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Abstract

Promoters process signals through recruitment of transcription factors and RNA polymerase, and dynamic changes in
promoter activity constitute a major noise source in gene expression. However, it is barely understood how complex
promoter architectures determine key features of promoter dynamics. Here, we employ prototypical promoters of yeast
ribosomal protein genes as well as simplified versions thereof to analyze the relations among promoter design, complexity,
and function. These promoters combine the action of a general regulatory factor with that of specific transcription factors, a
common motif of many eukaryotic promoters. By comprehensively analyzing stationary and dynamic promoter properties,
this model-based approach enables us to pinpoint the structural characteristics underlying the observed behavior.
Functional tradeoffs impose constraints on the promoter architecture of ribosomal protein genes. We find that a stable
scaffold in the natural design results in low transcriptional noise and strong co-regulation of target genes in the presence of
gene silencing. This configuration also exhibits superior shut-off properties, and it can serve as a tunable switch in living
cells. Model validation with independent experimental data suggests that the models are sufficiently realistic. When
combined, our results offer a mechanistic explanation for why specific factors are associated with low protein noise in vivo.
Many of these findings hold for a broad range of model parameters and likely apply to other eukaryotic promoters of similar
structure.
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Introduction

Combinatorial regulation of gene expression is an important

mechanism for signal integration in prokaryotes and eukaryotes

(reviewed in [1]). Typically, specific motifs in the DNA sequence

favor binding of particular transcription factors (TFs) and thus

encode a cis-regulatory input function [2]. Protein-protein

interactions among different TFs, which do not necessarily involve

direct contacts with DNA, contribute to—frequently synergistic—

regulatory function [1]. This is a very versatile mechanism for

hierarchical control, e.g., when TFs can only be recruited in a pre-

defined sequence or when they are excluded under specific

conditions [3]. Chromatin state and chromatin-modifying activ-

ities provide yet another layer of regulation, and recruitment of the

latter is typically also mediated by TFs [4]. Hence, multiple,

complex levels of combinatorial control characterize transcrip-

tional regulation [5].

New high-throughput measurement methods have generated a

wealth of information on transcriptional regulatory circuits at

different levels such as chromatin states, promoter occupancy by

TFs, and mRNA expression dynamics as the system’s output.

Analysis of combinatorial regulation at the genome-scale points to

a modular organization of transcriptional regulatory networks,

which could facilitate data integration. However, this requires a

multi-level analysis [6] and dynamic processes may lead to large

functional re-arrangements of transcriptional regulatory networks.

Concomitantly, understanding network design principles needs a

detailed investigation of dynamic processes [7,8].

Corresponding computational models aid in disentangling

transcriptional network structures and in quantitatively analyzing

the impact of promoter architecture on the regulatory outcome.

Depending on network size, available experimental data, and

model purpose, model types range from qualitative logical models

to quantitative approaches based on thermodynamic consider-

ations or ordinary differential equations (ODEs) (reviewed in [9–

11]). However, most previous work focused on stationary gene–

regulatory input functions in real-life organisms and in rational

promoter design [2,12–14]. Recently, stochastic kinetic models

have received increased attention because we lack a deeper

understanding of how gene network architecture shapes gene

expression noise [15]. Stochasticity in gene expression arises from

environmental effects and from intrinsic sources. It can have

benefits and adverse effects for gene network function (reviewed in

[16,17]). Hence, noise in gene expression may be an evolvable trait

that is intimately linked to promoter architecture [16]. For

eukaryotic systems, irregular promoter activation due to chroma-

tin modifications or transcriptional re-initiation are the main

intrinsic noise sources [15,18]. Despite recent progress [15,18,19],

our understanding of how the dynamic interplay of transcription

factors, chromosomal positioning, epigenetic control, and cis-

regulatory promoter elements shapes expression dynamics and

noise properties is still limited. Moreover, much of our knowledge
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derives from artificial expression systems and unnatural stimuli,

and we need more studies in complex natural systems to reliably

assess the impact of stochasticity on diseases and developmental

pathways [16]. For this, integrated approaches have to consider

potential tradeoffs between optimal noise properties, phenotypic

fitness, high mRNA productivity, and robustness to perturbations

[15,20].

Budding yeast ribosome biogenesis can be employed for such an

integrated analysis because the system is quantitatively well-

characterized, complex, and crucial for cell physiology. It needs to

operate efficiently and reliably; for instance, ribosome biogenesis

requires coordinated expression of several hundred genes and

accounts for up to 80% of transcriptional activity during rapid

growth [21,22]. Tight and coordinated transcriptional control

therefore appears critical, and promoter architecture plays a key

role in integrating TF interactions and different layers of control.

The system employs the Forkhead (FH)-type TF Fhl1 (accession

number S000006308; all accession IDs refer to the Saccharomyces

Genome Database (SGD) available at http://yeastgenome.org

unless mentioned otherwise), which belongs to a family of

transcriptional regulators with more than 100 members conserved

from yeast to human. These regulators typically serve as

converging points for signaling pathways, they possess variable

activation/repression domains, and often act in concert with

coactivators/corepressors and general regulatory factors (GRFs)

(for reviews cf. [23,24]). Moreover, binding of the GRF Rap1

(SGD S000005160) and of Fhl1 in yeast highly correlates with low

protein noise [25] and transcriptional co-regulation is particularly

strong for RP genes [26,27], but the causes for both are unclear.

These features make the control of ribosome biogenesis an ideal

example system to address three general questions: Do complex

promoters provide advantages over alternative, simpler designs?

Why are complex designs frequently employed when reliable

regulation is critical? Is the complex promoter architecture

especially suited to provide low variations in mRNA levels?

Here, we address these questions by developing, analyzing, and

validating a set of dynamic mathematical models of the promoter

of yeast ribosomal protein (RP) genes. The set includes the in vivo

design and three functionally related, but progressively simpler

synthetic architectures. We integrate selected information from

large-scale studies and from targeted experiments to provide the

necessary quantitative basis for these models, and to comprehen-

sively characterize the stationary and dynamic regulation of

promoter activities using deterministic and stochastic simulations.

This enables us to pinpoint structural features underlying the

observed behavior and to identify functional tradeoffs that impose

constraints on promoter architecture.

Results

A Set of Promoter Models
To develop kinetic promoter models, we start from elementary

interactions between transcription factors and DNA. Typical RP

gene promoters contain paired binding sites for the GRF Rap1

[27] (cf. Figure 1A and 1B). Rap1 binds DNA directly [28], which

is required for efficient expression of RP genes and maintains

promoter regions essentially nucleosome-free [3,29]. This complex

alone can recruit RNA polymerase II for basal transcriptional

Author Summary

Combinatorial regulation of gene expression is an
important mechanism for signal integration in prokaryotes
and eukaryotes. Typically, this regulation is established by
transcription factors that bind to DNA or to other
regulatory proteins. Modifications of the DNA structure
provide another layer of control, for instance, in gene
silencing. However, it is barely understood how complex
promoter architectures determine key features of promot-
er dynamics such as gene expression levels and noise.
Here, we employ realistic mathematical models for
prototypical promoters of yeast ribosomal protein genes
as well as simplified versions thereof to analyze the
relations among promoter design, complexity, and func-
tion. By comprehensively analyzing stationary and dynam-
ic promoter properties, we find that functional tradeoffs
impose constraints on the promoter architecture. More
specifically, a stable configuration in the natural design
results in low transcriptional noise and strong co-
regulation of target genes in the presence of gene
silencing. Combined, our results offer a mechanistic
explanation for why specific factors are associated with
low protein noise in vivo. We expect that many of these
findings apply to other promoters of similar structure.

Figure 1. Architecture of ribosomal protein gene promoters and corresponding models. (A) Alternative promoter structures considered
for wild-type architecture (Model 1) and for progressively simplified synthetic configurations (Models 2–4). (B) Reaction networks of the individual
models describing progressive association of TFs until full activation. Promoter states with basal and full transcriptional activity are marked in blue
and red, respectively.
doi:10.1371/journal.pcbi.1000279.g001
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activity [27,30]. Recruitment of the FH-type transcription factor

Fhl1, which in turn binds Ifh1 (SGD S000004213) via its

Forkhead-associated (FHA) domain, leads to full activation

[27,31,32]. When Fhl1 is bound in the absence of Ifh1, even

basal transcription is suppressed [33]. Upstream signaling

pathways can convey nutrient status to Ifh1 such that it rapidly

dissociates from the promoter. This leads to a substantial reduction

of RP transcription, whereas occupation by Rap1 and Fhl1

remains unchanged [27,32]. High-confidence datasets show that

this RP gene promoter architecture is very generic in yeast

[31,32]. Although additional regulators can contribute to RP gene

regulation, their effects are probably indirect, strain-specific, or

they affect RP gene expression in the same qualitative fashion as

Ifh1 [27,29,34,35]. Hence, the interactions between GRF, Fhl1,

Ifh1, and RP gene promoters capture the key aspects of

transcriptional control of RP genes.

Model 1 represents the wild-type scenario as follows (Figure 1B):

Sequential recruitment of two Rap1 molecules leads to basal

transcriptional activity. Subsequent Fhl1 binding in the absence of

Ifh1 quenches basal transcription, while Fhl1-dependent recruit-

ment of Ifh1 induces full activity. Since regulation of Ifh1 binding

to the promoter critically determines promoter activity [31,32] we

simulate regulation upstream of Ifh1 by varying the amount

available for promoter binding, i.e., the effective Ifh1 concentra-

tion (see Protocol S1 for details).

Since most physiological stimuli appear to regulate Ifh1 binding

while Rap1 and Fhl1 serve as scaffold, it is unclear if the seemingly

complex architecture of the natural RP gene promoter yields any

functional advantage. In principle, one could envision the same

coordinated regulation by controlling the activity, localization, or

DNA binding affinity of a single TF such as Ifh1. Note that more

complex promoters in terms of combinatorial control exist even in

yeast [36]. However, RP genes are special because they form an

exceptionally tight cluster of coregulated genes in transcriptome

studies [26,27].

To investigate differences in function and regulatory perfor-

mance of structurally related, but simpler architectures, we

developed three alternative promoter models (Models 2–4). They

are progressive simplifications of the natural promoter configura-

tion (Figure 1B; see Protocol S1 for details). Models 2 and 3 follow

the same logic of sequential TF recruitment as the wild-type

model. In Model 2, a second Ifh1 molecule replaces Fhl1 and

transcription ceases when only a single Ifh1 is bound (Figure 1B).

By contrast, recruiting one Ifh1 molecule suffices for full activation

in Model 3 and Model 4. Compared to the wild type (Model 1),

Model 2 is a biologically more parsimonious solution with only two

different proteins, but it maintains the same kinetic order as Model

1. Model 3, in addition, has a reduced kinetic order. Finally,

Model 4 is the structurally simplest promoter variant that can

transmit environmental inputs to a target gene. Notably, it does

not employ GRFs.

Although the simplified models are synthetic, they correspond

to promoter architectures encountered in vivo. Model 2 with its

cooperative activation by homodimeric TFs resembles regulation

by cI repressor in phage l [37]. Certain Ternary Complex Factor-

type promoters are structurally similar to Model 3 [38]. Promoter

architectures with single TFs as in Model 4 are well-described in

yeast, e.g., involving the TF Gcn4 (SGD S000000735) in amino

acid biosynthesis [36]. Importantly, for the molecular species

denoted as Ifh1 in simplified Models 2–4 we assume functional

equivalence, but not structural identity to Ifh1, which itself cannot

bind to DNA [29].

Stochastic binding and dissociation events of TFs and of RNA

polymerase determine whether a given RP gene is transcribed. We

represented control events by sets of elementary chemical

reactions and mass-action kinetics [39,40] with or without

including gene silencing due to changes in chromatin structures

(see Material and Methods and below). In this modeling

framework, derivation of promoter kinetics for both the deter-

ministic regime (based on ODEs) and for the stochastic setting is

straightforward [41]. To analyze mean promoter activities, or

other average properties, we used a deterministic description and

verified its qualitative consistency with stochastic simulations for

selected models and parameter settings (data not shown). Some

simulations were performed without considering gene silencing,

both to separate its effects from those of the promoter

configuration alone and because an equivalent stationary behavior

could have been achieved in its presence by adapting the binding

constants (see Materials and Methods and Protocol S1 for details).

The RP Gene Promoter Encodes a Tunable Switch
To address how upstream signaling pathways—through varia-

tion in Ifh1 levels—modulate RP gene transcription, and how this

is influenced by the ambivalent coactivator/repressor Fhl1, we

compared model predictions of stationary promoter activity

without chromatin remodeling. For realistic parameter values,

promoter activities are very similar for all models (Figure 2A)

because, in the more complex models 1–3, most genes are

occupied by Rap1 dimers and thus available for Ifh1 binding.

Notably, the in vivo configuration (Model 1) does neither provide

the highest stationary activity, nor the steepest or the most graded

response of all model variants. Hence, the stationary input-output

characteristics with respect to Ifh1 alone do not explain the

complexity of the in vivo architecture.

Next, we focused on gene inactivation because rapid down-

regulation of ribosome synthesis is important for cellular growth

when nutrients become scarce. In this case, Ifh1 leaves the

promoter and RP synthesis effectively ceases, whereas environ-

mental conditions barely affect Fhl1 and Rap1 binding [3,42,43].

We emulated adverse environmental conditions by complete

absence of Ifh1. Only the simplest model without GRF (design 4)

enables a complete shut-off (Figure 2B). All other configurations

retain a basal activity due to RP gene complexes with two Rap1

molecules. For realistic values of basal promoter activity (g), Fhl1

binds the majority of Rap12-RP gene complexes in design 1 and

thereby efficiently quenches basal transcriptional activity when

Ifh1 is absent (Figure 2C and 2D). In models 2 and 3, transcription

could only be lowered by an inefficient 5–10-fold reduction of

cellular Rap1 levels. While the qualitative model behavior results

from the way Fhl1 and basal activation by Rap1 are represented,

we need such realistically parametrized mathematical models to

assess these control effects quantitatively. Thus, we suggest that the

ambivalent coactivator/corepressor (Fhl1) enables a rapid switch

between full and low basal activity without invoking inefficient

control by GRFs. This may apply to similar promoters with dual

coactivator/repressor TFs constitutively bound GRFs other than

Rap1 [24,38].

The analysis of model 4 demonstrates that a single-input

promoter with efficient shut-off can be realized with a single

transcription factor and without basal activity conferred by the

GRF. We therefore analyzed the combined effects of Fhl1 and

Ifh1 on promoter activity. By varying the Fhl1 concentration it is

not only possible to adjust the degree of activation in the presence

of Ifh1 and the degree of repression in its absence, but also the

factor fold-change between the two states (Figure 2C). In other

words, independent regulation of Fhl1 and Ifh1 provides an ON–

OFF switch with basal activity and tunable upper and lower

activity bounds. Predicting this behavior requires quantitative

Dynamic Properties of Complex Promoters
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knowledge on protein levels and kinetic constants since, for

example, decreasing the affinity of Ifh1 by 100-fold renders Fhl1

predominantly a repressor at low Ifh1 levels (Figure 2D). Promoter

activity is sensitive to changes in Ifh1 over a wider concentration

range compared to Fhl1; especially at wild-type Fhl1 levels, Ifh1

can robustly modulate the activity plateau (Figure 2C). By

contrast, Fhl1 determines sensitivity of promoter activity to Ifh1:

low effective Fhl1 concentrations limit the maximum promoter

activity and make the promoter unresponsive to Ifh1 changes.

Hence, both Fhl1 and Ifh1 can serve as input signals for tuning the

switch.

These generic predictions are supported by experimental

evidence that Fhl1 and Ifh1 respond to different regulatory inputs

[36,44,45]. In addition, the models predict that effective regulator

concentrations need to be considerably lower than total in vivo

protein levels to establish a tunable switch (Figure 2A and 2C).

This agrees with reports of large changes in nuclear Ifh1 and Fhl1

concentrations [34] and with estimates that much of Ifh1 is

unavailable for promoter binding in vivo ([45], J. Merwin and D.

Shore, personal communication). Full exploitation of the complex

promoter architecture’s regulatory potential, hence, requires

regulatory mechanisms that target both inputs individually. This

suggests novel regulatory motifs in the control of yeast ribosome

biogenesis.

Qualitative Model Behaviors Are Robust
Model predictions may depend on the choice of binding

affinities between TFs and DNA as well as between the TFs

themselves. Naturally, the question arises to what extent the

relative model performance can be generalized. Optimizing each

model’s parameters separately over a broad parameter range

demonstrates that the relative performance of promoter variants

regarding maximum activity and shut-off properties remains

unchanged (cf. Figure S5 and Protocol S1 for details). However,

the use of such ‘optimal’ parameter sets can be problematic

because the evolutionarily relevant objective function is unknown.

As a complementary approach, we employed robustness analysis

based on the natural promoter structure and choice of TFs

because they represent the known outcomes of evolution. More

specifically, we quantified the robustness of model predictions by

assaying the sensitivity of achievable promoter activity to random

perturbations in TF binding constants (see Materials and

Figure 2. Stationary regulatory properties of the promoter designs. (A) Stationary input-output characteristics with variable Ifh1 input
concentration (basal activity of g = 0.05) for models 1 (red), 2 (green), 3 (blue), and 4 (black). (B) Normalized residual promoter activity in the absence
of Ifh1 for basal activities of g = 0.05 (black bars) or g = 0.20 (grey bars). (C and D): Promoter activity as a function of total Ifh1 and Fhl1 concentrations
(g = 0.20) for wild-type model 1 (C) and for a variant with 100-fold decreased Ifh1 affinity (D). Color codes represent percent of maximum promoter
activity and the black circle in (C) indicates the operating point in vivo.
doi:10.1371/journal.pcbi.1000279.g002
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Methods). This informs us to what extent a specific prediction

depends on a particular choice of system parameters. Insensitivity

to parameter variations justifies generalizations, especially because

robustness to random perturbations is an important characteristic

of functional biological networks [46,47].

Figure 3A shows the promoter activity for Model 1 as a function

of binding affinities for Rap1 (1st step), Fhl1, and Ifh1. The

pronounced vertical stratification demonstrates that strong Ifh1

binding is essential for high promoter activity. The affinity of Fhl1

has a less marked effect and the attainable promoter activity barely

depends on the strength of the first and second Rap1 binding steps

(Figure 3C, Figure S1, and Figure S2). These features apply to all

models (data not shown) and they are, thus, rather independent of

the actual promoter configuration. The distribution of binding

affinities associated with high promoter activity in Model 1

confirms that early binding steps are less sensitive to changes in

binding affinities than later ones (Figure 3C). Maximum sensitivity

in a sequence of cooperative binding steps is known to require high

association constants immediately before RNA polymerase binds

[13,37]. Our analysis generalizes this result to promoters that have

intermediate states with basal activity when realistic concentra-

tions and binding constants are considered.

However, the more complex designs were less robust when we

mutated all binding affinities simultaneously. Only 4% of the

mutated promoters showed high stationary activity for Model 1, as

opposed to 6% for Model 2, 17% for Model 3, and 22% for the

simplest Model 4 (Figure 3B). Ifh1 and Rap1 should contribute

similarly to sensitivity and insensitivity in designs 1–3. The major

difference in robustness must, hence, be conferred by the

additional intermediate state without transcriptional activity in

models 1 and 2 (see Figure 1, e.g., transcriptionally inactive, single-

bound Ifh1 in model 2). Apparently, the decreased robustness in

Model 1 is the trade-off for added functionality. The ubiquitous

presence of FH-type regulation and its usage at critical control

points suggest that additional flexibility outweighs potential effects

of reduced robustness. This holds for a broad, physiologically

plausible range of transcription factor affinities. It will, therefore,

generalize to other structurally related promoters that employ

combined coactivator/corepressor TFs.

Promoter Architectures Differ in Resistance to Chromatin
Remodeling

Efficient regulation crucially depends on the ability to

consistently respond to changes in the input(s). Next, we therefore

investigated the dynamic promoter responses to varying external

conditions. More specifically, we investigated the dynamic

promoter performance with and without gene inactivation due

to chromatin modifications, which may lower the concentration of

accessible genes at any given time point. For the steady-state

analysis above, silencing could be mimicked by decreasing the

affinity of TFs for DNA, but this does not hold for the dynamic

behavior.

Specifically, we mimicked environmental changes by applying a

sinusoidal time-varying input of free Ifh1 with fixed amplitude and

frequency. Such a periodic forcing function is the standard choice

in frequency response analysis [48] because the system is

stimulated by a single frequency, and not by a frequency spectrum

as for other input shapes. This allows us to map output behavior to

a unique input frequency. For linear models, input and output

frequencies match and only a phase shift occurs, while nonlinear

models produce a spectrum of output frequencies. By varying the

input frequency, we can mimic noise effects (high frequencies) and

observe how well the system tracks dynamic inputs (lower

frequencies).

Figure 3. Robustness of promoter activity against random perturbations in binding constants. (A) Color-coded relative stationary
promoter activity for n = 10,000 simulations of log-uniformly, randomly sampled parameter combinations. (B) Distribution of stationary promoter
activities for 10,000 vectorially-perturbed parameter sets per model (red – Model 1, green – Model 2, black – Model 3, blue – Model 4). Parameters
were varied according to a log-uniform distribution. (C): Affinity combinations yielding high promoter activity in the natural design (Model 1):
distributions of those n = 405 parameter combinations out of 10,000 samples that resulted in .80% of maximal activity. Black – KRap1,1, red – KRap1,2,
blue – KFhl1, green – KIfh1. All equilibrium constants K are in mM21.
doi:10.1371/journal.pcbi.1000279.g003
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Figure 4A shows how the scaled amplitude of promoter activity

oscillations and the frequency-dependent average promoter

activity (Figure 4B) vary for oscillation periods between 1 s

(f = 1 Hz) and approximately 27 hours (f = 1025 Hz) when gene

silencing is neglected. Along with the phase shift between input

and output activity, this representation is related to the well-known

Bode plot for linear systems in control theory. It combines the ratio

of output and input amplitudes in a double logarithmic plot and

the phase shift between output and input in a semi-logarithmic

plot as function of the input frequency. As our models are

nonlinear, the predicted promoter activities deviate from the

sinusoidal shape of the input and show a more switch-like

behavior, but the predominant frequency contribution to the

output was always identical to the input frequency (see Figure S3).

Shape modulation causes differences between the average

promoter activities for dynamic and constant inputs, namely

lower/higher activities for slow/fast Ifh1 oscillations, respectively

(Figure 4B). In all designs, promoter activity follows slow input

signals quantitatively and closely for periods larger than 15 min-

utes (f,1023 Hz), while it rejects fast Ifh1 oscillations with a

period below 15 min (f.1023 Hz) for the chosen parameter

settings. The frequency response of activity oscillations and the

phase shift (Figure S4A) are characteristic of a first-order-type low-

pass behavior, which enables faithful transmission of low-

frequency signals and rejection of high-frequency noise in

engineered and biological systems [11,48,49].

To analyze the impact of random chromatin modifications on

promoter dynamics, we assumed a reversible and constitutive

process that maintains a compact chromatin state (assembled

nucleosomes) in the absence of TF binding (see Protocol S1). With

a single TF (Model 4), dynamic gene inactivation substantially

decreases the average promoter activity, alters the phase response,

and suppresses activity fluctuations (cf. Figure 4C and 4D and

Figure S4C and S4D). The latter leads to a desirable noise filtering

at high frequencies, but it also prevents faithful input tracking in

the physiologically relevant frequency range. A stronger TF

binding affinity can compensate for the low average activity (data

not shown). However, faster association rates may meet physico-

chemical limitations [50], while slower dissociation will increase

the response time to input signals.

In contrast, chromatin closure has almost no effect on the

dynamics of Rap1-containing promoter architectures (Models 1–

3), apart from a slight reduction in average promoter activity.

Similarly, promoter activity in models 1–3 resists noise even for

large, physiologically plausible fluctuations in Rap1 concentrations

regardless of chromatin compaction (Figure S4B and S4D and

data not shown). Importantly, this superiority of Rap1-containing

architectures is not restricted to a specific choice of parameters—

and, hence, TF-binding site affinities—nor to a specific stimulus

shape: We obtained the same qualitative behavior when

optimizing the parameters of each model separately for the

response to step changes in Ifh1 within a range of realistic kinetic

constants and TF affinities (Figure S5 and data not shown; see

Protocol S1 for details). Moreover, optimal parameter sets

obtained in independent optimization runs showed parameter

variability in agreement with the above robustness analysis (see

Protocol S1).

Altogether, stably bound dimeric GRFs, in general, can protect

the promoter from noise propagation due to unspecific chromatin

modifications. GRFs ensure that the promoter remains in a poised

state for rapid reactivation even after prolonged absence of TF

binding. This obviates the need to first reactivate the genes in a

sequence of—potentially slow—chromatin modification steps

[15,16,18] before the transcriptional machinery can be recruited

again. This interpretation is in line with the observation that Rap1

maintains RP gene promoters essentially nucleosome-free [3,29]

and that it is necessary and sufficient for TFIID recruitment [51].

It is also consistent with the proposed barrier function of Rap1 in

Figure 4. Frequency response of promoter architectures. Bode-type plot comparing model responses to a sinusoidal input in the
concentration of free Ifh1 in the absence (A,B) or presence (C,D) of gene inactivation. (A) and (C): normalized amplitude of promoter activity
oscillations; (B) and (D) average promoter activity. Color codes: Model 1 – red, Model 2 – green, Model 3 – blue, Model 4 – black. Solid vertical markers
roughly delineate the physiologically relevant frequency range (f = 1022–1024 Hz corresponding to periods between ,1.7 min and ,2.8 hours).
doi:10.1371/journal.pcbi.1000279.g004
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preventing spreading of silent chromatin [28]. Hence, we propose

that the natural RP gene promoter architecture ensures efficient

promoter activation and rapid responses to input signals even

when unspecific chromatin modifications occur.

Reduced Noise Transmission of Rap1-Containing
Promoters

The deterministic analysis suggested that Rap1-containing

promoters are more resistant to noise from random chromatin

modifications. To further investigate noise propagation, we

analyzed the ‘extreme’ models 1 and 4 by stochastic simulations.

In addition to chromatin modification, we considered inherent

fluctuations of TF levels as noise sources (see Figure 5A and

Materials and Methods). A priori, it is therefore not obvious if the

architecture with a single TF or the more complex design with

three noisy TFs transmits more noise to downstream mRNA

production.

In particular, we focused on the stationary noise in RP mRNA

levels as a function of four factors (see Figure 1 for the

corresponding reactions): (i) the level of Ifh1 as the main dynamic

TF, assuming a constant coefficient of variation (CV) for this TF,

(ii) the noise associated with a constant Ifh1 level, (iii) the

equilibrium constant of chromatin compaction for a constant

inactivation rate, and (iv) the velocity of compaction for a fixed

equilibrium constant. Figure 5B and 5C show example simulations

for models 1 and 4, respectively, where model parameters are

adjusted such that both models generate equivalent average

mRNA numbers for the same compaction efficiency. Here,

mRNA levels in the simple model drop to very low values much

more frequently than for the GRF-containing design, causing

increased variation in mRNA numbers (see also Figure S6). This is

a first confirmation of the predictions on noise resistance from the

deterministic analysis.

To investigate gene expression noise more systematically, we

explored the combined effects of variations for pairs of the above

influence factors. Noise was quantified by calculating the CV of

mRNA numbers for simulated trajectories in steady-state. In the

presence of chromatin remodeling, the natural promoter archi-

tecture (model 1) exhibits lower mRNA noise than the simple

design in all conditions investigated (Figure 5D–G). Notably,

mRNA level variations in design 1 are essentially independent of

either the velocity (Figure 5D) or the strength (Figure 5F) of

compaction. Increasing Ifh1 noise levels only has a moderate effect

in Model 1 and mRNA noise responds more to changes in Ifh1

numbers. By contrast, the simple architecture 4 is inherently more

sensitive to the influence of Ifh1 noise levels and chromatin

remodeling, especially if compaction is efficient or the chromatin

opening/closing cycle is slow (Figure 5E and 5G). The two designs

display similar low mRNA noise levels, or even better performance

of Model 4, only when compaction is inefficient (Ka$2.51, i.e.

when RP genes are active more than 70% of the time in the

absence of any TFs). We conclude that, despite its complexity, the

natural design specifically prevents random fluctuations caused by

chromatin remodeling.

What are the sources for the lower noise in gene expression of

the natural design? Apparently, scenario 4 produces fewer mRNA

molecules than scenario 1 because constitutive chromatin

compaction inactivates a higher fraction of promoters. However,

a systematic comparison of relative variability for a range of

mRNA levels demonstrates that promoter configuration 1 is

Figure 5. Rap1-containing promoters exhibit superior noise suppression. (A) Example of an extended stochastic model including TF noise
based on Model 1. (B–G) Noise levels (CV) of RPmRNAs with gene silencing and noisy transcription factor levels as determined by stochastic
simulation for Model 1 (B,D,F) and Model 4 (C,E,G). For each parameter combination, 500 simulations into steady state were performed. (B) and (C):
Representative simulation time courses and mean trajectory (n = 500) of RPmRNA dynamics at intermediate silencing strength (Ka = 0.40) for Model 1
(B) and Model 4 (C). Black vertical marker: starting point of sampling for CV evaluations. For a fair comparison, Ifh1 levels yielding equivalent mean
RPmRNA levels are shown. (D) and (E): RPmRNA noise when simultaneously varying the speed of gene silencing (relative to the nominal value) and
total Ifh1 levels (for CVIfh1_T<const); (F) and (G): RPmRNA noise as a function of the equilibrium constant of gene reactivation (Ka) and of Ifh1 noise
levels (CVIfh1_T) for a constant Ifh1 level (430 molecules).
doi:10.1371/journal.pcbi.1000279.g005
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consistently associated with less noise than design 4 (Figure 6). The

majority of mRNA variation—especially for low mRNA levels—

results from irregular promoter activation as indicated by

comparison with the expected noise levels due to discrete mRNA

numbers (leading to Poissonian fluctuations) alone. Noise reduc-

tion for the natural architecture only minimally depends on the

basal activity of the Rap12-RP gene complex (not shown)—it

almost exclusively results from the promoter structure.

Hence, noise creation and propagation at complex promoters is

not solely determined by the binding strength of a particular TF,

but also critically depends on the order of recruitment and on

dynamic interactions with other TFs. Consequently, the domains

mediating protein–protein interactions among cooperating TFs

are selectable targets for the evolution of noise traits.

More specifically, Rap1-containing promoters achieve low

intrinsic noise in gene expression because they minimize stochastic

noise induced by unspecific remodeling events, especially for

realistic kinetic values and molecule numbers in yeast. Important-

ly, the simulation results in Figure 5 and Figure 6 demonstrate that

this model prediction is robust even when key parameters are

perturbed several fold from their nominal values.

The regulation of RP genes is intricate because transcriptional

co-regulation is particularly strong [26,27]. Co-regulated promoter

activation is key to induce and maintain concerted expression of

gene sets that are required simultaneously. To quantify the degree

of mRNA coexpression from individual but identical RP gene

promoters, we used the sum of squared pairwise differences

between mRNA molecule numbers over time (cf. Protocol S1 for

details). The average sum is much smaller for Model 1 than for

Model 4 and the differences between natural and simple design are

highly significant (p,10236, Welch’s t-test). Hence, the natural

promoter architecture is clearly superior in keeping absolute

mRNA levels within tight bounds for large gene sets simulta-

neously. It enables efficient production of molecular machine

precursors in stoichiometric quantities despite short mRNA half-

lives that are required for quick adaptation to changes in external

conditions. For ribosomal proteins, these features are essential

because, when environmental conditions deteriorate, resource-

intensive ribosome synthesis must be stopped immediately to

reroute building blocks and energy to processes critical for

survival.

Model Validation
Finally, to critically test the predictive capabilities of the most

realistic model (Model 1) we used two independent data sets for

model validation. In both cases, except for experiment-specific

settings, model structures and parameters remained unchanged.

More specifically, we compared model predictions with the

experimentally observed dynamic response to IFH1 overexpres-

sion to evaluate if model structure and parameters would yield

reliable predictions for a regulator contained in the model.

First, we compared the predicted dynamics of Ifh1 binding to

RP promoters and RP mRNA production for galactose-inducible

IFH1 expression with experimental data [31,32] (see Protocol S1

for details). Using a fit to the measured IFH1 mRNA profile [31]

as input (Figure 7A), Model 1 predicted promoter dynamics and

RP mRNA production after induction of the GAL1-IFH1 construct

(GAL1: SGD S000000224). Since the absolute level of basal GAL1-

IFH1 expression under non-inducing conditions was not deter-

mined, we performed simulations for a range of plausible values.

For basal IFH1 mRNA expression at 12% of the wild-type level on

glucose we obtained good qualitative and quantitative agreement

Figure 6. Dependence of noise levels on mRNA numbers. Noise levels of RPmRNAs as a function of mean mRNA numbers for Ka values below
0.4 and the full range of Ifh1 levels analyzed. Open symbols: Model 1, filled symbols: Model 4. The dashed line indicates the expected Poissonian
distribution due to random fluctuations in mRNA numbers without promoter influences.
doi:10.1371/journal.pcbi.1000279.g006
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between model and experimental data (Figure 7B and 7C),

independently of the assumed basal activity g (data not shown).

The model does not capture the decrease in measured mRNA

levels at the last time point. However, no such reduction was

observed in a similar experiment [32] (cf. filled squares in

Figure 7C). We cannot exclude that deviations between model and

data reflect, at least in part, unmodeled mechanisms. Interestingly,

the model predicts that larger changes in Ifh1 occupancy at the

promoter are not necessarily linked to a monotonic increase in the

fold-change of RPmRNA levels (Figure 7B and 7C and Figure S7).

Quantitative discrimination of model alternatives for this exper-

imental setup, therefore, critically depends on accurate quantifi-

cation of induction dynamics and IFH1 mRNA basal levels in

absolute terms; more comprehensive experiments are required to

evaluate model performance more stringently.

To assess potential structural model uncertainties, we simulated

the relation between Ifh1 promoter occupancy (which is the key

control variable in the model) and RP mRNA production for

stresses that might involve unmodeled regulators. In the model,

stationary RP mRNA levels depend linearly on the fraction of

Ifh1-bound RP promoters. This assumption leads to qualitatively

correct predictions of changes in RP mRNA levels (Figure 7D–F)

in response to heat shock, osmotic shock, and rapamycin addition

[32]. Even quantitatively, the differences between measured and

simulated responses were not statistically significant (Welch’s t-test,

95% confidence level) in any of the three conditions. We obtained

the same results for predicted Rap1 occupancies and for Fhl1

occupancy under osmotic shock (Figure S8). The difference

between simulated and measured Fhl1 occupancies, however,

was significant for heat shock (p = 0.0055) and rapamycin addition

(p = 0.0084). Underestimation of Fhl1 binding in these conditions

may reflect the influence of additional regulators. Such quantita-

tive discrepancies highlight which model aspects require improve-

ment; they identify possible settings under which alternative

regulators can be studied in future experiments. We conclude that

Model 1, which considers only Ifh1 and Fhl1 as dominating

dynamic regulators, correctly captures salient features of RP gene

promoter and mRNA behavior under stationary and dynamic

conditions. Biologically meaningful and partly quantitative

predictions are, hence, possible already with our simple model.

Discussion

Complex promoters are involved in many cellular processes

where correct timing of expression or precise and coherent

regulation of gene sets is required. Their architectures, however,

prevent intuitive explanations of promoter functions and advan-

tages for controlling gene expression dynamics. Using the well-

characterized yeast RP gene promoter as example, we derive a set

of quantitative kinetic models for the natural and for three

simplified synthetic promoter configurations. Our model compar-

ison encompasses a broad range of performance characteristics,

including dynamic responsiveness and noise transmission, which

are not commonly covered in more traditional promoter models

[9,10].

For the specific example of yeast RP gene promoters, we

conclude that the natural design is particularly suited to combine

tunable regulation of gene expression with a fast response to

external signals, strong co-regulation of target genes, and low

mRNA noise in the presence of chromatin remodeling. These are

partially contradicting objectives, and a quantitative analysis is

required to evaluate the corresponding trade-offs. In particular,

Figure 7. Validation of the most realistic model (Model 1). (A–C) Dynamic responses to induction of GAL1-controlled IFH1 expression upon
shifting from a non-inducing carbon source to galactose. Experimental data are shown as symbols (circles: data from Schawalder et al. [31] for
glycerol+lactateRgalactose, squares: data from Wade et al. [32] for raffinoseRgalactose). Model predictions (lines) are averages of n = 10,000 or
50,000 stochastic runs (g = 0.05). IFH1 mRNA (A), Ifh1 promoter occupancy (B), and RP mRNA (C) for the fitted IFH1 mRNA time course and varying
basal IFH1 expression (0.75–15% of WT level on glucose). In (B) and (C), error bars represent standard deviations of the mean based on n
measurements; (B) open circles (n = 3), filled squares (n = 4), (C) open circles (n = 113), filled squares (n = 5). See Protocol S1 for details. (D–F) Predicted
stress response of RP mRNA levels. Comparison of simulated and measured RP mRNA levels under various stress conditions (experimental data from
[32]) for heat shock (D), osmotic shock (E), and rapamycin addition (F). Error bars indicate the standard deviation of the mean for three RP genes
(RPL2B, RPL27B, and RPS11B; SGD S000001280, S000002879, and S000000252). Simulations were performed for basal promoter activities of g = 0.05
and g = 0.20, respectively. See Protocol S1 for details.
doi:10.1371/journal.pcbi.1000279.g007

Dynamic Properties of Complex Promoters

PLoS Computational Biology | www.ploscompbiol.org 9 January 2009 | Volume 5 | Issue 1 | e1000279



the natural promoter can serve as switch between activating and

repressing modes with tunable upper and lower activity bounds.

Despite the limited quantitative data available for model

development, the most realistic models’ qualitative—and to a

certain extent quantitative—features and predictions comply with

our knowledge on RP gene regulation in yeast. Importantly,

several predictions are new and experimentally testable: (i) the

importance of Forkhead proteins for superior shut-off properties

and (ii) the differential regulation of Fhl1 and Ifh1 required for

tunable switch function. Specifically, the role of Rap1-Fhl1

scaffolds in achieving low transcriptional noise mechanistically

explain why RP promoters recruiting these factors are associated

with low protein noise in vivo [25] and why RP genes exhibit

prominent transcriptional co-regulation [26,27].

This study’s more general results on complex promoter

architectures primarily concern the relations between promoter

structure and noise resistance. Importantly, GRF-containing

architectures render promoter activity robust to influences of

unspecific chromatin remodeling, independent of the compaction

efficiency and speed. They maintain genes in a poised state for rapid

(re-) activation even during prolonged absence of the main

activating TF. Therefore, complex promoters can contribute

much less noise to mRNA levels than simpler designs. This is

particularly relevant for highly expressed and unstable proteins,

where forced mRNA fluctuations dominate intrinsic noise [17]

and, subsequently, total protein noise [25]. Although many GRF-

containing promoters are found in highly expressed ‘‘housekeep-

ing’’ genes [52], not all of these exhibit the same exceptionally low

noise as RP genes in vivo [25]. This corroborates that synergistic

action with ambivalent TFs such as Fhl1 is crucial.

Two important aspects warrant further investigation. First, TFs

frequently interact with histones and histone (de)acetylases that co-

regulate promoter activity [29,53,54]. Evidence from yeast

indicates that dynamic recruitment of chromatin modifiers such

as NuA4 can contribute to low noise [25]. Secondly, TATA boxes

in promoters of many highly expressed proteins promote

transcriptional re-initiation [55], but also increase intrinsic

expression noise through a stable scaffold [15,18]. Experimental

data [30,51] and our simulations demonstrate that GRF binding

yields a similarly stable scaffold that leaves genes poised for

transcription. Yet RP gene promoters are typically TATA-less

[30], suggesting that the Rap1-Fhl-Ifh1 and similar architectures

achieve high expression rates with minimal transcriptional bursts

from re-initiation.

Our analysis relies on a realistic biological example and,

correspondingly, some quantitative model features may be specific

for the RP gene system. However, robustness analysis and model

optimizations demonstrate that many stationary and qualitative

dynamic features are inherent properties of the promoter

structure; they are preserved within a broad range typical of

physiological parameter values and TF levels. These findings may

apply to structurally related promoter architectures, especially

those involving certain Forkhead proteins [24,56,57] or ternary-

complex TFs [38]. Indeed, some TCF-type promoters are

characteristic of immediate-early genes in mammalian cells [38].

Performance requirements similar to RP genes hold for the

synthesis of other molecular machines and for the temporal

coordination of the Clb2 cluster in the yeast cell cycle [24]. These

experimental observations are consistent with our proposal that

the general architecture is especially suited for rapid gene (re-

)activation and strong transcriptional co-regulation. We expect our

study to aid in understanding complex promoter architectures not

only in terms of stationary logical functions [2,13,14], but also

regarding key qualitative aspects of gene expression dynamics.

Materials and Methods

Promoter Models
We modeled molecular interactions of transcription factors at

the promoter using chemical reaction kinetics, which lead to

ordinary differential equation (ODE) models. All deterministic

simulations were performed in MATLAB 7 R14 (The Math-

Works, Natick, Mass.). For stochastic simulations, we employed

extended promoter models that also account for the noise in

transcription factor levels, synthesis and degradation of

RPmRNAs, and competitive binding of Rap1 to non-RP target

genes. Stochastic simulations were performed on a PC cluster

using a C-based implementation of the approximate R-leaping

algorithm of Auger et al. [58]. Raw simulation results were

processed and analyzed in MATLAB 7 R14 (The MathWorks,

Natick, Mass.). Details regarding the chemical reaction networks,

choices of kinetic constants and initial values as well as settings of

the simulation algorithms are described in Protocol S1. SBML files

for models 1 and 4 are provided as Protocols S2, S3, S4, S5.

Steady-State Analysis
To assess the influence of TF levels on steady-state promoter

activity, total concentrations of the TF under question were varied

and the model was simulated until it reached steady state. We

assigned activity levels to the resulting complexes between RP gene

and TFs depending on composition (Protocol S1). We investigated

the robustness of promoter activity by randomly varying the values

of equilibrium constants for binding of each TF and simulating the

model into steady state using measured TF concentrations [59].

For each model, 10,000 parameter sets were independently

sampled from a log-uniform distribution spanning values between

1021 and 101 nM21. Performing the same analysis for a range

from 1022 to 102 nM21 did not alter the relative sensitivity of

promoter activity qualitatively (data not shown).

Dynamic Analysis
To establish Bode-type plots for the frequency responses of the

promoters, we first simulated the ODE models into steady state in

the absence of the stimulant (either Ifh1 or Rap1). Subsequently, a

sinusoidal input in the free stimulant concentration was applied such

that the concentration oscillated between its total concentration and

zero for 50 cycles at the respective frequency. For each model,

4096 points of the simulated trajectories of the relevant molecular

species were used to determine their corresponding frequency,

amplitude, and phase values by Fast Fourier Transformation.

Despite the nonlinear nature of the models, the predominant

frequency contribution to the output was always identical to the

input frequency. From this data, the associated promoter activities

and phase shifts between input and output were calculated.

In the stochastic simulation studies addressing RPmRNA noise for

promoter designs 1 and 4, the kinetic constants of gene inactivation/

reactivation were increased or decreased up to tenfold while

maintaining the nominal Ka value constant. Similarly, the gene

inactivation rate constant was kept at its nominal value while varying

the probability of an RP gene being active in the absence of TF

binding between fa = 1% and fa = 99% by adjusting Ka (see Protocol

S1 for details). For fair comparison of mRNA noise between models

(Figure 5B and 5C), we chose Ifh1 levels yielding the same mean

mRNA number (45–46), corresponding to 615 (Model 1) and 1430

(Model 4) molecules of Ifh1, respectively.

Model Validation
Details on simulation conditions, choice of experimental data, and

fitting of the IFH1 mRNA time course are described in Protocol S1.
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Supporting Information

Figure S1 Robustness of promoter activity against random

perturbations in binding constants. Color-coded relative stationary

promoter activity for n = 10,000 simulations of log uniformly,

randomly sampled parameter combinations. (A) Model 1, as in

Figure 4A, but with KRap1,2 instead of KRap1,1. (B) and (C) Model

2, (D) Model 3, (E) Model 4. Here, promoter activity is shown as a

function of parameter KIfh1. All equilibrium constants K are in

units of mM21.

Found at: doi:10.1371/journal.pcbi.1000279.s001 (12.16 MB

EPS)

Figure S2 Complex promoter architectures are less robust at

maintaining high, but more robust in ensuring basal promoter

activity. Distribution of stationary promoter activities for 10,000

vectorially-perturbed parameter sets per model. The parameters

were varied according to a log uniform distribution. Distributions

of those n parameter combinations out of 10,000 samples that

resulted in .80% of maximal activity are shown. (A) and (B)

Model 2 (n = 577), (C) and (D) Model 3 (n = 1736), (E) Model 4

(n = 2226). In (A) and (C), open symbols represent the first, filled

symbols the second Rap1 binding step. In (B), open symbols

represent the first, filled symbols the second Ifh1 binding step. In

(D) and (E), open symbols represent Ifh1. All equilibrium constants

K are in units of mM21.

Found at: doi:10.1371/journal.pcbi.1000279.s002 (0.58 MB EPS)

Figure S3 The shape of the output amplitude (promoter activity)

deviates from the input shape. Phase profiles of input ((A),

concentration of free Ifh1) and output ((B), relative activity of the

RP promoter) for a sinusoidal input with a period of ,17 min

(f = 1023 Hz). Color codes for (B): Model 1: red, Model 2: green,

Model 3: blue, and Model 4: black.

Found at: doi:10.1371/journal.pcbi.1000279.s003 (0.37 MB EPS)

Figure S4 Promoters serve as low-pass filters and differ in

resistance to chromatin remodeling. Bode-type plot comparing

model responses to a sinusoidal input in the concentration of free

Ifh1 with (A) or without (B) gene inactivation. (A) and (B): phase

shift between input and output. Color codes: Model 1 - red, Model

2 - green, Model 3 - blue, Model 4 - black. Models 3 and 4 exhibit

essentially identical phase shifts for Ifh1 oscillations and hence

cannot be discerned in (A). (C) and (D): normalized amplitude of

promoter activity oscillations for the Rap1 containing models 1–3

in the absence (C) or presence (D) of gene silencing with free Rap1

as oscillating input. Solid vertical markers indicate the physiolog-

ically relevant frequency range.

Found at: doi:10.1371/journal.pcbi.1000279.s004 (0.62 MB EPS)

Figure S5 Rap1-containing promoters exhibit superior input

tracking in the presence of gene inactivation. (A) and (B)

Promoter activity response (output) to a series of step inputs in

total Ifh1 (10–100% Ifh1T) for the different models (Model 1 -

red, Model 2 - green, Model 3 - blue, Model 4 - black) in the

absence (A) and presence (B) of gene inactivation. (C) and (D)

Normalized deviation between output and ideal step response

shape as a function of input step height without (C) and with (D)

random gene inactivation. Symbols: Model 1 - filled circles,

Model 2 - open squares, Model 3 - filled triangles, Model 4 -

open diamonds.

Found at: doi:10.1371/journal.pcbi.1000279.s005 (2.76 MB EPS)

Figure S6 Rap1-containing promoters produce less noisy

mRNA distributions. Stationary distributions of RP mRNA levels

obtained by stochastic simulation. (A) Rap1 containing promoter

(Model 1) with a mean of 46.2 mRNA molecules and

CVRPmRNA = 35%. (B) Simple architecture lacking Rap1 (Model

4) with a mean of 45.2 mRNA molecules and CVRPmRNA = 58%.

Note the markedly higher frequency of complete mRNA absence

in Model 4 (B).

Found at: doi:10.1371/journal.pcbi.1000279.s006 (0.29 MB EPS)

Figure S7 Relative changes in RP mRNA levels can depend

non-monotonically on basal IFH1 expression for promoters with

at least two states of nonzero transcriptional activity. Stationary

RP mRNA levels before (dashed lines) and after (dash-dotted

lines) stimulation of IFH1 expression (50 fold, similar to the

maximum value in Figure 7A) and the corresponding fold

increase (solid lines) are shown for different pre-induction values

of IFH1 mRNA. All simulations were performed using the

deterministic models without chromatin remodeling. (A) Model

1, (B) Model 2, (C) Model 3, and (D) Model 4.

Found at: doi:10.1371/journal.pcbi.1000279.s007 (0.77 MB EPS)

Figure S8 Predicted TF promoter occupancies in response to

stress. Comparison of simulated and measured Rap1 (upper row)

and Fhl1 occupancies (lower row) under various stress conditions

(experimental data from [32]). (A, D) heat shock, (B, E) osmotic

shock, (C, F) rapamycin addition. Error bars indicate the standard

deviation of the mean for three RP genes (RPL2B, RPL27B, and

RPS11B). See Protocol S1 for details.

Found at: doi:10.1371/journal.pcbi.1000279.s008 (0.35 MB EPS)

Protocol S1 Supporting methods

Found at: doi:10.1371/journal.pcbi.1000279.s009 (0.88 MB

DOC)

Protocol S2 SBML file for deterministic version of Model 1

Found at: doi:10.1371/journal.pcbi.1000279.s010 (3.00 KB ZIP)

Protocol S3 SBML file for stochastic version of Model 1

Found at: doi:10.1371/journal.pcbi.1000279.s011 (3.00 KB ZIP)

Protocol S4 SBML file for deterministic version of Model 4

Found at: doi:10.1371/journal.pcbi.1000279.s012 (2.00 KB ZIP)

Protocol S5 SBML file for stochastic version of Model 4

Found at: doi:10.1371/journal.pcbi.1000279.s013 (2.00 KB ZIP)

Acknowledgments

We thank Philippe Chatelain, Anne Auger, and Petros Koumoutsakos for

the implementation of the R-leaping algorithm, Jason Merwin and David

Shore for communicating results before publication, and Joseph Wade and

Kevin Struhl for access to raw data. We are indebted to Andreas Wagner,

Roel van Driel, and members of the Stelling group for insightful discussions

and for critically reading earlier versions of the manuscript.

Author Contributions

Conceived and designed the experiments: DM JS. Performed the

experiments: DM. Analyzed the data: DM JS. Contributed reagents/

materials/analysis tools: DM JS. Wrote the paper: DM JS.

References

1. Ptashne M, Gann A (1997) Transcriptional activation by recruitment. Nature

386: 569–577.

2. Setty Y, Mayo AE, Surette MG, Alon U (2003) Detailed map of a cis-regulatory

input function. Proc Natl Acad Sci U S A 100: 7702–7707.

3. Buck MJ, Lieb JD (2006) A chromatin-mediated mechanism for specification of

conditional transcription factor targets. Nat Genet 38: 1446–1451.

4. Struhl K (1999) Fundamentally different logic of gene regulation in eukaryotes

and prokaryotes. Cell 98: 1–4.

Dynamic Properties of Complex Promoters

PLoS Computational Biology | www.ploscompbiol.org 11 January 2009 | Volume 5 | Issue 1 | e1000279



5. van Driel R, Fransz PF, Verschure PJ (2003) The eukaryotic genome: a system

regulated at different hierarchical levels. J Cell Sci 116: 4067–4075.
6. Balaji S, Babu MM, Iyer LM, Luscombe NM, Aravind L (2006) Comprehensive

analysis of combinatorial regulation using the transcriptional regulatory network

of yeast. J Mol Biol 360: 213–227.
7. Luscombe NM, Babu MM, Yu HY, Snyder M, Teichmann SA, et al. (2004)

Genomic analysis of regulatory network dynamics reveals large topological
changes. Nature 431: 308–312.

8. Rachlin J, Cohen DD, Cantor C, Kasif S (2006) Biological context networks: a

mosaic view of the interactome. Mol Syst Biol 2: 66.
9. Bolouri H, Davidson EH (2002) Modeling transcriptional regulatory networks.

Bioessays 24: 1118–1129.
10. Bintu L, Buchler NE, Garcia HG, Gerland U, Hwa T, et al. (2005)

Transcriptional regulation by the numbers: models. Curr Opin Genet Dev 15:
116–124.

11. Wall ME, Hlavacek WS, Savageau MA (2004) Design of gene circuits: lessons

from bacteria. Nat Rev Genet 5: 34–42.
12. Mayo AE, Setty Y, Shavit S, Zaslaver A, Alon U (2006) Plasticity of the cis-

regulatory input function of a gene. PLoS Biol 4: e45. doi:10.1371/journal.
pbio.0040045.

13. Hermsen R, Tans S, Wolde PR (2006) Transcriptional regulation by competing

transcription factor modules. PLoS Comput Biol 2: e164. doi:10.1371/
journal.pcbi.0020164.

14. Buchler NE, Gerland U, Hwa T (2003) On schemes of combinatorial
transcription logic. Proc Natl Acad Sci U S A 100: 5136–5141.

15. Blake WJ, Balazsi G, Kohanski MA, Isaacs FJ, Murphy KF, et al. (2006)
Phenotypic consequences of promoter-mediated transcriptional noise. Mol Cell

24: 853–865.

16. Kaern M, Elston TC, Blake WJ, Collins JJ (2005) Stochasticity in gene
expression: from theories to phenotypes. Nat Rev Genet 6: 451–464.

17. Paulsson J (2005) Models of stochastic gene expression. Phys Life Rev 2:
157–175.

18. Raser JM, O’Shea EK (2004) Control of stochasticity in eukaryotic gene

expression. Science 304: 1811–1814.
19. Becskei A, Kaufmann BB, van Oudenaarden A (2005) Contributions of low

molecule number and chromosomal positioning to stochastic gene expression.
Nat Genet 37: 937–944.

20. Fraser HB, Hirsh AE, Giaever G, Kumm J, Eisen MB (2004) Noise
minimization in eukaryotic gene expression. PLoS Biol 2: e137. doi:10.1371/

journal.pbio.0020137.
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