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Abstract

A steady increase in knowledge of the molecular and antigenic structure of the gp120 and gp41 HIV-1 envelope
glycoproteins (Env) is yielding important new insights for vaccine design, but it has been difficult to translate this
information to an immunogen that elicits broadly neutralizing antibodies. To help bridge this gap, we used phylogenetically
corrected statistical methods to identify amino acid signature patterns in Envs derived from people who have made
potently neutralizing antibodies, with the hypothesis that these Envs may share common features that would be useful for
incorporation in a vaccine immunogen. Before attempting this, essentially as a control, we explored the utility of our
computational methods for defining signatures of complex neutralization phenotypes by analyzing Env sequences from 251
clonal viruses that were differentially sensitive to neutralization by the well-characterized gp120-specific monoclonal
antibody, b12. We identified ten b12-neutralization signatures, including seven either in the b12-binding surface of gp120
or in the V2 region of gp120 that have been previously shown to impact b12 sensitivity. A simple algorithm based on the
b12 signature pattern was predictive of b12 sensitivity/resistance in an additional blinded panel of 57 viruses. Upon
obtaining these reassuring outcomes, we went on to apply these same computational methods to define signature patterns
in Env from HIV-1 infected individuals who had potent, broadly neutralizing responses. We analyzed a checkerboard-style
neutralization dataset with sera from 69 HIV-1-infected individuals tested against a panel of 25 different Envs. Distinct
clusters of sera with high and low neutralization potencies were identified. Six signature positions in Env sequences
obtained from the 69 samples were found to be strongly associated with either the high or low potency responses. Five
sites were in the CD4-induced coreceptor binding site of gp120, suggesting an important role for this region in the
elicitation of broadly neutralizing antibody responses against HIV-1.
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Introduction

Elicitation of broadly cross-reactive neutralizing antibody

(NAb) responses is a high priority for HIV-1 vaccines [1–4].

Many candidate immunogens elicit strong NAb responses against

highly neutralization-sensitive strains of HIV-1; however, these

vaccine-elicited antibodies neutralize very few circulating strains

[5–7] and have not afforded protection in past human efficacy

trials [8–10]. A recently completed efficacy trial in Thailand

(RV144), in which a modest reduction in the rate of HIV-1

infection was observed [11], provides hope that with further

improvements a more acceptable level of efficacy is obtainable. It

is too soon to know whether NAbs contributed to the observed

efficacy in RV144. Based on immunogenicity data from earlier

phase I and II clinical trials of this and related vaccines [4,12],

improved NAb responses may be one way to achieve greater pro-

tection. Such improvements are likely to require novel vaccine

designs.

Most current efforts to design NAb-based HIV-1 vaccine

immunogens are guided in part by knowledge of the molecular

structure of the viral Envelope (Env) glycoproteins that serve as the

sole targets for NAbs [13–16]. These Env glycoproteins consist of a

surface gp120 and transmembrane gp41 that associate non-

covalently and assemble into a trimeric complex of gp120-gp41

heterodimers on the virus surface, where the mature Env trimer

spike mediates virus entry into host cells [17–19]. Entry is

mediated by successive binding of gp120 to its cellular CD4

receptor and an obligatory coreceptor, most often the chemokine
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receptor CCR5, triggering conformational changes that permit

gp41 to induce membrane fusion [18–20]. Env trimers and their

individual constituents are genetically variable, conformationally

flexible and heavily glycosylated, making them difficult targets for

NAbs [1,2,19,21]. Because fitness constraints do not permit the

virus to evolve to become completely resistant to neutralization

[22,23], certain NAb epitopes remain vulnerable that are of

particular interest for vaccine development. Some of these epitopes

are well studied, whereas others remain unknown or only partially

characterized [2,4,24].

The structural complexity of Env requires sophisticated

methods for the analysis of NAb epitopes. X-ray crystallography

and cryo-electron tomography, together with data from mutagen-

esis and biophysical studies, have been used to illuminate several

vulnerable regions in great detail. Examples of how this

information is used for novel immunogen designs include the

optimization and stabilization of epitopes in the receptor and

coreceptor binding regions of gp120 [25–27]. Other examples

include innovative structural variants of gp41 [28–30] and optimal

mimics of gp120 and gp41 epitopes recognized by broadly

neutralizing monoclonal antibodies (mAbs) [31–35]. Although

these new design efforts are in early stages of testing, none so far

have yielded substantial improvements.

Many new concepts for NAb-inducing vaccines based on HIV-1

Env are being explored. These concepts are complicated by

inconsistencies between the antigenic and immunogenic properties

of key epitopes. For example, Env antigens that possess high

affinity epitopes for broadly neutralizing mAbs fail to elicit these

types of antibodies [28–30,36–39]. Also, gp120 antigens similar to

those that performed poorly as early vaccine candidates contain

epitopes that are capable of absorbing-out a substantial fraction of

broadly NAbs in sera from a subset of HIV-1-infected individuals

[40–43]. Some B cell responses might be down regulated by self-

tolerance mechanisms, as has been suggested for epitopes in the

membrane proximal external region (MPER) of gp41 [44,45].

Other B cell responses might be down regulated by immunosup-

pressive properties of gp120 [46–48]. Although it remains unclear

why some of the most attractive Env epitopes are poor

immunogens, the potent neutralizing activities of a subset of

human mAbs [49,50] and sera from HIV-1-infected individuals

[51] suggest it might be possible to design better vaccine

immunogens.

A greater understanding of the antigenic and immunogenic

properties of Env should facilitate the discovery of an effective

HIV-1 vaccine. We (and others) are using computational analyses

of large neutralization datasets derived from assays with HIV-1-

positive sera and molecularly cloned Env-pseudotyped viruses to

gain new insights. Statistically significant associations are sought

between amino acids in particular positions in the alignment

and either i) the neutralization susceptibility of a given Env, or ii)

the potency and cross-reactivity of neutralizing antibody responses

of individuals harboring a given Env. Here we use the term

‘‘signatures’’ to refer to the amino acids in a given position in Env

that are associated with a neutralization phenotype. Previously,

several amino acid signatures in gp120 and gp41 were identified

that strongly associate with the antigenic determinants of NAbs

in sera from HIV-1-infected subjects [52,53]. Such signatures

could either be a consequence of direct contacts for NAbs, or

reflect conformational requirements/constraints that regulate Ab

access.

Because of the distinctive lineages in HIV evolution, found at

multiple levels (clades, subclades, and geographic clusters within a

clade), it is critical to correct for the phylogenetic associations

among sequences when defining signatures rather than merely

attempting to predict phenotypes. Not accounting for phylogeny

can lead to spurious positive signals that result from lineage effects

and a reduced sensitivity, as was seen when associations were

sought between host HLA and HIV amino acid substitutions at

the population level [54,55]. We used three distinct phylogenet-

ically corrected statistical approaches to look for signature

patterns. The first was the approach taken by Bhattacharya

et al. [54], but modified to enable looking at combinations of sites

and combinations of amino acids within sites. The two novel

statistical strategies for defining signatures used here are

conditional mutual information and a modified decision forest

approach. We first tested our computational signature identifica-

tion methods in the context of neutralizing antibody signatures by

accurately identifying a subset of the known determinants of the

epitope for broadly neutralizing mAb b12. Here our primary goal

was not prediction of the phenotype of unknown sequences;

rather the main goals were to identify amino acid mutational

patterns that correlate with b12 sensitivity independently of

founder effects, and then form hypotheses regarding sites/

mutations that may directly impact neutralization, to use

biological knowledge available in the literature to evaluate these

hypotheses, and to suggest further experiments to validate sites/

mutations for which knowledge is presently lacking. The b12

signature patterns we identified were well supported by the

literature, indicating the computational methods were indeed

identifying meaningful sites. We then applied these methods in a

reciprocal fashion to determine whether amino acid signatures in

the Env proteins from HIV-1 infected individuals with particu-

larly broad NAb responses could be identified relative to

individuals who do not elicit broad responses. Our hypothesis

was that there may be common features in Envs capable of

eliciting potent neutralizing antibodies, and identification of such

signatures may ultimately be helpful for immunogen design. Our

findings suggest that broadly NAb responses are determined in

part by features in the CD4-induced (CD4i) co-receptor binding

site (CoRbs) of gp120.

Author Summary

Neutralizing antibodies block infection of cells and thus
are considered important to elicit with vaccines. A central
problem in HIV-1 vaccine design is that HIV-1 is extremely
variable and employs a number of strategies to avoid
being recognized by antibodies. Despite this, a subset of
infected individuals mounts potent, cross-reactive neutral-
izing antibody responses. We developed computational
strategies for identifying correlations between mutational
patterns in the HIV-1 envelope glycoproteins (gp120 and
gp41) and neutralization phenotypes. We first applied
these methods to define mutations that correlated with
susceptibility to the potent neutralizing antibody b12, as a
means to explore the appropriateness of applying our
computational strategies to neutralizing antibody pheno-
types within the well-understood context of b12-gp120
interactions. Signature sites of known importance were
found. We then defined signatures in a panel of envelope
glycoproteins sampled from HIV-1-infected individuals
who made either potent or weak neutralizing antibody
responses, with the hypothesis that common features of
the envelope glycoproteins that elicit good antibodies in
natural infection might be useful to incorporate as vaccine
immunogens. Signature mutations associated with potent
neutralizing antibody responses were concentrated in the
coreceptor binding site of gp120 – a key region for HIV-1
entry into cells.

Genetic Signatures in Env Glycoproteins of HIV-1
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Results

Identification of signature sites and mutational patterns
associated with b12 susceptibility

Neutralization data and Env sequences relating to the b12

epitope that overlaps the CD4 binding site (CD4bs) of gp120 [35]

were analyzed as a means to partially validate our computational

methods for signature site identification. The mAb b12 was

chosen for methodological validation purposes both because

many details regarding its epitope are known, and because it is an

epitope of great interest for vaccine design. The analyses utilized

genetic sequences and b12 sensitivities of 251 clonal Env-

pseudotyped viruses representing many HIV subtypes, recombi-

nant lineages and disease stages (Fig. 1, Table S1). IC50 values

were determined from neutralization curves where the highest

dose of b12 tested was either 25 mg/ml or 50 mg/ml, depending

on the experiment. Viruses not neutralized at the highest dose

tested are referred to here as being resistant; that is not to say,

however, that some of the viruses would not have been

neutralized by higher b12 concentrations. Among the 251 viruses

tested, 88 (35%) were sensitive at varying levels (Table S2), and

the other 163 were resistant at the highest concentration tested.

First, other potential correlates of b12 sensitivity were

examined, including viral genetic subtype, sensitivity to soluble

Figure 1. Maximum Likelihood tree of the Env sequences drawn to illustrate phylogenetically corrected signature sites
identification in the framework of this data used in the b12 study. The example shown here is the signature amino acid Aspartic acid
‘‘D’’ at position 185. A D at position 185 is shown in red. When a leaf taxa is a ‘‘D’’ in position 185, it is known to be a D at the node, and so given
the probability of 1, and represented by a red X (see the legend). If the amino acid at position 185 is not a D in a leaf node, it has a probability of
0 of being D, and the 0 is written in the color of the observed amino acid, as shown in the key. The probability of an ancestral node being ‘‘D’’ is
indicated throughout the tree, and the color used to write the probability indicates the most probable amino acid at position 185 at that node.
319 Envs are included in the tree, of which 251 were matched to b12 phenotypes for use in defining the signature sites; b12 sensitive Envs are
indicated by magenta lines, b12 resistant Envs are indicated by gray. The Envs that were kept blinded during the initial signature defining
procedures, and used for later as a test set, are indicated by very light gray lines. An uncorrected contingency table is shown at the top, and an
Aspartic acid (D) at position 185 is very strongly associated with b12 susceptibility. Beneath that is shown the phylogenetically corrected
signature analysis, that each support this association, indicating it is not merely an artifact of one clade within the tree being more susceptible
to b12. This is a real concern: D is very common in the B clade, and the B clade is the clade most susceptible to b12, while D is far less common in
other clades, which are all less frequently susceptible to b12, and so the uncorrected association in the top contingency table might be a
lineage effect. However, throughout the entire tree, when an Env has mutated towards a D at the tip in this position (not D to D), the Env at the
tip tends to be susceptible to b12, but when it moves away from it, (D to not D), the Env tends to be resistant, suggesting a direct association
between b12 susceptibility and this site.
doi:10.1371/journal.pcbi.1000955.g001

Genetic Signatures in Env Glycoproteins of HIV-1

PLoS Computational Biology | www.ploscompbiol.org 3 October 2010 | Volume 6 | Issue 10 | e1000955



CD4 (sCD4), and the disease stage of the donor at the time of virus

isolation. Multiple subtypes were included in the study (Fig. 1).

Envs that were B subtype exhibited the highest frequency of b12

neutralization susceptibility (Fisher’s exact test p = 3.661024,

comparing B subtype to all others, Fig. 2A). In situations like

this, in which there is a strong clade structure in the evolutionary

tree and an enrichment of the phenotype of interest in a particular

clade, it is critical to employ strategies that include phylogenetic

correction to avoid spurious positives when seeking amino acid

signatures. This is because it is likely that only a small number out

of the amino acids that are commonly enriched in the B clade will

directly impact an Envelope’s susceptibility to b12; however, any

amino acid enriched in the B clade, including amino acids that are

common in the B clade due to founder effects, will be biased

towards appearing associated with b12 sensitivity (Fig. 1).

Envs of the target viruses were obtained and sequenced at

different stages of infection. The Fiebig stage [56] for most

subjects at the time the Env was sampled was experimentally

determined as an indicator of stage of infection (Table S1).

When the Fiebig stage was not experimentally determined, the

subjects were generally noted to be in a ‘‘chronic’’ or ‘‘early/

acute’’ stage at the time the sample was obtained (Table S1).

When the subjects were broken into categories of ‘‘chronic’’

(grouping those in Fiebig stages VI or V/VI, with those noted to

be in chronic infection) and ‘‘early’’ (grouping Fiebig stages I-V,

with those noted to be in acute or early infection) there was no

difference between b12 sensitivity or resistance, nor was there

any correlation between b12 sensitivity and the series of Fiebig

stages (data not shown). Thus the results from our cross-

sectional examination of b12 resistance at different stages of

infection suggests that the emergence of b12 resistance over

time that was previously observed in a longitudinal study in a

small number of subjects [57] may not be a common pattern.

Finally, consistent with previous findings [58], Envs that were

susceptible to b12 neutralization were more sensitive to

neutralization by sCD4 (p = 0.0001, Wilcoxon rank sum test,

Fig. 2B). Among just the b12 sensitive viruses, there was a weak

correlation between the neutralizing potencies of b12 and sCD4

(Kendall tau Rank Correlation: p = 0.0015, tau = 0.23, data not

shown).

Our signature analyses strategies identified ten b12 sensitivity

amino acid signatures in Env. Associations with a q value (false

discovery rate),0.2 are presented in Tables 1 and 2; a relatively

high q value cut off was used to be inclusive at this hypothesis

forming stage. Seven signatures (6 in gp120 and 1 in gp41) were

identified by phylogenetically corrected contingency table analysis

[54] (example shown in Fig. 1). Specific amino acid mutational

patterns in each position formed the basis of contingency table

analysis; these are noted in Tables 1 and 2. We used several

different likelihood trees as input to test the sensitivity of the

signature analysis results to the phylogenetic tree. Two distinct tree

topologies from two different runs on parallel computers (see

Materials and Methods section) gave identical signature results in

terms of sites and amino acids, with, as expected, slightly different

Figure 2. Correlates of b12 sensitivity. (A) Counts of b12 sensitive and resistant viruses grouped by subtype, intersubtype recombinant and
circulating recombinant forms (CRFs). Sparsely represented subtypes D and G, CRF14, and unique recombinant Envs were grouped into the ‘‘other’’
category. The only 2 subtype categories with greater numbers of b12 sensitive than resistant Envs were subtype B and B/C recombinants (in these
two cases the green bars are higher than purple). A Kruskal-Wallace non-parametric comparison of all groups indicated that at least one subtype was
distinctive (p = 0.033). A comparison of the B subtype Envs versus all others indicated that they were far more likely to be sensitive to neutralization
by b12 (Fisher’s exact p-value 3.761025, odds ratio 3.6, 95% confidence interval: 1.9, 6.9). (B) sCD4 susceptibility is greater among b12 sensitive
viruses. The amount of sCD4 required for 50% neutralization was greater among b12 resistant viruses (Wilcoxon rank test, p = 0.0001, median and
interquartile range shown to the right of each distribution, median 9.8 mg/ml among b12 resistant viruses, median 5.1 mg/ml among sensitive
viruses).
doi:10.1371/journal.pcbi.1000955.g002
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p and q-values. A tree generated using PHYML [59], a program

that can be run very quickly but had a less optimal likelihood

scores than our trees based on a more extensive exploration of the

tree topologies, identified 6/7 of the original signature sites, but

missed the site 651 (which we have since shown experimentally to

impact b12 sensitivity, see below), and captured two other sites

(site 364 and 742) with very borderline q-values (,0.19). Given the

intrinsic variation in the trees, and our inclusive high q value cutoff

of 0.2 for hypothesis generation, one would expect some run-to-

run variation. The overall consistency of the signature results

based on the 3 trees, however, suggests the results are relatively

robust and independent of the tree; we present in Tables 1 and 2

the sites and statistics based on the tree with the maximum

likelihood.

A representative example of a single amino acid contingency

analysis through the maximum likelihood tree, Aspartic Acid (D)

at position 185, is illustrated in Fig. 1. The simple uncorrected

Fisher’s exact p value for this signature amino acid example

(p,1028) indicated that a D in position 185 is highly associated

with b12 sensitivity. The low p-values for the patterns of change

and stability relative to the most recent ancestral state as estimated

through the maximum likelihood tree, showed that mutation away

from D in resistant viruses (p = 0.0005), and towards D in sensitive

viruses (p = 0.0004) were also associated with b12 sensitivity,

providing assurance that the profound association with 185D and

b12 sensitivity was not simply an artifact of shared lineages (Fig. 1,

Tables 3 and 4). The low q values (Table 2, q = 0.06 and q = 0.04,

respectively) indicate that these low p-values are not expected by

chance alone, despite the very large number of tests performed

(i.e., every amino acid found in every position in Env, and all

combinations of amino acids in every position).

We also analyzed all potential N-linked glycosylation sites (based

on the presence or absence of the amino acid N-linked

glycosylation motif NX[ST] in a give position in the Env

alignment) for associations with b12 activity, again using a

phylogenetic correction. None had a q-value,0.2, and the only

one that showed borderline significance was found at position 149

(it is noted in Table 2). Finally, we also explored the b12/gp120

interface more deeply, including all combinations of amino acids

in all pairs of sites in this region. Single sites accounted for most of

the statistically significant signatures in the b12 binding region

(Table 2). (A listing of the sites included in the b12 binding region

is available in Table S3).

Of these 7 sites defined by phylogenetically corrected contin-

gency analyses, 5 were also identified as b12 signatures by an

ensemble learning technique using classification trees, while 3 were

also identified by conditional mutual information (CMI) analysis

(Table 1). The best predictors from the ensemble learning

approach included a subset of the most significant amino acids

in the contingency table (Tables 1 and 2), and did not add any new

information. An additional 3 signature sites were uniquely

identified by CMI analysis: 2 in gp120 and 1 in gp41 (Tables 1

and 2). The CMI approach was used to increase our sensitivity,

and possibly to capture additional sites of interest. The

contingency table analyses restrict each comparison at each site

to a particular amino acid or combinations of amino acids in the

ancestral states immediately preceding the endpoint taxa, thus

using only a subset of the available data for statistical analysis. In

contrast, CMI utilizes information across all possible ancestral

states at the immediate ancestral node of the tip, but does not

identify particular amino acids at the site of interest, just the sites

that had mutational patterns associated with resistance or

susceptibility. An alignment of the three additional sites that were

identified by the CMI method is provided in supplement Fig. S1.

Each of these positions was relatively conserved; examining these

alignments suggests the consensus amino acids at the three sites,

163T, 182V, and 655K ,are well tolerated among viruses with b12

sensitivity, but that mutations 163A, 182E and mutations away

from 655K, were enriched among resistant viruses.

It is important to remember that while these associations are

statistically supported (Tables 1 and 2), any mutation in isolation

may not be able to alter the phenotype of a virus in the context of a

Table 1. Sites identified as signatures of b12 sensitivity using any of the three signature-defining approaches: contingency table,
CMI, and ensemble machine learning method.

HXB2 position Signature Region CMI1 Fisher’s2 Sensitive/Resistant Recurrent top splits in decision trees3

gp120

163 V2 Yes - -

173 V2 Yes Y/HS YR!Y (32)

182 V2 Yes - -

185 V2 Yes DEN/GST DR!D (38), !DRD (59)

268 outer domain Yes ES/KR ER!E (83)

364 b12 No PS/AH -

369 b12 No AP/ILQ -

461 b12 No EP ER!E (61)

gp41

651 C-heptad repeat No N/DIS NR!N (17)

655 C-heptad repeat Yes - -

1The CMI approach does not provide specific information regarding which amino acids give rise to the signal, although particularly distinctive substitutions can be seen
by examining the data (Sup. Fig. 1). A ‘‘Yes’’ in the CMI column means the site was associated with b12 sensitivity or resistance.

2The Fisher’s exact contingency table is based on specific amino acids or sets of amino acids, such that the amino acids associated with signature sites are explicit; and
amino acids associated with b12 resistance are underlined, whereas amino acids associated with b12 susceptibility are not underlined.

3The recurrent top splits in the decision trees (the number in parentheses indicates how many times it was found) provide information about the key signature amino
acid substitutions. The exclamation point (!) means ‘‘not’’ in these tables and figures, thus ER!E means that ‘‘E’’ is found in the immediate ancestral state of the
sequence, and is ‘‘not E’’ in the sequence.

doi:10.1371/journal.pcbi.1000955.t001
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Table 2. Summary of statistics of signature sites of b12 sensitivity.

HXB2
position1

Amino
acid2 Statistic3 p-value4 q-value4

Odds
ratio4

r1c1
Sensitive
Change5

r1c2
Sensitive
Stable5

r2c1
Resistant
Change5

r2c2
Resistant
Stable5 Strength6 Test7

163 CMI ,1023 ,1023 1aa

173 YR!Y Fisher 0.00024 0.042 0.14 6 74 40 105 0.2413 1aa

173 !HSRHS Fisher 0.0017 0.0087 0.18 3 78 27 123 0.2242 .1aa

173 CMI 0.001 0.013 1aa

182 CMI 0.002 0.12 1aa

1858 !DRD Fisher 0.00036 0.04 6.98 11 25 6 97 6.4615 1aa

185 DR!D Fisher 0.00053 0.059 0.24 13 39 35 25 0.2528 1aa

185 DENR!DEN Fisher 4.461027 0.00013 0.109 4 82 48 106 0.1315 .1aa

185 !GSTRGST Fisher 4.061025 0.00088 0.05 1 85 28 128 0.1034 .1aa

185 CMI ,1023 ,1023

268 ER!E Fisher 0.00011 0.033 0.24 9 68 50 90 0.2586 1aa

268 !KRK Fisher 0.00026 0.088 0.68 1 83 24 134 0.1286 1aa

268 ESR!ES Fisher 4.7610205 0.00006 0.21 8 69 50 90 0.2294 .1aa

268 !KRRKR Fisher 7.8610205 0.0011 0.06 1 83 27 131 0.1122 .1aa

268 CMI ,1023 ,1023

364 !AHRAH Fisher 0.0049 0.052 0.16 2 82 21 133 0.2202 b12

364 PSR!PS Fisher 0.0018 0.0085 0.13 2 84 24 134 0.1906 b12

369 APR!AP Fisher 0.0048 0.017 0.077 1 37 9 25 0.1368 b12

369 !ILQRILQ Fisher 0.0013 0.047 0 0 37 8 24 0.0731 b12

461 !ERE Fisher 0.00026 0.045 8.77 12 60 3 133 7.1393 1aa

461 !EPREP Fisher 4.561025 0.0009 8.59 15 57 4 132 7.3379 .1aa

651 NR!N Fisher 0.0007 0.064 0.24 6 68 38 101 0.2653 1aa

651 !DISRDIS Fisher 0.0082 0.025 0.25 2 76 20 126 0.2356 .1aa

655 CMI 0.002 0.12

1499 Nx[ST]
RNx[ST]

Fisher 0.0044 0.22 PNLG

V210 Shorter length Spearman 0.021 0.08

V510 Fewer PNLGs Spearman 0.0065 0.065

1HXB2 position refers to the amino acid position of interest in the HXB2 reference strain (www.hiv.lanl.gov: Locator tool).
2Amino acid refers to the particular amino acid or combination of amino acids that was statistically related to b12 resistance (underlined) or sensitivity (not underlined
and italics). An exclamation point means ‘‘not’’; thus in the first line, when T is an ancestral state, Y mutates to ‘‘not Y’’ (!Y) with a statistically higher frequency in b12
resistant strains than sensitive strains.

3Statistic is the statistic that was used to identify the signature, by either the phylogenetically corrected contingency approach (Fisher exact test) employed as
described in [54]; the conditional mutual information approach (CMI); or a comparison of all variable region loop lengths (length) and number of glycosylation sites
(sequons with amino acid pattern Nx[ST]) with the b12 neutralization values using a Spearman rank correlation test.

4The p-values, the q-values (false discovery rates), and the odds ratios are provided. The Fisher’s exact test q-values were calculated for discrete tests as
implemented in [54]. For the CMI analyses, p-values were acquired by shuffling phenotypes and counting the relative frequency at which random CMIs exceeded the
original CMI. The q-values were calculated using the method of [124], after stripping off the highest p values (essentially a few hundred of p-value = 1). Only
associations with a q-value,0.2 are shown.

5Rows and columns of the 262 contingency table. As an example of how to read these, in position 173, r1c1 refers to row 1 column 1 and is the number of times
among b12 sensitive viruses that YR!Y mutates to another amino acid (change). r1c2 refers to row 1 column 2, and it is the number of times among sensitive viruses
that the ancestral state was Y and it stayed Y (stable) in the Env sequence.

6Strength is a measure that expresses how predictive a given signature amino acid is of the b12 sensitive/resistant phenotype, essentially an augmented odds ratio,
where each count was augmented by 1 pseudo-count to avoid issues with zeros and infinities, and strength = (r1c1+1)(r2c2+1)/(r1c2+1)(r2c1+1).

7Several explorations of the Env alignment were used, and this is described in the ‘‘test’’. In our first screen, every amino acid found in every column was tested (1aa).
Then combinations of 2 or more amino acids in every column were tested (.1aa). Then positions known to be key for the b12 binding site (Sup. Table S3) were
specifically tested for all combinations of amino acids over all pairs of positions in the binding site (b12). Although pairs of positions were tested, single positions
essentially accounted for the signal in that analysis. Only these single site associations are shown.

8Some lines are shown in bold. In these lines, the change in the amino acid is associated with a reverse in the majority of cases found among sensitive or resistant
viruses; thus the change in these sites is particularly predictive of NAb phenotype.

9All PNLG sites in Env were tested for phylogenetically corrected association with b12 sensitivity using the contingency table approach. None reached significance with
a q-value of ,0.2; the glycosylation site at position 149 was the only one to reach even borderline significance and is included here for completeness.

10For the initial analysis of loop length and number of PNLGs in each loop, we did not used a phylogenetically corrected method. Rather we used a non-parametric
Spearman’s correlation test comparing loop length with the geometric mean 50% neutralization titer for the 25 Envs. It is reasonable to forego the phylogenetic
correction in these cases because the loop lengths vary by insertion and deletion and often change dramatically within infected individuals. These parameters are less
likely to be biased by phylogeny at the population level.

doi:10.1371/journal.pcbi.1000955.t002
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given natural strain. For example, although a change away from D

at position 185 was most significantly associated with b12

resistance, and was most predictive of the phenotype, some Envs

carrying the mutation remained b12 sensitive in 13/48 (27%)

natural occurrences of this pattern. Thus, the signatures we

identified point to the biological relevance of mutational patterns

among a population of circulating viruses, but are not necessarily

predictive in isolation in a single strain. Despite this, higher

frequencies of amino acid substitutions associated with a b12

resistant phenotype, and loss of substitutions associated with a b12

sensitive phenotype, summed over all 7 signature sites, were

strongly associated with resistance. This indicates that effects at the

positions identified were cumulative. Notably, the signature sites

were identified based on a simple Boolean resistant/sensitive

phenotype, yet resistance-associated amino acids accumulated

across these sites in viruses with diminishing b12 sensitivity.

Specifically, the left hand box in Fig. 3 includes all b12 sensitive

pseudoviruses tested, and is ordered by diminishing sensitivity.

Combinations of more resistant and fewer sensitive amino acids

are clearly evident among the least sensitive viruses nearing the

end of the columns.

Structural and biological interpretation of the b12
signature sites

b12 contact surface signatures in gp120. Fig. 4a shows the

locations of the 8 gp120 signature sites we found in a three-

dimensional structure of gp120 [35,60–62]. Three b12 signatures

(positions 364, 369 and 461) occurred in (364 and 369) or near

(461) the b12 contact surface of gp120 [35,58]. These three sites

are shown in the context of a b12-bound gp120 structure in

Fig. 4b. Sites 364 and 369 are located in the CD4 binding loop in

the outer domain of gp120, where both sites directly contact

residues in the heavy chain of b12 in a crystallographic structure of

b12 Fab complexed with a stabilized gp120 core molecule [35],

and mutations at these positions have been shown to alter the b12

susceptibility of multiple HIV-1 viruses [58,63,64]. Alanine

scanning showed that an N to A substitution at position 461

could diminish b12 binding affinity more than 10-fold [64].

Table 3. Prediction strategies for b12 sensitivity applied to the 251 pseudotyped Envs included in the signature-defining training
set.

Sensitive Envelopes: Total Correct Incorrect Sensitivity

Signature rule 88 67 21 0.76

Logistic regression 88 53 35 0.60

Ensemble Learning Technique 88 64 24 0.73

Sensitive Envelopes: Total Correct Incorrect Specificity

Signature rule 163 110 53 0.67

Logistic regression 163 134 29 0.82

Ensemble Learning Technique 163 153 10 0.94

Summary of all Envelopes: Total Correct Accuracy Fischer’s p-value

Signature rule 251 177 0.71 2.4610211

Logistic regression 251 187 0.74 1.4610211

Ensemble Learning Technique 251 217 0.86 ,2.2610216

doi:10.1371/journal.pcbi.1000955.t003

Table 4. Prediction strategies for b12 sensitivity applied to the 56 pseudotyped Envs included in the blinded test set.

Sensitive Envelopes: Total Correct Incorrect Sensitivity

Signature rule 20 13 7 0.65

Logistic regression 20 9 11 0.45

Ensemble Learning Technique 20 5 15 0.25

Sensitive Envelopes: Total Correct Incorrect Specificity

Signature rule 36 26 10 0.72

Logistic regression 36 27 9 0.75

Ensemble Learning Technique 36 29 7 0.72

Summary of all Envelopes: Total Correct Accuracy Fischer’s p-value

Signature rule 56 39 0.70 0.007

Logistic regression 56 36 0.64 0.11

Ensemble Learning Technique 56 34 0.61 0.44

doi:10.1371/journal.pcbi.1000955.t004
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Because site 461contacts CD4 and lies adjacent to residues that

directly contact b12 in the gp120-b12 crystal structure [35], it may

affect epitope exposure.

Wu et al. identified 3 amino acid substitution patterns (S364H,

P369L/T/Q and T373M) that were predicted to impact b12

binding because of potential clashes in side chain rotomers at the

b12 contact surface [58]; two of these were among our signature

sites (364 and 369). They showed that an S to H substitution at

position 364 substantially increased b12 binding and neutraliza-

tion susceptibility in several natural viruses. In contrast, the

relevant substitutions at positions 369 and 373 impacted b12

binding to gp120, but did not restore neutralization to several

resistant natural viruses, suggesting the epitope was shielded in the

functional Env trimer in these strains [58]. Our analyses indicated

that a P or S at position 364 was associated with susceptibility,

whereas an A or H at this position was associated with resistance.

In addition, an A or P at position 369 was associated with

susceptibility, whereas an I, L, or Q was associated with resistance

(Table 1). The T at position 369 that was predicted by Wu et al.

[58] to interfere with binding is rare, and was found only once in

our data; that single occurrence was in a susceptible virus (Fig. 3).

The third site identified by Wu et al., mutation T373M, was not

found among our signature sites. In Wu et al., 373M was enriched

among subtype B resistant viruses in conjunction with other

mutations. In our study, 34% of the b12-sensitive viruses overall

carried an M at position 373, whereas 28% of the resistant viruses

carried an M, thus no significant association was found between an

M at position 373 and resistance, in fact M was slightly more

common among sensitive viruses. There was a trend suggesting

mutations away from T at position 373 were more common

among resistant viruses (p = 0.057); however, this did not approach

significance (q = 1).

V2 region b12 signatures. Four additional signatures (sites

163, 173, 182 and 185) occur near the C-terminus of the V2

region of gp120 (Fig. 4a). Some regions of V2 are hypervariable

and contain frequent insertions and deletions, but alignment

positions that span these regions are excluded from the signatures

analysis at the outset because positions that contain more than

10% gaps are not reliably alignable, so not tested for signatures

here (see Materials and Methods section). So while insertion and

deletion patterns in V2 may impact b12 binding, we are only able

to identify amino acid signatures in V2 that were embedded in

regions of V2 that are conserved enough to be readily aligned with

our analysis. Because no X-ray crystal structures of gp120 are

available with an intact V2 loop, the positions on the loop are

shown on a modeled loop for visualization (Fig. 4a, see Materials

and Methods section). Based on the crystal structure of the V1/V2

stem, positions near the C-terminal end of the V2 loop are

predicted to impact the b12 epitope [61,62]. Indeed, results from

Alanine scanning mutagenesis confirm the critical importance of

the V2 region for b12 binding. For example, a D to A substitution

at our signature position 185 was previously found to diminish b12

binding affinity greater than 10-fold [64]. Moreover, a mutation in

this position resulted in escape from b12 neutralization [63]. We

also found that significantly reduced V2 loop lengths, and a

reduced number of potential N-linked glycosylation sites in the V5

loop, were associated with b12 neutralization (Table 2). A

complete scan of the gain or loss of individual PNLGs

throughout Env did not reveal an association with any one

particular glycosylation site in b12 binding at the statistical

threshold of q,0.2.

The b12 signature at site 268. To our knowledge, site 268

has not been previously investigated for an effect on b12 binding

and neutralizing activity. This site is spatially distant from the

interface of b12 and gp120, located approximately 30 Å away [35]

(Fig. 4a). Intriguingly, this signature involved a charge reversal

from an acidic residue to a basic residue resulting in a +2 charge

change at this site. Such a change could potentially have a

long-range electrostatic effect, thereby impacting b12 binding,

particularly since b12 itself is highly positively charged. Therefore

we carried out electrostatic potential calculations using the

Adaptive Poisson-Boltzmann Solver (APBS) to quantify the

change in electrostatic contributions to the b12 binding arising

from the substitution of a negative with a positive charge at this

position. APBS solves the Poisson-Boltzmann equation, a

continuum model for describing electrostatic interactions

numerically [65]. We used the recent X-ray structure of b12-

bound to the JRFL gp120 for these calculations [35], and modeled

the appropriate site-mutations in the backbone of JRFL. The

overall structure was not relaxed and only the side-chain rotomer

of the replaced residue was positioned in an energetically feasible

position. We found that a change from 268E to either 268R or K

results in an estimated decrease of b12 binding by 1.4 Kcal/mol.

In Fig. 4c, the isosurface surrounding gp120 shows the difference

in electrostatic potential (+0.3 kT/e) due to the mutation E268R

on gp120; interestingly the isosurface is close to the b12-gp120

interface region. This figure also shows that b12 is highly

electropositive (isosurface of +/21 kT/e) due to the charged

nature of b12 (overall charge of +12), explaining the large decrease

in binding energy upon E268R mutation. This is consistent with

the phenotypic directionality captured by the signature analysis.

Our finding of a b12 signature at site 268 that underwent a

charge reversal prompted us to explore whether there are

additional acidic residues in gp120 that could undergo similar

charge changes. Obviously not all charged residues are in a

position to reverse their charge state to escape immune pressure.

Some are highly conserved due to functional constraints. Other

acidic residues may take part in critical electrostatic interactions

that stabilize the structure. Often charged residues are involved in

salt-bridge interactions. In this latter case it is possible that co-

varying charge changes could occur simultaneously at the salt

bridge forming partners (i.e.: K/R—E/D salt bridge pair becomes

E/D—K/R pair); a simple continuum electrostatics model would

then predict no significant effect on electrostatic binding energy.

To address these possibilities, we systematically examined all of the

acidic residues in the gp120 in the gp120-b12 bound X-ray

structure. Details of these sites are provided in Table S4. Except

for positions 106 and 268, all other positions had dependencies

Figure 3. Alignment of b12 signature positions from each sequence with particular amino acids associated with b12 resistance and
sensitivity. This alignment includes the 7 non-contiguous positions found using the contingency table approach with defined resistant/
susceptibility patterns: positions 173, 185, 268, 364, 369, 461, and 651. The positions are aligned to the consensus of the susceptible viruses, which in
each case is an amino acid that was associated with b12 susceptibility, shown in dark green at the top of each column. If the amino acid was the same
as the b12 sensitive consensus at the top of the column, a space is left in the row, indicative of the consensus susceptible form. Amino acids that
differed from the susceptible consensus, but were associated with susceptibility, are light green. Amino acids associated with resistance are red.
Amino acids that were not associated with either resistance or susceptibility are black. The susceptible viruses are ordered from the top left column
through the second column, from the most sensitive to the least sensitive in terms of the concentration required for 50% neutralization. The least
sensitive Envs (those require concentrations of 25–50 mg/ml of b12) are boxed at the bottom of the second column.
doi:10.1371/journal.pcbi.1000955.g003
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Figure 4. Structural mapping of b12 signature sites in gp120. (A) b12 signature sites in a three-dimensional structure of gp120 (PDB code:
1RZK) with V1, V2 and V3 loops modeled for visualization as described previously [128]. Yellow balls mark the C-alpha positions of signature residues.
(B) Locations of 3 signature sites that occur at the b12 binding face of gp120. The b12 (magenta) bound structure of gp120 (blue), corresponding to
PDB code:2NY7. The red region in gp120 is within 6.5 Å from the bound b12 antibody. (C) Isosurface of the gp120 molecule showing the difference in
electrostatic potential (+0.3 kT/e) due to mutation E268R in gp120 that results in a net positive electrostatic potential (blue) at the b12-gp120
interface region. Isosurface (+/21 kT/e ) of the b12 molecule showing the positive (blue) and negative (red) electrostatic potentials indicating b12 is
highly electropositive (overall charge of +12). (D) An illustration of position 651 could impact binding to b12 through an allosteric pathway involving
the gp120-gp41 interface. The X-ray structure of b12 (marked in magenta) bound to a liganded gp120 core protein (PDB code: 2NY7) with a
monomer gp41 that was homology-modeled based on the NMR structure of SIV post-fusion gp41 conformation [129]. The region of gp120 in contact
with b12 is marked in red. The disulfide bridged loop region of the gp41 molecule that is expected to interact with gp120 was placed in close
proximity to the region where the N- and C-termini of gp120 come in close contact. This model is useful for illustration but does not represent the
actual gp120-gp41 interaction, which is not yet resolved. A yellow ball indicates position 651 in gp41. Green balls are used to show the covarying
sites at positions 84, 169, 429 and 432 in gp120, and position 602 in gp41. Silver balls in the model capture sites in gp120 and gp41 that have been
shown through past experimental studies to influence gp120-gp41 assembly.
doi:10.1371/journal.pcbi.1000955.g004
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that prevent a negative to positive change, either due to salt-bridge

interactions or sequence conservation. Positions 106 and 268 are

the only acidic residues in the gp120 core that are not conserved

and do not take part in a salt bridge interaction. Thus, site 268

may provide a rare opportunity for a charge reversal pathway that

would allow the virus to become resistant to neutralization by b12

or other positively charged antibodies.

b12 signatures in gp41. Two statistically significant

signatures were identified in gp41. Both sites (positions 651 and

655) are in the C-heptad repeat, which is expected to lie proximal

to the N-heptad repeat targeted by the HIV-1 fusion inhibitor T-

20 in the post-fusion conformation [66]. The C-heptad repeat also

contributes to the formation of a six-helix bundle that mediates

viral fusion with the cellular membrane [67]. Finding b12

signatures in gp41 is not unexpected, as mutations in gp41 are

known to affect NAb epitopes in the CD4bs [68–76], including the

b12 epitope [58,69]. These mutations include amino acids at

positions 569, 577, 582, 668 and 675 in gp41 that affect CD4bs

epitopes; and mutations at positions 569 and 675 affect the b12

epitope directly [58,69]. While positions 651 and 655 have not

been directly implicated in b12 binding in previous studies, those

studies were based on escape mutations in single virus strains (IIIB,

MN, JR-CSF, Q461, Q769, YU-2). In contrast, our study was

based on systematically identifying significant associations among

251 genetically diverse viruses. This broader scope of analysis may

have led to the identification of sites in gp41 that more generally

affect the b12 epitope among global variants.

To explore the question of how sites in the gp41 C-heptad

repeat that are distant from the gp120-b12 binding interface could

influence the b12 epitope, we began by identifying all sites within

Env that significantly co-vary (hence potentially interact) with

positions 655 and 651. To do this, we used the phylogenetically

corrected contingency table approach to identify the sites that

covaried with signature sites in Envelope. The resulting co-

variation patterns for all 10 of our b12 signature sites, including

the two gp41 signature sites, are summarized in Table S5. Position

655 was found to significantly co-vary with a single position, site

185, which was also the most significant signature site in gp120. As

noted above, this site is located in the V2 region of gp120 and has

been shown to be a critical residue for b12 binding affinity [64].

Thus, the association between mutational patterns in position 655

and b12 neutralization could be a consequence of quaternary

structural interactions, giving rise directly to the correlation

between mutational patterns of position 655 and b12 sensitivity.

Alternatively, the 185–655 interactions could be driven by a

relationship that is independent of the b12 epitope. In this latter

case, the statistical association between site 655 and b12

neutralization may be due to a correlation that is one step

removed, i.e. an ancillary consequence of the direct interactions of

site 185 and b12. 655K is the most common amino acid in this

position, where both K and E appear to be associated with b12

neutralization sensitivity in our signature analysis. As an aside,

O’Rouke et al. [77] studied in detail the impact of substitutions on

neutralization in a site they call 655, but because they did not use

standard HXB2 numbering, their site 655 is actually 653 in

HXB2, and so is not the signature site identified here.

Covariation patterns were more complex for site 651, which was

found to have 9 covarying sites (Table S5), 4 of which are captured

in a schematic molecular diagram in Fig. 4d. Site 80 and site 169

are in a region of the V2 loop for which no crystal structure is

available and therefore were excluded from gp120 in this diagram.

Similarly, 3 sites were in the cytoplasmic tail and thus were not

included here (sites 798, 817, and 822). Based on crystallographic

data, covarying sites 429 and 432 (though not statistically

supported b12 signatures) are spatially close to the CD4 binding

loop in a region that contacts b12 [35]. A K432A substitution

diminished b12 binding affinity .10-fold [64]. The presence of

this complex chain of covarying sites in gp41 and gp120 suggests

allosteric effects, where site 651 is part of a set of spatially distant

residues that modulate the gp120-gp41 interface and thereby

influence the exposure of the b12 epitope in the quaternary

configuration of Env. Receptor and coreceptor binding induce

structural re-arrangements at the gp120-gp41 interface as a

requisite step for membrane fusion [18,20]. In principle, genetic

changes that influence the gp120-gp41 contact surface could have

reciprocal allosteric effects on the CD4bs of gp120. Consistent

with this hypothesis, two of the 651 covarying sites (position 84 in

the N-terminal C1 region of gp120; position 602 in the gp41

disulfide loop) occur in regions implicated directly in gp120-gp41

contact and stability [78–85] (Fig. 4d). Alternatively, the mutations

in site 651 that correlate with b12 susceptibility might influence a

different allosteric pathway that relies on quaternary interactions

with the CD4 binding loop region (sites 429 and 432) or possibly

V2 (site 169) in the context of a trimer.

Predictions of b12 neutralization. Our primary purpose in

this study was the identification of signature sties discussed above,

but we used three computational approaches (described in the

Materials and Methods section) to determine if we could predict

b12 neutralization phenotypes based on sequence information.

Prediction strategies were developing based on the ‘‘training’’ set

of 251 sequences used to define the original signature pattern. The

three strategies were tested by predicting the b12 phenotype in a

blinded set of 56 pseudotyped Env sequences. The first two tests

were implemented essentially to explore the potential of the

specific signature amino acids defined at the seven positions by

correlation analysis to prediction of phenotype on a blinded set of

data, essentially as a further test of their relevance to b12. The

third test was a classic machine learning test based on all sites in

Env. The first strategy applied a simple rule based on inspection of

the alignment of the seven signature sites with defined amino acids

shown in Fig. 3. If the sequences contained at least 4 ‘‘sensitive’’

amino acids, and no more than 1 resistant amino acid in these

seven sites, we classified it as sensitive. In our second approach, we

used logistic regression to formalize the contribution of change at

each site in an attempt to refine the predictive ability of the

signature. Our third approach was to apply an ensemble learning

technique using classification trees to the amino acid changes in

the full alignment, with the thought that this method could be used

both for prediction of b12 phenotype based on the full Env

sequence, and for defining the particular signature positions and

amino acids which contributed most to the b12 phenotype

(Table 1). When applying the three methods to the original

training set 251 viruses, we found that the simple rule based on the

alignment was less predictive than the logistic regression, and the

ensemble learning method was the most predictive (Table 3).

When we applied the three methods to the blinded test set,

however, the order reversed, and in this case the first simple

method was the most predictive (p-value = 0.007, Table 4). The

predictive power of this simple signature based strategy further

supports the relevance of the b12 signature sites and amino acids

associations. The other two methods had higher rates of false

negatives and were not significantly predictive (Table 4). Reason

for this inadequate power is not clear, but could be due to

differences in the sampling of the 251 viruses and the 56 viruses

that limited the predictive power of the two computational

prediction methods. The full set of predictions based on the three

methods and the b12 experimental data are provided in

Table S2.

Genetic Signatures in Env Glycoproteins of HIV-1

PLoS Computational Biology | www.ploscompbiol.org 11 October 2010 | Volume 6 | Issue 10 | e1000955



As discussed previously, the signature sites were originally

defined based on a simple classification of b12 sensitive or resistant

phenotype. Thus, as seen in the left hand panel in Fig. 3, the

cumulative number of sensitive amino acids in the 7 positions

tends to decrease as b12 sensitivity diminishes (green amino acids

and agreement with the most common sensitive form), whereas

resistant amino acids tend to accumulate (red amino acids). To

formally test whether level of b12 sensitivity among the sensitive

viruses was correlated with the signature pattern, we first reduced

the signature pattern to a single sensitivity score, obtained by

subtracting the number of resistant amino acids from sensitive

amino acids (red from green, in Fig. 3). The signature sensitivity

score was correlated with b12 sensitivity (p = 0.0006, Spearman’s

rho = 20.34, Fig. S2). Thus signature amino acids can be used to

predict, with significant accuracy, both the initial sensitive and

resistant classification and the level of sensitivity among b12

sensitive viruses. Because these sites were identified after correcting

for founder effects in the training set, we may assume that the

correlation observed is causal.

Signature analysis of Envs that elicit potent NAb
responses in HIV-1-infected individuals

Clustering sera according to cross-reactivity and

potency. We next sought to determine whether our signature

analyses methods could be used to identify amino acids that

associate Envs able to induce with broadly cross-reactive NAb

responses in HIV-1-infected individuals, where the NAb responses

were clustered according to potency using K-means (Fig. 5). Env

sequences and neutralizing activities in sera from 69 chronically

infected individuals were used for analyses. The serum samples were

obtained from individuals in the United States, Malawi, South

Africa, Tanzania and England and consisted of: 1 CF recombinant,

1 CRF01_AE, 1 A/G recombinant, 5 subtype A, 24 subtype B, and

37 subtype C HIV-1 infections (Fig. 6, and Table S6 in the

supplemental material). These 69 serum samples were chosen from

among 360 sera that were assayed against an initial screening

panel of twelve viruses (6535.3, QH0692.42, SC422661.8, PVO.4,

AC10.0.29, RHPA4259.7, Du156.12, Du172.17, Du422.1,

ZM197M.PB7, ZM214M.PL15, CAP45.2.00.G3). The 69

selected samples represented a wide spectrum of neutralization

potencies against these 12 viruses. For increased statistical power in

terms of robust assignments of potent versus weakly cross-

neutralizing sera, the 69 sera were assayed against an additional

multi-subtype panel of viruses, such that the total number of

pseudoviruses assayed was 25 (6 subtype A, 10 subtype B, 8 C and 1

BC recombinant, all isolated early in infection, see Table S7

supplemental material). The final checkerboard-style results (Fig. 5)

confirmed a wide spectrum of neutralization potencies, including a

subset of samples that contained high titers of NAbs against a

majority of viruses tested, and for contrast, a subset of comparable

size that was poorly cross-neutralizing.

The combined neutralization results were clustered according to

the ability of individual serum samples to neutralize the panel of 25

viruses, using a k-means strategy that factors in the robustness of the

clusters according to the uncertainty that results from limiting

sampling (bootstrap) and assay-to-assay variability (noise) (Fig. 5). To

assess the impact of assay variability, we factored in error estimates

based on a limited number of repeat experiments. To do this we

added back error (drawn from a log-normal distribution based on the

repeat data) to the real data, and created 1000 reconstructed data

sets. This allowed us to resolve clusters that should be robust relative

to inter-assay variation (Fig. 5, noise). Next, we re-sampled from

among the 25 Envs used in the neutralization assays 1000 times to

see if the clusters would be robust if we had selected a different test

panel of Envs with similar, but less diverse, composition. Fig. 5A

shows 3 distinct clusters (k = 3) that turned out to include sera with

high, medium and low neutralization potencies, respectively. k = 3

was the maximum number of clusters that could be meaningfully

assigned, given the constraint that each cluster must contain at least 2

members, and that the members must meet the stability criteria of

being associated with the assigned cluster in .90% of each of the

two re-samplings experiments (i.e., ‘‘bootstrap’’ and ‘‘noise’’).

Standard k-means strategy was used to assign each serum to a

single k-cluster; however, if based on re-sampling statistics described

above, some sera could not be assigned to any of the k = 3 clusters,

they are shown as intermediate values. The sets of sera that were

grouped into each of the clusters, as well as those sera that are

considered intermediate, are shown in Fig. 5. To make use of all 69

data points in a Boolean framework for signature analysis, including

these intermediate values, three sets of signature analyses were

conducted for the k = 3 clusters, comparing each one of the 3 robust

clusters to all other data points. We also performed a k = 2 clustering

that enabled a robust extreme ‘‘high’’ and ‘‘low’’ 2-cluster

comparison that captured most of the data (Fig. 5B). This latter

signature analysis did not resolve new signature site, but did

sometimes improve the statistical confidence in a given site (Tables 5

and 6). Phylogenetically corrected methods similar to those described

for the b12 sensitivity signatures were used to identify associations

between serum Env sequences and distinct neutralization clusters.

Defining signature patterns in serum-derived Envs.

Envs sequences from all 69 sera were scanned for patterns of

mutations that correlated with particularly weak or strong

neutralizing capacities. Our analysis compared all single sites and

all pairs of adjacent sites for signatures of either 1 amino acid or

combinations of amino acids at each site. In this complete Env scan,

a single signature was found in the CoRbs. This signature consisted

of a pair of amino acids in which the combination of either G or S at

position 412, together with N at 413, was found to be enriched in

Envs from potent neutralizing sera. We then looked for signatures in

potential N-linked glycosylation sites (PNLGs) throughout Env and

again found a single signature pattern with borderline significance

that was also located at position 413 in the CoRbs; in this case the

PNLG was preserved in Envs from individuals with potent sera.

Using the CMI approach to scan the full Env protein, an additional

signature was identified at position 186 in the V2 loop.

We next performed a more in-depth exploration of regions in the

CD4 binding site and CoRbs of gp120, and in the MPER of gp41.

The sets of positions used for these analyses, and the references from

which they were drawn, are listed in Table S3. These three regions

were selected because antibodies against each one have each been

identified in a subset of HIV infected people who possess potent

cross-reactive NAb responses [86–89]. We examined combinations

of multiple amino acids at multiple positions in these regions of

interest. This sort of in-depth exploration was neither computa-

tionally feasible with the full Env, nor was it desirable because

multiple test issues would have limited the power to find weak

signatures if the full Env was explored so intensively. The deeper

focused analysis revealed additional signatures, but only in the

CoRbs (See Tables 5 and 6 for a complete summary of significant

sites and their levels of significance). No correlations were found in

either the CD4bs or MPER region even through these regions were

also targeted for a more focused and in-depth analyses. Finally, as

with b12 neutralization, we examined whether potent NAb

responses were associated with other general features of Env that

are known to affect epitope exposure, such as the number of PNLGs

and the length of the hypervariable variable regions of gp120 [90–

93]. The V2 loop was shorter with fewer PNLGs in Envs from

subjects with potent sera, and Envs with shorter V5 loops [94] were
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also correlated with potent sera. The mutational patterns in all of

the signature sites are highlighted in sub-region alignments in Fig. 7,

ordered and colored according to the k = 3 heatmap clustering

scheme shown in Fig. 5a. An Env such as CH0219.e4 might be

particularly promising as a vaccine antigen, because it retains the

full amino acid signature associated with potent antibody responses

(Fig. 7), and it also has short variable loops (data not shown).

Structural and biological interpretation of signature sites
that correlated with potent NAb sera

The combined results of the contingency table signature

analyses identified five statistically significant signature sites that

resided in, or proximal to, the CCR5 CoRbs of gp120 (Tables 5

and 6). These sites are shown in a crystallographic model of gp120

complexed with CD4 and the CD4i-specific mAb 17b in Fig. 8.

Sites 419 and 421 are located in the V4 region of gp120,

immediately adjacent to the b20 strand of the bridging sheet that

connects the inner and outer domains of gp120 [35,61]. Both sites

make contact with the CD4i-specific mAb 17b [61] (Fig. 8) and

have been shown to be critical for CCR5 co-receptor binding [95–

98]. Site 419 also makes contact with b12 [35], whereas site 421 is

involved in the binding of other CD4i-specific mAbs E51 [98] and

48d [99] as well. Sites 413 and 440 in V4 and C5, respectively, are

spatially close to the bridging sheet and overlap the contact surface

for 17b [61]. Site 440 has been shown to be critical for CCR5

binding [96–98]. CMI analysis identified an additional site in the

Figure 5. Clustered heatmaps of sera and the test panel. (A) K-means clustering of serum samples and virus isolates in the test panel, k = 3. A
90% threshold for stability was used as a minimum criterion for defining robust clusters in the sera, given re-sampling noise due to experimental
variation and bootstrap re-sampling of the test panel of Envs. 75% was used for the clustering the Envs in the figure, and these clusters were not
subsequently used for analysis. The color keys on the top and on the left indicate the clusters and their statistical robustness: red, blue and yellow
correspond to the three clusters, with each robust cluster boxed. Blends of the three primary colors indicate how often in the re-sampling tests for a
given serum or Env the sample falls in different clusters, and the intensity of the color indicates how frequently each falls in its primary cluster. Within
the heat map, darker red indicates potent neutralization, progressively lighter colors through yellow indicate increasing resistance, and cream color is
completely resistant. (B) K-means clustering of serum samples and virus isolates in the test panel, k = 2; again a 90% threshold for stability was used
for the sera, 75% for the viral Envs.
doi:10.1371/journal.pcbi.1000955.g005

Figure 6. Maximum Likelihood tree of the Env sequences showing ancestral states and amino acid in the end taxa for position 185.
This tree illustrates the phylogenetic distribution of Envs sampled from individuals with potently neutralizing natural antibody responses; magneta
lines indicating the Envs taken from individuals with potent sera, and gray lines, weak sera. The taxa without a magenta or dark gray line were from
the test panel of psudotyped Envs. The evolution of the signature site 419 K with respect to the phylogenetic tree is highlighted. Arg (R) is the most
common amino acid in this position, and K is very rarely an ancestral state.
doi:10.1371/journal.pcbi.1000955.g006
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V2 loop, position 186, immediately adjacent to the b12 signature

site at position 185. In addition to the position-based signature

analysis, we found that strong NAb responses were associated with

serum Env proteins that had fewer PNLGs and shorter lengths in

V2 (Table 6). It has been shown that V1/V2 stem region can

impact CCR5 binding since it plays a significant role in formation

of the bridging sheet [96,97]. Furthermore, site-directed muta-

tional studies have shown that regions outside V3 loop, including

site 166 (a position within V2 loop) can play a significant role in

co-receptor usage/switch [94,100]. Considering the flexibility of

the loop and ensuing conformational changes that take place

involving V1/V2 upon CD4 binding, a position such as 186 can

directly or indirectly interact with critical sites involve in the

formation of bridging sheet. The fact that no other signatures were

identified suggests that the CCR5 CoRbs may play a substantial

and relatively consistent role in the NAb response in HIV-1-

infected individuals.

Discussion

Assay technologies that utilize molecularly cloned Env-pseudo-

typed viruses with a defined sequence provide powerful tools for

dissecting molecular determinants of neutralization epitopes on

HIV-1. In addition to enabling mutagenesis studies, data from

assays with clonal Env-pseudotyped viruses have been used for

computational analysis to identify Env amino acid signatures that

associate with the antigenic recognition patterns of autologous [53]

and heterologous [52] NAbs in sera from HIV-1-infected

individuals; such signatures could be contact sites for NAbs, or

they may be determinants of epitope exposure in the quaternary

structure of Env spikes.

Here we obtained partial validation of a computational strategy

to identify amino acid positions that are related to NAb

phenotypes. We systematically studied patterns of mutations in

Env proteins that correlate with b12 susceptibility, and our

signature analysis successfully identified key positions that are

known from crystallographic and mutagenesis studies to be critical

sites in the b12 epitope. Thus, 7/10 signature sites were identified

either directly in the contact surface for b12, or in V2, which is

known to impact b12 binding and neutralization. Notably,

mutations in position 185 in V2 were nearly equal in strength to

mutations in position 461, which were in this study the two best

predictors for assessing b12 neutralization susceptibility in natural

strains. Three novel positions were implicated in b12 neutraliza-

tion based on amino acid associations. One was in gp120, at

position 268; this signature raised a plausible hypothesis regarding

the impact of electrostatic potential at the isosurface of gp120 on

interactions with the positively charged b12 antibody. Two

additional b12 signatures were identified in gp41 that were

intriguing because they may affect exposure of the b12 epitope in

the quaternary structure of Env. Interestingly, both sites in gp41

directly co-varied with sites at the b12-gp120 interface. Site-

specific mutagenesis studies have been initiated to explore the

impact of positions 268 and 651 on b12 neutralization, and the

predicted signature substitutions at these positions were indeed

found to capable of significantly impact b12 binding (manuscript

in preparation). Two of the ten sites identified are statistically

expected to be false positives, so it is likely that two will be not be

found to be relevant when experimentally tested, although each of

the ten sites and amino acids associations are biologically plausible,

and most already validated in the experimental literature, as

discussed in the results. Thus the b12 analysis provided a

validation of using this approach for identifying signature patterns

related to neutralization phenotypes, and provided new informa-

tion by defining the particular mutations in the natural virus

population that correlate with b12 neutralization susceptibility,

and by determining the relative strength of such associations

(Table 2).

The apparent accuracy of the b12 susceptibility signature

analysis was encouraging; however, our findings highlight both

limitations and virtues of these methods. Sequence-based signa-

tures methods cannot be expected to identify all b12 contact

residues in gp120 [35]; this is because some of these sites are highly

conserved, whereas other sites at the contact interface may have

natural variation that is well tolerated by b12. Yet other important

sites might reside in hypervariable regions that cannot be aligned

with confidence, so were excluded from our analysis – we

attempted to examine the impact of these regions based on loop

lengths and total number of glycosylation sites, which are

alignment independent measures. In addition, since these methods

scan full Env and started with no biological priors, they necessarily

are based on a large number of tests that makes detecting weak

signatures prohibitively data intensive. For example, we did not

identify two PNLGs known to affect b12 susceptibility [58]. One of

these sites was at the base the V2 loop (position 197) and the other

was in the V3 loop (position 301). The PNLG in position 197 is

almost invariant, and so could not have been identified by our

method, which relies on detecting associations in the context of

natural sequence variability. Position 301 (PNLG) reached

borderline significance in the complete scan of Env when testing

for an association between the preservation or loss of specific

PNLGs and the b12 neutralization (p = 0.019, q = 0.30,

OR = 0.23).

Signature methods focus on sites that are likely to be the most

impacted by common mutational patterns found in the circulating

population. Such mutational patterns are directly relevant for

vaccine design considerations because we must contend with the

natural variation of HIV for a vaccine to succeed. Indeed,

signature methods provide a useful counterpoint to crystallogra-

phy, which identifies the contact surface of a protein bound by

antibody, but does not provide direct information about the

implications of key common natural mutations [35]. Moreover,

alanine scanning [64], which explores the functional impact of

mutations introduced in either conserved or variable positions, is

Table 5. Sites identified as Env signatures associated with
serum neutralizing breadth and potency using the tree
corrected contingency table and CMI approaches.

HXB2 Position Signature region1 CMI
Fisher’s2 Sensitive/
Resistant2

412/413 CoRbs - ![GS]NR[GS]N

413 CoRbs - Nx[ST]

419_421 CoRbs - R_KR!R_K

419 CoRbs - RRK

440 CoRbs - QR!Q

186 V2 Y

This table is organized similarly to Table 1.
1All regions are in gp120. CoRbs, coreceptor binding site; V2, second variable
region.

2Arrows are used to show the direction of the sequence change that was
significant. Thus, in the three amino acids at positions 419–421, the sequence
was moving from R, any amino acid, K (R_K) to a sequence that was not R, any
amino acid, K (!R_K) in weakly neutralizing sera. [GS]N, means either G or S at
position 412 and N at 413.

doi:10.1371/journal.pcbi.1000955.t005
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another extremely valuable tool, but one that is limited in terms of

being able to look at the consequences of natural variation at

specific sites or in combinations of sites. An additional limitation is

experimental, in that some sites might require concentrations of

b12 that are higher than those used here for positive identification.

Despite these limitations, our computational analysis appears

useful for delineating molecular determinants of complex neutral-

ization epitopes on HIV-1 Env, including the identification distant

sites that may impact b12 binding though quaternary and

allosteric effects. The neutralizing impact of b12 is very specific,

where slight differences in recognition sites between viruses can

have major phenotypic consequences [101]. A better understand-

ing of the impact of common natural mutations that are outside of

the immediate binding surface of b12 may ultimately allow

improved rational design strategies of vaccines that attempt to

elicit potent anti-CD4bs antibodies.

Figure 8. The four signature sites in the CCR5 CoR region shown in a crystallographic three-dimensional structure of gp120
complexed with CD4 and the CD4i-specific mAb 17b (PDB code: 1RZK). The yellow balls mark the C-alpha positions of the signature
residues. Three regions in gp120 are indicated: the inner domain in light blue, the outer domain, dark blue; and the bridging sheet, brown. Definitions
for these regions are based on the X-ray study of Kwong et al. [127]. CD4 is green. The light and heavy chains of 17b are marked in light and dark
magenta, respectively.
doi:10.1371/journal.pcbi.1000955.g008

Figure 7. Alignment of signature sites that were associated with potent NAb responses. This alignment captures short contiguous regions
of Env near the CoRbs. Signature amino acids are highlighted using the same color scheme and organization as the heatmap in Fig. 5A. Red
highlights are amino acids that associate with potent sera; yellow highlights are amino acids that associate with weak sera. A vaccine strain selected
on the basis of Envs in potent neutralizing sera from HIV-1-infected individuals might ideally capture as many of the red positions and as few of the
yellow as possible (e.g., CH0219.e4 and CH080510.e.p2). CH0219.e4 also has short variable loops (data not shown). Position 186 was identified using
CMI and thus does not have specific amino acids associated with the serological behavior; however, both E and N seem particularly enriched in the
group with the highest cross-reactivity (cluster III).
doi:10.1371/journal.pcbi.1000955.g007
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Having confirmed that our computational analysis has utility for

identifying molecular determinants of Env antigenicity in the

context of the b12 epitope, we then sought to determine whether a

similar computational analysis, but this time based on Env

sequences derived from serum samples from HIV-1-infected

individuals, could identify amino acid signatures that associate

with the magnitude and breadth of the neutralizing activity of the

serum samples. Any signatures identified by such analysis might be

determinants of the immunogenic as well as antigenic properties of

Env, although it was beyond the scope of this study to discriminate

between these two immunologic properties.

For the analyses of Env sequences in serum samples that were

evaluated for neutralizing activity, a single Env sequence from

each individual was obtained. We were interested in leveraging

our resources to increase the number of individuals studied rather

than increasing the depth of characterization of each infected

individual. In part we were testing the feasibility of the approach

for scanning a large population of HIV infected individuals with

the intent of finding common features of the virus harbored in

them that may have given rise to a potent NAb response. Viral

evolution and quasispecies complexity in chronically infected

subjects clearly were potential confounding factors; the single

sequence used was randomly selected from a complex viral

population within each individual and may not reflect the form of

the Env that gave rise to the NAbs of interest in the serum samples.

Indeed, assuming that the NAb response during chronic infection

is driven by multiple viral variants, these confounding factors limit

our ability to identify genetic signatures. Despite this, statistically

significant signatures were revealed based on an analysis of

sequences from a single Env clone from a single time point from

each of 69 individuals, indicating a detectable consistency of signal

across the population. Notably, despite scanning the full Env, these

signatures were focused on a single biologically interesting region,

the CoRbs. An unresolved issue that is an inherent consequence of

this signature-defining strategy is the uncertainty regarding

whether the signature amino acids reflect common features that

were useful for stimulating potent NAb responses, or if instead they

reflect common patterns of escape from the NAb responses in the

potent sera. Experimental comparisons to resolve this are

underway; strains that retain the signature positions that are

associated with potent sera, like CH0219.e4 and CH080510.e.p2

(Fig. 7), are particularly interesting candidates for immunogenicity

testing.

The fact that five of the six signature sites identified, with one false

positive expected, were in the CoRbs of gp120 suggests an

important role for this region in generating high titers of broadly

NAb responses. This region is comprised of elements of the bridging

sheet and adjacent surfaces from the outer domain of gp120,

including the V3 loop, that undergo conformational changes and

become exposed upon CD4 binding as an intermediate step in the

membrane fusion process [61,96,97,102–104]. It is possible that in

some cases CD4i-specific mAbs contribute directly to potent cross-

neutralizing ability [87,95]. The CoRbs is one of the most highly

conserved and protected domains on gp120 [86]. Rare variants of

HIV-1 exist that exhibit spontaneous exposure of CD4i epitopes;

these strains tend to infect cells independently of CD4 and to be

highly sensitivity to neutralization by CoR-specific antibodies

[105,106]. Owing to the presence of such antibodies in HIV-1-

infected individuals [86,87,95], a mechanism of CD4-induced

exposure of the CoRbs serves as an effective strategy to evade

humoral immunity — a strategy that is aided by steric constraints

that prevent anti-CoR antibodies from gaining accessing to their

epitopes at the virus-cell interface [107]. In a systematic

thermodynamic analysis by Kwong et al., in which 20 antibodies

were categorized according to where they bind on the gp120

surface, it was found that 6 of 7 antibodies that bind gp120 at its

receptor and coreceptor binding sites exhibited unusually high

binding entropy (including 17b that binds to CoRbs) [21].

Therefore, the signature sites identified here in the CoRbs might

play an indirect role in neutralization by antibodies that induce

large conformational changes in gp120.

The question naturally arises as to why a region of gp120 that is

so heavily guarded and difficult to target by NAbs registered in our

analysis as a key determinant of potent NAb responses in HIV-1-

infected individuals. One possibility is that the CoRbs of gp120 has

vulnerabilities that are only beginning to be recognized. For

example, using a novel combination of epitope mapping

techniques, Li et al. [95] reported evidence that CoRbs-specific

antibodies contributed to the broadly cross-reactive neutralizing

activity of serum from two HIV-1 infected individuals. In addition,

CoRbs residues were implicated by alanine scanning mutagenesis

as being involved to a minor extent in the epitopes for two newly

described broadly neutralizing mAbs [50]. Also, vaccine-elicited

CoRbs-specific antibodies correlated with viremia control in a

simian-human immunodeficiency virus (SHIV) challenge model in

nonhuman primates [108]. It also seems possible that amino acid

residues in key positions in the CoRbs of gp120 modulate the

conformation of adjacent regions, such as the CD4bs, much the

same as conformational changes induced by gp120-CD4 binding

modulate the CoRbs. Limited sequence variability in the CD4bs

[109,110] makes this an attractive target for NAb-based vaccines.

Indeed, studies have shown that the CD4bs is targeted by broadly

NAbs in sera from some HIV-1-infected individuals [51].

It remains to be determined whether the genetic signatures of

potent NAb responses identified here contribute to the immuno-

genicity as well as antigenicity of Env. By design we were

attempting to resolve signatures that impacted Env immunoge-

nicity in natural infection. Clearly, strong antigenicity alone is

generally not sufficient for the elicitation of NAbs [28–30,36–39].

Other requirements may need to be met before B cells can be

stimulated to produce NAbs against certain epitopes of interest.

Although very little is known about what these requirements might

be, proper Env configuration for B cell recognition and antibody

affinity maturation should be considered. It will be interesting to

test novel Env immunogens that naturally contain the genetic

signatures identified in our study, or that introduce these

signatures experimentally. At the very least, our findings suggest

that greater attention should be paid to the CoRbs of gp120 when

designing novel vaccine immunogens.

Materials and Methods

Viruses, serum samples and mAb b12
All viruses were used as molecularly cloned Env-pseudotyped

viruses that expressed the entire gp160 of the designated strain. The

multisubtype panel of viruses used for analysis of b12 neutralization

is described in Tables S1 and S2. The 25 viruses used to assess the

neutralizing activity of HIV-1-positive serum samples were isolated

from sexually acquired infections and were sampled early in infection

to closely resembled transmitted/founder viruses. Among these,

isolates 6535.3, QH0692.42, SC422661.8, PVO.4, AC10.0.29 and

RHPA4259.7 belong to a recommended panel of subtype B

reference strains [111]. Isolates Du156.12, Du172.17, Du422.1,

ZM197M.PB7 and ZM214M.PL15 belong to a recommended

panel of subtype C reference strains [112]. Isolates Q23.17,

Q842.d12, Q168.a2, Q259.d2.17, Q461.e2 and Q769.d22 are

subtype A reference strains [113]. Isolates BB1006-11.C3.

1601, BB1054-07.TC4.1499, 700010040.C9.4520 and WEAU-
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d15.410.787 are subtype B clones that were confirmed by single

genome amplification (SGA) and sequencing analysis to be true

transmitted/early founder Envs [56], as were C subtype isolates

Ce1086_B2, Ce0393_C3, Ce1176_A3 and Ce2010_F5 [114].

These latter 25 viruses utilized CCR5 as their major coreceptor

and were considered to possess a tier 2 neutralization phenotype

[115].

Serum samples were obtained from HIV-1-infected subjects

who were enrolled in clinical protocols of the Center for HIV/

AIDS Vaccine Immunology (CHAVI). All subjects were chron-

ically infected at the time of enrollment. The precise length of time

of infection was not known. The mAb b12 was provided by

Quality Biologicals, Inc. (Gaithersburg, MD) as a complete IgG

molecule.

SGA amplification and sequencing of gp160 genes
The SGA methods used here were described previously [116]

and result in sequences that are not corrupted by recombination

during amplification. Viral RNA was prepared from 400 ml of

patient plasma and eluted into 60 ml of elution buffer using

EZ1Virus Mini Kit V2.0 (Qiagen, Valencia, CA). Viral cDNA was

prepared with 20 ml of vRNA and 80 pmol of primer 1.R3.B3R

(59-ACTACTTGAAGCACTCAAGGCAAGCTTTATTG-39) in

a 50 ml volume using Superscript III (Invitrogen; Carlsbad, CA).

SGA of the cDNA was performed using nested PCR to obtain the

rev/env cassette and to avoid artificial recombination and

resampling of the viral genomes [117]. The cDNA was diluted

1:3, 1:9 and 1:27 (8 reactions per dilution) to determine a dilution

with a positive rate of 20% or less. Each diluted cDNA (1 ml) was

used for the first round amplification with primers 07For7

(59CAAATTAYAAAAATTCAAAATTTTCGGGTTTATTAC-

AG-39) and 2.R3.B6R (59-TGAAGCACTCAAGGCAAGCTT-

TATTGAGGC-39). First round PCR was carried out with 1 unit

of Platinum Taq Polymerase High Fidelity (Invitrogen; Carlsbad,

CA) and 10 pmol of each primer in a 20 ml volume. First round

PCR products (2 ml) were used for a second round of PCR with

primers VIF1 (59-GGGTTTATTACAGGGACAGCAGAG-39)

and Low2c (59-TGAGGCTTAAGCAGTGGGTTCC-39). The

second round PCR used 2.5 units of Platinum Taq Polymerase

High Fidelity and 20 pmol of each primer in a 50 ml volume. PCR

thermocycling conditions were as follows for both rounds of PCR:

one cycle at 94uC for 2 minutes; 35 cycles of denaturing step at

94uC for 15 seconds, an annealing step at 60uC for 30 seconds, an

extension step at 68uC for 4 minutes, and one cycle at 68uC for

10 minutes. PCR products were visualized on a 1% agarose gel

and purified with the QiaQuick PCR Purification kit (Qiagen;

Valencia, CA). Sequence analysis of env PCR products was

performed on both DNA strands by cycle-sequencing and dye

terminator methods using an ABI 37306l genetic analyzer

(Applied Biosystems; Foster City, CA). Individual overlapping

sequence fragments for each env SGA were assembled and edited

using the Sequencher program 4.7 (Gene Codes, Ann Arbor, MI).

Subtyping analysis was initially performed using SIMPLOT [118].

All sequences were further validated with RIP and HIV Blast

(www.hiv.lanl.gov). Subtyping and recombination discrepancies

between the methods were carefully considered and resolved. The

single SGA Env sequence obtained from each of the HIV-1

positive individuals with potent or weak neutralizing antibody

responses was sampled at random. GenBank accession numbers

are provided in the supplementary tables.

Neutralization assay
Neutralization was measured as reductions in luciferase (Luc)

reporter gene expression after a single round of infection with Env-

pseudotyped viruses as described [111]. Briefly, 200 TCID50 of

virus was incubated with serial 3-fold dilutions of test sample in

duplicate in a total volume of 150 ml for 1 hr at 37uC in 96-well

flat-bottom culture plates. Freshly trypsinized TZM-bl cells

(10,000 cells in 100 ml of growth medium containing 37.5 mg/ml

DEAE dextran) were added to each well. One set of control wells

received cells plus virus (virus control) and another set received

cells only (background control). After a 48-hour incubation, 100 ml

of cells was transferred to a 96-well black solid plates (Costar) for

measurements of luminescence using the Britelite Luminescence

Reporter Gene Assay System (PerkinElmer Life Sciences).

Neutralization titers are either the 50% inhibitory dilution

(ID50, serum samples) or 50% inhibitory concentration (IC50,

mAb b12) at which relative luminescence units (RLU) were

reduced by 50% compared to virus control wells after subtraction

of background RLUs. Assay stocks of molecularly cloned Env-

pseudotyped viruses were prepared by cotransfecting 293T/17

cells with an Env-expressing plasmid and an env-minus backbone

plasmid (pSG3Denv) as described [111].

Definitions of neutralization sensitivity
To conduct Env sequence signature analyses with the goal of

identifying mutational patterns that correlate with neutralization

phenotypes, we first needed to define neutralization phenotypes.

For mAb b12, we initially defined the Envs based on whether or

not a 50% reduction in RLU could be achieved at the highest

concentration of b12 used; if not, the Env was considered b12

resistant. Some Envs were tested up with to 50 ug/ml of b12,

however others were only tested up to 25 ug/ml (Table S2); 9 of

the 251 samples had a detectable neutralization response between

25 and 50 ug/ml. Thus did the signature analysis two ways, either

treating any result over 25 ug/ml as negative, or treating any

positive result as positive; the results were essentially the same

either way, and the results presented are based on treating any

detected response as positive. This provided a Boolean neutral-

ization sensitive/resistant phenotype to use as a basis for

comparing the 251 Envs tested with b12. Later, we compared

the levels of neutralization-sensitivity with the patterns in the b12

signature sites by using IC50 values.

Defining a serological phenotype based on a profile of potency

of neutralization against a panel of viruses was more complex. We

first needed to group HIV-1-positive serum samples that exhibited

similar neutralization profiles against a panel of 25 viruses. To

achieve this, we used a k-means clustering strategy with two added

statistics to assess the robustness of the clusters, factoring in both

the uncertainty that results from limited sampling and inter-assay

variability (the impact of experimental noise was explored using a

smooth bootstrap). Sampling limitations were explored by re-

sampling either by rows or columns 1000 times, using a random-

with-replacement bootstrap strategy. The impact of inter-assay

variation was explored by a smooth bootstrap, re-sampling from a

Gaussian model of noise centered on zero and based on a limited

number of repeat data values. Noise was adding back to the

original scores based on the model. We then re-estimated the k-

means clusters 1000 times with noise added back [119]. Using

these two strategies we found that no more than k = 3 distinctive

clusters of sera were statistically justified, in that 2 or more sera

were assigned to each of the three clusters with 90% confidence.

Defining more than k = 3 clusters was not justified using this

criteria. Sera that were not assigned to a cluster 90% of the time

were considered indeterminate; clustering patterns were generally

more sensitive to sampling than inter-assay variability. To describe

the NAb reactivity pattern of the 3 sera clusters in a Boolean

framework (we are limited to two categories, high versus low) for
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signature pattern analyses, we compared Envs that were members

of each of the robust serological clusters to all other Envs in the

study. For example, we compared the Env sequences associated

with the strongest sera (cluster III) to the remaining Envs by

combining those that were in clusters I and II and those that were

poorly resolved. In a second analysis, we set k = 2 and compared

just the statistically robust high and low clusters, excluding the

intermediate values from the comparison.

Computational methods: alignments, phylogenetic and
signature analyses

Alignments used for signature analysis were generated with

GeneCutter (www.hiv.lanl.gov), which builds on a HMMER base

alignment strategy [120] to provide codon-aligned DNA for

phylogenetic and signature analysis. Because hypervariable regions

are very difficult to align and compare objectively, we excluded all

positions in the alignment that contained more than 10% gaps

from the analysis [54]. In practice, this means the difficult to align

hypervariable regions and rare insertions were all excluded. Thus,

the correlations we find (listed in Tables 1 and 5) are focused in

regions of Envelope that are readily aligned, and not a

consequence alignment artifacts or impacted by the alignment

strategy, with the possible exception of site 186, which borders a

hypervariable region in V2.

Phylogenetically corrected methods were used to identify all

signature sites; the contingency table method illustrated in Fig. 1

and Fig. 6 was described in detail in [54]. The reason phylogenetic

corrections are critical is that observed patterns in data can result

either from correlations imposed by the initial historical emer-

gence of a lineage of viruses (founder effects), or in the case of

HIV-1, a consequence of recent biological interactions. Not

accounting for founder effects can lead to erroneous statistical

conclusions [52]. While there are many recombinant sequences

included in the tree (as with essentially all HIV population trees),

limiting the accuracy of the reconstruction of the evolutionary

history, the phylogenetic corrections utilized for signature analysis

are, however, dependent only on the local region of the tree and

the ancestral states near the tips of the branches, reducing the

impact of inter-subtype recombination on the analyses. We

implement are ancestral reconstruction through maximum

likelihood phylogenies, using code originally based on Gary

Olsen’s fastDNAML [121], with a GTR model with a likelihood

estimate of rate variation per site, and adapted to given ancestral

states at all nodes [54].

While a maximum likelihood tree framework enables us to

model the ancestral state of the virus immediately preceding the

tip, neutralization sensitivity data exists only at the terminal tips of

the tree, and we do not attempt to infer phenotypic information at

internal nodes. To look for amino acid correlations with

phenotype, we tested each position in Env that contained fewer

than 10% gaps, for associations of the phenotype of interest based

on each amino acid considered alone, any combination of two

amino acids at each site, and all combinations of two amino acids

at two adjacent sites. We also tested for the preservation or loss of

glycosylation sequon motifs at particular positions in the

alignment. Finally, we included all possible sets of amino acids

in up to 3 positions within four targeted and defined regions of

interest (the structurally defined b12 binding site, the CD4bs, the

CoRbs, and the MPER regions, summarized in supplement Table

S3). More extensive tests of combinations of sites throughout Env

would not have been useful because of power issues given multiple

testing. Precisely the same algorithm and series of tests were

applied to both the b12 sensitivity data and the data relating to

potent neutralization.

A large sample size is essential to power explorations of

associations between phenotype and mutational patterns. Thus

phylogenetic reconstruction can be challenging because the

number of possible relationships grows factorially with the number

of sequences sampled. To improve our maximum likelihood tree

reconstructions, we adapted our phylogenic code [52] to a newly

high performance computing platforms (http://www.lanl.gov/

roadrunner/). Trees were run using 25 global rearrangements for

up to three days on 512 Cell-accelerated processors, until the

likelihood scores no longer improved. The final signature results

are relatively robust to the tree however, and a rapidly obtained

PHYML tree yielded sound signature results, as discussed in the

Results. Access to parallel computing resources at Los Alamos

National Laboratory also facilitated protein modeling of loop

structures and other computationally intensive and repetitive tasks,

such as combinatorial signature analysis and q value calculations.

Felsenstein first developed the method of phylogenetically

independent contrasts many years ago [122] to address similar

problems, i.e., obtaining phylogenetic corrections when looking for

correlations of mutational patterns with quantitative data. We

were indeed interested in exploring associations between several

quantitative measures and neutralization phenotypes, in particular

both loop lengths and the total number of PNLGs in hypervariable

regions. However, because hypervariable loop lengths and the

number of PNLGs vary rapidly within infected individuals, and so

are changing on a time scale much faster then the time scale

reflected in the population-based trees, a phylogenetic correction

at the population level was deemed not essential in this framework.

Thus, for testing the impact of loop lengths and numbers of

glycosylation sites, simple Spearman correlation tests were

performed.

Conditional mutual information (CMI) based signatures
Conditional mutual information (CMI) was used as a second

computational method to identify positions that exhibit an

association between mutation and phenotype (neutralization

sensitivity) that is independent of phylogenetic lineage. CMI

[123] generalizes the conventional mutual information measure

[123] that quantifies the association between two objects, e.g.,

mutation and phenotype. CMI also quantifies the association

between two objects but it conditions the association on a third

object, in this case the ancestral state. CMI sums over the

associations conditioned on different ancestral state amino acids,

and so is potentially more sensitive for detecting associations than

the contingency table analysis that involves one ancestor state at a

time. On the other hand, if the biological signal exists only for

some ancestral states and not others, the extra noise added may

reduce the power of the test. The statistical significance of a CMI

value at any given position was assessed by fixing the ancestral

state to each candidate ancestor state in turn, and permuting the

relation between mutation and phenotype 1000 times in order to

break any potential association. The distribution of CMI values for

such permuted data was used to determine p-values, and q-values

were obtained from these using the method of Storey and

Tibshirani [124]. As with the Fischer’s exact test signatures, a

cutoff of q,0.2 was used to identify statistically interesting sites,

such that a 20% false discovery rate was expected among the

identified signatures.

Ensemble learning technique using classification trees
To model sequence changes across sites, an ensemble learning

technique using classification trees was employed [125]. As with

the CMI and contingency table approaches, a sensitive/resistant

neutralization category was compared to phylogenetic signals.
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This neutralization quantity indicates when a virus is neutralized

by a fixed amount of b12 antibody. A change observed between an

observed amino acid and the corresponding position in the

inferred parent sequence provides one phylogenetic signal.

Changes toward or away from each observed or inferred amino

acid across all of the envelope protein sequences served as the set

of phylogenetic signals. Signals are conditioned on the ancestor

amino acid; thus, any given position can be an instance of the

signal, not an instance of the signal, or not applicable for the

signal.

To form a decision tree, a signal was first identified that best

separated sequences into resistant and sensitive neutralization sets.

Each set was then partitioned into two more sets using further

signals that best track the neutralization phenotype. This

refinement procedure was repeated until no additional signals

improved the classification. It was necessary that the classification

tree handle the absence of signals as well as their Boolean state in

order to avoid phylogenetic artifacts. Prediction was performed by

taking a tree and following a main signal, secondary signal, tertiary

signal, and so on, according to signal values derived from new

data. Even in the absence of mutational signals, a decision tree

would still provide a prediction on the basis of whether resistant or

sensitive viruses were more common in a training set.

It is conceivable that coordinated mutations or reversions could

occur in a universal way across viruses (case 1). Alternatively, the

interplay of viruses and hosts could result in different patterns of

coordinated sequence change (case 2). To address the possibility

that there can be context dependence on unmeasured quantities

(i.e., virus behavior groups formed by some unknown process), we

randomly sampled a subset of the full training data (75%) when

building decision trees, performing 140 interactions of decision

tree building with different training set samples. 75% of the data

was chosen as a trade-off between statistical power (ability to see

any group behavior) and diversity (ability to see several groups).

We chose 140 iterations for computational feasibility. Evaluation

of the performance of the decision tree models needed to be

separate from the construction of the training data. Thus, before

iterating the training set sampling and tree building, we reserved 5

sensitive and 5 resistant viruses for testing purposes. Good models

from the 140 decision tree builds were defined as those models that

perform better than 60% (instead of the expectation of 50% for

random guesses) on this reserve dataset.

Any one of the 140 training samples and resulting decision trees

could represent either case 1 or case 2, as described above.

Therefore, the full process of reserving a random test set and

generating 140 models to ‘hit’ each test set was iterated 32 times.

For each test set, we obtained on average 10 of the 140 models

predictive to at least 60% accuracy. A majority vote of these model

predictions was noted for each test set. A ‘‘majority vote’’ was

conducted across the 32 test sets to provide the final neutralization

prediction. Finally, we identified mutational patterns that recurred

most often at the top-level splits in the subset of good models

across all runs. These patterns provided another strategy for

defining amino acid signatures that correlate with neutralization

phenotype (Table 1), and these were a subset of the sites defined by

the most common highest level splits; this method only defined a

subset of the statistically promising sites defined by the basic

Fischer’s exact methods.

Unlike other decision forest or bootstrap aggregation approach-

es (a.k.a. bagging) [126], we cross-validated within the training set

and pruned back the trees before using them. This may limit

overall accuracy, but it has the advantage that any decision tree

model could be interpreted without overtly over-fitting a particular

training data set.

Structural mapping of signature positions
For structural mapping in gp120, three different structures were

used. We used a structure with loops modeled when residue

positions in loops needed to be shown. In this structure, the core of

gp120 corresponded to the X-ray structure of CD4-bound YU2

gp120 [127], with variable loops V1, V2 and V3 modeled for

visualization purpose as described previously [128]. For signature

positions in the b12 binding surface of gp120, we used the X-ray

structure corresponding to the PDB code 2NY7 [35]. Finally, for

spatial mapping of the signature positions in the CD4i region, we

used the X-ray structure with a PDB code, 1RZK, [127] that was

solved with a CD4-17b complex. In one instance a three-

dimensional structure of gp41 was used to suggest the possibility

of allosteric effects within the gp120-gp41 complex. This latter

gp41 structure was homology-modeled based on the NMR

structure of SIV-1 gp41 structure [129]. Signature positions were

mapped onto this structure based on the alignment of sequences

with respect to HXB2. The positional numbering refers to HXB2.

Three-dimensional images were generated using VMD [130].

Validation of b12 signatures
A holdout set of 56 pseudotyped Envs, for which the b12

sensitivity was known but withheld from the analysis team, was kept

aside as a fully blinded test set to determine if we could predict the

b12 phenotype of Env-pseudotyped viruses based on either just

signature amino acid positions or the ensemble learning strategy

across full Env. The training and test set of Envs are included in the

phylogenetic tree shown in Fig. 1; viruses known to be b12-sensitive

are magenta, those known to be b12-resistant are dark grey, and

those used as a blinded test set are light gray. Several strategies to

predict phenotype were employed, including the simple require-

ment of at least 4 sensitive and no more than 1 resistant amino acid

in the 7 signature sites, a logistic regression based on the 7 signature

sites, and the ensemble learning strategy based on the full Env

alignment. A prediction of b12 sensitivity or resistance was made

based on all three strategies (Tables 3 and 4, Table S2) for each of

the 251 original training sequences and 56 test sequences.
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Supporting Information

Figure S1 An alignment of the three additional sites that were

identified by the CMI method.

Found at: doi:10.1371/journal.pcbi.1000955.s001 (0.25 MB TIF)

Figure S2 The correlation between signature sensitivity score

and b12 sensitivity.

Found at: doi:10.1371/journal.pcbi.1000955.s002 (0.11 MB TIF)

Table S1 This table includes a description of the 251 sequences

of the pseudotyped viruses used for defining the b12 signatures, as

well as the 56 sequences included in the blinded set used to test

whether the signature could be used to predict b12 sensitivity. It

includes strain name, HIV-1 subtype or recombinant status,

country of origin, year, Fiebig stage, modes of transmission,

specimen and GenBank accession number. A blank means the

field is unknown.

Found at: doi:10.1371/journal.pcbi.1000955.s003 (0.07 MB

XSLX)

Table S2 This table includes a description of the 251 sequences

of the pseudotyped viruses used for defining the b12 signatures, as
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well as the 56 sequences included in the blinded set used to test

whether the signature could be used to predict b12 sensitivity. It

contains b12 neutralization potency, b12 IC50 value, the

prediction of b12 status based on the ensemble learning technique

and the logistic regression, signature site amino acids in each

sequence and the total number of signatures that are susceptible

and resistance in each sequence that was utilized in the prediction

using simple cumulative pattern. A blank means the field is

unknown.

Found at: doi:10.1371/journal.pcbi.1000955.s004 (0.41 MB XLS)

Table S3 Sets of sites used for deeper combinatorial analyses of

signatures.

Found at: doi:10.1371/journal.pcbi.1000955.s005 (0.03 MB

DOC)

Table S4 Summary of charged residues in the gp120 core

structure. Qualitative evaluation of all acidic residues in the recent

X-ray structure of b12-bound to the JRFL gp120 [35] that was

used in the electrostatic potential calculations.

Found at: doi:10.1371/journal.pcbi.1000955.s006 (0.04 MB

DOC)

Table S5 A list of all sites that co-vary with b12 signature sites.

All sites are found to co-vary in a contingency table analysis with a

q-value,0.2. Co-variation sets among signature sites are high-

lighted in bold or underlined.

Found at: doi:10.1371/journal.pcbi.1000955.s007 (0.04 MB

DOC)

Table S6 HIV-1-positive serum samples used for signature

analysis. Single SGA Env clones were sequenced from each

sample. All samples were taken during chronic infection, at the

same time the sample was tested for cross-reactive neutralizing

antibodies. All sequences have been submitted to GenBank (in

progress).

Found at: doi:10.1371/journal.pcbi.1000955.s008 (0.14 MB

DOC)

Table S7 HIV-1 strains used for NAb assays to identify

signatures in serum-derived Env sequences.

Found at: doi:10.1371/journal.pcbi.1000955.s009 (0.06 MB

DOC)
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