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Abstract

Although all brain cells bear in principle a comparable potential in terms of energetics, in reality they exhibit different
metabolic profiles. The specific biochemical characteristics explaining such disparities and their relative importance are
largely unknown. Using a modeling approach, we show that modifying the kinetic parameters of pyruvate dehydrogenase
and mitochondrial NADH shuttling within a realistic interval can yield a striking switch in lactate flux direction. In this
context, cells having essentially an oxidative profile exhibit pronounced extracellular lactate uptake and consumption.
However, they can be turned into cells with prominent aerobic glycolysis by selectively reducing the aforementioned
parameters. In the case of primarily oxidative cells, we also examined the role of glycolysis and lactate transport in providing
pyruvate to mitochondria in order to sustain oxidative phosphorylation. The results show that changes in lactate transport
capacity and extracellular lactate concentration within the range described experimentally can sustain enhanced oxidative
metabolism upon activation. Such a demonstration provides key elements to understand why certain brain cell types
constitutively adopt a particular metabolic profile and how specific features can be altered under different physiological and
pathological conditions in order to face evolving energy demands.
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Introduction

A central question in biology concerns the biochemical

characteristics that determine the metabolic profile (glycolytic vs.

oxidative) of a particular cell type. Indeed, since the experimental

description of aerobic glycolysis (i.e. the conversion of glucose into

lactate despite the presence of sufficient oxygen levels to carry out

oxidative metabolism) by Warburg [1,2], this issue has become

crucial to understand the process of tumorigenicity [3,4,5,6].

Notwithstanding, numerous studies (including those of Warburg)

have also documented the occurrence of aerobic glycolysis in

several non-cancer cell types [7,8,9,10]. Among normal tissues, the

central nervous system was identified as partly relying on such a

metabolic process for its energy production [11,12]. At the cellular

level, it was clearly demonstrated that astrocytes exhibit a

prominent aerobic glycolytic activity [13]. In contrast, neurons

seem devoid of this capacity [14] and rather present a strongly

oxidative phenotype [15,16,17].

Such considerations acquire additional interest in the context of

cell-cell interactions and metabolic cooperation. Indeed, in several

tissues including muscles [18], testis [19], retina [20] as well as

brain [21], a process known as intercellular lactate shuttle was

reported that represents the supply of lactate produced by a

glycolytic cell for the benefit of a neighboring oxidative cell [22].

Apart from the features that determine metabolic phenotypes,

another crucial question is whether lactate provided by an

adjacent cell can fulfill the energy requirements of the oxidative

cell. For this purpose, we developed a modeling approach based

on known biochemical characteristics of glucose and lactate

metabolism. Our model allowed us to highlight key elements that

are sufficient to explain the fundamental differences between an

essentially oxidative cell and another cell exhibiting prominent

aerobic glycolysis. Moreover, we could illustrate that under most

physiological conditions, characteristics of lactate metabolism are

adequate to sustain the evolving energy needs of the oxidative cell.

Overall, the results of our modeling investigation account well for

the described individual metabolic characteristics of astrocytes and

neurons in the central nervous system, as well as for a prominent

role of lactate as an energy substrate supplied by astrocytes to

neurons, in accordance with the astrocyte-neuron lactate shuttle

(ANLS) model.

Models

Description of the model
In order to better understand the importance of distinct energy

substrate sources for brain cell energetics, we considered a simple

model taking into account glucose and lactate supply as well as

their metabolism. This model describes the dynamics of lactate

and glucose in brain cells. Fig. 1 shows a typical brain cell. Glucose
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(Glc) is metabolized into pyruvate (P) during glycolysis. This

reaction requires NAD+, which is converted into NADH. For

glycolysis to proceed, the excess NADH needs to be ‘‘recycled’’

back into NAD+. One way to do this is to convert pyruvate into

lactate (Li), a reversible reaction catalyzed by lactate dehydroge-

nase (LDH). The produced lactate can then be transported outside

the cell via the monocarboxylate transporters (MCT). The

consumption of glucose for lactate production mainly is considered

a glycolytic phenotype (red arrow in Fig. 1). Another alternative

for the cell is to use the mitochondrial shuttles, mainly the malate-

aspartate shuttle, to convert NADH into NAD+ in order to

proceed with glycolysis. This can happen provided that the cell has

enough mitochondrial activity (see Text S1 for more details). In

this scenario, the pyruvate produced by glycolysis can be further

metabolized by pyruvate dehydrogenase (PDH) into acetyl-CoA

and produce energy via oxidative phosphorylation in the

mitochondria. Since NADH is recycled into NAD+ by the

mitochondrial shuttles, lactate can be imported into the cell and

the LDH can perform the reverse reaction, converting it into

pyruvate to feed oxidative phosphorylation as well. Such a

phenotype is called oxidative (blue arrows in Fig. 1). As we will

show, this model is very general and can be applied to both

neurons and astrocytes, by modifying some biochemical condi-

tions, namely the rate of NADH recycling to NAD+ (JShuttle) and

the rate of the PDH reaction (JPDH).

In this model, lactate is taken up (or released) by brain cells via

MCTs and further metabolized by LDH into pyruvate (or

produced via this reaction). The intracellular lactate dynamics is

therefore described by the following equation:

dLi

dt
~JMCT{JLDH

where JMCT is the net transport of lactate inside the cell (i.e. if

JMCTv0, lactate is being transported outside the cell) and JLDH is

the net rate of the reaction catalyzed by LDH; no a priori

assumption is made about the sign of JMCT and JLDH .

In parallel to the LDH reaction, glucose uptake and glycolysis

contribute to the balance of pyruvate, which is further metabolized

by PDH into acetyl-CoA:

dP

dt
~JLDHzJglyco{JPDH

where Jglyco is the rate of pyruvate production by glycolysis and

JPDH is the rate of pyruvate consumption by the reaction catalyzed

by PDH. Then, acetyl-CoA is used to fuel the Krebs cycle and

eventually oxidative phosphorylation in the mitochondria.

Another important feature of our model is the role of NADH.

Indeed, both the forward LDH reaction and glycolysis produce

NADH (from NAD+), while it is ‘‘recycled’’ back into NAD+ by

the mitochondrial shuttles for the transfer of reducing equivalents:

dNADH

dt
~JLDH{JShuttlezJglyco

where JShuttle~kShuttle
:NADH is the flux of mitochondrial NADH

shuttling, that we assume proportional to NADH for simplicity

(kShuttle is a constant). The NADH mitochondrial shuttle therefore

plays an essential role in determining the direction of the LDH

reaction. (See Text S1 for a detailed description of the model).

Role of lactate transport in fueling oxidative
phosphorylation

We note that the baseline steady state values (subscript 0),

obtained by equating to zero the right-hand side of all the

differential equations, obey to

Figure 1. Model describing the simplified energetics of brain
cells. Glucose undergoes glycolysis and all resulting pyruvate is either
further metabolized by PDH or converted to lactate by LDH before
being transported out of the cell. On the other hand, lactate can be
transported into the cell and then metabolized into pyruvate by LDH.
Because these processes require NAD+/NADH, we also modeled the
‘‘recycling’’ shuttle of NADH to NAD+ by mitochondria. The red arrow
shows the metabolism of a typical predominantly glycolytic cell,
characterized by lactate export; the blue arrow shows a typical
oxidative phenotype, where both glucose and lactate import contribute
to oxidative phosphorylation. Abbreviations: Le, extracellular lactate; Li,
intracellular lactate; P, pyruvate; NADH, reduced nicotinamide-adenine
dinucleotide; Glc, glucose; JMCT, transmembrane flux of lactate via MCTs;
Jshuttle, flux of NADH to NAD+ ‘‘recycling’’ by the mitochondria; Jglyco,
glycolytic flux; JLDH, metabolic flux via LDH; JPDH, metabolic flux via PDH.
doi:10.1371/journal.pcbi.1002686.g001

Author Summary

In an environment with appropriate oxygen levels
(normoxia), most eukaryotic cells produce energy by
oxidizing glucose into carbon dioxide and water. In this
process, glucose is transformed into pyruvate, which then
fuels oxidative phosphorylation in the mitochondria.
Interestingly, Otto Warburg reported back in the 1920’s
that some eukaryotic cells prominently process glucose-
derived pyruvate into lactate, hence ‘‘avoiding’’ the
mitochondrial oxidation despite adequate oxygen concen-
trations. This phenomenon was termed aerobic glycolysis
and was first observed in cancer cells. Since then, it has
also been described in several normal tissues including the
central nervous system. The biochemical basis of aerobic
glycolysis has remained elusive until now. Taking advan-
tage of a modeling approach, we unraveled the main
metabolic characteristics that determine whether a cell will
be strictly oxidative or rather will exhibit aerobic glycolysis.
When applied in the context of the central nervous system,
our findings not only provide a theoretical demonstration
of why neurons and astrocytes differ in terms of metabolic
profile, but also suggest that such complementarity forms
the basis for metabolic cooperation between the two cell
types.

Modeling of Brain Cell Metabolic Phenotypes
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JPDH ,0~Jglyco,0zJMCT ,0

JShuttle,0~JPDH,0:

Let us define r ~
def

JMCT=Jglyco. Here we consider this ratio at basal

state, namely r~JMCT ,0=Jglyco,0. If we assume glycolysis to be

constant, we have upon activation:

(1za)JPDH,0~Jglyco,0z(1zc)JMCT ,0

where a is the increase in acetyl-CoA production and c the

increase in transport flux, yielding:

a~
c r

1zr
: ð1Þ

Thus, given the ratio r at basal state, we can easily determine what

will be the increase in oxidative phosphorylation upon transport

activation (in the case where glycolysis is fixed).

Choice of parameters
Some of the parameters in our equations, or a combination of

them, have been measured or are known to lie within some range

[17,23,24,25,26,27]. The unknown parameters were set as to

satisfy the following physiological constraints: the ratio r~
JMCT=Jglyco [ ½0:75; 2:2� [15,16,28,29], the intracellular lac-

tate concentrations Li,0 [ ½0:35; 1:65�mM [30,31], the ratio

Li=P [ ½5; 35� (chosen around the measured value L=P&19 in

10-day old mouse brain [32] and considering that this ratio lies

within [7;25] in human blood under various conditions [33]) and

the redox state NADH=NADz [ ½0:001; 0:01� [34]. The param-

eters used to compute the basal state of a typical oxidative cell are

listed in Table S1. The parameters used in all the other simulations

are the same as for the oxidative cell (Table S1), except when

mentioned (see the text and figure legends where the modified

parameters are compared to the ‘‘reference’’ oxidative cell

parameters).

Results

All the figures presented in this work (except Fig. 1) were

obtained by numerically solving in MATLABH Eqs. (S1) in Text

S1. For Table 1, we used Eq. (1) (see also Models).

Key parameters defining metabolic phenotypes
(oxidative vs. glycolytic)

The model presented above was used to determine the changes

in lactate flux across the plasma membrane as well as in the

glycolytic and pyruvate dehydrogenase-catalyzed fluxes, when

switching conditions from a basal to a stimulated state. For the

basal state, the contribution of lactate-derived and glycolysis-

derived pyruvate was set to 43% and 57%, respectively (or

JMCT=Jglyco~r~0:75), in accordance with the data of Nehlig and

collaborators [29]. For the stimulated state, we allowed a 30%

increase of the PDH maximal reaction rate vmax ,PDH and of the

mitochondrial NADH shuttling kinetic constant kShuttle, with a

rather strong increase of 48.5% in the maximal glycolytic rate

vmax ,glyco as well (see Text S1 for details). In addition, three

scenarios were considered for lactate transport stimulation: 1) An

increase in vmax ,MCT , namely lactate maximal transport rate via

MCTs, of 80% based on the data of Pierre et al. obtained in

cultured neurons [35], due to MCT2 translocation to the cell

membrane 2) An in vivo increase in the extracellular lactate

concentration Le of 80% as reported by Hu and Wilson [36] 3) A

concomitant increase in vmax ,MCT and Le of the same magnitude.

Simulations allowed to determine the resulting fluxes for lactate

transport, JMCT , glycolysis, Jglyco, and oxidative metabolism,

JPDH . As can be observed in Fig. 2A, an enhancement of 30% in

oxidative metabolism is obtained when increasing vmax,glyco, kshuttle

and vmax,PDH alone (ctrl-bar). Further activating lactate transport

capacity, vmax ,MCT , in a stimulated cell yields a slight increase in

oxidative metabolism to +33%. Note that the increase in lactate

flux remains relatively modest (+13%) in this condition. If instead

an increase in the extracellular lactate concentration Le is taken

into account, oxidative metabolism is further enhanced (+42%),

with a significant increase in lactate flux (+34%). A combination of

enhanced lactate transport capacity and extracellular lactate

concentration leads to a 47% increase in oxidative metabolism

Table 1. Importance of lactate transport regulation.

r \ c 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0.1 0.0091 0.018 0.027 0.036 0.046 0.055 0.064 0.073

0.4 0.029 0.057 0.086 0.11 0.14 0.17 0.20 0.23

0.7 0.041 0.082 0.12 0.16 0.21 0.25 0.29 0.33

1.0 0.050 0.10 0.15 0.20 0.25 0.30 0.35 0.40

1.3 0.057 0.11 0.17 0.23 0.28 0.34 0.40 0.45

1.6 0.062 0.12 0.18 0.25 0.31 0.37 0.43 0.49

1.9 0.066 0.13 0.20 0.26 0.33 0.39 0.46 0.52

2.2 0.069 0.14 0.21 0.28 0.34 0.41 0.48 0.55

2.5 0.071 0.14 0.21 0.29 0.36 0.43 0.50 0.57

2.8 0.074 0.15 0.22 0.29 0.37 0.44 0.52 0.59

3.1 0.076 0.15 0.23 0.30 0.38 0.45 0.53 0.60

3.4 0.077 0.15 0.23 0.31 0.39 0.46 0.54 0.62

Increases of oxidative metabolism, JPDH, obtained with distinct ratios of lactate/glycolysis-derived pyruvate, r, and different increases in lactate transport flux, c (cf. Eq.
(1)). Roman: below 10%; italic: between 10 and 29%; boldface: above 29%.
doi:10.1371/journal.pcbi.1002686.t001

Modeling of Brain Cell Metabolic Phenotypes
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with a concomitant 45% increase in lactate flux. It is noteworthy

that in this last case, the contribution of each metabolic pathway

approaches the basal state contributions (r = 0.73). Based on these

metabolic responses, such a behavior appears characteristic of

oxidative cells.

It is well known that a certain fraction of brain cells do not

respond to a stimulation by importing lactate but rather by

producing and releasing lactate. In order to reproduce this specific

behavior, some of the parameters had to be modified. We found

that reducing both the initial PDH reaction rate and the activity of

the mitochondrial NADH shuttles leads to a strikingly different

type of response. Fig. 2B presents the result of simulations

performed when the basal values for these parameters were set to

0:3:vmax ,PDH and 0:2:kShuttle as compared to the simulations in

Fig. 2A. Moreover, in the stimulated cell, the increase in PDH

activity was limited to 15% and no increase in the kinetic constant

of mitochondrial NADH shuttle was allowed (instead of +30% for

both parameters in Fig. 2A, see Text S1 for details). In such case, a

stimulation causing an activation of glycolysis and lactate transport

produced a more limited increase in oxidative metabolism (+12%),

but importantly yielded a prominent release of lactate (+91%), as

indicated by the negative sign of the flux. Increasing the

extracellular lactate concentration did not prevent lactate export

(+67%), and oxidative metabolism was increased (+32%). In this

Figure 2. Jshuttle and vmax,PDH determine the occurrence of oxidative vs. glycolytic phenotype. (A) Oxidative phenotype: In the basal state
(black), both lactate transport and glycolysis contribute to JPDH (43% and 57% respectively [29]). We show the resulting steady state transport,
glycolytic and JPDH fluxes upon stimulation (very dark gray ‘‘ctrl-bar’’: +30% vmax,PDH, +30% kshuttle, +48.5% vmax,glyco; dark gray: +80% vmax,MCT,, +30%
vmax,PDH, +30% kshuttle, +48.5% vmax,glyco; light gray: +80% Le, +30% vmax,PDH, +30% kshuttle, +48.5% Jmax,glyco; white: +80% vmax,MCT, +80% Le, +30%
vmax,PDH, +30% kshuttle, +48.5% vmax,glyco). (B) Glycolytic phenotype: In the basal state (black), parameters have been chosen such that lactate is taken
out of the cell (vglycolytic

max ,PDH~0:3:voxidative
max ,PDH , k

glycolytic
shuttle ~0:2:koxidative

shuttle ). We show the resulting steady state transport, glycolytic and JPDH fluxes upon
stimulation (very dark gray ‘‘ctrl-bar’’: +30% vmax,PDH, +30% kshuttle, +48.5% vmax,glyco; dark gray: +80% vmax,MCT, +15% vmax,PDH, +0% kshuttle, +48.5%
vmax,glyco; light gray: +80% Le, +15% vmax,PDH, +0% kshuttle, +48.5% vmax,glyco; white: +80% Le, +80% vmax,MCT, +15% vmax,PDH, +0% kshuttle, +48.5%
vmax,glyco). See Description of the model for equations and Choice of parameters for parameters. (C–D) Basal lactate transport (C) and oxidative
metabolism (D) when varying vmax,PDH and kshuttle. We considered 20 different values evenly spaced in the range ½0:1:voxidative

max ,PDH
; 2:voxidative

max ,PDH
� and

½0:1:koxidative
shuttle

; 2:koxidative
shuttle

�, resulting in 400 simulations. For each simulation, we recorded the steady state value of JMCT and JPDH. We show the resulting

iso-curves (note that vmax,PDH and kshuttle were normalized to their basal oxidative value, so that (1,1) (marked by ‘o’) corresponds to the parameters
used in Fig. 2A and (0.2,0.3) (marked by ‘g’) corresponds to the parameters used in Fig. 2B). In non-shaded regions, the ratio Li=P [ 5; 35½ � [32],
Li [ ½0:35; 1:65� and NADH=NADz [ ½0:001; 0:01� [34].
doi:10.1371/journal.pcbi.1002686.g002

Modeling of Brain Cell Metabolic Phenotypes
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case, the observed metabolic behavior rather corresponds to a

typical predominantly glycolytic cell. Fig. 2C–D shows the basal

lactate transport (C) and oxidative metabolism (D) obtained when

varying both vmax,PDH and kshuttle, normalized to their basal

oxidative reference values. On one hand, increases in vmax,PDH

and/or kshuttle can significantly increase pyruvate consumption by

mitochondria, JPDH. This result can also be interpreted in the

context of neural stimulation, showing that a stimulation of the

NADH shuttles, especially the malate-aspartate shuttle, can

usefully contribute to the increase in oxidative phosphorylation.

On the other hand, decreasing vmax,PDH and/or kshuttle leads to a

glycolytic phenotype, with lactate secretion by the cell. Interest-

ingly, while strongly reducing either vmax,PDH or kshuttle is sufficient

to switch from a basal oxidative to a glycolytic phenotype, these

parameters need to be tuned together in order for the cell to

preserve physiological lactate and pyruvate levels (non-shaded

areas).

Importance of lactate metabolism in sustaining oxidative
metabolism

It could be observed in the previous simulations that lactate

metabolism can significantly contribute to an enhancement in

oxidative metabolism in cells with a predominantly oxidative

phenotype (Fig. 2A). In these simulations, the presence of a strong

glycolytic component was considered in parallel with lactate

metabolism. However, evidence from the literature suggests that

this is not the case in certain brain cell types, neurons in particular

[14]. Thus, we investigated the capacity of lactate metabolism to

sustain enhanced oxidative metabolism under fixed glycolytic

conditions. Four scenarios were studied combining two lactate/

glycolysis-supplied pyruvate ratios, JMCT/Jglyco = r, at basal state,

and two distinct levels of activation of the oxidative rate, vmax ,PDH :

r = 0.75, +30% vmax ,PDH (Fig. 3A); r = 0.75, +70% vmax ,PDH

(Fig. 3B); r = 2.2, +30% vmax ,PDH (Fig. 3C); and r = 2.2, +70%

vmax ,PDH (Fig. 3D). In each case, a series of incremental oxidative

fluxes were delineated, allowing to determine the combination of

increased lactate transport capacity and extracellular lactate

concentration that can sustain each oxidative flux (note that

concentrations remained within physiological limits in all cases, cf.

Choice of parameters). As can be seen, a rather wide range of

increased oxidative rates can be accounted for by altering lactate

transport capacity and extracellular lactate concentration. Impor-

tantly too, we see that increasing the PDH maximal capacity

vmax,PDH by 30% (respectively 70%) is not sufficient to yield an

Figure 3. Importance of lactate transport for oxidative phosphorylation in oxidative cells. (A) As a starting point, it was assumed that
lactate transport and glycolysis contribute 43% and 57%, respectively, to oxidative phosphorylation (r = 0.75 [29]). Lactate transport was then
stimulated by increasing vmax,MCT and Le in the range 0–80%. The iso-curves show JPDH normalized to its basal value (as a measure of oxidative
phosphorylation). Note that in parallel, vmax,PDH and kshuttle were multiplied by a factor f = 1.3, while the glycolytic flux remained fixed to its basal level.
In all regions, the ratio Li=P [ 5; 35½ � [32] and NADH=NADz [ ½0:001; 0:01� [34]. (B) As in (A), but f = 1.7. (C) As in (A), but r = 2.2 [28]. (D) As in (A), but
r = 2.2 [28] and f = 1.7. See Description of the model for equations and Choice of parameters for parameters.
doi:10.1371/journal.pcbi.1002686.g003

Modeling of Brain Cell Metabolic Phenotypes

PLOS Computational Biology | www.ploscompbiol.org 5 September 2012 | Volume 8 | Issue 9 | e1002686



increase in oxidative metabolism JPDH of 30% (respectively 70%).

Hence, in order to be efficient under fixed glycolysis, the cell

should not rely exclusively on the regulation of the PDH activity to

increase its production of energy. In parallel, it should also

enhance lactate transport, meaning that the latter could become

limiting upon activation.

In order to better delineate under which range of basal

conditions a change in lactate metabolism alone can satisfy

physiological increases in oxidative rate, we varied the lactate/

glycolysis-supplied pyruvate ratio, JMCT,0/Jglyco,0, = r, between

extreme cases (0.1 to 3.4 with increments of 0.3) together with

increases c in lactate flux of up to 80% (see Table 1; note that in

this case, vmax,glyco, kshuttle and vmax,PDH were not enhanced, because

the calculation is based here on Eq. (1)). As can be observed,

increases in oxidative rate JPDH of up to 10% (white), between

10% and 29% (light gray), or even above 29% (dark gray) can be

easily accounted by physiological increases in lactate flux for a

wide range of basal conditions which encompasses most published

values [15,28,29] (see also Evaluation of model validity with in vitro and

in vivo experimental data).

Evaluation of model validity with in vitro and in vivo
experimental data

It is important to assess the validity of the model by testing

whether it can account for published data. First, a ratio at basal

state r = JMCT/Jglyco = 0.69/0.31 = 2.2 as determined in vivo by

Hyder et al. [28] was modeled with plausible flux rates for lactate

transport, JMCT, glycolysis, Jglyco, and oxidative metabolism, JPDH

(Fig. 4A in black). Of interest, it gave rise to physiological

intracellular lactate and pyruvate concentrations of 0.36 mM and

0.018 mM respectively, resulting in a lactate/pyruvate ratio of

19.5. Note that we used an extracellular lactate concentration of

1.1 mM and that the glycolysis flux was reduced by 49% to

account for the data (compared to the oxidative cell of Fig. 2A).

When considering in vitro data of Bouzier-Sore et al. [15] in

cultured neurons, we used a ratio r = 0.76/0.24 = 3.2 with an

extracellular lactate concentration of 1.1 mM as in the experi-

mental condition (Fig. 4A, dark gray). Interestingly, increasing the

extracellular lactate concentration to 5.5 mM, as used in Bouzier-

Sore et al. [16], led to a higher but still quite plausible intracellular

pyruvate concentration of 0.039 mM (Fig. 4A, light gray) and to a

ratio r = 4.1, which is significantly lower than the corresponding

experimental ratio (8). Reducing the glycolytic flux by 60% yielded

a pyruvate concentration of 0.036 mM (Fig. 4A, white). In such

case, we obtained a ratio r = 0.92/0.08 = 11.5, which matches the

experimental results.

Finally, we decided to assess under conditions close to those

observed in vivo whether lactate metabolism can account for a

significant enhancement in oxidative rates following brain

activation. Changes in lactate, glycolytic and oxidative fluxes

following a stimulation were determined with the model using the

experimental in vivo data of Hyder et al. [28], i.e. a ratio r = 0.69/

0.31 = 2.2 and a resting extracellular lactate concentration of

1.1 mM (Fig. 4B). Three stimulated conditions were considered:

increased lactate transport rate of 80% (Fig. 4B, dark gray),

increased extracellular lactate concentration of 80% (Fig. 4B, light

gray), and a combination of both (Fig. 4B, white). An increase in

oxidative capacity of 70% was applied in parallel for all three

stimulated conditions, as proposed by Hyder et al. [28]. As can be

seen, the increase in lactate transport capacity or the extracellular

lactate concentration led to an increase in oxidative flux of 67%

and 72% respectively. But even more strikingly, a combination of

the two parameters gave rise to an even more significant 86%

increase in oxidative rate.

Figure 4. Model validity tested for different experimental conditions. (A) Black: r = JMCT/Jglyco = 0.69/0.31 = 2.2 at basal state, as evaluated in
vivo by Hyder et al. [28], with physiological values for intracellular lactate (Li) and pyruvate (P) concentrations (0.36 and 0.018 mM, respectively).
Le = 1.1 mM. Dark gray: r = JMCT/Jglyco = 0.76/0.24 = 3.2, as observed in vitro by Bouzier-Sore et al. [15], with the experimentally used Le = 1.1 mM. Light
gray: Le was increased to 5.5 mM, as described in the experiment by Bouzier-Sore et al. [16], resulting in a higher, but still plausible, value of 0.039 mM
for intracellular pyruvate; r = 4.1. White: Same conditions as in light gray, but the glycolytic rate was lowered by 60%, resulting in a lower intracellular
pyruvate concentration of 0.036 mM and a JMCT/Jglyco ratio equal to 0.92/0.08 = 11.5, which matches experimental results by Bouzier-Sore et al. [16].
(B) Effect of lactate transport enhancement in the case of a basal JMCT/Jglyco ratio (r) equal to 0.69/0.31 = 2.2, as evaluated in vivo by Hyder et al. [28], cf.
black bar in (A). Basal state: Le = 1.1 mM (black). Stimulations: +30% vmax,PDH, +30% kshuttle, +48.5% vmax,glyco (very dark gray, ctrl-bar); +0% Le, +80%
vmax,MCT, +70% vmax,PDH, +70% kshuttle (dark gray); +80% Le, +0% vmax,MCT, +70% vmax,PDH, +70% kshuttle (light gray); +80% Le, +80% vmax,MCT, +70%
vmax,PDH, +70% kshuttle (white).
doi:10.1371/journal.pcbi.1002686.g004
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Discussion

A critical question in neuroenergetics concerns the metabolic

differences among the various brain cell types, and in particular

between neurons and astrocytes. Several studies performed over the

last 60 years using various approaches have documented distinctive

features between these two cell types. Thus, using enzymatic analyses

on individually isolated cells, Hydén and colleagues have suggested

that neurons favor oxidative metabolism while glial cells rather

exhibit a prominent glycolytic activity [37,38]. With the advent of

magnetic resonance spectroscopy applied in vivo or on purified

preparations of both astrocytes and neurons in culture, several

groups have confirmed the prominence of glycolysis in astrocytes

and a more active tricarboxylic acid cycle in neurons [15,39,40,41].

An important issue however is to determine which enzymatic

elements could confer such a particular metabolic profile to these

brain cell types. In this context, transcriptomic studies have all

pointed out that astrocytes contain higher levels of several glycolytic

enzymes than neurons [42,43,44]. In addition, studies on the

distribution of isoforms of key proteins involved in lactate

metabolism have been found to be consistent with astrocytes being

glycolytic cells that export lactate, while neurons would be better

equipped to oxidize it [25,45,46,47]. Despite these pieces of

evidence, it is still difficult to assess to what extent each specific

element is critical to determine the particular metabolic profile

observed in each brain cell type and how physiological metabolite

concentrations are maintained. In this regard, our model provides a

simple answer to this question. It revealed that altering the activity of

only two components, the enzyme pyruvate dehydrogenase (PDH)

and the mitochodrial NADH shuttling capacity, was sufficient to

obtain two distinct metabolic phenotypes while preserving physio-

logical concentrations. These phenotypes are characterized by their

differential lactate metabolism. In the first case, cells use lactate as an

oxidative energy substrate and are considered predominantly

oxidative. The second phenotype exhibits lactate production and is

associated with a rather glycolytic profile.

Interestingly, experimental evidence have been provided for a

key role of these two enzymatic processes in the metabolic profile

of brain cells. It was shown that neurons in culture oxidize readily

substrates like lactate, which is not the case for cultured astrocytes

that rather produce lactate [17]. But when astrocytes were treated

with dichloroacetate, a substance that prevents PDH phosphor-

ylation and enhances its activity, it promoted lactate oxidation and

reduced its production from glucose. Indeed, it was shown that

PDH activity is strongly inhibited constitutively in astrocytes via its

phosphorylation while the neuronal PDH operates close to its

maximal level [48] (ratio of 0.25 for vmax,PDH between astrocytes

and neurons, similar to our value of 0.3 used in Fig. 2B). Such an

observation indicates that the level of PDH activity is key to

determine the oxidative capacity of the cell. In addition to the level

of PDH activity, it was observed that astrocytes and neurons differ

in terms of mitochondrial NADH shuttling activity, especially the

malate/aspartate shuttle which is the most important NADH

shuttle in the brain (ratio of 0.26 for kShuttle between astrocytes and

neurons [49], similar to our value of 0.2 used in Fig. 2B). Thus, it

was documented that astrocytes, in contrast to neurons, express

very low levels of an essential component of the mitochondrial

malate/aspartate NADH shuttle, the mitochondrial aspartate/

glutamate transporter also known as aralar [49]. It was also

demonstrated that glial cells have a low activity of the malate/

aspartate shuttle [50,51]. Moreover, when the mitochondrial

aspartate/glutamate transporter was invalidated via a transgenic

approach, cultured neurons from KO mice exhibited enhanced

lactate production [52]. These data support the concept that a less

efficient mitochondrial NADH shuttling mechanism, as observed

in astrocytes, is associated with increased lactate production, as

predicted by our model. Further analyses on the importance of

PDH activity vs. mitochondrial NADH shuttling capacity also

revealed that the level of active PDH determines the maximal

oxidative capacity of the cell while varying mitochondrial shuttling

rate allows rapid adjustments in oxidative rate (see Fig. S1 and

Section Effect of mitochondrial NADH shuttle vs. PDH parameters in Text

S2). In this sense, it has been shown that cytoplasmic Ca2+ levels

control the activity of aralar [53,54] and yield increased pyruvate

levels, suggesting that adjustments of the NADH shuttle, via the

control of cytoplasmic Ca2+ levels, act like a ‘‘gas pedal’’ [55].

Interestingly, it can be noticed that the oxidative and glycolytic

profiles described in our model would fit well with the described

behavior of a majority of neurons and astrocytes, respectively.

However, it is not excluded that some neurons and/or astrocytes

might exhibit a constitutively different metabolic profile or that

they might alter their behavior as a function of activation, if their

characteristics resemble those highlighted herein (see a modeling

example of such a cell in Fig. S2 and in Section Lactate export at rest

– lactate consumption upon activation in Text S2).

Recent evidence suggest that lactate represents an important

oxidative energy substrate for the brain [56,57] and more

specifically for neurons in vivo [58]. These data add to numerous

others obtained over decades in various in vitro preparations

indicating that lactate represents a preferential oxidative energy

substrate over glucose in neurons [15,16,17]. A key question

remaining was to what extent lactate oxidation can sustain the

observed enhancement in oxidative metabolism occurring in brain

cells following cerebral activation. In theory, lactate competes with

glucose-derived pyruvate as an oxidative substrate, although we

could demonstrate a substantial contribution of lactate to

enhanced oxidative metabolism despite a strong rise in glycolysis

in the stimulated condition. It was recently demonstrated however

that cultured neurons cannot exhibit an enhancement in their

glycolytic rate, as they lack an important component of the

glycolytic regulatory cascade [14]. This situation is highly

favorable to the use of lactate over glucose as a preferred oxidative

substrate in these cells. Taking this point into account, our

simulations demonstrate that under a wide range of initial

glucose/lactate utilization ratios, most physiological increases in

oxidative metabolism can be accounted for by realistic changes in

lactate flux obtained by modifying either transport capacity,

extracellular lactate concentration, or both. It is important to

mention that following appropriate stimulation, both an increase

in extracellular lactate concentration [36] and an increase in

lactate transport capacity due to MCT2 membrane translocation

in neurons [35] have been documented, providing physiological

mechanisms for the modeling predictions. It was also important to

consider other factors that can influence lactate flux under

physiological conditions, in particular the pH changes known to

occur following activation, and the LDH parameters. First of all, it

was determined that upon stimulation, the observed pH changes

would be favorable to both lactate transport and oxidation within

an oxidative cell, as it would be the case in a neuron (see Fig. S3

and Section Effect of intracellular and extracellular pH values in Text S2).

In contrast, it is interesting to notice that pH changes occurring

with glutamate uptake in astrocytes prevent this glycolytic cell type

to oxidize pyruvate and rather promote lactate release [59].

Concerning LDH, it could be shown that the responses obtained

for an oxidative cell remain the same with different concentrations

of total LDH (over a very wide range), suggesting that LDH

activity does not represent a limiting factor for lactate oxidation at

steady state (see Fig. S4 and Section Effect of LDH parameters in Text
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S2); however this does not preclude a physiological role of the

distribution of LDH isoforms between neurons and astrocytes

during fast transients. Similarly, using various equations for lactate

transport via MCTs does not modify the results obtained, as long

as the importance of the proton gradient is taken into account, a

point that was neglected in previous modeling efforts ([60]; see Fig.

S5 and Section Effect of MCT parameters and alternative equation for

MCT transport in Text S2).

Finally, it was important to determine whether modeled cells

could account for the experimental results obtained both in vitro

and in vivo [15,16,28]. Indeed, it was the case but interestingly,

modeling revealed that the glycolytic rate must be lower in

cultured neurons compared to in vivo (cf. Fig. 4A). This is not

surprising since the population of oxidative cells in vivo most likely

displays a greater heterogeneity in terms of glycolytic rate than the

selected population of neurons in vitro. Indeed, a low and rather

uniform glycolytic rate was measured in cultured neurons as

opposed to other cell types using an appropriate FRET

nanosensor [61]. In contrast, the glycolytic rate measured for

neurons in acute hippocampal slices by the same method was

much more variable. Notwithstanding, the glycolytic rate in

neurons (either in cultured neurons or in slices) was found to be on

average much lower than in astrocytes [61], a feature which

further emphasizes the importance of exogenous (astrocyte-

derived) lactate vs. glucose-derived pyruvate to sustain oxidative

metabolism in neurons. Another interesting prediction of our

model concerns the importance of lactate transport capacity for

lactate release by astrocytes and consumption by neurons. In fact,

the capacity of astrocytes to provide lactate to surrounding cells

upon stimulation seems directly dependent on both lactate

transport and glycolysis capacities (cf. Fig. 2B, dark gray bar,

where glycolysis was increased by 48% and transport capacity by

80%, yielding a significant increase in lactate export of +91%). In

parallel, neurons would rely on both increased lactate transport

capacity and extracellular lactate concentration to support their

energetic needs upon stimulation (cf. Fig. 3 and Table 1). In this

regard, the recent observation that the expression of the

monocarboxylate transporter MCT4 can be raised in astrocytes

by nitric oxide, leading to enhanced lactate release, provides a

mechanism to fulfil this predicted feature [62]. It remains to be

determined whether a faster mechanism (e.g. membrane translo-

cation) exists and would allow for rapid adaptation of lactate

supply by astrocytes in register with neuronal activity, as is the case

for MCT2 to facilitate lactate uptake in neurons [35].

Although the main findings of our modeling effort have been

applied in the context of neuroenergetics, it is important to

emphasize that implications extend far beyond. Indeed, cell-cell

lactate shuttles have been reported in several other tissues, e.g.

skeletal muscle [18,22]. It is purported that the concept developed in

the present work can be generalized to several physiological

situations and may provide the main governing principles of cellular

metabolic specialization as well as cell-cell metabolic cooperation in

various biological organisms [63,64,65]. Furthermore, it could be

applied to pathologies and explain certain characteristics of their

development. For example, as observed by Warburg [2], many

tumor cells exhibit aerobic glycolysis which gives them a key

advantage to survive in a hypoxic environment, although others

continue to rely on oxidative metabolism. In fact, our model provides

a simple biochemical description of the Warburg effect. More

recently, it was observed that oxidative tumor cells lying close to

blood vessels consume lactate from more distant hypoxic tumor cells

in order to spare glucose for these cells, thus favoring growth of the

tumor [66]. In such case, our model offers a theoretical framework to

describe the optimal conditions leading to disease progression. Based

on such tools, perhaps it can be hoped that we could not only better

understand factors that determine the evolution of various diseases,

but it may also open up new therapeutic perspectives.

Supporting Information

Figure S1 PDH-metabolic flux as a function of the mitochon-

drial NADH shuttling rate kshuttle and the maximal velocity of the

PDH reaction, vmax,PDH, which is proportional to the total amount

of active PDH. The simulations in the gray areas did not match

the following physiological constraints (cf. Choice of parameters in

the main text): intracellular lactate concentrations Li [
½0:35; 1:65�mM [30,31], ratio Li=P [ ½5; 35� and redox state

NADH=NADz [ ½0:001; 0:01� [34]. The black area represents

the simulation with the parameters used for a typical oxidative cell

(cf. Fig. 2A and Table S1).

(TIF)

Figure S2 NALS at rest, ANLS upon activation. (A) In the basal

state (black), parameters are chosen such that lactate is taken out of

the cell (vmax ,PDH~0:6:voxidative
max ,PDH , kshuttle~0:6:koxidative

shuttle , vmax ,glyco

~1:3:voxidative
max ,glyco). We show the resulting transport, glycolytic and

JPDH fluxes upon stimulation (dark gray: +80% vmax,MCT, +100%

vmax,PDH, +70% kshuttle, +0% vmax,glyco; light gray: +80% Le,

+100% vmax,PDH, +70% kshuttle, +0% vmax,glyco; white: +80%

vmax,MCT, +80% Le, +100% vmax,PDH, +70% kshuttle, +0%

vmax,glyco). (B) Same as (A), but glycolysis is also enhanced upon

stimulation (+48.5% vmax,glyco). Cf. Table S1 for the parameters of

a typical oxidative cell.

(TIF)

Figure S3 Effect of pH on transport, glycolysis and PDH-

metabolic flux. All the rates are normalized relative to their

maximum. The intracellular proton concentration Hz
i was varied

within the range of [1023.6; 1024.8] mM; for the other parameters,

refer to Table S1. The simulations in the gray areas did not

match the following physiological constraints (cf. Choice of parameters

in the main text): intracellular lactate concentrations Li [
½0:35; 1:65�mM [30,31], ratio Li=P [ ½5; 35� and redox state

NADH=NADz [ ½0:001; 0:01� [34]. * represents the simulation

with the parameters used for a typical oxidative cell (cf. Fig. 2A

and Table S1).

(TIF)

Figure S4 Changing the LDH pool. (A) Effect of the total LDH

pool on transport, glycolysis and PDH-metabolic flux. The

simulations in the gray area did not match the following

physiological constraints (cf. Choice of parameters in the main text):

intracellular lactate concentrations Li[½0:35; 1:65�mM [30,31],

ratio Li=P[½5; 35� and redox state NADH=NADz[½0:001; 0:01�
[34]. * represents the simulation with the parameters used for a

typical oxidative cell ([LDH]total = 3.2 mM, cf. Fig. 2A and Table

S1). (B) [LDH]total = 0.064 mM (compare with Fig. 2A of the main

text where [LDH]total = 3.2 mM). In the basal state (black), both

glycolysis and lactate transport contribute to JPDH (57% and 43%

respectively). We show the resulting transport, glycolytic and JPDH

fluxes upon stimulation (dark gray: +80% vmax,MCT, +30% vmax,PDH,

+30% kshuttle, +48.5% vmax,glyco; light gray: +80% Le, +30%

vmax,PDH, +30% kshuttle, +48.5% vmax,glyco; white: +80% vmax,MCT,

+80% Le, +30% vmax,PDH, +30% kshuttle, +48.5% vmax,glyco).

(TIF)

Figure S5 Effect of MCT parameters (transport equation in

[60]). (A) Oxidative phenotype: In the basal state (black), both

lactate transport and glycolysis contribute to JPDH (43% and 57%

respectively [29]). We show the resulting steady state transport,
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glycolytic and JPDH fluxes upon stimulation (dark gray: +80%

vmax,MCT, +30% vmax,PDH, +30% kshuttle, +48.5% vmax,glyco; light

gray: +80% Le, +30% vmax,PDH, +30% kshuttle, +48.5% vmax,glyco;

white: +80% vmax,MCT, +80% Le, +30% vmax,PDH, +30% kshuttle,

+48.5% vmax,glyco). (B) Glycolytic phenotype: In the basal state

(black), parameters are chosen such that lactate is taken out of the

cell (v
glycolytic
max ,PDH~0:3:voxidative

max ,PDH , k
glycolytic
shuttle ~0:2:koxidative

shuttle ). We show

the resulting steady state transport, glycolytic and JPDH fluxes

upon stimulation (dark gray: +80% vmax,MCT, +15% vmax,PDH,

+0% kshuttle, +48.5% vmax,glyco; light gray: +80% Le, +15%

vmax,PDH, +0% kshuttle, +48.5% vmax,glyco; white: +80% Le, +80%

vmax,MCT, +15% vmax,PDH, +0% kshuttle, +48.5% vmax,glyco). See

Supp. Table S1 for the parameters of a typical oxidative cell. For

lactate transport, we used vmax ,MCT~125=(39|10{15)s{1 and

the parameters in [60].

(TIF)

Table S1 Parameters used in our simulations to compute the

basal state of a typical oxidative cell (cf. Fig. 2A). For the

references, refer to the bibliography in Text S1.

(DOC)

Text S1 Model description.

(DOC)

Text S2 Model robustness.

(DOC)
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