed by the text ‘‘ANN+ hyp prot’’. The predictions of the MCP

and Tail neural networks are shown as box plots in panel B of

Figures 7, 8, 9 and 10. The first 4 box plots in the B panels

summarize responses from 10 Major Capsid ANNs that were

trained with different ratios of negative to positive sequences; 1:1,

2:1, 4:1, and 22:1. The last 4 box plots are responses of the Tail

ANNs that were trained using 1:1, 2:1, 4:1, and 6.6:1 negative to

positive examples.

Expression and visualization of ANN-predicted structural

proteins. We attempted to experimentally validate unknown

sequences that were predicted to be structural proteins by the

structural protein ANNs by expressing each gene in vivo and

looking for structures that were able to self-assemble. In this case,

we tried as much as possible to mimic a situation in which we

would not possess more than single genes, for example in the case

of the analysis of environments using metagenomics, in which

sequence read length is limited and the presence of more than one

ORF per contig is relatively rare.

Sixteen genes were synthesized with appropriate linkers, cloned,

expressed, purified using a His tag, and visualized as described in

Materials and Methods. Eight proteins (5514, 5515, 5519, 5520,

5522, 5525, 5607, and 5610) were both soluble and expressed in

sufficient quantities for our analysis. Other proteins were not tested

because they were insoluble or unstable. In some cases, proteins

were analyzed both with the SUMO and His tag and without.

Samples 5515 and 5519 (Figure 7C), and 5607 (Figure 9C)

appeared as structures of variable size and forms that couldn’t be

associated as a specific phage structure in comparison to EM

images of phage virions. The shape of the proteins from samples

5515 and 5607 however, appeared consistent throughout the

samples.

VCID 5525 - putative tail fiber. The PSSM2_224 gene is

conserved between Prochlorococcus and Synechococcus phages and has

no similarities to known proteins in GenBank after 3 iterations of

PSI-BLAST analysis. The genome of Prochlorococcus phage P-SSM2

encodes twelve putative tail-fiber-related genes [47], four of which

are related to the distal tail fiber subunit (gp37) of T4. The tail-

fiber-related genes of PSMM2 were identified by similarity and

common characteristics with no experimental confirmation. The

TEM analysis of sample 5525 (with the tag) showed thin, long

structures of different lengths (Figure 8C), similar to the structure

of T4 tail fibers [48]. Sequence analysis by BLASTP between the

PSSM2_224 and the T4 bacteriophage tail fiber showed no

significant similarity (e-value of 6.3 with the gp34 long tail fiber

proximal subunit; e-value of 0.15 with gp37 long tail fiber distal

subunit). When the transmembrane domain of the PSSM2_224

ORF was removed, the BLASTP analysis between PSSM2_224

and T4 tail fibers showed slightly higher similarity (e-value of 5.8

and 25% of coverage with gp34 long tail fiber, proximal subunit;

e-value 0.085 and 50% of coverage with gp37 long tail fiber distal

subunit). Despite no significant similarity in sequence, protein

products from PSSM2_224 and T4 gp37 appear to be very similar

in structure based on EM analysis.

VCID 5607 - putative capsid protein. The size of the

Bacillus cereus phage IEBH genome is ,55 Kb and a map of the

genome is shown in Figure 9A. Gene gp52 (VCID5607) from

phage IEBH is annotated as a hypothetical protein and does not

have sequence similarity to any genes of known function.

However, IEBH gp52 scored high in both the Structural (0.695;

maximum value of 1) and Major Capsid Protein (0.97; maximum

value of 1) ANNs. IEBH gp52 lies between the genes encoding the

minor (IEBH gp51) and major capsid proteins (IEBH gp53) [49].

Smeesters and colleagues suggested that the predicted function of

the protein encoded by gp52 is a scaffolding protein based on

similarity searches to sequences in the ACLAME database.

However, we could not confirm this prediction based on our

own searches using the sequence of VCID5607, which show

similarities to sequences that have unknown function in the

ACLAME database. Furthermore, Smeesters et al. characterized

wIEBH virion structural proteins by mass spectrometry that did

not biochemically identify other genes that are annotated as

structural proteins, such as gp51 (minor capsid), gp55 (head-tail

connector), and gp56 (minor capsid). Despite the predictions from

the ACLAME database and characterization by mass spectrom-

etry analysis, the difference between the head structures of the

wIEBH virions and the structures that self-assembled from

VCID5607 subunits was their size. While the wIEBH final capsid

is a 55 nm icosahedral head, the procapsid-like structures that self-

assembled from a single protein were 100–300 nm (Figure 9C).

Nonetheless, the self-assembled proteins of 5607 strongly resemble

the head structures of virions that are shown in Figure 2 of the

manuscript that characterizes wIEBH [49]. This is not surprising,

because gp52 protein products self-assembled without scaffolding

or chaperone proteins that would be present during virion

assembly in vivo. The fact that gp52 is between two predicted

capsid genes also supports the putative capsid function of the

VCID5607 gene.

VCID 5610 – putative major capsid protein. The gene

sequence of VCID5610 is that of gp15 of the Burkholderia cepacia

phage BcepC6B, an ORF identified as a hypothetical protein

(gi48697205, VCID 5610) that has no significant similarity to

sequences with known protein function and very weak similarity to

a structural protein of prophage MuMc02. Figure 10A shows a

genome map of wBcepC6B and shows that only gp18 (a putative

tail fiber protein, gi48697208) and gp16 (an SLT domain-

containing tail structural protein, AAT3875.1) were identified as

structural proteins [50]. Moreover, the structural genes of related
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Figure 7. ANN results and TEM images of hypothetical proteins from wMa-LMM01. The locations of ORFs with known (red or blue arrows) and
unknown functions (orange arrows) based on GenBank annotations are shown in panel A. Samples 5513–5519 have black labels, which represent
ORFs that were identified as structural proteins by ANNs but have no known function. Boxplots (B) summarize the predictions made by Capsid and
Tail ANNs. Representative TEM images of purified proteins from Sample 5515 (C) and 5519 (D) are shown.
doi:10.1371/journal.pcbi.1002657.g007
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Burkholderia phages are not identifiable by direct sequence

similarity. The TEM analysis of the purified proteins showed

capsid-like structures with variable shapes that are ,150 nm in

size (Figure 10 D–E).

The assembly of the procapsid-like structures from protomers of

VCID5610 is imperfect, suggesting that this phage must need

other proteins to properly assemble procapsids. Despite being

assembled from the protein product of a single gene, the

VCID5610 structures appear to have different morphotypes that

are reminiscent of the damaged procapsids that result from the

treatment of the Pseudomonas phage F116 with biocides, as shown

by Maillard et al. [51].

Figure 8. ANN results and TEM images of a wP-SSM2 hypothetical protein that resembles tail fibers. A genome map of wP-SSM2 (panel
A) shows the locations of ORFs with known (red or blue arrows) and unknown functions (orange arrows). Red or blue labels indicate ORF sequences
that are structural proteins based on GenBank annotations. Samples 5520–5525 have black labels, which represent ORFs that were identified as
structural proteins by Structural ANNs but have no known function. Boxplots (B) summarize the predictions made by Capsid and Tail ANNs. Panel C
shows representative TEM images of soluble, purified proteins from sample 5525 that strongly resemble phage tail fibers.
doi:10.1371/journal.pcbi.1002657.g008
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ANN Predictions of Prophage Genes
In addition to predicting the functions of unknown viral

sequences, we were also interested in using ANNs to help detect

prophages or prophage fragments present in bacterial chromo-

somes. We pre-processed and presented a few bacterial chromo-

somes to our ensemble of voting ANNs, which were each trained

with a 1:1 ratio of positive to negative sequences. Our training

distribution, however, does not accurately represent the number of

structural prophage genes in a bacterial chromosome. For

example, in the case of E. coli MG1655 our data set would have

to contain approximately 829 bacterial and prophage non-

structural proteins for every prophage structural protein. (This

approximation was obtained by dividing the total number of genes

in MG1655 (4146) by the number of prophage genes that are

annotated as structural proteins (5) in the MG1655 genome.)

Although the ratio of prophage structural protein sequences to

MG1655 sequences was not appropriately represented in our data

sets, we investigated the ability of our voting ANNs to correctly

classify sequences from the chromosomes of S. enterica LT2, S.

aureus COL, and E. coli MG1655. Table S2 reports the number of

prophage genes that were identified as structural proteins from the

total number of prophage genes. The ANN predictions identified a

number of genes that is within the expected range of structural

genes relative to the size of a prophage genome. The percentage of

prophage structural genes predicted by our ANNs from each

bacterial genome, however, is 13% (347/2615), 19% (868/4423),

and 18% (779/4145) of the S. aureus COL, S. enterica LT2, and E.

coli MG1655 chromosomes, respectively. A list of ANN positive

bacterial genes and average neural network outputs are listed in

Supporting Dataset S1. Although all of the ANN predictions of all

bacterial genes are given, it is important to keep in mind the

thresholds at the 99% confidence interval (Supporting Figure S2)

when interpreting the data.

MEME
We investigated the classification of structural proteins based on

conserved sequence motifs using the sequence analysis tool

MEME [52]. We analyzed 120 sequences that were randomly

chosen from our dataset of 757 major capsid proteins. The MEME

analysis tool identified a pattern of motifs shared by only 16 major

capsid sequences including a capsid sequence (gi 258545859) that

was not detected by our Structural or Capsid ANNs. However,

common patterns of motifs were discovered in ,13% of capsid

sequences we tested (data not shown). Thus MEME is not as

sensitive as the ANNs at identifying members of structural, major

capsid, or tail protein families, but may be useful in grouping the

Figure 9. ANN results and TEM images of a wIEBH hypothetical protein that resembles procapsids. ORFs of known (red or blue arrows)
and unknown functions (orange arrows) are shown on a genome map of wIEBH in panel A. Sample 5607 (black label) is shown as an ORF that is
identified as a structural protein by ANNs but have no known function. Boxplots (B) summarize the predictions made by Capsid and Tail ANNs based
on the sequence of protein 5607. Representative TEM images of soluble, purified proteins that were expressed from the sequence of protein 5607 are
shown in panel C.
doi:10.1371/journal.pcbi.1002657.g009
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ANN-identified proteins into subfamilies that are more closely

related. We will investigate the use of this tool further in the future.

Discussion

The analysis of genetic capacity of a microbiome is frequently

performed using rRNA sequences as classifiers of different

bacterial genera and species in the community. rRNA sequences

are useful because they contain both highly conserved and highly

variable regions. Thus metabolic capacity, determined by the

actual genes encoded within a microbiome, can be related to a

phylogenetic and taxonomic analysis of the cells present as

indicated by rRNA sequences. In the case of viriomes, however,

similar analyses are severely limited by the lack of any single gene

that is shared among all viruses. In principle, structural

components of viruses should fulfill a similar identification function

to cellular rRNA sequences, but their sequences are simply too

diverse. We aimed to design a computational tool that did not rely

solely on sequence similarity in order to identify structural

components of viruses, in this study of bacteriophages in

particular. Herein we have described the training of feed-forward,

back-propagation neural networks that classified phage protein

sequences by amino acid percent compositions as well as, in the

case of MCP and Tail ANNs, protein isoelectric point (pI). Each

amino acid’s functional group has its own characteristic pKa, and

the overall pI of each protein can be estimated as a function of

amino acid composition. It is possible that the accuracies of the

ANNs benefitted from the addition of pI as an individual feature

because this emphasized the charge aspect of the protein. The

accuracies of our MCP ANNs increased with the inclusion of pI

data in our training set, presumably because the pI of the capsid

proteins lie in a relatively narrow range (pI 5–6), and because the

pI distribution for MCP proteins differs significantly from the pI

distribution of the proteins in the negative training set (Figure S3).

In contrast to major capsid proteins used to train the MCP ANNs,

the proteins used to train the Tail ANNs are more heterogeneous

and the similarity between the bimodal distributions of the IEP

values for the Tail protein positive and negative training sequences

Figure 10. ANN results and TEM images of a putative major capsid protein from wBcepC6B gp15. Panel A shows the locations of
predicted ORFs in the genome map of wBcepC6B. Red or blue labels and arrows indicate ORF sequences that are structural proteins based on
GenBank annotations. Hypothetical proteins are shown as orange arrows. Protein 5610 (black label), or wBcepC6B gp15, is identified as a structural
protein by ANNs and has no known function. Boxplots (panel B) summarize predictions of protein 5610 that were made by Capsid and Tail ANNs.
Representative TEM images (panel C) of soluble, purified proteins that were expressed from the sequence of 5610 resemble procapsid structures with
various morphologies. The red image outlined in panel D shows an empty procapsid, which resembles a ‘‘broken’’ head structure (blue outlined
image) of Pseudomonas aeruginosa PA0 phage F116, and is illustrated by a white inset image [51]. Panel E shows images of a ‘‘folded’’ head structure
from the soluble, purified proteins of 5610 (red outline) that is similar to that of wF116 (blue outline with white inset image [51]).
doi:10.1371/journal.pcbi.1002657.g010
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caused only a slight increase in the accuracies of the Tail, not

comparable to that of the MCP ANNs. The function of a protein

does not relate to a unique pI value, which was shown for proteins

having the same function but did not have conserved cross-species

pI values [53]. Thus, pI values were useful for improving the

performances of our Capsid and Tail ANNs, but amino acid

percent composition provided a much better signature for the

function of a protein than pI values alone (data not shown).

Although percent composition of amino acids and pI estimates are

weakly tied to sequence similarity, the classification of viral

sequences by these characteristics is much less dependent on

sequence similarity than sequence alignments between nucleic acid

or protein sequences.

Our goals were two-fold. First, we investigated the potential of

ANNs to recognize classes of virion structural proteins by training

neural networks with sequences from prophages, proviruses, and

the genomes of viruses that infect prokarya, eukarya, and archaea.

Second, we examined the accuracy of predictions of networks that

were trained exclusively on phage major capsid or tail proteins.

We achieved our first goal with an ensemble of five voting

networks that identify a broad spectrum of phage and viral

structural proteins with ,80% accuracy. We achieved our second

goal with two ensembles of 10 ANNs each, whose specificity is as

great or greater than the specificity of the structural neural

networks at identifying phage capsid or tail proteins. In summary,

we trained and evaluated thousands of networks from which our

network ensembles have collectively classified a high percentage

(,80–95%) of test cases. Despite the lack of similarities in the

sequence or predicted secondary structure of phage proteins across

all structural protein families, the predictive accuracies of our

trained neural networks were quite good at the 99% confidence

level.

Our trained Structural Protein neural networks have higher

sensitivity than specificity, a condition that will detect more true

positives but also more false positives than networks with high

specificity and low sensitivity. Highly sensitive networks are ideal

for identifying candidate sequences that are very diverged from

known capsid or tail proteins sequences. For example, ORFs 29

and 30 from the Vibriophage VP16T phage genome (Figure S4)

were identified as structural proteins by our neural networks and

experimentally verified as structural proteins present in the phage

lysate [54], but 8 years after their identification, there are still no

similar sequences with known function. Our Structural Protein

networks also correctly predicted a majority of capsid and coat

protein sequences from the genomes of both phages and

eukaryotic viruses, as well as a few from archaeal viruses, because

our training set included protein sequences from a broad spectrum

of virus genomes. In contrast, our Capsid and Tail ANNs have

higher specificity than sensitivity. For example, we observed that

85% of all positive predictions made by our Capsid ANNs are

indeed true positive capsid sequences, which is ideal when the goal

of experimentally validating capsid protein sequences must be

balanced by maintaining low experimental costs. Our capsid

ANNs predicted capsid protein sequences from archaeal and

eukaryotic viruses very poorly, which was expected because these

ANNs were trained to recognize capsid proteins of bacteriophages.

The specificity of the capsid ANNs for phage capsid proteins

indicates that the frequencies of amino acids in phage capsid/coat

proteins are inherently different from the frequencies in archaeal

or eukaryotic virus capsids.

Overall, our three network ensembles (Structural, MCP, and

Tail) provided a means of detecting putative protein sequences

that serve as virion structural components. Independent network

predictions were used together to strengthen the predictions.

Positive predictions of the Structural ANNs, for example, should

produce similar predictions from the Capsid or Tail ANNs, and

vice versa. A sequence that produces a positive output from the

Structural ANNs and negative outputs from Capsid and Tail

ANNs may be a structural protein that is neither a capsid nor a tail

protein, but is either a structural protein such as a baseplate, tape

measure, or portal protein, or a eukaryotic or archaeal virus capsid

or tail protein. The former is probably the case for the sequences

5520-22 and 5524 from phage P-SSM2 (Figure 8B). An ORF that

has positive outputs from Capsid or Tail ANNs but negative

outputs from Structural ANNs may belong to a class of capsid or

tail proteins whose sequences were represented poorly or not at all

in the training set of the Structural ANNs, and thus not recognized

as a structural protein, i.e. a false negative Structural ANN

prediction. Another possible interpretation is that the Capsid or

Tail ANNs made a false positive prediction. If experimentally

validated, sequences that are positively identified by the Capsid or

Tail ANNs but not by the Structural ANNs would be useful to re-

train and improve the performance of the Structural ANNs.

Structural protein sequences that have been predicted by our

ensembles and experimentally verified will be used to re-train

future versions of our networks. Network responses to all RefSeq

test cases are listed in Supporting Dataset S2.

By interpreting our network predictions in the manner just

described, our ensembles were able to find nearly all the prophage

structural proteins in the three bacterial chromosomes examined

(Table S2). In cases where putative capsid or tail proteins are

found in the context of a bacterial chromosome, i.e. as part of a

prophage, the networks with greater specificity may be necessary

since the positive ORFs will be found in the context of a

preponderance of negative ORFs. Interestingly, 15–16% of all

ORFs that were scored as ANN positive in the bacterial

chromosomes of E. coli MG1655 and S. enterica LT2 were fimbrial,

pilin, flagellar, and membrane proteins, which may share similar

features present in some phage structural proteins. For example,

the immunoglobulin (Ig) domain or fold that is found in phage tail-

associated proteins, bacterial pili and fimbriae, and the bacterial

type VI secretion system [55–60][10].

In addition to measuring the accuracy of our ANNs from test

cases, we used our ANNs to predict the functions of proteins that

have no known function, and used TEM to investigate the

structures of hypothetical proteins that were expressed in vivo.

Experimentally validating ANN predictions was challenging

primarily because we attempted to assemble phage structures

using a single protein, without the benefit of all the phage or

bacterial accessory proteins that normally contribute to assembly.

Despite the complexity of phage structures, at least some phage

procapsids can assemble with just one or two proteins [61]. The

assembly of the major capsid protein gp23 of T4 into polyheads

occurs in simple buffer conditions [62]. Procapsids or polyheads

form with just the Pb8p capsid protein of T5 phage, in certain

buffers [63]. Here we experimentally validated, by TEM, a

putative tail fiber gene (VCID5525) that was identified by both the

Structural ANNs and Tail ANNs. The structures we observed

were very similar to the structure of the T4 tail fiber, differing only

in length, which may be due to the absence of phage accessory

proteins. Despite the fact that T4 and P-SSM2 tail fiber genes are

not similar in sequence, our TEM images suggest that the genes

have the same function based on the similarity of their structures.

Likewise, we have EM images showing procapsid-like structures in

four protein samples. Images from 2 of our samples are nearly

identical in morphology to the virion head structures of the known

phages IEBH and BcepC6B (Figures 9 and 10). The procapsid and

tail structures that were assembled are certainly not ‘‘finished’’
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structures, although they are highly suggestive. It is very unlikely

that images of self-assembled protein structures are those of

inclusion bodies, because all of our purified proteins were soluble.

These results strongly suggest that our ANNs are able to detect

structural proteins that are otherwise not detectable by sequence

similarity.

Neural networks have been criticized as black boxes because the

weights learned from the attributes of a data set are not easily

deciphered; this also applies to other machine learning methods,

such as support vector machine and Bayesian networks. Although

some groups disfavor black box approaches for the reason just

mentioned, we chose to use artificial neural networks for their

ability to correctly classify our data and for the lack of good

alternative options. We certainly expect that adding criteria such

as the position of an ORF relative to genes encoding other

structural components would improve the reliability of the

predictions made by the ANNs. However, structural genes are

frequently present in several distinct clusters within phage

genomes, and the heterogeneity among phage genomes makes

synteny a difficult parameter to encode for ANN training.

Moreover, we wished to train ANNs that could be applied more

generally in situations where ORFs are not genetically linked, such

as is the case for metagenomic data where contigs frequently

average no more than ,1000 bp. Synteny information, when

available, can be used in conjunction with the ANNs. In the

future, we will also investigate whether the accuracy of our

networks may be improved by the addition of sequence motif

information, such as that explored by the MEME suite [52].

Perhaps results from MEME may also be useful for grouping

ANN-predicted sequences into subclasses of structural proteins

rather than during training, because MEME detects less general,

more specific features than the ANNs.

We have presented instances showing that our network

predictions have been correct. The ANNs we have presented

should serve as a building block to train other ANNs, or other

machine learning methods, to accurately classify sequences from a

broad range of protein families without direct dependence on

sequence similarities to known sequences. This will be useful in

identifying evolutionarily distant structural proteins that, if

experimentally validated by (ideally) X-ray crystallography, will

in turn increase the sensitivity of homology-based algorithms as

well.

Materials and Methods

The methods we used to train, test, and evaluate neural

networks are summarized in Figure 1 and described in detail

below.

Software
All neural networks were trained and tested using the Neural

Network Toolbox 7.0 in Matlab version 7.6.0.324 (R2008a, The

MathWorks, Natick, MA). All other computations and data

manipulations were done with Java, UNIX shell utilities, and Perl

and Bash scripts. Box plots were generated by Matlab and the R

statistical package [64], and circular genome maps were created by

CGView [46]. Isoelectric point estimates were calculated by

BioPerl’s pICalculator (http://doc.bioperl.org/releases/bioperl-1.

4/Bio/Tools/pICalculator.html). Our neural networks are avail-

able to analyze translated coding sequences through the

iVIREONS (identification of VIRions by Ensembles Of Neural

networkS) web interface that is hosted at the SDSU Viral Dark

Matter website (http://vdm.sdsu.edu/ivireons).

We used the MEME suite of motif-based sequence analysis tools

[52] to examine presence of motifs in our major capsid sequences.

We uploaded 120 randomly selected major capsid sequences to the

MEME web site (http: http://meme.nbcr.net/meme/cgi-bin/

meme.cgi). We set the search parameters to look for a maximum

of 20 motifs that are between 6 and 100 amino acids in length. We

used default values for required MEME parameters and did not

use optional MEME features.

Sequence Data
All sequences were obtained from NCBI by keyword search

followed by several rounds of removing unwanted sequence by

keyword searches through NCBI annotations. Positive sequences

are proteins that have a target function, which the neural networks

learns to distinguish from proteins that have other functions. A

neural network that is trained to detect tail proteins, for example,

was able to distinguish between tail protein sequences and protein

sequences that do not function as tail proteins. The following

sections describe the methods we used to gather positive sequences

and negative sequences. All sequences are available in Datasets

S3–S5.

Structural proteins. Phage structural protein, or positive,

sequences were obtained from a copy of the non-redundant

database that was downloaded in April 2008. Scripts written in

Perl were used to extract structural protein sequences by the

keywords ‘‘capsid’’, ‘‘tape measure’’, ‘‘portal’’, ‘‘tail’’, ‘‘fiber’’,

‘‘baseplate’’, ‘‘connector’’, ‘‘neck’’, and ‘‘collar’’ while excluding

sequences with inappropriate keywords such as ‘‘bacteria’’,

‘‘human’’, and ‘‘mouse’’. Sequences with uninformative keywords,

such as ‘‘hypothetical protein’’, ‘‘unnamed’’, ‘‘probable’’, ‘‘puta-

tive’’, and ‘‘similar to’’ were also removed. This process was

complicated by proteins with multiple functional annotations such

as the eukaryotic viral polyproteins (proteins with different

functions that are encoded within the same gene but which are

ultimately proteolytically processed into proteins with unique

functions). Sequences with structural protein annotations were

added to the positive training set regardless of multiple functional

annotations. Using FastGroupII, sequences that were 90% or

greater identical at the amino acid level were grouped and

represented by a single sequence, and short sequences (,200

amino acids) were removed [65]. The resulting data set contained

6,303 phage sequences to capsid (major and minor), tail (fiber and

sheath), baseplate, connector, tape measure, portal, and collar

proteins.

In September 2009, more than 800,000 non-structural protein,

or negative, sequences of bacterial or phage origin were

downloaded from GenBank using the Entrez interface and the

following the query: (bacteria or phage) not (‘‘similar to’’ or

‘‘uncharacterized protein’’ or ‘‘phage associated protein’’ or homolog or

homologous or ‘‘phage protein’’ or unnamed or orf or chain or crystal or

conserved or collar or connector or head or tail or portal or base or capsid or tape

or putative or hypothetical)

Perl scripts were used to search for the names of enzymes, i.e.

words ending in ‘‘ase’’. Perl scripts were also used to extract a

random set of one thousand sequences from each class of 20

classes of proteins. Other keywords used were ‘‘binding’’,

‘‘transcription’’, ‘‘holin’’, ‘‘lysin’’, and ‘‘regulator’’. Sequences

were randomly selected and filtered to remove phage structural

proteins by keyword (‘‘capsid’’, ‘‘tail’’, ‘‘tape measure’’, ‘‘base-

plate’’, etc). Sequences with uninformative keywords, such as

‘‘hypothetical protein’’, ‘‘unnamed protein’’, ‘‘probable protein’’,

were also removed. This method produced .20,000 non-

structural protein sequences, from which 6,302 sequences were

randomly selected to construct our negative set of sequences.
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Capsid and tail proteins. Protein sequences and annotated

descriptions were downloaded in December 2010 from the

NCBI Reference Sequence databases by searching for the

keywords ‘‘Phage’’ and ‘‘Proteins’’. Sequences were filtered

according to keywords in the DEFINITION and FEATURES

sections of their Genpept annotations. The resulting sequences

were separated into a positive and negative training set for the

Major Capsid ANNs, and a positive and negative training set for

the Tail ANNs. The only criteria used to create the MCP

negative training set is that the annotations cannot include the

keywords ‘‘major’’ and ‘‘capsid’’. Similarly, sequences in the

Tail negative set do not have the keyword ‘‘tail’’ in the Genpept

annotations. The positive and negative Major Capsid sets only

contained sequences of 300 or more amino acids, while the

positive and negative Tail sets only contained sequences of 150

or more amino acids. Sequences that contained the keyword

‘‘tail’’ were removed from the Capsid positive set and included

in the Capsid negative set. Similarly, sequences that contained

the keywords ‘‘ head ’’ or ‘‘ capsid ’’ were removed from the

Tail positive set and included in the Major Capsid negative set.

Sequences that contained the following keywords were removed

from the MCP and Tail positive and negative sets: unknown,

conceptual translation, capsid-like, conceptual, similar to,

presumed, precursor, possible, putative, synthetic construct,

probable, unnamed, hypothetical, predicted, implied, assumed,

provisional, uncharacterized. Additional keywords that were

used to remove unwanted sequences from the positive sets are

listed in Table S3. Our filtering process produced 757 capsid

and 2174 tail sequences, and .10,000 negative examples in

each of the capsid and tail negative sets.

Converting Protein Sequences to Neural Network Data
Sets

Amino acid percent composition. We calculated the

percent composition, or frequency, of the 20 naturally occurring

amino acids from positive and negative protein sequences. Amino

acid percent composition is the relative number of each amino

acid in a protein sequence. The percent compositions of 20 amino

acids are used as input features for all neural networks we tested,

with the exception of MCP and Tail data sets that include

isoelectric point estimates.

Isoelectric point values. To increase the accuracy of

network predictions, our Major Capsid and Tail protein ANN

were trained with the isoelectric point values of the protein

sequences in our positive and negative data sets in addition to

amino acid frequencies. Isoelectric point estimates were calculated

by BioPerl’s pICalculator (http://doc.bioperl.org/releases/

bioperl-1.4/Bio/Tools/pICalculator.html).

Positive and negative labels. All positive and negative

sequences were labeled with a 1 and 21, respectively. Labels were

used to train all of our networks by supervised learning.

Neural Network Data Sets - Training, Test, and Validation
Training, test, and validation sets served different roles in the

training and evaluation of neural networks.

Sequences in the training set were used to calculate network

errors, which were back-propagated throughout the network to

update neuronal weights by Matlab’s implementation of the

Levenberg-Marquard learning algorithm, or trainlm. A valida-

tion set was used to stop the training process if the network

performance fails to improve or remains the same for max fail

consecutive epochs. Figure S5 shows an example of a training

session that was stopped after the max fail stopping criteria were

met. The max fail parameter was set to 6 by default. All sequences

not used in the training and validation sets, were used as test cases,

which were used to determine correct classification rates.

To generate training and test sets from structural protein

sequences, we used Matlab’s cvpartition function (described in

Cross Validation Partitioning). In other words, 90% of the original

data set was randomly selected for the training set and the

remaining 10% of the sequences was used for testing. A portion of

the training data was reserved for the validation set, however, the

optimum size of the validation set was uncertain. The percent

distributions of training and validation set sequences we tested

were 95/5, 80/20, 70/30, 60/40, and 50/50. The ANNs that

were observed to have the best accuracy based on 10-fold cross

validation determined the optimum ratio of sequences that were

allocated into the training and validation sets. Due to the paucity

of capsid and tail protein sequences in NCBI’s RefSeq database we

were unable to determine an optimum distribution of sequences by

10-fold cross validation. Instead, we used 10 ANNs to determine

the accuracy of MCP and Tail ANNs in correctly classified test

cases. Each of the 10 networks was trained using a different ratio of

training and validation sequences that were randomly selected.

The Structural Protein neural networks were trained using an

equal number of positive and negative examples; however, we

examined the accuracies of trained ANN using different ratios of

negative to positive examples (1:1, 2:1, 3:1, and 4:1). In addition,

we used the ratios of capsid to non-capsid and tail to non-tail

proteins that are found in the genome of l phage; these ratios are

22:1 and 6.6:1, respectively.

Neural Network Learning
The connection weights to neurons were adjusted by the

Levenberg-Marquardt supervised learning algorithm [66], which

has been implemented by the trainlm Matlab function. The LM

algorithm has been used extensively for training neural networks

[67] to iteratively update connection weights such that network

error is minimized. The default parameter values set by the

Matlab function newff were used.

Neural Network Architecture
All neurons used the hyperbolic tangent, or tansig, squashing

function. Matlab by default creates neural networks with 20

(amino acid frequency) or 21 (amino acid frequency with

isoelectric point estimates) in the input layer and 1 neuron in

the output layer, which is based on the structure of our data. To

determine an appropriate Structural Protein ANN architecture we

evaluated, by 10-fold cross validation, neural networks with 1

hidden layer that contained between 1 and 100 neurons. We also

used 10-fold cross validation to evaluate networks with 2 hidden

layers; we used between 1 and 100 neurons in the first hidden

layer, and between 1 to 30 neurons in the second layer. Our goal

was to find the smallest neural network architecture with the best

accuracy of all the ANNs with these configurations. To determine

the architectures of the Capsid and Tail ANNs we used the same

method to train ANNs, as previously described with only a single

layer of hidden neurons.

Cross Validation Partitioning
Training and test sets were chosen by logical indices generated by

Matlab’s cvpartition function using the kfold option. The

cvpartition function defines a random partition of K disjoint

subsamples from N observations. For 160-fold cross validation,

K = 160 was chosen because 160 is a number that divides the number

of sequences in our data set (12,604 sequences) such that the size of

each test set is equal to the average number of genes in a phage
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genome, or approximately 78 genes. The average number of phage

genes was calculated by dividing the number of known phage coding

sequences (46,754) by the number of known phage genomes (596),

according to NCBI’s Reference Sequence database in 2010. Hence,

each test set consists of 78 disjoint subsamples from N.12,500

observations. For 10-fold cross validation, the default value of K = 10

is used. In comparing the performances of ANNs, all networks were

trained using the same set of training, test, and validation sets.

Voting ANNs
We chose to use voting ANNs because Hansen and Salamon [68]

showed that the likelihood of error decreases with a majority decision if

each network vote is independent and if each network produces a

correct response more than half of the time. Trained ANNs from 160-

fold cross validations were used to vote on curated phage test

sequences, which were classified by averaging the outputs of all voting

ANNs. The ANNs were trained by supervised learning to output a

value of 1 for all phage structural protein sequences, and a 21 for all

other sequences. Fully trained ANNs, however, will have a range of

output values between 21 and 1. To better interpret intermediate

values between 21 and 1, we impose the criteria that a positive (.0)

mean output from the voting ANNs suggests that networks recognized

the amino acid composition of a phage structural protein. Otherwise a

negative (#0) mean vote suggests that a protein sequence was not a

phage structural protein sequence. To determine the optimal number

of voting ANNs to use, we looked at the correct classification rates of

voting ANNs to find an ensemble with the highest accuracy, specificity,

and sensitivity. Only the ANNs with the highest correct classifications

were used for voting and the sizes of the ensembles that we tested were

1, 5, 11, 21, 41, 61, 81, 101, 121, and 141 ANNs. We also assessed the

performance of all 160 ANN responses to determine whether all ANNs

are useful for classifying protein sequences. The small number of capsid

and tail sequences prevented us from performing 160-fold cross

validation, however, 10 voting ANNs were used to evaluate the

accuracies of the Capsid and Tail networks.

Curated Phage Test Sequences
To evaluate the performances of the Structural Protein neural

networks, we manually classified coding sequences from 51 phage

genomes, which we used as a final test set to determine the

performance of our neural network ensembles. The genomes were

sequenced after our data set was collected in 2009 and hence, were

not present in the training, test, or validation sets. A total of 64

phage genomes were sequenced in 2010 and 2011, however, 13 of

the genomes were not used because they were poorly annotated.

The genome names and accession numbers are listed in Table S1.

The protein product description of each protein sequence was

used to classify each ORF as a structural protein (positive example)

or a nucleic acid modification enzyme (negative example). We also

classified a sequence as a negative example if the function of the

protein is annotated as an accessory protein for an enzyme that

modified nucleic acids. All other protein sequences that were not

annotated as an enzyme/accessory protein or structural protein

were not considered. We classified a total of 3,012 sequences,

1,093 of which are structural proteins and 1,919 are non-structural

protein sequences. To evaluate the performance of the Capsid and

Tail neural networks, we used 59 capsid, 73 tail, and 507 negative

sequences that were added to the Reference Sequence Database

between February and May of 2011. Test sequences were added to

the database after our training set was downloaded and therefore,

our test set was not used in training. To make a fair comparison

against the performance of the Structural Protein ANNs, the same

sequences that were used to test the Capsid and Tail ANNs were

also used to evaluate the performance of the Structural Protein

ANNs. Similarly, the test sequences were not used to train the

Structural Protein ANNs. Additional capsid and coat protein

sequences from archaeal and eukaryotic genomes were collected

from the RefSeq database (Dataset S6). These capsid and coat

protein sequences were not used in the previous rounds of testing

just described and used to test the Structural and Major Capsid

Protein neural networks.

Sensitivity and Specificity
Specificity and sensitivity may be used in different contexts, two

of which describe interactions between molecules or the perfor-

mance of a binary classifier. In a biochemical context, sensitivity

describes the affinity of a molecule for its target, such as the

recognition and binding of a sequence of DNA by a repressor

protein [69], or the binding of an antibody to an antigen [70].

Specificity, on the other hand, describes the selectivity of a

molecule for its target from among other potential or similar

targets. Specificity and selectivity in the context of binary classifiers

expresses the accuracy of a classifier’s predictions, such as the

accuracy of diagnostics in predicting disease states [71–75]. The

task of predicting disease states is essentially a binary classification

problem, which was the task of identifying structural from non-

structural proteins. We used equations (1) and (2) to calculate

sensitivity and specificity from all of our ANNs. Sensitivity

measures the rate at which a neural network correctly classifies

structural protein sequences, or the true positive rate. A structural

protein sequence was identified by keywords in the sequence

annotation, which strongly suggests that a protein is an integral

part of the phage particle. Such keywords are tail, tail fiber, major

and minor capsids, baseplate, tail sheath, tape measure, and collar.

Specificity, or the neural network’s true negative rate, is the

percentage of non-structural protein sequences that are correctly

identified. In relation to a structural protein, a true negative

sequence encodes a protein that does not associate with, or is not

known to be physically attached, to a phage particle.

Sensitivity~
True Positives

True PositivezFalse Negatives

~
Predicted Positives

All True Positives
ð1Þ

Specificity~
True Negatives

True Negatives z False Positives

~
Predicted Negatives

All True Negatives
ð2Þ

Confidence Intervals
Confidence intervals were determined for all of the ANNs at the

99% confidence level using a bootstrap method. The pool of true

positive sequences used was subsampled 1000 times, each time

using a random 80% of the entire pool. Confidence intervals for

Structural ANN output values were calculated at 0.1 intervals,

ranging from 0 to 0.9. For each subsample, we calculated the

accuracy of network predictions as described below for each class

of networks. We determined confidence intervals from the

minimum and maximum averaged network accuracies after

excluding 0.5% of the highest and lowest accuracies. For the

Structural ANNs, we used 1,093 true positive structural protein

sequences from the curated test sequences described in the

Curated Test Phage Sequences section. For the Capsid ANNs, we
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used 59 true positive sequences (this was limited by the number of

new capsid sequences available that were not previously seen by

the neural networks).

Experimental Validation of Neural Network Predictions
Overview. To validate network predictions, we examined

only hypothetical protein sequences that were ANN-predicted

structural proteins. The candidate sequences were also similar to

sequences from the viral fractions of our marine metagenomes.

Hypothetical proteins were selected from the phage genomes that

harbored the most number of these unknown sequences. To

ensure that the hypothetical proteins were truly unknown, the

sequences were compared, by TBLASTP and RPSBLAST, to

sequences in the Reference Sequence and Conserved Domain

Databases. Hypothetical proteins were made from gene constructs

of unknown sequences, expressed in E. coli, purified, and imaged

by TEM. An overview of our validation process is illustrated in

Figure 6.

Description of phage genes. Sixteen of the genes that were

selected for cloning and expression are ANN-predicted structural

proteins from the genomes of two marine phages (wP-SSM2 and

wMa-LMM01), a Bacillus phage, (wIEBH), and a Burkholderia

cepacia phage (wBcepC6B). All of these genes were annotated as

hypothetical proteins and had no significant similarities to genes

with known functions. The NCBI accession numbers and our

internal identification numbers (shown in parentheses) of the

MaLMM01 phage hypothetical proteins are: 117530236 (5513),

117530288 (5514), 117530274 (5515), 117530247 (5516),

117530268 (5517), 117530216 (5518) and 117530233 (5519).

The accession numbers of the proteins from the P-SSM2 phage

are: 61806084 (5520), 61806199 (5521), 61806189 (5522),

61806111 (5523), 61806140 (5524), 61806095 (5525 and 5526).

Accession numbers 197261562 (5607) and 48697205 (5610) refer

to genes from wIEBH and wBcepC6B, respectively. The positions

of the 16 ANN positive hypothetical proteins within the wP-SSM2,

wMa-LMM01, wIEBH, and wBcepC6B genomes are shown in

panel A of Figures 7, 8, 9, and 10. At the time of synthesis, the

sequence of 5525 was modified to improve the protein’s solubility.

Transmembrane domains were identified by TMHMM (http://

www.cbs.dtu.dk/services/TMHMM/) and removed from amino

acid positions 1–31, and 151–204.

Gene design. Genes were designed for optimal expression in

E. coli using Gene Composer (Emerald BioSystems, Bainbridge

Island WA) [76–77]. Amino acid sequences were back-translated

using an E. coli codon usage table with a minimum usage cutoff of

2%. Restriction enzyme recognition sequences for BamHI and

HindIII were excluded from the sequence to facilitate cloning. The

engineered gene sequences were synthesized by DNA2.0 (Menlo

Park, CA). The genes were sub-cloned into a vector using the

PIPE cloning method [78–80]. The expression vector provides an

N-terminal, hexahistidine-Smt tag. The Smt tag is specifically and

efficiently removed by UlpI protease, which recognizes the three-

dimensional fold of Smt rather than a short primary structure [81].

Bacterial strain and media. The genes of interest were

expressed in the bacterial strain E. coli BL21 (DE3) with the

pEMB31 vector. The vector is a pET derived vector and encodes a

His-tag and Ubiquitin-like protein that were used for protein

purification. The E. coli strains were grown in Luria-Bertani (LB)

medium at 37uC. Kanamycin was added to the medium at a final

concentration of 50 mg/ml.

Optimization of gene expression and protein extrac-

tion. The overnight culture of the strains in LB + Kan was

diluted 1006 in 10 ml LB broth and grown with shaking until the

culture reached the mid-log phase (OD600 nm 0.4–0.5). IPTG (0.1–

0.5 mM) was added and incubated at 30u–37uC for 6–16 h until

optimal protein production was obtained from the different

samples. The cultures were centrifuged and the pellets were

subjected to 3 rounds of freezing at 280uC and thawing by placing

the tube sideways on ice. The pellets were resuspended in 150 ml

of extraction buffer (50 mM Tris pH7.4, 10% Sucrose, 0.4 M

KCl) that contained protease inhibitors: PSMF (2.5 ml of 25 mM

in EtOH), Pepstatin A (1 ml of 25 mg/ml), Soybean Trypsin

inhibitor (21 ml of 50 mg/ml), and Lyzozyme (1/20 total vol of

10 mg/ml). The mix was incubated on ice for 1 hour and then

centrifuged for 1 hour at maximum speed. The supernatant was

transferred to a new tube for purification using the His tag.

Protein purification, quantification and electropho-

resis. The following protocol was used to purify sample 5525.

Soluble proteins were purified by the batch method using the

HisPur Cobalt Resin (PIERCE). The cell extract was mixed in a

cold room with the resin pre-washed 3 times with binding buffer

(50 mM Tris-HCl pH 8, 300 mM KCl, 10% Glycerol). The

sample was rotated for at least 2 hours to let the protein bind to

the resin. The sample was centrifuged for 2 min at 700 g and the

supernatant was collected. The pellet was then washed with

Elution Buffer (50 mM Tris-HCl pH8, 300 mM KCl and 10%

glycerol) with different concentrations of imidazole (0.01, 0.4 and

0.8 M) and incubated for 30 min each time while rotating in the

cold room. The samples were treated as described above. The

proteins have a His-tag and a ubiquitin-like protein (Ulp1)

attached. The tag was removed with SUMO Protease (Invitrogen)

at 16uC overnight and the samples were purified to remove the

proteins that were not cut. The amount of protein in the purified

samples was measured using the Bio-Rad Protein Assay following

the manufacturer’s instructions for microtiter plates. The buffer

used for sample 5519 in Figure 7C contained 0.25 M Acetate-

KOH ph 6.8, 1 mM TCEP, and 20 mM NaCl. Ten ml of a 1 mg/

ml solution was loaded in a 10–20% SDS-PAGE gel (Expedeon)

using Tris-Trycine buffer and ran for 2 hours at 80 volts to verify

the purity of the samples. The gel was stained with Instant Blue for

1 hour. An agarose gel was used to run a Native Gel Electrophoresis

under acidic conditions in order to examine the difference in

assembly before and after buffers were exchanged during the self-

ssembly of the samples. The samples were loaded with 1:1 66
loading dye (50% of glycerol; 7 mM of bromophenol blue and

2.32 mM of xylene cyanol FF) in 0.8% agarose gel. The gel ran for

2 h at 50 V and was stained with Instant Blue for 1 hour.

Protein expression and purification at Emerald Biostruc-

tures. All protein samples except 5525 were obtained by the

following protocol. E. coli BL21(DE3) expressing the Synechococcus

phage S-SSM7 or the Synechococcus elongatus peptide deformy-

lase were cultured at 37uC to an A600 of ,0.6 in standard rich

medium. Protein production was induced overnight at 25uC by

the addition of 1 mM isopropyl-1-thio-b-D-galactopyranoside.

The cells were harvested by centrifugation at 4uC for 15 min at

6000 RPM. The cell paste was stored at 280uC until use. The

cells were lysed in a buffer containing 25 mM Tris-HCl, pH 8.0,

200 mM NaCl, 50 mM arginine, 10 mM imidiazole, 0.02%

CHAPS, 0.5% glycerol, 1 mM Tris(2-carboxyethyl-phosphine

(TCEP), 100 mg lysozyme, 500 U Benzonase and one Complete

Protease Inhibitor Cocktail tablet (Roche). The cells were re-

suspended by stirring on ice for 30 min then lysed by sonication

using a Misonix sonicator (70% power, 2 sec on/1 sec off, 3 min

total). The crude lysate was clarified immediately after sonication

by centrifugation at 18,000 g RCF for 35 min at 4uC. The lysates

were further purified using the Protein Maker(20). Briefly, lysates

were applied to a 5 ml HisTrap FF nickel-chelate column in Buffer

A (25 mM Tris-HCl, pH 8.0, 200 mM NaCl, 50 mM arginine
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10 mM imidazole, 0.25% glycerol and 1 mM TCEP. The column

was washed with 3 column volumes (36CV) of Buffer A, then eluted

with in 3 steps of 1 CV of Buffer A plus 30 mM imidazole, 1 CV of

Buffer A plus 200 mM imidazole and 1 CV of Buffer A plus

500 mM imidazole. Elution fractions plus lysate and wash fractions

were tested by SDS polyacrylamide gel electrophoresis (SDS-PAGE).

The fraction containing the target protein was treated with 50 ml of

1 mg/ml of Ulp1 protease overnight to remove the HisSmt tag. The

protein was dialyzed against Buffer A to reduce the imidazole

concentration and rerun over a second Nickel-chelate column which

captures the cleaved HisSmt tag and the His-tagged Ulp1, allowing

the tagless target protein to flow through the column. The flow-

through, wash and elution fractions were analyzed by SDS-PAGE

and the target containing fraction was concentrated to ,5 ml and

subjected to size exclusion chromatography on a Sephacryl S-100

10/300 GL column (GE Healthcare) in 25 mM Tris-HCl, pH 8.0,

200 mM NaCl, 1.0% glycerol and 1 mM TCEP. Fractions of 3.0 ml

were collected and analyzed by SDS-PAGE. Peak fractions were

concentrated to ,1–10 mg/ml for analysis
Negative staining and TEM. Purified proteins (1 mg/ml)

with and without the His-tag + Ubiquitin-like protein were fixed in

freshly glow-discharged formvar grids for 5 min. The grids were

rinsed three times in drops of water to remove any remaining salts.

The grids were negatively stained with uranyl acetate stain (1%)

for 20 seconds, dried and viewed in the FEI Tecnai 12 TEM at the

SDSU Electron Microscopy Facility.
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Figure S1 Genome maps of T7 and T4. Genome maps of

T7 and T4 are shown in panels A and B. Red or blue labels

indicate ORF sequences that are structural proteins based on

annotations found in GenBank. Black bars represent ORFs that

are detected as structural proteins by ANN.

(TIF)

Figure S2 Confidence intervals of ANN predictions.

(PDF)

Figure S3 Isoelectric point distributions of MCP, tail,
and negative training sequences.

(PDF)

Figure S4 Neural network responses to the open
reading frames (ORFs) of the VP16T phage genome.
Colors identify ORFs that have been experimentally verified

(gold), have sequence similarity to known sequences (cyan), or

produced a positive (black) or negative (white) response from the

top 5 voting ANNs. The first 5 or 10 amino acids of

experimentally verified structural protein sequences are shown

above the corresponding ORF. ORFs 29 and 30 are ANN-

predicted structural proteins that have been experimentally

validated but do not have significant similarity to sequences with

known function.

(TIF)

Figure S5 Example of neural network performances on
the training and the validation sets at each epoch.
Training was stopped at epoch 15 after the performance of the

network on the validation set failed to improve after max fail = 6

epochs.

(PDF)

Table S1 Curated phage genomes. Phage genomes from the

Reference Sequence Viral Database that were sequenced in 2010

and 2011.

(PDF)

Table S2 Prophage structural protein predictions. Top 5

ANN classifications of phage structural proteins (SP) from the

genomes of E. coli MG1655, S. enterica LT2, and S. aureus COL.

(TIF)

Table S3 Keywords used to remove unwanted sequenc-
es from MCP and tail positive sequences.

(PDF)
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